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Contribution of one-phonon processes to the electronic energy transfer in disordered solids
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The contribution of nonresonant one phonon processes to the ensemble averaged probability that an initially
excited donor is excited at a later timéas been evaluated. A distribution of energy differences between the
electronic levels involved in the transfer process is explicitly allowed in this model, which leads to a depen-
dence of the ensemble-averaged probability on the initial distribution of donor ions and on the temperature. In
order to perform such an ensemble average, the truncated cumulant expansion method has been used, which
has been shown to give an accurate value for this quantity in the experimental time scale. We find that two
temporal regimes emerge from the calculation, which are characterized by very distinct temporal, temperature,
and initially excited donor ion energy difference dependencies.

I. INTRODUCTION OAI.*712 The main advantage of this method is its math-
ematical simplicity; despite the simplicity it provides an ac-
One of the most interesting problems physics has faced isurate description of the survival probabifit} in the time
the determination of the structure of real materials, and it stillscale of experiments, if compared with other mathematically
remains one of the most active fields of research, not only inmore complicated techniques that take into account the
physics, but also in chemistry, biology, and engineering. n-body transfer problem, as does, for example, the Gocha-
In this sense, optical studies of electronic energy transfenour, Andersen, and Fayer diagrammatic theory.
(EET) have shown to be very valuable tools, making it pos- All the aforementioned works share the hypothesis that
sible to probe the structure of materials to the moleculathe main mechanism of the transfer is the resonant dipolar
level (see Ref. 1 and references thejeifhese kinds of tech- coupling between the chromophores. However, it is well-
niques are of special interest in the development of tunablestablished that in disordered solids, the energy levels of the
solid-state lasers, optical fibers, probing the structural propehromophores vary from site to site, due to the spatial disor-
erties of polymers composites, or studying the first stages afler, which gives rise to a distribution of the radiative transi-
the photosynthesis in biological systems, to quote some exion energies through the solid, leading to the very broad,
amples(see Ref. 2 and references thejein inhomogeneously-broadened optical spectral lines experi-
For this reason, the understanding of the mechanisms irmentally observed, but not accounted for in therster
volved in the processes of EET between optically active ionsnodel.
(OAl) in solids, in both restricted and unrestricted geom- In the solid there are phonons which play an important
etries, is a fundamental problem which has generated rgole in the dynamics of the transfer, as they can make up the
newed interest during recent years. energy difference between the levels involved in the transfer
However, in spite of the abundant literature concerning:)rocesé,3 giving rise to the so-called nonresonant EET.
experimental studies of these processes, the theoretical sitlihese processes are characterized by a temperature depen-
ation is not so clear and, in fact, it appears that the vastlence, in contrast to the resonant EET processes, which are
majority of the models used to interpret experimental datandependent of temperature at low temperature. The tem-
share some hypotheses that reduce their range of applicabjierature dependence of the EET provides an additional valu-
ity to homogeneously-broadened transitions, and so they a@le tool in the determination of the processes involved in
able to explain only one kind of the EET processes present ithe optical excitation migration through the solid, and is a
a solid, the so-called, non radiative resonant EET processefature that any model which tries to give a general descrip-
To be more explicit, the transfer of electronic excitationtion of the problem not only at 0 K, but also at the finite
among fluorescent chromophores is explained in terms diemperatures, has to deal with.
nonradiative resonant dipolar interactions between them, fol- Recently, this problem has been addressed by Martd
lowing the model earlier introduced by &er® which can  co-workers}* and by Lavn and co-workers? who have ap-
be analytically solved for perfect crystals. In order to generplied the truncated cumulant expansion to the description of
alize the Fester model to include the spatial disorder presenfFLN experiments, both in Y& fluoroindate-doped glasses
in disordered solids, the so-called cumulant expansiorand in EG" calcium diborate glasses, by assuming that the
method~® was introduced, which allows one to evaluate theEET is dominated by one-phonon assisted processes. These
configurational average of the probability that an initially- authors find a good agreement between the theoretical results
excited chromophore, the so-called donor, remains excited @&nd their experimental data. However, their model is not
a later timet, the so-called survival probability, which is a complete, as they only take into account the contribution to
quantity that can be readily compared to fluorescence linghe EET of those phonons of very short wavelength, that is,
narrowing(FLN) experimental data. their model is only applicable when the energy mismatch
This technique has been successfully applied to a variethetween the OAI is very large. For an inhomogeneously-
of both finite and infinite systems with low concentration of broadened transition, ions with a small energy mismatch can
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also give a significant contribution to the transfer. Moreover,Green function solution to the master equation of the
analytical expressions of the survival probability which system®!! The physical meaning d&(t) is the probability
could be readily compared to experimental data would behat an excitation remains on the initially-excited ion at time
also desirable, and these authors provide none. t. In fact, this quantity can be readily compared with experi-
In a different context, Stein, Peterson, and Fayer througlnental observables obtained from fluorescence line narrow-
a series of articlé§™*° have developed a spectral overlap ing (FLN) experiments. Since the time dependence of the
model for EET at high temperatures in polymeric glasses angpservable arises from the spatial distribution of unexcited

liquids, which provides a quasiquantitative agreement withya| around the excited ion, namely the acceptors, the en-

experimental data obtained by the same authors. Howevery ple average dBS(t), which we shall denotéGS(t)), is

this model is mainly phenomenological, as it ignores the ‘.je.fhe quantity measured.
tails of the microscopic transfer processes, due to the diffi- The general expression fofG(t)), for an initially-
culties of modeling the interaction of the electronic levels cited gonor' ; F()en ' y
with the phonons and lack of knowledge about the detaile*® IS giv
form of the density of phonon states in the systems the au- 1 )
thors studied. (GS(t))= —f exp{ —cf [1-pg(rga;t)]

For these reasons, in this work we propose a generaliza- Vy
tion of the aforementioned models in order to account for a
general description of the EET dynamics in disordered solids X f(Fa)dFa] f(ry) dry. (1)
at flnlte temperatures with |nhomogenequsly-broadened elec-
tronic energy levels. The scope of this work is twofold. In this expressiorp)d(Fj 1) is the probability of the donor ion

Firstly, we present a generalization of the truncated cumulant . : : e o
expansion which can be used to account for the EET in bo{}l‘%emg excited at a timetaking into account only the excita

finite and infinite disordered solids with a distribution of both tion transfer to the acceptor located at sitg f(ra) and
donor and acceptor energies. Secondly, the expressions §(ry) are the acceptor and donor spatial distribution func-
obtained are applied to the simple case where transfer in #ions, respectivelyV is the volume spanned by the donor,
disordered, infinite solid involves one phonon, without re-andc is the number density of acceptor ions, which verifies
stricting the energy mismatch of the ions. We find that tWoiha normalization conditiomff(?)dF=N—1 with N the
quite different temporal regimes emerge where the tempera;, mper of OAI in the system. ’

ture and energy dependence are quite distinct, even in this To arrive at Eq(1), two main approximations are us&d.
simple case. Analytical expressions are presented in the IOV\E'irst, the two—particlé approximation is introduced, i.e., the

an?'r?(laggjti?g%rfattﬁirselellgqulisils as follows: in Sec. Il we de- excitation decay of the donor ion due to an acceptor located

scribe the main features of the truncated cumulant expansio®f F'a is assumed to be unaffected by the presence of other
method, together with a generalization of this technique t@cceptors. This allows one to reduce thparticle problem
account for an inhomogeneously-broadened distribution ofo @ superposition of two-particle problems. Second, the cu-
OAl in a disordered solid. In spite of the generality of this mulant expansion in terms of the number density of OAl is
method, in order to arrive at analytical expressions for thdruncated at first order, assuming a very low concentration of
quantities of interest, which give more physical insight in theOAll.

problem tharab initio numerical modeling of the system, we  In the simpler case of an infinite, disordered system, Eq.

Il. GENERALIZATION OF THE FIRST-ORDER

have explicitly applied it to the simple physical system of an(1) become¥
out that the survival probability does not only depend on
tion. In Sec. Il and IV we present the main steps of the
results of the truncated cumulant calculated in the previou&onic transition involved an&, is the critical transfer radius
can be extracted from this work. Finally, in Appendixes A analytical solutioff
TRUNCATED CUMULANT EXPANSION METHOD whereI'(x) is the gamma function.

infinite homogeneously-disordered solid. We will show that,
even with these simplifying assumptions, we obtain results _ - s
that apply to real disordered solids. In particular, it will turn IN(G*(t))=—4mc | [1-p(rga;IrGadraa- (2
time, but also on temperature and on the energy of the ini- For example, for incoherent, resonant dipole-dipole en-
tially excited donor, i.e., the frequency of the pumpingergy transfet
source relative to the mean energy of the acceptor distribu-
R 2t Ry\®
calculation of the truncated cumulant expansion taking into P(rga,t) =751 1+exp —— Taa €
account the contribution of one-phonon-assisted processes to . ) o
the nonresonant EET. In Sec. V, we summarize the maif® obtained, where is the fluorescence lifetime of the elec-
sections, and discuss some issues about where the crosso{@r donor-donor transpoithe distance at which the rate of
between the two temporal regimes mentioned above shouf@@nsfer to unexcited OAl is equal to the fluorescence decay
be. Section VI will be devoted to stating the conclusions thafate of the donor in absence of acceptoesd Eq.(2) has the
and B, we present a detailed derivation of the main math- dare (12 1
ematical results. In(GS(t)>=——7T 212~ RT3, (4)
3 T 2
It is straightforward to generalize E@l) to account for
Electronic energy transfer can be modeled in terms of a&ases where the transition energy of the accefgy,and of
quantity, G3(t), which represents the diagonal part of thethe donorky, vary through the solid, as do the transfer rates
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(nonresonant EET giving rise to an energy mismatch,
AEq4,=E4—E,, which also varies through the solid. To this
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have explicitly indicated a temperature dependence of the
cumulant which comes from a possible temperature depen-

end, an additional average over the acceptor and donor tradence of the transfer rates.
sition energies has to be included, leading to an expression In the following, we shall restrict ourselves to the simpler

for the truncated cumulant expansion given by
s 1 -
(G (t)>:V—d exp —C | [1-pg(AEga,rgast)]

><g<Ea>f<Fa>dEadFa]g(Ed>f<Fd>dEddFd,

)

where pd(AEda,Fda;t) represents the probability of the
initially-excited donor ion with transition energiy being
excited at timet, taking into account only the interaction
with the acceptor ion located ﬁga from donor ion, which
has a transition enerdy, . 9(E,)[9(Ey)] is the distribution
function of the acceptofdonoy energies.

In the spirit of the two-particle approximation,
Pa(AEqa.l4a:t) can be analytically calculated. To this end,
we consider the rate equations

dpyg

dt (t)=—WgaPg+WagPa, (6)
Pa

dt (1) = —WagPat+WgaPg s (7)

wherewg,(w,g) is the donor acceptor(acceptor-donon
transfer rate, ang, is the probability of the considered ac-

situation of an infinite, disordered solid, which is easier to
study analytically. In this case, due to translational invari-
ance of the system, if we change the inner integral variable

from r, to ry—r,, the outer integral over, gives a factor
V4 which cancels the one in the denominator of Ekfl).

Another simplification that we shall make is to consider
that the light which initially excites donor ions is monochro-
matic, so we can put the distribution of initially excited ions
in the form

9(Eq) = 6(Eq—Ey),

whereE, is the energy of the monochromatic incident light.
With these assumptions, E@L1) reads

(12

IN(GS(Ey,T;t))

—47ch

Expressiong11) and (13) are the fundamental equations
of this work and, in the next section, we shall apply them to
a case of special interest: one-phonon-assisted EET, which
plays an essential role in the dynamics of the EET at very
low temperature.

1— e~ (WgatWag)t

g(Ea) I'gadEadrda-

e PABdat ]
(13

ceptor to be excited. It is easy to see that if the transfer rates

depend onT, the probability py will also, so we should
modify expression(5) to account for this additional param-
eter.

The previous system can be easily solved by taking into

account the detailed balance condition

e FEawg, = w,qge FEa tS)
to give
i e BAEq, e~ (WgatWagt
Pa(AEga, T'ra;t) = e BAEdat 1 i e AhBaat 1’ ©
) 1 e~ (WgatWagt
Pa(ABda ol aail) = e 0~ anE, 1
(10

which after substitution in expressidb) leads to

il od <]

X g(Eq) f(Fa>dEadFa] 9(Eq) f(rg) dEgdry.

1—e” (WgatWag)t

S .
(GX(T:V) o PEar 1

11
In these expressiong=1/kgT, with kg the Boltzmann con-

IIl. ONE-PHONON PROCESSES CONTRIBUTION TO THE
TRUNCATED CUMULANT EXPANSION

The contribution of the one-phonon-assisted processes to
the nonresonant EET transfer rate can be calculated very
easily by using the Fermi-golden rule in the Debye approxi-
mation to giveé®

JZ,)/Z .. .
Wda:mf [f(w)+1]h(q,rga) 0”[ 8(fiw—AEg,)

+8(hw+AEy,) |do, (14
where the notation is as followd=b,/rg, is the multipolar
electrostatic coupling between the ions, whbyeis a con-
stant which depends on the multipolar moments of both ions,
and n is the corresponding multipolar exponemt=3 for
dipole—dipole interactiom=4 for quadrupole—dipole inter-
action, and so on vy is the ion—phonon coupling strength
difference between the states involved in the optical transi-
tion; p is the mass density of the material;is the sound
velocity averaged over orientation&(x) = 1/(e’*— 1) is the
Bose—Einstein distribution function and, finallyy(q,r)

=(|e'9°"—1|?) is the so-called coherence factor, where the
angle brackets denote average over orientations.
For a disordered solid, where phonons are just acoustic

waves, andj can take any value, the coherence factor can be

stant andT the temperature. It is important to note that we evaluated to be
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. e singr 25
h(@-n=(l1-ev?)=2{1-="=], (19
SO 5l \\\\ ’/ T — Pl
sin |AEdalrda) —
+ o IAEg| 1 o
WyatWag=———— -_——— I
da ad ﬂ'pﬁ4v5 da |AEda|rda L5
fiv 5
=
AE
X cotl-( u) (16) It
2
In the limiting case where the phonons which contribute
most to the EET are those with very large, that is, those 0sr
phonons with very short wavelengths, the coherence factor it
approximately 2, and we recover the usual expression for the
transfer rate, namely

0 n o 3n an 5t 61 m 8n on  10m
qr

J2 2|AEda| ’_<,8|AEda|

17

Wagt Wga= L
FIG. 1. Coherence factor. The dashed line indicates the exact

result for a disordered soliEq. (15)], whereas the solid line cor-
The opposite limit consists in assuming that the main conresponds to the approximated coherence factor used in this work
tribution to the one-phonon-assisted processes comes frofgg. (19)].
.thosg phonpns with very Igng wavele.ngth compri\red with the V. EVALUATION OF THE CUMULANT AVERAGE
interionic distances, that is, those with very sntllso we
can puth(q,r)~qg3r%3.
In this case, the exponent of EG.3) is given by

J272|AEda|3rda B| da|
. (18
6mphSu’

As stated above, the form of thevf,+w,g)t exponent is
the one given by expressi¢h6), and we can put it in a more
convenient form in order to perform calculations by means
of

WyatWag= F(AEga,)/r2" i ry,>6/iv/|AEg,

(WgatWag)t= , on’ . )
i _ _ F'(AEga,t)/rg, otherwise

In the following, we shall carry out the detailed evaluation (21)
of Eqg. (13) in the general case. However, it is easy to see

from the previous expressions that it is difficult to obtain anyVNere
analytical result if we take into account the exact expression b2 2,2 BIAE|
for the coherence factor, so we have used the very crude F(AEga,t)=———t[|AEg,/C Oth—a, (22)
approximation of taking the coherence factor as mphy
and
1(|AEda|r)2 _ V6 )
_l3 b AE
h(gr)=4 3\ #v |ABqd, (19 F'(AEga )= %t |AEda|3cothM, (23
2 otherwise mph v

which resembles the main features of the exact coherencvcgIth n'=n-1. - o
Therefore, the expression we have to evaluate is given by

factor, as can be seen in Fig. 1.
Moreover, it is necessary to assume a specific form of thén(G5(Egy, T;t))
energy distribution function of the acceptor ions, in order to

get any physical insight. Therefore, we shall consider a real- F'(AEga,t)
istic case by assuming that the acceptor energies are distrib- Bhol|AE | 1-ex p2n’
uted according to the Gaussian inhomogeneous profile =—A47 f da
0 e_BAEda-}— 1
(= — r{ (Eaﬂz (20) e
9(Ea)=——=ex , X g(E,) dE,r2dr—4 cf

om o 9(E) dEa T (Bhv/|AE g,
whereE is the mean energy of the acceptors ands the F(AEg,,t)
half-width of the distribution. l-exg—— —

Let us now consider the evaluation of the averaged cumu- % r 9(E,) dE, r2dr (24)

lant in detail. e PABdat 1
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and once the spatial average is perfornigeke Appendix A Ey—E
we arrive at y=—2 (26)
4 (= F'(AEg,, )%
s V) — SR and
IN(GS(E,,T;t)) 3 cJ_w Py 1
= 2
ool 1 3 1AEaF(AEsD) =h @
on’’ (\/Eﬁv)2n which will be used through the rest of this work. Also, in
order to compare the theory with experimental data, it is
X G(E) dE.+ 47 ([ F(AEg,,t)% preferable to introduce the new parameter combinations
g(Ea) OBt —-C| —— o ——
3 —» @ PAEdayt 1 bzyg 1
n
xr(l—i |ABqal*"F(ABqa,0 Rn:(wph4v507) ’ 29
2n’ (Jeho)™
and
Xg(E,) dE 47Tl“ 1 >
9(Ea) a ? % c b272 1o’
Ré:(G nhe 7037) ’ 9
mTph v

= F(AEgq )3
Xf (AEga,t)

v ePBEdayq 0(Ey) dE,, (25

where 7 is the lifetime of the transition involved, and,
where T'(«) is the gamma function andl'(«,z) (R;) has dimensions of a length. In terms of these param-
=[7t* e 'dt is the incomplete gamma function. eters, and after substitution d¥(AEgy,,t), F'(AEga,t),
In order to further proceed, we change the integratiorandg(E,) in Eg. (25), we get the form of the cumulant for
variable fromE, to AE4,=x and introduce the parameters an infinite disordered solid with an inhomogeneous profile

. tZ|X| 3/2n’
(G . A R,3 t 3/2n’ 1 (= |X| C0||_2 . 3 r/1 2nn’t oni1 tZ|X| _(X_y)zd
ME0z0)= 3 “nl Jal = e 7+1 2n’ "\ Ry T|X| cofrs-1e X
3 z|x| | ¥ z|x|\ ¥
am (1@l [173g) (o | IXlcoths” L dm [ty g s | IXIcotS
St [ e I
seRls T T e 3Rl R e
3 7\ 2nn’ Z|X| 5
XT 1—%,(R—n) —[x|#" feoth—=| e~ *¥"dx, (30)
n

It is important to note that we are committing a very small
error by extending the integral over negative value&of Wda:(

In real glasse€~10000 cm® ando~100 cm'!, so we
are extending the integration over energies which are in thj

very far tale of the Gaussian, and their contributions are very Mda< \/EhU”_AEda| andAEda>O’, in the I|m|tT—>Q.
small. Therefore, it turns out tha,(R;,) stands for the distance,

The physical meaning of the rad, andR’. can be easily measured from the donor ion, at which the transfer rate to an
understood as follows . acceptor ion with energy mismat&E .= o is equal to the
By substituting expression&8), (29), and (19) in Eqg. radlatllve rate at very lOV.V tgmperatures. .
(14) ywe arrive atg P 28), (29 (19 q This result seems to indicate that we can establish a rela-
' tion between the radiR,, and R, and the Foster critical

R\ (AE,, 31
UL e
g

rda T

radius,Rg.
R, \2"AEg, 1 The resonant contribution to the EET is given by the ze-
Wga™= F Y 7 (31) roth term in the perturbation chain of the transition rate, i.e.,
a

by the terms for which no phonons are created nor destroyed
during the optical transitidfi. The contribution of such pro-
if rya>\6hv/|AEy, andAE4,>0, and cesses to the transfer rate is given by
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e 4 3 \Ric[ )3
(0)— 2 — T n
Wy, =——Jrp(E;=Ey), (33 S(v.z'1)) = — — S B et
da = 7 “nPlEa=Ed In(G%(y,z;t)) 3 i1 on \/; -
wherep(E,=Ey) is the density of acceptor states with the IR
same energy than the donor. This density of states can be |x|coth—)
stated in terms of the lifetime of the considered transition, by 5 j” 2 o (97 gy
means of —e @41 '
T (42
p(Ea=Eq)= 7, (34 , _ . :
To quote an example, for a dipole—dipole interaction, ex-
where? is the Planck constant. pressions(40) and (41) have ¢/7)%* and ¢/7)'? temporal
In terms of the Foster critical radius, the resonant EET dependences, respectively. _
transfer rate is given by It is interesting to consider the low- and high-temperature
behavior of the long- and short-time limits expressions,
R\ 2" which we do in the next sections.
)= - (35
Wda lda T

. . . ) ) A. Long-time limit
whereR{" is the Faster critical radius for the multipolar

interaction of exponem. By comparing Eq(33) with (35)
we arrive at

In the high-temperature limiz<1(kgT>0o), we can
make a series expansion in powerszabf the temperature
dependent part of the integrand in E41), and retain only
the lowest term of the expansion, and we arrivésae Ap-

bzzﬁ_z(R(n))Zni (36)  pendix B
n oo 0 7_2'
At 3 t 3/212—1+3/2"|
which leads, once we take into account this last expression in |n(Gs(y,z;t))~ — —Rﬁl’( 1— _) c(—) .
Eq. (29), to 3 2n) \r Pkl
(42)
20_ 1/2n
R,=R{" %) , (37) In the low-temperature limitz>1(kgT> o), we use con-
2mpli=v>r tinuous fraction expansions in terms @f?*, and arrive at
and from the relation between the two radius introduced in 3/2n
this model, I(G(y,z;t))~— 4—WR3C—1 rl1- i E eV’
o 3 " 2\/; 2n/\ 7
n\1n
R’—( UR“) (39) 3
n— ' _
V6riv 13\ 3 F(2n)

' U\ 5+ = HaaY)+ = 550
we can calculate the values &, and R, in terms of the 2 4n n zi+3/an
Forster critical radius.

If we take a value ofo~100 cmi'!,y~1000 cm?, 7
~1 ms,v~1000 m/s, angp~1000 kg/ni, we get 3 9 y
X ﬁ+4 —2—1 E , (43
Rs~0.01Ry, (39) an
for dipole—dipole interaction which, for a valud, where
~100 A givesRz~1 A andR;~0.877 A. 3
Another important point is to evaluate the long and short 1 3 1 3 F(R)
time limits of Eq.(30). In the short-time limit, i.e.t/7<<1, H%/m(Y)=¢(—+ _’_;yZ) 4+
the incomplete Gamma functiohi(«,x) approaches to the 2 4n’2 2n F(E+i)
Gamma functior’(x), so Eq.(30) reduces to 2 4n
4 3 \R3c( )32 33
I(GS(y,z;t))=— —=T| 1- —|— -) X1+ 7057, (44)
3 2n’ \/; T
, with @ (a,3;x) the confluent hypergeometric functioffs.
.z ¥ In the limit of very smally, the functionH3,,,(y) is very
% x| cot 2 ) well-described by the series expansion
xf e~ (% dx.
—» e *+1 3
l" J—
(40 1 3 4n)
N | Him(Y) =1+ 50—V, (45)
In the opposite limitt/r>1, the incomplete Gamma func- n rlz+ _)
tion tends to zero, so E@30) reduces to 2 4n
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FIG. 3. Short time limit cumulant expansion dependence on the
laser frequency at very high temperatuf&sy. (49)], for dipole—
dipole (n'=2), dipole—quadrupole n(=3), and quadrupole—
quadrupole ' =4).

A 1/2 5 3
IN(G(y,T; 1))~ — —R§c§<;> e’ MZ) HaY)

3
3/2 5/2

{3l o5 ) e

with Hi(y)=®(,3y2) +y2T(3)/IT(E)]1D(5,3y%) or
HL(y)~1+ [T (2)/T(2)]y in the smally-limit.

B. Short-time limit

In the high-temperature limiz<<1, the cumulant is given
by (Appendix B

FIG. 2. Cumulant expansion dependence on the laser frequency

at very low temperaturega) long-time limit[Eq. (43)], for dipole—
dipole (h=3), dipole—quadrupole n=4),
quadrupole (=5); (b) short-time limit [Eq. (50)], for dipole—

dipole (n'=2), dipole—quadrupole n(=3), and quadrupole—

quadrupole (' =4).

which is easier to compare to experimental data.

The y-dependence of the low-temperature limit cumulant
expansion can be seen in Fig@aR for various multipolar

interactions.
To quote an example, expressi@fl) for n=3 (dipole—
dipole interaction reduces to

. o A 5 t 1/2
In(G(y,z;t)= — —R3c| =

3 T
[X| cothz|—x|) -
© 2 2
X e N7 dx,
—e e 41
(46)

The high-temperature limit is given by

4 ([ t\ Y2 kgT) 2
In(GS(y,T;t)):—?R3c E(; | (47

and the low-temperature limit is given by

and quadrupole—

In(GS(y,z;t))~—4—WR’ﬁcF 1—i)r<1+i>
3 2n’ 2 4n’
3/2n’ 3 271+3/2n’
X\ '3/mr(Y)W, (49

where Ig,m,(y)ze‘y2<b(%+3/2n’,%;yz) or, for smally,

1300 (Y)=1+3/n'y2.
The behavior ofl g,zh,(y) can be seen in Fig. 3 for some

multipolar interactions.
In the low-temperature limiz>1, the cumulant is given

by
| GS ; ’3 F 1 1 t 3/ ,
n(G3(y,z;t))~ R';c o217

3

y2 ° 3
Xe r §+4n’ Hon (Y)
1" -
9 2n') | 3 3
ATl Vi PRI
X| 1+ — y , (50)
2n’) Z
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where
9
. L S 4n’
3/2n/(Y)— E T,E,y Ey 1 9
r=+—
2 4n’
3
Xd| 1+ /,E;yz). (51)
In the smally-limit
9
l" -
HS (y)~1+ 9 an’ (52)
Y 2n’ (1 9 )y'
2 an’

The frequency dependence of the truncated cumulant in

this limit can be seen in Fig.(B) for some multipolar inter-
actions.

For dipole—dipole interactionn=3—n’=2), the gen-
eral expression of the cumulant is given by

47 (1 t)
In(Gs(y,z;t)=—TF(Z R’gc(;)
| | 3/4
(|x|3coth—)
X —e’(x’y)zdx.
- e P+ 1
(53
The high-temperature limit is given by
1 2
'l 3/4 3/4
_ 47 3 4 L R kgT
In(G*(y, T;t))~— >R 3 Q904 [\ 7 R Rl
(54)

with 13,(y)=e o(5,1:y?), or 34(y)~1+3y? whereas
the low-temperature limit is given by

LT

9.(9 3 (kT 134
27 \4]|2\ &

(55

47 3
I(GS(y, Tin)~— 5 R'se -

13) .
18 H34y) +

13 (kBT)”/“
S ’

X{T

with

9 1) 2
*zyﬂ B2V

, 131,
Hay)=® 532

or
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FIG. 4. Temperature dependence of the numerically-evaluated
truncated cumulanitEqg. (30)] for various times and laser frequen-

cies. (Solid ling) y=0.0; (———-) y=-1.0; (--—-—) y=
-05; (——-—— yy=05;, (——--—— ) y=1.0.(a) t/7=10°; (b)
t/r=1; (c) t/7=10"°
i
5 8
24Y) 7 713
F(E)

for smally.

V. RESULTS FOR THE DIPOLE —DIPOLE INTERACTION
CASE AND DISCUSSION

In this section we will present the analysis of the results
found in the previous section for the case of dipole—dipole
interaction which is, by far, the most important case from an
experimental point of view.

In Fig. 4 we can see the temperature dependence of the
truncated cumulant for fixed laser frequencies and delay
times. It is important to note that in the rest of the figures of
this work, the quantity represented is not the logarithm of the
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cumulant, but this quantity divided by the factor truncated cumulant for fixed temperatures and laser frequen-
(4m/3\[mrc), which gets rid of the unknown quantity We  cies. We can see how the slope of the curves changes from a
indicate this fact by using the notatig®3(t)*), instead of  (t/7)%* at very short times to at{r)"? at long times.
(G¥(1)). One point of crucial importance is where such a crossover
The first important feature we note in that figure is thatoccurs. In fact, this point can be estimatedyatO, as fol-
the cumulant is nearly constant up kpT~o. This fact lows:
makes us consider what is the relative importance of the Letus consider expressig¢B0) for y=0. In the following
one-phonon processes contribution to the EET at very lowliscussion, it will be useful to introduce the following nota-
temperatures, which will be discussed below. tion:
Furthermore, we can note some of the main features pre-

dicted in the previous section. For example, we can see from 4

|n<G§hor{Z;t)>: 3 CR,ﬁ(_ —

t)3/2n’ 1

expression$48) and (55) that the functiongd'(y) are non- T Jr
symmetric iny. However, in the high temperature linjEgs.
(47) and(54)], the cumulant is symmetric on Moreover, it z|| 3/’
does not depend on in the long time limit. All these fea- o (|X|300th7)
tures can be noted in Fig. 4. X

In Fig. 5 we have plotted the laser frequency dependence — e “+1
of the cumulant for fixed temperatures and delay times. We o\ onn!
can see in that figure how the behavior changes from the one <T|1- 3 (&)
given by Egs.(54) and (55) at short times to the one pre- 2n’ '\ Ry
dicted by Eqs(47) and(48) at long times, respectively, pass-
ing through an intermediate regime which can be well- t onis z|x| )
described only by numerical evaluation of the truncated ><;|X| n COthT e dx, (56

cumulant.
In Fig. 6 we present the delay time dependence of thend
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. A 5 t 3/2n 106
In(Glong(z;t))= — ?CRn .
104
rl1-2 o2 =
on/ (= |x|co > P =10
X e X dx =
\/; —® e_ZX+1 Prad 100
)
z|X| 3/2n :
. £\ 1 ra |x|coth7 = 102
TRt S
3 M7 n)-= e 41 10+
7\ 2nn’
XT l_i & 106
2n’\ R,
4
U+t ZX|| e -~ 0
X—|x|*"* tcoth——|e™*" dx. (57) N
T 2 =
'\i 102 F
The index “short” makes reference to the fact that =
(GghoZ:1)) is responsible for the 3/4 temporal dependence 2 100
at very short times, whereas the “long” index makes refer- =
ence to the fact tha{Gj,,4(z;t)) is responsible for the 1/2 102
temporal dependence at long times. The second term in
(Giong(z:1)) s a correction to t'hdal’2 decay. Again, by using 10+
an asterisk superscript, we will mean that the corresponding .
function is divided by (4r/3\/)c. 10
By using the procedure described in Appendix B, we can
develop low and high temperature expansions of these func- 104
tions for short- and long-time limits. The results of such SN
expansions are summarized in Table I. =
At very low temperaturegGj,nq(2;t)) changes front/ 7 to a ;
(t/ 7)Y dependence at >
=
12 -
t R T
2=0671—] , (58) 10
R3
10,4 L L L L L L L L L
whereas(GS,,(z;t)) changes from at(7)®* to a (t/7)?’ 10-510410-310-210-110910 1 102 107 10 105
dependence at (t7)
t, 3 12 FIG. 6. Temporal dependence of the numerically-evaluated
—=0.047 —| . (59 truncated cumulant for various temperatures and laser frequencies
T Rs [Eq. (30)] for Rs=1 A. (————) z=1000; (Solid line) z=1;
(——-- ) z=0.1, (———— ) z=0.01; (—--—-- —) z=0.001.

Therefore, the delay time at which the dominant contribu-(g) y=—1.0; (b) y=0.0; (c) y=1.0. The asymptotic temporal de-
tion changes from{Gg,{Z;t)) t0 (Gin(Z:1)), that is, the  pendencest(r)*? and (/7)%* are shown for comparison.
point at which (Gg,,{z;t)) and (Gy,,(zt)) become the

same, is given by t, Rs 12
7=0.03 —| z,
to R3 12 R3
—=0.18 — (60) ) s s
R; and the delay time at whickGj,,(z;t)) and (Ggyo{z:t))
become the same is given by
In the high-temperature limit, we can make an analogous
analysis, from which we obtain thgiGj,,(z;t)) changes to Rs 2
from t/ 7 to a (t/ 7)*?> dependence at —=02 R. Z
3
R 12
t_l_ =8 In Fig. 7 we have summarized these results in the very
=12 z, (61) i .
R} low and very high temperature limits f&®;=1 A. As can

be seen, the agreement with the above results is astonish-
and(G3,,{(z;t)) changes fromt{7)¥4to (t/7)?" at ingly good. These simple ideas predict very well where the
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S

TABLE I. Limiting behaviors of(Ggp,{z:t)*) and(Gjyn(z:t)*) aty=0.

Temperature range Time range —log(Giyng(z:1)*) —10g(Gghod Zit)*)
7>1 12 R'S t t\34
t Rs 3 3 1r v 13 /3(
= 3 2~ rérérRY -
7_< Ve 4\/;R;34 o ANCING! 3\ -
12 112 39/7
t R \/; t R t\ 27
- == —F(%)Rﬁ(-) AT |-
T R’3 2 T Rr%S/? T
< 16
=t E« Rs N 2Ei rG? o 1)
T 3 R 72 oo 3\ 1
12 1/2 413 5 1/3
7 | R3 J2 C\1z 5 12\ 7z

numerically calculated curves change their slope, and can teffect the decay of the narrow line in FLN experiments, since

used as a guide of where we should see a crossover, even fiie width of the narrow line is- y,; (assuming the spectrum

small departures frorg=0. of the exciting line is a delta functionThus, the one-phonon
As commented above, an important question is what is thealculation without resonant EET should describe the narrow

relative importance of resonant EET when both types ofine decay at low temperatures even in the presence of sig-

transfer, resonant and nonresonant, are present in the solidificant resonant EET.

In order for the resonant transfer to have a noticeable effect, At temperatures of the order of, the two-phonon pro-

the two ions involved must have transition frequencies thatess contribution begins to be important, and it could be

differ by no more than 1 or 2 times the homogeneous lineexpected that there are deviations from the predictions of this

width. Therefore, the resonant EET is not important in dis-model. However, the exact behavior of the two phonon con-

ordered systems as long a$> vy, wherevy, is the homo- tribution is beyond the scope of this work.

geneous linewidth. If this condition is satisfied, it is very

unlikely that one will hz_ive two ions in the same region of the VI. CONCLUSIONS

sample whose transition frequencies differ by an amount

=<wvy. In this case, one should be able to neglect resonant In this article, the incoherent nonresonant EET between

EET in comparison with non resonant phonon assisted EETchromophores in disordered solids has been addressed. A
Another important point is that resonant EET does notgeneralization of the truncated cumulant expansion method,

103 —r T T T 10° T T T T T T T
1\
02 b @ ) 10°F (b) (t11)2/]
3k J
10°1 2 =0.001
10t y=0.0
102 1 ,
FIG. 7. Analysis of the change
1 Y / 13 of the slope in the temporal de-
- = 1 /4 (#1)"3 pendence of the truncated cumu-
) I ",/'/ lant for y=0. (Heavy solid ling
2 10t o ot %4 1 —In(GXzZH*); (----)
g SJ/ " _In<G§hor(Z;t)*>; (=)
k= = 0t 7. i —In(Giyng(z:1)*). The light solid
' 102 ! 4 lines represent the asymptotic be-
, (t17)* haviors of (G%.{(zt)*) and
10 r 1 (Ging(z:1)*) discussed in Sec. V.
103 (8) z=1000; (b) z=0.001.
103 F 4
104 104 74 |
10_5 A A A N i i i A A 10_5 L A L L i i A
1051041031010 1 10102103104 10° 1010108 106 104 102 1 102 104

T 1T
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developed earlier, has been introduced in order to account for 9(E,)
the inhomogeneously-broadened electronic levels observed 47-ch’
in these materials.
The method has been applied to the simple case of an
infinite, disordered solid, at very low temperatures, where :47ch 9(Ea)
one-phonon processes dominate the dynamics of the EET. e PABdat 1
The quantity which emerges from this calculation, the
truncated cumulant, represents the probability that an x( fu(AEda)efF’(AEda,t)/rZ”'rZdr

Ra
——dE f e*(WdaJrWad)trZ dr
e Bt “Jo

a

initially-excited donor is excited at a later timeand is the 0
observable measured in FLN experiments. This quantity de-
pends not only on time, but also on the energy of the +fRa o F(AEg0/r2" 2 (A2)
initially-excited donor and on temperature. u(AEqy) ’
The exact behavior of the cumulant has been evaluated, as
well as the behavior in the low and high temperature limits,
which are stated in terms of the inhomogenous width of thevith u(AEgy,) = J6hv/|AE4, which, after substitution of
acceptor energy distribution. We find that, in this model, t\NoF(AEda,t)/rggzx and F’(AEda,t)/rﬂ’:X, can be put in
temporal regimes emerge, where the temperature anghe form
initially-excited donor energy dependences are quite distinct.
For a dipole—dipole interaction between the OAl, the tempo-

ral dyn.amics of the cumulant hfist%{“ dependence-at very Ame F’(AEda,t)3/2r"g(Ea)

short times, whereas at long timest® behavior is pre- f dE,

dicted. The crossover between these behaviors has been also 2n’ e FAFdat 1

analyzed. x
Finally, we would like to stress that this model could be « jw € dx

also useful in obtaining structural information from restricted F/(AEgq t)/u(AEgy)2" X132

geometries, such as the ones which are characteristic of the

energy transfer in biological systems. However, in this type 4mc [ F(AEg,,1)%?g(E,)

of system, resonant EET may make an important contribu- + on o BAEqat 1 dE,

tion to the measured survival probability, and both types of

processes, resonant and nonresonant ones, have to be taken n e X

: ; : . F(AEg, /RS

into account in order to describe the experimental results. j . mdx, (A3)
Thus, the present model should be generalized to include F(ABga 0/u(ABga) ™" X

both mechanisms in order to properly describe EET in such

systems, which will be the subject of further investigations. ) ] o
After integrating once by parts, and taking into account

that
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3
=3/2n5—x — _ = -
General de Perfeccionamiento de Doctores en el Extranjero. X € dx—F( 1 2n ’Xm'”> F( 1 2n ’Xmax)’

Xmin
(A4)
APPENDIX A: EVALUATION OF THE SPATIAL

AVERAGE the spatial average gives

The spatial average in E@13) can be performed in the
following way:
The first summand gives a contribution A

(F(AEda,t))‘m“_F( 3)

3/2n _ =
3 CF(AEg4,,1) R, 1 on
Ra g(Ea)
—4770[ — ———dE,radr 3 E(AE.. t 4
0 e AbEgapq 27 +T __’w ——WCF'(AEda,t):’Vm’
2N U(AEg,)™" 3
:_4_7TR30f —g(Ea) 3 F(AEgy,t)
a Z a ,
3 e PABdat 1 xXT 1——,$). (A5)
2n' Uu(AEg,)%"
B 9(Ey)
——(N—l)deEa, (A1)

To arrive to this expression, the limi,,,,—0, that is,
whereR, is a cutoff radius necessary in order to avoid di-Ra—%, and the relation F(AEga,t)/U(AEg)""
vergence of the integral. =F’(AEda,t)/u(AEda)2”' have been used.

The second term gives a contribution Substituting expressiofA5) in (A3) we obtain
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9(Ey) A F(AEda,t)3’2’"g(Ea) Form=3 andk=3/2n’, Eq. (B3) reads
(N—1)f—dEa+ —cf
@ BAEday 1 3 e BAEday q 1 3 \p-1+a’ ,
( 3 F(AEda,t)) 4 F(5+ | e ) (B6)
X' 1= oz, ————— - —cC
20" u(AEg)*") 3 with Igm,(y)=e‘y2®(%+3/2n’,%;y2), and, after substitu-
, tion in Eq. (40), we arrive at Eq(54).
’ 3/2n
Xf F'(AEqa,t) g(Ea)F 1_i F(AEgat) In the low-temperature limig>1(kgT<0o), it is conve-
e PABdat 1 2n" U(AEg,)?" nient to express the integral in the following way:
A 3\ [ F(AEga,t)¥g(E Z|x|\¥
XdEa‘?Cr(l‘z—)J : f’Z‘AE) "0, o | IXMooth5=
n e da+ ] e’(x’y)zdx
(AG) —® e 41
and the first summand exactly cancels the terrfhib), leav- * zx\¢
. . ’ = (x=y)
ing us with Eq.(25). fo XmCOthf e vV dx
APPENDIX B: HIGH- AND LOW-TEMPERATURE LIMITS m zx|¥
LIX coth;
In order to evaluate the high- and low-temperature limits, —2e‘y2f —sinl‘(ny)e‘dex. (B7)
we are faced with integrals of the form o e”+1
z|x|\ ¥ By using the continuous fraction expansions
<|x|mcoth—)
: 2] ooy 2| “
e e P41 € dx (B1) (coth?) ~1+2ke X (B8)
wherem=1 andk= 3/2n for very long times, andn=3 and K
k=3/2(n—1) in the opposite limit, where is the order of (cothz—x)
the multipolar interaction. 2 X 89)
In the high temperature limig<1, we can make a series e?*4 1 ’
expansion of the temperature dependent part of the integrand
in terms ofz To the lowest order iz where only the lowest power of has been retained, after

|| ¥ making the transformatiorn— x/z we arrive at
z|x

x|Mcoth—— _
(| | 2 ) k_1|x|k(m 1)

o _y2 )
~ - mka— (x—y)? € MKa—Xa2XY/Z
e ~2 . (B2) Jox ke dx+2kzl+mkj0x ke T*e2Y2gx
so we are faced with the integral , [ 22Xy,
—2y— ke*yJ' xMke*sinh—=e " dx,
k=1 (o , z-m 0 z
- k(m=1)a=(x-y)
x 7m|x| e dx (B10)
21 (1 K(m-1) which, to the lowest order ia gives
- F(§+ 5 )I?(y>, (83) )
’ L PR (MK -S| 2kt 4(k—1
where 5 5 —|€ 7 Hi(y) +mkl'(m )m +4(k-1)
1 k(m—1) 1 y

m — 7y2 - T2 Z

IH(y)=e @(2+—2 5y ) (B4) X(1+mk) Z}, (B11)
where ®(«a,B,X) denotes the confluent hypergeometric where
function?®

It is important to note that the integréB3) converges HM V) — 1+mk 1
provided thak(m—1)> — 1, which holds for any multipolar k(Y)= o Y
interaction >=3).
Form=1 andk=3/2n, Eq. (B3) reads r[mk
‘ 2 ® 2+mk 3,
—1+3/2n , >
o (85) YT mk 2 2V
2] B >

and, after substituting in Eq41) we arrive at Eq(42). (B12)
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Form=1 andk=3/2n we get

-y
e F2

3
5 ) H3on(Y)

S T

1+ 3/2n

with
. 131,
H3on(y)=® PR
r 3
3 4n

+%yr 1 3
2" 4n

and, after a little algebra, we arrive at E¢3).
Form=3 andk=3/2n" we get
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with

and we arrive at Eq50).
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