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Contribution of one-phonon processes to the electronic energy transfer in disordered solids
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~Received 23 December 1999!

The contribution of nonresonant one phonon processes to the ensemble averaged probability that an initially
excited donor is excited at a later timet has been evaluated. A distribution of energy differences between the
electronic levels involved in the transfer process is explicitly allowed in this model, which leads to a depen-
dence of the ensemble-averaged probability on the initial distribution of donor ions and on the temperature. In
order to perform such an ensemble average, the truncated cumulant expansion method has been used, which
has been shown to give an accurate value for this quantity in the experimental time scale. We find that two
temporal regimes emerge from the calculation, which are characterized by very distinct temporal, temperature,
and initially excited donor ion energy difference dependencies.
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I. INTRODUCTION

One of the most interesting problems physics has face
the determination of the structure of real materials, and it s
remains one of the most active fields of research, not onl
physics, but also in chemistry, biology, and engineering.

In this sense, optical studies of electronic energy tran
~EET! have shown to be very valuable tools, making it po
sible to probe the structure of materials to the molecu
level ~see Ref. 1 and references therein!. These kinds of tech-
niques are of special interest in the development of tuna
solid-state lasers, optical fibers, probing the structural pr
erties of polymers composites, or studying the first stage
the photosynthesis in biological systems, to quote some
amples~see Ref. 2 and references therein!.

For this reason, the understanding of the mechanisms
volved in the processes of EET between optically active i
~OAI! in solids, in both restricted and unrestricted geo
etries, is a fundamental problem which has generated
newed interest during recent years.

However, in spite of the abundant literature concern
experimental studies of these processes, the theoretical
ation is not so clear and, in fact, it appears that the v
majority of the models used to interpret experimental d
share some hypotheses that reduce their range of applic
ity to homogeneously-broadened transitions, and so they
able to explain only one kind of the EET processes presen
a solid, the so-called, non radiative resonant EET proces

To be more explicit, the transfer of electronic excitati
among fluorescent chromophores is explained in terms
nonradiative resonant dipolar interactions between them,
lowing the model earlier introduced by Fo¨rster,3 which can
be analytically solved for perfect crystals. In order to gen
alize the Fo¨rster model to include the spatial disorder pres
in disordered solids, the so-called cumulant expans
method4–8 was introduced, which allows one to evaluate t
configurational average of the probability that an initiall
excited chromophore, the so-called donor, remains excite
a later timet, the so-called survival probability, which is
quantity that can be readily compared to fluorescence
narrowing~FLN! experimental data.

This technique has been successfully applied to a var
of both finite and infinite systems with low concentration
PRB 620163-1829/2000/62~2!/892~14!/$15.00
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OAI.9–12 The main advantage of this method is its ma
ematical simplicity; despite the simplicity it provides an a
curate description of the survival probability2,10 in the time
scale of experiments, if compared with other mathematica
more complicated techniques that take into account
n-body transfer problem, as does, for example, the Goc
nour, Andersen, and Fayer diagrammatic theory.9

All the aforementioned works share the hypothesis t
the main mechanism of the transfer is the resonant dip
coupling between the chromophores. However, it is we
established that in disordered solids, the energy levels of
chromophores vary from site to site, due to the spatial dis
der, which gives rise to a distribution of the radiative tran
tion energies through the solid, leading to the very bro
inhomogeneously-broadened optical spectral lines exp
mentally observed, but not accounted for in the Fo¨rster
model.

In the solid there are phonons which play an importa
role in the dynamics of the transfer, as they can make up
energy difference between the levels involved in the trans
process,13 giving rise to the so-called nonresonant EE
These processes are characterized by a temperature d
dence, in contrast to the resonant EET processes, which
independent of temperature at low temperature. The t
perature dependence of the EET provides an additional v
able tool in the determination of the processes involved
the optical excitation migration through the solid, and is
feature that any model which tries to give a general desc
tion of the problem not only at 0 K, but also at the fini
temperatures, has to deal with.

Recently, this problem has been addressed by Martı´n and
co-workers,14 and by Lavı´n and co-workers,15 who have ap-
plied the truncated cumulant expansion to the description
FLN experiments, both in Yb31 fluoroindate-doped glasse
and in Eu31 calcium diborate glasses, by assuming that
EET is dominated by one-phonon assisted processes. T
authors find a good agreement between the theoretical re
and their experimental data. However, their model is
complete, as they only take into account the contribution
the EET of those phonons of very short wavelength, that
their model is only applicable when the energy misma
between the OAI is very large. For an inhomogeneous
broadened transition, ions with a small energy mismatch
892 ©2000 The American Physical Society
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also give a significant contribution to the transfer. Moreov
analytical expressions of the survival probability whi
could be readily compared to experimental data would
also desirable, and these authors provide none.

In a different context, Stein, Peterson, and Fayer thro
a series of articles16–19 have developed a spectral overla
model for EET at high temperatures in polymeric glasses
liquids, which provides a quasiquantitative agreement w
experimental data obtained by the same authors. Howe
this model is mainly phenomenological, as it ignores the
tails of the microscopic transfer processes, due to the d
culties of modeling the interaction of the electronic leve
with the phonons and lack of knowledge about the deta
form of the density of phonon states in the systems the
thors studied.

For these reasons, in this work we propose a genera
tion of the aforementioned models in order to account fo
general description of the EET dynamics in disordered so
at finite temperatures with inhomogeneously-broadened e
tronic energy levels. The scope of this work is twofo
Firstly, we present a generalization of the truncated cumu
expansion which can be used to account for the EET in b
finite and infinite disordered solids with a distribution of bo
donor and acceptor energies. Secondly, the expression
obtained are applied to the simple case where transfer
disordered, infinite solid involves one phonon, without
stricting the energy mismatch of the ions. We find that t
quite different temporal regimes emerge where the temp
ture and energy dependence are quite distinct, even in
simple case. Analytical expressions are presented in the
and high-temperature limits.

The outline of this work is as follows: in Sec. II we de
scribe the main features of the truncated cumulant expan
method, together with a generalization of this technique
account for an inhomogeneously-broadened distribution
OAI in a disordered solid. In spite of the generality of th
method, in order to arrive at analytical expressions for
quantities of interest, which give more physical insight in t
problem thanab initio numerical modeling of the system, w
have explicitly applied it to the simple physical system of
infinite homogeneously-disordered solid. We will show th
even with these simplifying assumptions, we obtain res
that apply to real disordered solids. In particular, it will tu
out that the survival probability does not only depend
time, but also on temperature and on the energy of the
tially excited donor, i.e., the frequency of the pumpi
source relative to the mean energy of the acceptor distr
tion. In Sec. III and IV we present the main steps of t
calculation of the truncated cumulant expansion taking i
account the contribution of one-phonon-assisted process
the nonresonant EET. In Sec. V, we summarize the m
results of the truncated cumulant calculated in the previ
sections, and discuss some issues about where the cros
between the two temporal regimes mentioned above sh
be. Section VI will be devoted to stating the conclusions t
can be extracted from this work. Finally, in Appendixes
and B, we present a detailed derivation of the main ma
ematical results.

II. GENERALIZATION OF THE FIRST-ORDER
TRUNCATED CUMULANT EXPANSION METHOD

Electronic energy transfer can be modeled in terms o
quantity, Gs(t), which represents the diagonal part of t
,
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Green function solution to the master equation of t
system.10,11The physical meaning ofGs(t) is the probability
that an excitation remains on the initially-excited ion at tim
t. In fact, this quantity can be readily compared with expe
mental observables obtained from fluorescence line narr
ing ~FLN! experiments. Since the time dependence of
observable arises from the spatial distribution of unexci
OAI around the excited ion, namely the acceptors, the
semble average ofGs(t), which we shall denotêGs(t)&, is
the quantity measured.

The general expression for̂Gs(t)&, for an initially-
excited donor is given by1

^Gs~ t !&5
1

Vd
E expH 2cE @12pd~rWda ;t !#

3 f ~rWa!drWaJ f ~rWd! drWd . ~1!

In this expressionpd(rW j ,t) is the probability of the donor ion
being excited at a timet taking into account only the excita
tion transfer to the acceptor located at siterWa ; f (rWa) and
f (rWd) are the acceptor and donor spatial distribution fun
tions, respectively;Vd is the volume spanned by the dono
andc is the number density of acceptor ions, which verifi
the normalization conditionc* f (rW)drW5N21, with N the
number of OAI in the system.

To arrive at Eq.~1!, two main approximations are used.11

First, the two-particle approximation is introduced, i.e., t
excitation decay of the donor ion due to an acceptor loca
at rWa is assumed to be unaffected by the presence of o
acceptors. This allows one to reduce then-particle problem
to a superposition of two-particle problems. Second, the
mulant expansion in terms of the number density of OAI
truncated at first order, assuming a very low concentration
OAI.

In the simpler case of an infinite, disordered system,
~1! becomes10

ln^Gs~ t !&524pcE @12p~rWda ;t !#r da
2 drda . ~2!

For example, for incoherent, resonant dipole-dipole
ergy transfer3

p~rWda ,t !5
1

2 H 11expF2
2t

t S R0

r da
D 6G J ~3!

is obtained, wheret is the fluorescence lifetime of the elec
tronic transition involved andR0 is the critical transfer radius
for donor-donor transport~the distance at which the rate o
transfer to unexcited OAI is equal to the fluorescence de
rate of the donor in absence of acceptors!, and Eq.~2! has the
analytical solution10

ln^Gs~ t !&52
4pc

3
21/2S t

t D 1/2

R0
3 GS 1

2D , ~4!

whereG(x) is the gamma function.
It is straightforward to generalize Eq.~1! to account for

cases where the transition energy of the acceptor,Ea , and of
the donorEd , vary through the solid, as do the transfer ra
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~nonresonant EET!, giving rise to an energy mismatch
DEda5Ed2Ea , which also varies through the solid. To th
end, an additional average over the acceptor and donor
sition energies has to be included, leading to an expres
for the truncated cumulant expansion given by

^Gs~ t !&5
1

Vd
E expH 2cE @12pd~DEda ,rWda ;t !#

3g~Ea! f ~rWa!dEadrWaJ g~Ed! f ~rWd!dEd drWd ,

~5!

where pd(DEda ,rWda ;t) represents the probability of th
initially-excited donor ion with transition energyEd being
excited at timet, taking into account only the interactio
with the acceptor ion located atrWda from donor ion, which
has a transition energyEa . g(Ea)@g(Ed)# is the distribution
function of the acceptor~donor! energies.

In the spirit of the two-particle approximation
pd(DEda ,rWda ;t) can be analytically calculated. To this en
we consider the rate equations

dpd

dt
~ t !52wdapd1wadpa , ~6!

dpa

dt
~ t !52wadpa1wdapd , ~7!

wherewda(wad) is the donor→acceptor~acceptor→donor!
transfer rate, andpa is the probability of the considered ac
ceptor to be excited. It is easy to see that if the transfer r
depend onT, the probability pd will also, so we should
modify expression~5! to account for this additional param
eter.

The previous system can be easily solved by taking i
account the detailed balance condition13

e2bEdwda5wade
2bEa, ~8!

to give

pd~DEda ,T,rWda ;t !5
e2bDEda

e2bDEda11
1

e2(wda1wad)t

e2bDEda11
, ~9!

pa~DEda ,T,rWda ;t !5
1

e2bDEda11
2

e2(wda1wad)t

e2bDEda11
,

~10!

which after substitution in expression~5! leads to

^Gs~T;t !&5
1

Vd
E expH 2cE 12e2(wda1wad)t

e2bDEda11

3g~Ea! f ~rWa!dEa drWaJ g~Ed! f ~rWd! dEd drWd .

~11!

In these expressions,b51/kBT, with kB the Boltzmann con-
stant andT the temperature. It is important to note that w
n-
on

es

o

have explicitly indicated a temperature dependence of
cumulant which comes from a possible temperature dep
dence of the transfer rates.

In the following, we shall restrict ourselves to the simpl
situation of an infinite, disordered solid, which is easier
study analytically. In this case, due to translational inva
ance of the system, if we change the inner integral varia
from rWa to rWd2rWa , the outer integral overrWd gives a factor
Vd which cancels the one in the denominator of Eq.~11!.

Another simplification that we shall make is to consid
that the light which initially excites donor ions is monochr
matic, so we can put the distribution of initially excited ion
in the form

g~Ed!5d~Ed2E0!, ~12!

whereE0 is the energy of the monochromatic incident ligh
With these assumptions, Eq.~11! reads

ln^Gs~E0 ,T;t !&

524pcE 12e2(wda1wad)t

e2bDEda11
g~Ea! r da

2 dEa drda .

~13!

Expressions~11! and ~13! are the fundamental equation
of this work and, in the next section, we shall apply them
a case of special interest: one-phonon-assisted EET, w
plays an essential role in the dynamics of the EET at v
low temperature.

III. ONE-PHONON PROCESSES CONTRIBUTION TO THE
TRUNCATED CUMULANT EXPANSION

The contribution of the one-phonon-assisted processe
the nonresonant EET transfer rate can be calculated
easily by using the Fermi-golden rule in the Debye appro
mation to give13

wda5
J2g2

2prDEda
2 v5E @ f ~v!11#h~qW ,rWda!v

3@d~\v2DEda!

1d~\v1DEda!#dv, ~14!

where the notation is as follows:J5bn /r da
n is the multipolar

electrostatic coupling between the ions, wherebn is a con-
stant which depends on the multipolar moments of both io
and n is the corresponding multipolar exponent (n53 for
dipole–dipole interaction,n54 for quadrupole–dipole inter
action, and so on!; g is the ion–phonon coupling strengt
difference between the states involved in the optical tran
tion; r is the mass density of the material;v is the sound
velocity averaged over orientations;f (x)51/(ebx21) is the
Bose–Einstein distribution function and, finally,h(qW ,rW)
5^ueiqW •rW21u2& is the so-called coherence factor, where t
angle brackets denote average over orientations.

For a disordered solid, where phonons are just acou
waves, andqW can take any value, the coherence factor can
evaluated to be
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h~qW •rW !5^u12eiqW rWu2&52S 12
sinqr

qr D , ~15!

so

wda1wad5
J2g2

pr\4v5
uDEdauF 12

sinS uDEdaur da

\v D
uDEdaur da

\v

G
3cothS buDEdau

2 D . ~16!

In the limiting case where the phonons which contribu
most to the EET are those withqW very large, that is, those
phonons with very short wavelengths, the coherence fact
approximately 2, and we recover the usual expression for
transfer rate, namely

wad1wda5
J2g2uDEdau

pr\4v5
cothS buDEdau

2 D . ~17!

The opposite limit consists in assuming that the main c
tribution to the one-phonon-assisted processes comes
those phonons with very long wavelength compared with
interionic distances, that is, those with very smallqW , so we
can puth(qW ,rW)'q2r 2/3.

In this case, the exponent of Eq.~13! is given by

wda1wad5
J2g2uDEdau3r da

2

6pr\6v7
cothS buDEdau

2 D . ~18!

In the following, we shall carry out the detailed evaluati
of Eq. ~13! in the general case. However, it is easy to s
from the previous expressions that it is difficult to obtain a
analytical result if we take into account the exact express
for the coherence factor, so we have used the very cr
approximation of taking the coherence factor as

h~qr !5H 1

3 S uDEdaur
\v D 2

if r ,
A6\v
uDEdau

2 otherwise

, ~19!

which resembles the main features of the exact cohere
factor, as can be seen in Fig. 1.

Moreover, it is necessary to assume a specific form of
energy distribution function of the acceptor ions, in order
get any physical insight. Therefore, we shall consider a r
istic case by assuming that the acceptor energies are dis
uted according to the Gaussian inhomogeneous profile

g~Ea!5
1

sAp
expF2S Ea2Ē

s
D 2G , ~20!

where Ē is the mean energy of the acceptors ands is the
half-width of the distribution.

Let us now consider the evaluation of the averaged cu
lant in detail.
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IV. EVALUATION OF THE CUMULANT AVERAGE

As stated above, the form of the (wda1wad)t exponent is
the one given by expression~16!, and we can put it in a more
convenient form in order to perform calculations by mea
of

~wda1wad!t5H F~DEda ,t !/r da
2n if r da.A6\v/uDEdau

F8~DEda ,t !/r da
2n8 otherwise

,

~21!

where

F~DEda ,t !5
bn

2g2

pr\4v5
t uDEdaucoth

buDEdau
2

, ~22!

and

F8~DEda ,t !5
bn

2g2

pr\6v7
t uDEdau3coth

buDEdau
2

, ~23!

with n85n21.
Therefore, the expression we have to evaluate is given

ln^Gs~E0 ,T;t !&

524pcE
0

A6\v/uDEdau
12expFF8~DEda ,t !

r 2n8 G
e2bDEda11

3g~Ea! dEa r 2dr24pcE
A6\v/uDEdau

Ra

3

12expFF~DEda ,t !

r 2n G
e2bDEda11

g~Ea! dEa r 2dr, ~24!

FIG. 1. Coherence factor. The dashed line indicates the e
result for a disordered solid@Eq. ~15!#, whereas the solid line cor
responds to the approximated coherence factor used in this w
@Eq. ~19!#.
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and once the spatial average is performed~see Appendix A!
we arrive at

ln^Gs~E0 ,T;t !&52
4p

3
cE

2`

` F8~DEda ,t !3/2n8

e2bDEda11

3GS 12
3

2n8
,
uDEdau2nF~DEda ,t !

~A6\v !2n D
3g~Ea! dEa1

4p

3
cE

2`

` F~DEda ,t !3/2n

e2bDEda11

3GS 12
3

2n
,
uDEdau2nF~DEda ,t !

~A6\v !2n D
3g~Ea! dEa2

4p

3
GS 12

3

2nD c

3E
2`

` F~DEda ,t !3/2n

ebDEda11
g~Ea! dEa , ~25!

where G(a) is the gamma function andG(a,z)
5*z

`ta21e2tdt is the incomplete gamma function.
In order to further proceed, we change the integrat

variable fromEa to DEda5x and introduce the parameter
al

th
e

n

y5
E02Ē

s
~26!

and

z5bs, ~27!

which will be used through the rest of this work. Also,
order to compare the theory with experimental data, it
preferable to introduce the new parameter combinations

Rn5S bn
2g2

pr\4v5
st D 1/2n

, ~28!

and

Rn85S bn
2g2

6pr\6v7
s3t D 1/2n8

, ~29!

where t is the lifetime of the transition involved, andRn

(Rn8) has dimensions of a length. In terms of these para
eters, and after substitution ofF(DEda ,t), F8(DEda ,t),
andg(Ea) in Eq. ~25!, we get the form of the cumulant fo
an infinite disordered solid with an inhomogeneous profil
ln^Gs~y,z;t !&52
4p

3
cR8n

3S t

t D 3/2n8 1

Ap
E

2`

` S uxu3coth
zuxu
2 D 3/2n8

e2zx11
GF12

3

2n8
,S Rn8

Rn
D 2nn8 t

t
uxu2n11coth

zuxu
2 Ge2(x2y)2

dx

2
4p

3
cRn

3S t

t D 3/2n GS 12
3

2nD
Ap

E
2`

` S uxucoth
zuxu
2 D 3/2n

e2zx11
e2(x2y)2

dx1
4p

3
cRn

3S t

t D 3/2n 1

Ap
E

2`

` S uxucoth
zuxu
2 D 3/2n

e2zx11

3GF12
3

2n
,S Rn8

Rn
D 2nn8 t

t
uxu2n11coth

zuxu
2

Ge2(x2y)2
dx, ~30!
,
an

ela-

e-
.e.,
yed
It is important to note that we are committing a very sm
error by extending the integral over negative values ofEa .
In real glassesĒ;10 000 cm21 and s;100 cm21, so we
are extending the integration over energies which are in
very far tale of the Gaussian, and their contributions are v
small.

The physical meaning of the radiiRn andRn8 can be easily
understood as follows.

By substituting expressions~28!, ~29!, and ~19! in Eq.
~14!, we arrive at

wda5S Rn

r da
D 2n DEda

s

1

t
, ~31!

if r da.A6\v/uDEdau andDEda.0, and
l

e
ry

wda5S Rn8

r da
D 2n8S DEda

s D 3 1

t
, ~32!

if r da,A6\v/uDEdau andDEda.0, in the limit T→0.
Therefore, it turns out thatRn(Rn8) stands for the distance

measured from the donor ion, at which the transfer rate to
acceptor ion with energy mismatchDEda5s is equal to the
radiative rate at very low temperatures.

This result seems to indicate that we can establish a r
tion between the radiiRn and Rn8 , and the Fo¨rster critical
radius,R0.

The resonant contribution to the EET is given by the z
roth term in the perturbation chain of the transition rate, i
by the terms for which no phonons are created nor destro
during the optical transition13. The contribution of such pro-
cesses to the transfer rate is given by
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wda
(0)5

2p

\
Jn

2r~Ea5Ed!, ~33!

wherer(Ea5Ed) is the density of acceptor states with th
same energy than the donor. This density of states ca
stated in terms of the lifetime of the considered transition,
means of

r~Ea5Ed!5
t

\
, ~34!

where\ is the Planck constant.
In terms of the Fo¨rster critical radius, the resonant EE

transfer rate is given by

wda
(0)5S R0

(n)

r da
D 2n 1

t
, ~35!

where R0
(n) is the Förster critical radius for the multipola

interaction of exponentn. By comparing Eq.~33! with ~35!
we arrive at

bn
25

\2

2p
~R0

(n)!2n
1

t2
, ~36!

which leads, once we take into account this last expressio
Eq. ~28!, to

Rn5R0
(n)S g2s

2p2r\2v5t
D 1/2n

, ~37!

and from the relation between the two radius introduced
this model,

Rn85S sRn
n

A6\v
D 1/n8

, ~38!

we can calculate the values ofRn and Rn8 in terms of the
Förster critical radius.

If we take a value ofs'100 cm21,g'1000 cm21,t
'1 ms, v'1000 m/s, andr'1000 kg/m3, we get

R3'0.01R0 , ~39!

for dipole–dipole interaction which, for a valueR0

'100 Å givesR3'1 Å andR38'0.877 Å.
Another important point is to evaluate the long and sh

time limits of Eq. ~30!. In the short-time limit, i.e.,t/t!1,
the incomplete Gamma functionG(a,x) approaches to the
Gamma functionG(x), so Eq.~30! reduces to

ln^Gs~y,z;t !&52
4p

3
GS 12

3

2n8
D R8n

3c

Ap
S t

t D 3/2n8

3E
2`

` S uxu3coth
zuxu
2 D 3/2n8

e2zx11
e2(x2y)2

dx.

~40!

In the opposite limit,t/t@1, the incomplete Gamma func
tion tends to zero, so Eq.~30! reduces to
be
y

in

n

t

ln^Gs~y,z;t !&52
4p

3
GS 12

3

2nDRn
3c

Ap
S t

t D 3/2n

3E
2`

` S uxucoth
zuxu
2 D 3/2n

e2zx11
e2(x2y)2

dx.

~41!

To quote an example, for a dipole–dipole interaction, e
pressions~40! and ~41! have (t/t)3/4 and (t/t)1/2 temporal
dependences, respectively.

It is interesting to consider the low- and high-temperatu
behavior of the long- and short-time limits expression
which we do in the next sections.

A. Long-time limit

In the high-temperature limitz!1(kBT@s), we can
make a series expansion in powers ofz of the temperature
dependent part of the integrand in Eq.~41!, and retain only
the lowest term of the expansion, and we arrive at~see Ap-
pendix B!

ln^Gs~y,z;t !&'2
4p

3
Rn

3GS 12
3

2nD cS t

t D 3/2n 22113/2n

z3/2n
.

~42!

In the low-temperature limit,z@1(kBT@s), we use con-
tinuous fraction expansions in terms ofe2zx, and arrive at

ln^Gs~y,z;t !&'2
4p

3
Rn

3c
1

2Ap
GS 12

3

2nD S t

t D 3/2n

e2y2

3H GS 1

2
1

3

4nDH3/2n
1 ~y!1

3

n

GS 3

2nD
z113/2n

3F3

n
14S 9

4n2
21D y

zG J , ~43!

where

H3/2n
1 ~y!5FS 1

2
1

3

4n
,
1

2
;y2D1

3

2n
y

GS 3

4nD
GS 1

2
1

3

4nD
3FS 11

3

4n
,
3

2
;y2D , ~44!

with F(a,b;x) the confluent hypergeometric functions.20

In the limit of very smally, the functionH3/2n
1 (y) is very

well-described by the series expansion

H3/2n
1 ~y!'11

3

2n

GS 3

4nD
GS 1

2
1

3

4nD y, ~45!
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which is easier to compare to experimental data.
The y-dependence of the low-temperature limit cumula

expansion can be seen in Fig. 2~a! for various multipolar
interactions.

To quote an example, expression~41! for n53 ~dipole–
dipole interaction! reduces to

ln^Gs~y,z;t !52
4p

3
R3

3cS t

t D 1/2

3E
2`

` S uxucoth
zuxu
2 D 1/2

e2zx11
e2(x2y)2

dx.

~46!

The high-temperature limit is given by

ln^Gs~y,T;t !&52
4p

3
R3

3cA p

2 S t

t D 1/2S kBT

s D 1/2

, ~47!

and the low-temperature limit is given by

FIG. 2. Cumulant expansion dependence on the laser frequ
at very low temperatures:~a! long-time limit @Eq. ~43!#, for dipole–
dipole (n53), dipole–quadrupole (n54), and quadrupole–
quadrupole (n55); ~b! short-time limit @Eq. ~50!#, for dipole–
dipole (n852), dipole–quadrupole (n853), and quadrupole–
quadrupole (n854).
t

ln^Gs~y,T;t !&'2
4p

3
R3

3c
1

2 S t

t D 1/2

e2y2H GS 3

4DH1/2
1 ~y!

1GS 1

2D F S kBT

s D 3/2

23yS kBT

s D 5/2G J , ~48!

with H1/2
1 (y)5F( 3

4 , 1
2 ;y2)1y/2@G( 1

4 )/G( 3
4 )#F( 5

4 , 3
2 ;y2) or

H1/2
1 (y)'11 1

2 @G( 1
4 )/G( 3

4 )#y in the smally-limit.

B. Short-time limit

In the high-temperature limit,z!1, the cumulant is given
by ~Appendix B!

ln^Gs~y,z;t !&'2
4p

3
R8n

3cGS 12
3

2n8
D GS 1

2
1

3

4n8
D

3S t

t D 3/2n8
I 3/2n8

3
~y!

22113/2n8

Apz3/2n8
, ~49!

where I 3/2n8
3 (y)5e2y2

F( 1
2 13/2n8, 1

2 ;y2) or, for small y,
I 3/2n8

3 (y)'113/n8y2.
The behavior ofI 3/2n8

3 (y) can be seen in Fig. 3 for som
multipolar interactions.

In the low-temperature limit,z@1, the cumulant is given
by

ln^Gs~y,z;t !&'2
4p

3
R8n

3cGS 12
3

2n8
D 1

2 S t

t D 3/2n8

3e2y2H GS 1

2
1

9

4n8
D H3/2n8

3
~y!

1
9

n8

GS 9

2n8
D

z119/2n8 F 3

n8
14S 3

2n8
21D

3S 11
9

2n8
D y

zG J , ~50!

cy

FIG. 3. Short time limit cumulant expansion dependence on
laser frequency at very high temperatures@Eq. ~49!#, for dipole–
dipole (n852), dipole–quadrupole (n853), and quadrupole–
quadrupole (n854).
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where

H3/2n8
3

~y!5FS 1

2
1

9

4n8
,
1

2
;y2D 1

9

2n8
y

GS 9

4n8
D

GS 1

2
1

9

4n8
D

3FS 11
9

4n8
,
3

2
;y2D . ~51!

In the smally-limit

H3/2n8
3

~y!'11
9

2n8

GS 9

4n8
D

GS 1

2
1

9

4n8
D y. ~52!

The frequency dependence of the truncated cumulan
this limit can be seen in Fig. 2~b! for some multipolar inter-
actions.

For dipole–dipole interaction (n53→n852), the gen-
eral expression of the cumulant is given by

ln^Gs~y,z;t !52
4Ap

3
GS 1

4DR83
3cS t

t D 3/4

3E
2`

` S uxu3coth
zuxu
2 D 3/4

e2zx11
e2(x2y)2

dx.

~53!

The high-temperature limit is given by

ln^Gs~y,T;t !&'2
4p

3
R83

3

GS 1

4D 2

29/4Ap
S t

t D 3/4

I 3/4
3 ~y!S kBT

s D 3/4

,

~54!

with I 3/4
3 (y)5e2y2

F( 5
4 , 1

2 ;y2), or I 3/4
3 (y)'11 3

2 y2, whereas
the low-temperature limit is given by

ln^Gs~y,T;t !&'2
4p

3
R83

3c

GS 1

4D
2Ap

S t

t D 3/4

e2y2

3H GS 13

18DH3/4
3 ~y!1

9

2
GS 9

4D F3

2 S kBT

s D 13/4

2
13

4
yS kBT

s D 17/4G J , ~55!

with

H3/4
3 ~y!5FS 13

8
,
1

2
;y2D1

9

4
y

GS 9

8D
GS 13

8 D FS 17

8
,
3

2
;y2D ,

or
in

H3/4
3 ~y!'11

9

4

GS 9

8D
GS 13

8 D y

for small y.

V. RESULTS FOR THE DIPOLE –DIPOLE INTERACTION
CASE AND DISCUSSION

In this section we will present the analysis of the resu
found in the previous section for the case of dipole–dip
interaction which is, by far, the most important case from
experimental point of view.

In Fig. 4 we can see the temperature dependence of
truncated cumulant for fixed laser frequencies and de
times. It is important to note that in the rest of the figures
this work, the quantity represented is not the logarithm of

FIG. 4. Temperature dependence of the numerically-evalua
truncated cumulant@Eq. ~30!# for various times and laser frequen
cies. ~Solid line! y50.0; (2222) y521.0; (2•2•2) y5
20.5; (22•22) y50.5; (22••22) y51.0. ~a! t/t5105; ~b!
t/t51; ~c! t/t51025.
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900 PRB 62A. J. GARCÍA-ADEVA AND D. L. HUBER
FIG. 5. Laser frequency dependence of t
numerically-evaluated truncated cumulant for d
ferent times and temperatures@Eq. ~30!#. ~Solid
line! z50.001;(22•22) z50.01; (2•2•2)
z50.1; (2222) z51000. ~a! t/t510210; ~b!
t/t51025; ~c! t/t51; ~d! t/t5105; ~e! t/t
51010.
r
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cumulant, but this quantity divided by the facto
(4p/3Apc), which gets rid of the unknown quantityc. We
indicate this fact by using the notation^Gs(t)* &, instead of
^Gs(t)&.

The first important feature we note in that figure is th
the cumulant is nearly constant up tokBT's. This fact
makes us consider what is the relative importance of
one-phonon processes contribution to the EET at very
temperatures, which will be discussed below.

Furthermore, we can note some of the main features
dicted in the previous section. For example, we can see f
expressions~48! and ~55! that the functionsHk

m(y) are non-
symmetric iny. However, in the high temperature limit@Eqs.
~47! and~54!#, the cumulant is symmetric ony. Moreover, it
does not depend ony in the long time limit. All these fea-
tures can be noted in Fig. 4.

In Fig. 5 we have plotted the laser frequency depende
of the cumulant for fixed temperatures and delay times.
can see in that figure how the behavior changes from the
given by Eqs.~54! and ~55! at short times to the one pre
dicted by Eqs.~47! and~48! at long times, respectively, pas
ing through an intermediate regime which can be we
described only by numerical evaluation of the trunca
cumulant.

In Fig. 6 we present the delay time dependence of
t

e
w

e-
m

ce
e
ne

-
d

e

truncated cumulant for fixed temperatures and laser frequ
cies. We can see how the slope of the curves changes fro
(t/t)3/4 at very short times to a (t/t)1/2 at long times.

One point of crucial importance is where such a crosso
occurs. In fact, this point can be estimated, aty50, as fol-
lows:

Let us consider expression~30! for y50. In the following
discussion, it will be useful to introduce the following not
tion:

ln^Gshort
s ~z;t !&52

4p

3
cR8n

3S t

t D 3/2n8 1

Ap

3E
2`

` S uxu3coth
zuxu
2 D 3/2n8

e2zx11

3GF12
3

2n8
,S Rn8

Rn
D 2nn8

3
t

t
uxu2n11coth

zuxu
2 Ge2x2

dx, ~56!

and
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ln^Glong
s ~z;t !&52

4p

3
cRn

3S t

t D 3/2n

3

GS 12
3

2nD
Ap

E
2`

` S uxucoth
zuxu
2 D 3/2n

e2zx11
e2x2

dx

1
4p

3
cRn

3S t

t D 3/2n 1

Ap
E

2`

` S uxucoth
zuxu
2 D 3/2n

e2zx11

3GF12
3

2n
,S Rn8

Rn
D 2nn8

3
t

t
uxu2n11coth

zuxu
2

Ge2x2
dx. ~57!

The index ‘‘short’’ makes reference to the fact th
^Gshort

s (z;t)& is responsible for the 3/4 temporal dependen
at very short times, whereas the ‘‘long’’ index makes ref
ence to the fact that̂Glong

s (z;t)& is responsible for the 1/2
temporal dependence at long times. The second term
^Glong

s (z;t)& is a correction to thet1/2 decay. Again, by using
an asterisk superscript, we will mean that the correspond
function is divided by (4p/3Ap)c.

By using the procedure described in Appendix B, we c
develop low and high temperature expansions of these fu
tions for short- and long-time limits. The results of su
expansions are summarized in Table I.
At very low temperatures,̂Glong

s (z;t)& changes fromt/t to a
(t/t)1/2 dependence at

t1

t
50.67S R3

R38
D 12

, ~58!

whereas^Gshort
s (z;t)& changes from a (t/t)3/4 to a (t/t)2/7

dependence at

t2

t
50.047S R3

R38
D 12

. ~59!

Therefore, the delay time at which the dominant contrib
tion changes from̂ Gshort

s (z;t)& to ^Glong
s (z;t)&, that is, the

point at which ^Gshort
s (z;t)& and ^Glong

s (z;t)& become the
same, is given by

t0

t
50.18S R3

R38
D 12

. ~60!

In the high-temperature limit, we can make an analog
analysis, from which we obtain that^Glong

s (z;t)& changes
from t/t to a (t/t)1/2 dependence at

t1

t
51.23S R3

R38
D 12

z, ~61!

and ^Gshort
s (z;t)& changes from (t/t)3/4 to (t/t)2/7 at
e
-

in

g

n
c-

-

s

t2

t
50.035S R3

R38
D 12

z,

and the delay time at whicĥGlong
s (z;t)& and ^Gshort

s (z;t)&
become the same is given by

t0

t
50.20S R3

R38
D 12

z.

In Fig. 7 we have summarized these results in the v
low and very high temperature limits forR351 Å. As can
be seen, the agreement with the above results is aston
ingly good. These simple ideas predict very well where

FIG. 6. Temporal dependence of the numerically-evalua
truncated cumulant for various temperatures and laser frequen
@Eq. ~30!# for R351 Å. (2222) z51000; ~Solid line! z51;
(2•2•2) z50.1; (22•22) z50.01; (2••2••2) z50.001.
~a! y521.0; ~b! y50.0; ~c! y51.0. The asymptotic temporal de
pendences (t/t)1/2 and (t/t)3/4 are shown for comparison.



902 PRB 62A. J. GARCÍA-ADEVA AND D. L. HUBER
TABLE I. Limiting behaviors of^Gshort
s (z;t)* & and ^Glong

s (z;t)* & at y50.

Temperature range Time range 2 log^Glong
s (z;t)* & 2 log^Gshort

s (z;t)* &

z@1 t

t
!S R3

R83D12
3
4Ap

R83
6

R3
3

t

t
1
2G~

1
4!G~

13
8 !R83

3S t

tD
3/4

t

t
@S R3

R83D 12 Ap

2
G~

3
4 !R3

3S t

t D 1/2
4

13G~
5
7 !

R3
39/7

R83
18/7S t

t D 2/7

z!1 t

t
!S R3

R83D12

2
R83

6

R3
3

t

tz
G~

1
4!2

29/4
R83

3S t

t D 3/4

t

t
@S R3

R83D 12
p

A2
R3

3S t

tzD
1/2 24/3

5
G~

2
3 !

R3
5

R83
2 S t

tzD
1/3
n
n

th
o
o
ec
ha
ne
is

ry
he
un
a
E
no

ce

row
sig-

be
this
on-

en
d. A
od,
numerically calculated curves change their slope, and ca
used as a guide of where we should see a crossover, eve
small departures fromy50.

As commented above, an important question is what is
relative importance of resonant EET when both types
transfer, resonant and nonresonant, are present in the s
In order for the resonant transfer to have a noticeable eff
the two ions involved must have transition frequencies t
differ by no more than 1 or 2 times the homogeneous li
width. Therefore, the resonant EET is not important in d
ordered systems as long ass@gH , wheregH is the homo-
geneous linewidth. If this condition is satisfied, it is ve
unlikely that one will have two ions in the same region of t
sample whose transition frequencies differ by an amo
&gH . In this case, one should be able to neglect reson
EET in comparison with non resonant phonon assisted E

Another important point is that resonant EET does
be
for

e
f
lid.
t,
t
-
-

t
nt
T.
t

affect the decay of the narrow line in FLN experiments, sin
the width of the narrow line is;gH ~assuming the spectrum
of the exciting line is a delta function!. Thus, the one-phonon
calculation without resonant EET should describe the nar
line decay at low temperatures even in the presence of
nificant resonant EET.

At temperatures of the order ofs, the two-phonon pro-
cess contribution begins to be important, and it could
expected that there are deviations from the predictions of
model. However, the exact behavior of the two phonon c
tribution is beyond the scope of this work.

VI. CONCLUSIONS

In this article, the incoherent nonresonant EET betwe
chromophores in disordered solids has been addresse
generalization of the truncated cumulant expansion meth
-
-

-

.

FIG. 7. Analysis of the change
of the slope in the temporal de
pendence of the truncated cumu
lant for y50. ~Heavy solid line!
2 ln^Gs(z;t)* &; (2222)
2 ln^Gshort

s (z;t)* &; (2••2••2)
2 ln^Glong

s (z;t)* &. The light solid
lines represent the asymptotic be
haviors of ^Gshort

s (z;t)* & and
^Glong

s (z;t)* & discussed in Sec. V
~a! z51000; ~b! z50.001.
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developed earlier, has been introduced in order to accoun
the inhomogeneously-broadened electronic levels obse
in these materials.

The method has been applied to the simple case o
infinite, disordered solid, at very low temperatures, wh
one-phonon processes dominate the dynamics of the EE

The quantity which emerges from this calculation, t
truncated cumulant, represents the probability that
initially-excited donor is excited at a later timet, and is the
observable measured in FLN experiments. This quantity
pends not only on time, but also on the energy of
initially-excited donor and on temperature.

The exact behavior of the cumulant has been evaluate
well as the behavior in the low and high temperature lim
which are stated in terms of the inhomogenous width of
acceptor energy distribution. We find that, in this model, t
temporal regimes emerge, where the temperature
initially-excited donor energy dependences are quite disti
For a dipole–dipole interaction between the OAI, the tem
ral dynamics of the cumulant has at3/4 dependence at ver
short times, whereas at long times at1/2 behavior is pre-
dicted. The crossover between these behaviors has been
analyzed.

Finally, we would like to stress that this model could
also useful in obtaining structural information from restrict
geometries, such as the ones which are characteristic o
energy transfer in biological systems. However, in this ty
of system, resonant EET may make an important contri
tion to the measured survival probability, and both types
processes, resonant and nonresonant ones, have to be
into account in order to describe the experimental resu
Thus, the present model should be generalized to incl
both mechanisms in order to properly describe EET in s
systems, which will be the subject of further investigation
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APPENDIX A: EVALUATION OF THE SPATIAL
AVERAGE

The spatial average in Eq.~13! can be performed in the
following way:

The first summand gives a contribution

24pcE
0

Ra g~Ea!

e2bDEda11
dEar a

2 dra

52
4p

3
Ra

3cE g~Ea!

e2bDEda11
dEa

52~N21!E g~Ea!

e2bDEda11
dEa , ~A1!

whereRa is a cutoff radius necessary in order to avoid
vergence of the integral.

The second term gives a contribution
or
ed

n
e
.

n

e-
e

as
,
e

nd
t.
-

lso

he
e
-
f
ken
s.
e
h
.

a
ro.

4pcE g~Ea!

e2bDEda11
dEaE

0

Ra
e2(wda1wad)tr 2 dr

54pcE g~Ea!

e2bDEda11
dEa

3H E
0

u(DEda)

e2F8(DEda ,t)/r 2n8
r 2 dr

1E
u(DEda)

Ra
e2F(DEda ,t)/r 2n

r 2 drJ , ~A2!

with u(DEda)5A6\v/uDEdau which, after substitution of

F(DEda ,t)/r da
2n5x and F8(DEda ,t)/r da

2n85x, can be put in
the form

4pc

2n8
E F8~DEda ,t !3/2n8g~Ea!

e2bDEda11
dEa

3E
F8(DEda ,t)/u(DEda)2n8

` e2x

x113/2n8
dx

1
4pc

2n E F~DEda ,t !3/2ng~Ea!

e2bDEda11
dEa

3E
F(DEda ,t)/u(DEda)2n

F(DEda ,t)/Ra
2n e2x

x113/2n
dx, ~A3!

After integrating once by parts, and taking into accou
that

E
xmin

xmax
x23/2ne2x dx5GS 12

3

2n
,xminD2GS 12

3

2n
,xmaxD ,

~A4!

the spatial average gives

4p

3
cF~DEda ,t !3/2nF S F~DEda ,t !

Ra
D 23/2n

2GS 12
3

2nD
1GS 12

3

2n
,
F~DEda ,t !

u~DEda!
2n D G2

4p

3
cF8~DEda ,t !3/2n8

3GS 12
3

2n8
,
F~DEda ,t !

u~DEda!
2n D . ~A5!

To arrive to this expression, the limitxmin→0, that is,
Ra→`, and the relation F(DEda ,t)/u(DEda)

2n

5F8(DEda ,t)/u(DEda)
2n8 have been used.

Substituting expression~A5! in ~A3! we obtain
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~N21!E g~Ea!

e2bDEda11
dEa1

4p

3
cE F~DEda ,t !3/2n8g~Ea)

e2bDEda11

3GS 12
3

2n
,
F~DEda ,t !

u~DEda!
2n D dEa2

4p

3
c

3E F8~DEda ,t !3/2n8g~Ea)

e2bDEda11
GS 12

3

2n8
,
F~DEda ,t !

u~DEda!
2n D

3dEa2
4p

3
cGS 12

3

2nD E F~DEda ,t !3/2ng~Ea)

e2bDEda11
dEa ,

~A6!

and the first summand exactly cancels the term in~A1!, leav-
ing us with Eq.~25!.

APPENDIX B: HIGH- AND LOW-TEMPERATURE LIMITS

In order to evaluate the high- and low-temperature lim
we are faced with integrals of the form

E
2`

` S uxumcoth
zuxu
2 D k

e2zx11
e2(x2y)2

dx, ~B1!

wherem51 andk53/2n for very long times, andm53 and
k53/2(n21) in the opposite limit, wheren is the order of
the multipolar interaction.

In the high temperature limit,z!1, we can make a serie
expansion of the temperature dependent part of the integ
in terms ofz. To the lowest order inz

S uxumcoth
zuxu
2 D k

e2zx11
'2k21

uxuk(m21)

zk
, ~B2!

so we are faced with the integral

2k21

zk E
2`

`

uxuk(m21)e2(x2y)2
dx

5
2k21

zk
GS 1

2
1

k~m21!

2 D I k
m~y!, ~B3!

where

I k
m~y!5e2y2

FS 1

2
1

k~m21!

2
,
1

2
;y2D , ~B4!

where F(a,b,x) denotes the confluent hypergeomet
function.20

It is important to note that the integral~B3! converges
provided thatk(m21).21, which holds for any multipolar
interaction (n.53).

For m51 andk53/2n, Eq. ~B3! reads

GS 1

2D22113/2n

z3/2n
, ~B5!

and, after substituting in Eq.~41! we arrive at Eq.~42!.
,

nd

For m53 andk53/2n8, Eq. ~B3! reads

GS 1

2
1

3

2n8
D 22113/2n8

z3/2n8
I 3/2n8

3
~y!, ~B6!

with I 3/2n8
3 (y)5e2y2

F( 1
2 13/2n8, 1

2 ;y2), and, after substitu-
tion in Eq. ~40!, we arrive at Eq.~54!.

In the low-temperature limitz@1(kBT!s), it is conve-
nient to express the integral in the following way:

E
2`

` S uxumcoth
zuxu
2 D k

e2zx11
e2(x2y)2

dx

5E
0

`S xmcoth
zx

2 D k

e2(x2y)2
dx

22e2y2E
0

`S xmcoth
zx

2 D k

ezx11
sinh~2xy!e2x2

dx. ~B7!

By using the continuous fraction expansions

S coth
zx

2 D k

'112ke2zx, ~B8!

S coth
zx

2 D k

ezx11
'e2zx, ~B9!

where only the lowest power ofz has been retained, afte
making the transformationx→x/z we arrive at

E
0

`

xmke2(x2y)2
dx12k

e2y2

z11mkE0

`

xmke2xe2xy/zdx

22y
y

z11mk
e2y2E

0

`

xmke2xsinh
2xy

z
e2x2

dx,

~B10!

which, to the lowest order inz gives

1

2
GS 11mk

2 De2y2
Hk

m~y!1mkG~mk!
e2y2

z11mkF2k14~k21!

3~11mk!
y

zG , ~B11!

where

Hk
m~y!5FS 11mk

2
,
1

2
;y2D

1mky

GS mk

2 D
GS 11mk

2 D FS 21mk

2
,
3

2
;y2D .

~B12!
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For m51 andk53/2n we get

e2y2H 1

2
GS 1

2
1

3

4nDH3/2n
1 ~y!

1
3

2n

GS 3

2nD
z113/2n F3

n
14S 9

4n2
21D y

zG J , ~B13!

with

H3/2n
1 ~y!5FS 1

2
1

3

4n
,
1

2
;y2D

1
3

2n
y

GS 3

4nD
GS 1

2
1

3

4nD FS 11
3

4n
,
3

2
;y2D ,

~B14!

and, after a little algebra, we arrive at Eq.~43!.
For m53 andk53/2n8 we get
hy

hy
e2y2H 1

2
GS 1

2
1

9

4n8
D H3/2n8

3
~y!1

9

2n8

GS 9

2n8
D

z119/2n8

3F 3

n8
14S 3

2n8
21D S 9

2n8
11D y

zG J , ~B15!

with

H3/2n8
3

~y!5FS 1

2
1

9

4n8
,
1

2
;y2D 1

9

2n8
y

GS 9

4n8
D

GS 1

2
1

9

4n8
D

3FS 11
9

4n8
,
3

2
;y2D , ~B16!

and we arrive at Eq.~50!.
-
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