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Critical behavior of the SÄ1Õ2 Heisenberg ferromagnet: A Handscomb quantum
Monte Carlo study
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We investigate the critical relaxational dynamics of theS51/2 Heisenberg ferromagnet on a simple cubic
lattice within the Handscomb prescription, on which a diagrammatic series expansion of the partition function
is computed by means of a Monte Carlo procedure. Using a phenomenological renormalization-group analysis
of graph quantities related to the spin susceptibility and order parameter, we obtain precise estimates of the
critical exponents relationsg/n51.9860.01 andb/n50.51260.002 and of the Curie temperaturekBTc /J
51.677860.0002. The critical correlation timet int of both energy and susceptibility is also computed. We
found the number of Monte Carlo steps needed to generate uncorrelated diagram configurations scales with the
system’s volume. We estimate the efficiency of the Handscomb method, comparing its ability in dealing with
the critical slowing down to that of other quantum and classical Monte Carlo prescriptions.
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I. INTRODUCTION

The slowing down of the relaxation to thermal equili
rium is an important physical phenomenon associated w
the build up of long-range correlations at the critical point
spin systems. According to the finite-size scaling hypothe
the critical relaxation time scales with the system size at
}Lz, with the dynamical critical exponentz governing the
rate of convergence towards thermal equilibrium. The va
of z depends on the particular equation of motion of the or
parameter and of the conservation laws that apply to the
system. In particular, the dynamic scaling theory pred
that for the classical isotropic Heisenberg model with co
served order parameterz5d2b/n (z;2.5 for d53),1

which is consistent with both experiments2,3 and numerical
simulations.4 For a recent review see Ref. 5.

Monte Carlo simulation is a powerful tool to study th
equilibrium properties of a spin system through some s
chastic relaxational dynamics. It defines a Markovian p
cess in which the associated stochastic model evolves in
phase space according to certain transition probabilities.
transition rates between two distinct spin configurations
imposed to satisfy the detailed balance condition in orde
lead the system to its equilibrium state distribution. The d
namical evolution of the stochastic model can be though
resulting from the interactions among its many degrees
freedom. However, the evolution of the model system un
the Monte Carlo dynamics do not need to be consistent w
any motion equation. In this context, the critical exponenz
characterizes, therefore, the rate at which a particular se
stochastic dynamical rules generates uncorrelated spin
figurations.

A general feature of Monte Carlo simulations of classi
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spin models is that cluster dynamics are usually much m
effective in overcoming the critical slowing down than tho
which are based on single spin-flip procedures. For exam
the cluster Monte Carlo algorithm introduced b
Swendsen-Wang6 is known to have a very fast convergen
to equilibrium at the critical point in contrast to the slow
convergence of local dynamics such as Metropolis and h
bath. For the isotropic classical Heisenberg model it has b
found that z;2 for Metropolis7 and z;0 for the single
cluster8,9 Monte Carlo dynamics.

The traditional spin-flip Monte Carlo algorithms as a
plied to classical spin systems can not be directly extende
quantum spin models. The problem resides in the fact
the Hamiltonian is not, in general, diagonal in the spin co
figuration basis. A quantum Monte Carlo method was int
duced by Handscomb for the calculation of the thermo
namical properties of quantum Heisenberg ferromagne10

The main difference of this technique in comparison to t
ditional Monte Carlo algorithms is that the sample space
not related to any kind of physical phase space. It is
diagrammatic series of the partition function that is calc
lated by means of the Monte Carlo method. The Handsco
method has been successfully used to compute the the
dynamical properties of the HeisenbergS51/2
ferromagnet11–14 and extended to a form applicable to a s
ries of quantum spin models.15

Another algorithm commonly used in Monte Carlo sim
lations of quantum spin models is based on the use of
generalized Trotter formula to map the quantum system o
a classical system with an additional imaginary tim
dimension.16 The S51/2 Heisenberg model has been exte
sively studied within this line. Recently, a decoupled c
method for quantum Monte Carlo based on the Suzu
8909 ©2000 The American Physical Society
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Trotter approach has been used to compute the critical
namical exponentz of the S51/2 Heisenberg model on th
simple cubic lattice.17 It was found thatz;2 which is quite
similar to the value obtained from simulations of the clas
cal Heisenberg model under Metropolis dynamics.7

In the present work, we are going to investigate both
static and dynamic critical properties of theS51/2 Heisen-
berg ferromagnet on the simple cubic lattice by means of
Handscomb dynamics. We will employ a phenomenologi
renormalization group to obtain precise estimates of the c
cal temperature and some static critical exponents. By
ploying a so-called moving block bootstrap~MBB!
technique,18 we are going to calculate the equilibrium rela
ation time for the energy and susceptibility at criticality. T
critical time-displaced equilibrium correlation function wi
be computed as well. We will employ a finite-size scali
analysis of the equilibrium relaxation time to obtain the cr
cal dynamical exponentz associated to the Handscomb d
namics and we contrast it with the results from the quant
decoupled cell method and the results from distinct Mo
Carlo simulations of the classical Heisenberg model.

II. THE HANDSCOMB MONTE CARLO METHOD

Let us briefly draw the main ideas of the Handscom
method. Consider the Hamiltonian of a quantum spin sys
to be given by

H5(
i

N0

Hi , @Hi ,H j #Þ0. ~1!

The canonical average of a physical observableA can be
expanded in the form

^A&5
Tr@A exp~2bH !#

Tr@exp~2bH !#
5(

r
(
Cr

A~Cr !p~Cr !, ~2!

whereb51/kBT, (Cr
denotes a summation over all order

sets of indicesCr[$ i 1 ,i 2 , . . . ,i r% ~Mayer diagrams! and

A~Cr ![
Tr@AHi 1

•••Hi r
#

Tr@Hi 1
•••Hi r

#
,

p~Cr ![

~2b!r

r !
Tr@Hi 1

•••Hi r
#

(
r

(
Cr

~2b!r

r !
Tr@Hi 1

•••Hi r
#

. ~3!

Oncep(Cr)>0, it can be considered as a probability dist
bution and the canonical averages can be written as^A&
5^A(Cr)&p(Cr )

. This is the case of the HeisenbergS51/2
ferromagnet. The Hamiltonian can be represented in term
transposition operators as

H52J( Ei , j , ~4!

so that the relevant trace to be computed is that of a per
tation operator

Tr P~Cr ![Tr@E( i , j )1
E( i , j )2

•••E( i , j )r
#52k(Cr ), ~5!
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wherek(Cr) is the number of cycles in the irreducible re
resentation of the permutationP(Cr). It is straightforward to
show that any physical observable can be expressed in te
of the diagram structure. For instance, the internal energ
related to the average number of transposition operator
the diagrams and the susceptibility to the average size of
cycles in the diagram’s irreducible representation.19

The Handscomb Monte Carlo method organizes a rand
walk in the space of the diagramsCr which hasp(Cr) as the
limit distribution. The dynamics suggested by Handsco
consists of three types of steps:~i! Step forward, chosen with
probability f r , which tries to include a randomly chose
bond to the right of the permutation operator;~ii ! Step back-
wards, chosen with probability 12 f r , which tries to remove
a bond from the left ofP(Cr); ~iii ! cyclic transposition, cho-
sen when step backwards is rejected, which moves a b
from the left to the right. The transition probabilities fo
performing each movement on the space of Mayer’s d
grams are chosen in order to satisfy the detailed bala
condition.

After a single step of the Handscomb Monte Carlo d
namics, the irreducible representation of the sequencyCr can
have its cycle structure changed considerably. When
sites belong to distinct cycles, the insertion of the cor
sponding bond results in the coalescence of the two cycle
permutations. On the other hand, i.e., when the sites be
to the same cycle, the insertion breaks the cycle in two n
ones. The same process occurs when a bond is removed
the sequence. Therefore, entire sets of sites can have
status changed during a single Monte Carlo step and, in
sense, the Handscomb dynamics is similar to the class
Monte Carlo cluster algorithms.

III. FINITE SIZE SCALING FOR THE SUSCEPTIBILITY
AND ORDER PARAMETER

The susceptibility per spin of the quantumS51/2 Heisen-
berg model is written in terms of the cyclic structure of t
irreducible representation ofCr as19

bx5
1

N K (
j 51

k(Cr )

aj
2L

P

, ~6!

where aj is the length of thej th cycle of the permutation
P(Cr) and ^•••&P denotes an average with respect to t
Cr-space probability distribution. In Fig. 1, we show o
results for the susceptibility from lattices ofL3 spins with
L516,24, and 32. In these simulations 150L3 Monte Carlo
steps~insertion, removal or bond permutation! were enough
to let the system evolve to an equilibrium diagram config
ration starting from an initial diagram containing no transp
sitions. After equilibrium was reached, we averaged ove
3104 distinct diagrams, 103 MCS apart. These results wer
averaged over 10 distinct realizations of the numerical
periment. The susceptibility exhibits a critical behavi
around kBTc /J.1.68 in agreement with previous Mont
Carlo estimates.20 For T.Tc , x is only weakly dependen
on the system size; whereas it is nearly proportional toL3 at
low temperatures. Notice thatx equals the magnetizatio
second moment for temperatures belowTc once the magne-
tization is strictly zero within the Handscomb prescription
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In order to obtain a precise estimate of the critical te
perature, we implemented a phenomenologi
renormalization-group analysis of the data from finite s
lattices as introduced by Nightingale.21 The basic assumption
is that near the transition the susceptibility of a finite latt
of linear sizeL scales as

x~T,L !5Lg/n f 6~ tL1/n!, ~7!

where t5u(T2Tc)/Tcu and (6) stands for distinct scaling
functions above and belowTc . The renormalization of tem
perature is defined by the following transformation relati
lattices of two different sizes,L andL8:

x~T,L !5~L/L8!g/nx~T8,L8! ~8!

with the fixed point givingTc . Then a set of auxiliary func-
tions is introduced as

gx~T,L,L8!5
ln@x~T,L !/x~T,L8!#

ln~L/L8!
~9!

and these intersect as a function of temperature at a com
point from which we can directly measureTc and g/n
5gx(Tc ,L,L8). In Fig. 2 we plot the auxiliary functions
gx(T,L,L8) for typical renormalizations. Using all possib
renormalizations with lattice sizesL516,24,32,40, and 48
we estimatekBTc /J51.67760.001 andg/n51.9860.01.
These values are one order of magnitude more accurate
the previous Monte Carlo estimates from simulations
small lattices (L<10) which reported kBTc /J
51.6860.01.20

An even more accurate value for the critical temperat
can be found by employing a renormalization study of cr
cal quantities which are known to depict smaller fluctuatio
near the critical point such as the magnetization itself. U
fortunately, as we mention before, the magnetization is
actly zero for all temperatures due to an intrinsic symme
of the Handscomb dynamics. However, we can explore
cycle structure of the Mayer diagrams to introduce a gra
quantity which display the same critical behavior of the ord

FIG. 1. The susceptibility per spin as a function of temperat
for L516,24, and 32~from below!. Due to an intrinsic symmetry o
the Handscomb dynamics, the susceptibility equals the magne
tion second moment belowTc . The errors are much smaller tha
the size of the symbols.
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parameter. In the simulations of classical spin models, su
quantity is the size of the largest cluster of spins which are
the same state. This might suggest that the largest c
within a diagram in the context of Handscomb MC, m
exhibit the same scaling behavior as the magnetizat
Therefore, we will introduce a graph order parameter as
average size of the largest cycle of permutations.

In Fig. 3, we plot the average size of the largest cy
~normalized by the total number of sites! as a function of
temperature from simulations on lattices withL516,24, and
48. From this figure, one can see that the average size o
largest cycle depicts an overall behavior similar to the o
expected for an order parameter, and it will be considered
a true order parameter from here on. It also indicates a ph

e

a-

FIG. 2. The auxiliary functionsgx(T,L,L8) for the scaling of
susceptibility data. The renormalizations were performed fromL
524 to L8516 ~circles!; L532 to L8516 ~squares!; L540 to L8
516 ~diamonds!, and fromL540 to L8524 ~triangles!. Typical
error bars are shown. The solid lines are the results from renorm
izations of the best fits of our original susceptibility data. The
have a common point from which we estimateTc51.67760.001
andg/n51.9860.01.

FIG. 3. The average size of the largest cycle~normalized the
total number of sites! c as a function of temperature forL516,24,
and 48. At high temperatures all cycles are small indicating
long-range order andC vanishes. With loweringT, the onset of the
ferromagnetic order makes itself felt aroundkBTc /J'1.68, andc
start to grow until saturation. At criticality,c shows power-law size
dependence.
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transition aroundkBTc /J'1.68. A renormalization analysi
performed on the order parameter data is shown in Fig
From these data we foundkBTc /J51.677860.0002 and
b/n50.51260.002. To the best of our knowledge, the pre
ently reported values forkBTc /J, g/n andb/n are the most
accurate Monte Carlo estimates to date for the quantum
Heisenberg ferromagnet. Our quoted value forTc is in com-
plete agreement with the most accurate high-temperature
ries study which yieldedJ/kBTc50.5960(5).22 The critical
exponents are in excellent agreement with the best estim
for the classical Heisenberg ferromagnet.23

IV. CRITICAL RELAXATION OF THE SPIN-1 Õ2
HEISENBERG MODEL

The critical relaxation within the Handscomb prescripti
can be investigated by computing some equilibrium tim
displaced correlation functionsC(t) at the Curie tempera
ture. We look at the equilibrium relaxation timet which is
expected to depict a power-law increase with the system
L whose exponent characterizes the critical relaxation p
cess. In particular, it governs the size dependence of the
at which uncorrelated configurations are generated during
Monte Carlo temporal evolution in phase space.

The fast growth of the relaxation time is referred to as
critical slowing down which may be governed by seve
relaxation modes.24 One generally is interested in the slow
relaxation modes, i.e., the longest relaxation times. The
fore, it is safer to work with the integrated correlation tim
given by

t int5E
0

`

C~ t !dt. ~10!

In order to estimatet int , we perform a very long MC simu
lation on L3 simple cubic lattices, with L
516,20,24,28,32,36,40,44,48, at the previously calcula
critical temperaturekBTc /J51.6778. The simulation is

FIG. 4. The auxiliary functionsgc(T,L,L8) for the scaling of
the order parameter data. The renormalizations were perfor
from L524 to L8516 ~circles!; L540 to L8516 ~squares!; L
548 to L8516 ~triangles up! and fromL548 to L8524 ~triangles
down!. Typical error bars are shown. The solid lines are the res
from renormalizations of the best fit of our original order parame
data. From the interception of these functions computed for all p
sible renormalizations with lattice sizesL516,24,32,40, and 48 we
estimatekBTC /J51.677860.0002 andb/n50.51260.002.
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started from a diagram containing no transposition and
observed that typically 150L3 configurations were needed t
bring the system to equilibrium. So we discarded the app
priate number of configurations for equilibration, after whi
we recorded the susceptibility and energy everydt52000
MCS, generating long equilibrium time series of 106 mea-
surements each.

The time-displaced correlation functions~see Fig. 5! were
obtained byCq(t)5Dq(t)/Dq(0), whereDq(t) is the auto-
covariance function given by

Dq~ t !5
1

n2t (
i 51

n2t

~qi2^q&!~qi 1t2^q&!, ~11!

n is the length of the time series, andq represents the physi
cal property one is interested in.

Here, we computedCx(t) and CE(t), the correlation
function of the susceptibility and energy, respectively. Ty
cal equilibrium traces of the susceptibility and energy a
shown in Fig. 6, where the microscopic time scale us
equals 2000 MCS. From these we can infer that the num
of MCS needed to generate two diagram configurations w
uncorrelated susceptibilities is much smaller than the
required to generate uncorrelated energies.

In practice,t int was estimated by

t int5(
t50

Cq~ t ! ~12!

and the sum was cut off at the first negative value ofC(t).
Despite our long runs we were not able to get relia

estimates oft int by integratingC(t) for the largest lattices

ed

ts
r
s-

FIG. 5. The time-displaced equilibrium correlation function
the susceptibility and energy at criticality for several lattice size
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simulated. It is well known thatC(t) fluctuates wildly for
large t, hampering the convergence of its integral.

On the other hand, in the context of MC simulations t
error associated with a given quantity can be written as25

s25s0
2S 11

2t

dt D , ~13!

wheres0 is the standard deviation treating all data as if th
were statistically independent ands is the actual statistica
uncertainty. This variance inflation correctly takes into a
count the correlations of the MC data.

It is not a simple matter to access the actual error i
finite time series of correlated data. Here we employed
moving block bootstrap~MBB! method,18 which exploits re-
sampling techniques. Within the MBB scheme a block
observations is defined by its length and by its starting po
in the series. For instance,Qi5$qi ,qi 11 , . . . ,qi 1 l% defines
the i th block of l observations. A MBB sample is then ob
tained by~i! randomly drawing with replacement from th
set of all possible overlapping blocks of sizel; ~ii ! concen-
trating the selected blocks and forming a replicated ser
Each set of replicated data obtained in this way yields
estimate for the sample mean. The drawing is repeated m
times and the block-size-dependent error is approximated
the standard deviation of the bootstrap generated mean
ues.

It can be shown that in the case of arithmetic mean,s2

can be calculated exactly without resampling.26 For a series
with n observations,qt , andk blocks of sizel, s2 is given
by18

s25
1

kn (
j 50

n21 F1

l (
t51

l

~qj 1t2^q&!G2

. ~14!

FIG. 6. An equilibrium trace of the susceptibilityx and energy
E at criticality. Local quantities, as energy, are more time correla
than nonlocal ones due to the cluster nature of the Handsc
Monte Carlo method.
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The behavior of the ratios2/s0
2 is illustrated in Fig. 7 for

the susceptibility. The error increases with the block s
until it becomes roughly size independent for block leng
large enough. The maximum value reached by error co
sponds to the actual standard error of the mean.

The underlying idea of the MBB method is that if th
block length is large enough, observations belonging to
ferent blocks are nearly independent, while the correlat
present in observations forming each block is retained.

Having an estimate tos2/s0
2, Eq.~13! can be employed to

extractt int . The above outlined procedure was applied
the data of the susceptibility and energy of all lattices. Go
agreement was achieved between the estimates oft int ob-
tained from MBB and by applying directly Eq.~12! for small
lattices.

The computed equilibrium relaxation times from bot
susceptibility and energy, are plotted in Fig. 8 as obtain
from lattices of sizeL516,24,28, . . . ,48. Notice that, al-
thought int is quite smaller for the susceptibility, both exhib
the same power-law size dependence. A linear best fit for
energy and susceptibility data yields 3.060.1 for the regres-
sion coefficient. Therefore, the equilibrium relaxation tim
scales ast int}L3.060.1. This means that, within the Hand

d
b

FIG. 7. Moving block bootstrap estimates of the standard err
of the susceptibility as a function of the block lengthl at criticality
for several lattice sizes. The lines are guides to the eye.

FIG. 8. The equilibrium relaxation time versus linear sizeL for
susceptibility and energy. The error in our estimates oft int is
around 2%. Although,t int is much smaller for the susceptibility
both quantities scale the same way. The microscopic time s
used is 2000 MCS.
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scomb dynamics, the number of Monte Carlo steps per
required to generate uncorrelated diagram configuration
criticality is roughly size independent.

V. CONCLUSIONS

In summary, we performed Monte Carlo simulations
the S51/2 Heisenberg ferromagnet on the simple cubic
tice to investigate the critical relaxation of the Handsco
quantum Monte Carlo method which samples the space
permutation operators appearing in the series expansio
the partition function. Precise estimates of the critical te
perature and exponentsg/n and b/n were obtained from a
phenomenological renormalization group analysis of d
from the susceptibility and order parameter. At the critic
temperature we measured the equilibrium relaxation t
from the time-displaced correlation functions of the susc
tibility and energy~small lattices only!. For the largest lat-
tices (L>32) t int was estimated through the moving bloc
bootstrap technique. From either susceptibility or energy
obtained that, at criticality, the number of Monte Carlo ste
~sampled permutation sequences! required to generate unco
related equilibrium diagram configurations scales with
system’s volume.

Some care must be taken when estimating the efficie
of the Handscomb method and comparing it with oth
Monte Carlo prescriptions. First, the phase space sam
within the Handscomb method is not related to any phys
space. Therefore, there is no direct relation between the
scales of the Handscomb and the traditional spin-flip dyna
ics. However, a crude estimate can be drawn by conside
that during an elementary Monte Carlo step of the Ha
scomb dynamics the sites belonging to a particular cycle
permutations have their status updated. The average nu
v.
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of sites involved in a single Monte Carlo step is then prop
tional to 1/N^ai

2&;x;Lg/n. Within this reasoning, the aver
age fraction of sites updated in a MCS scales asLg/n/Ld.
Therefore, a time scale which would correspond to a latt
sweep in spin-flip dynamics would bet0;Ld2g/n. In units
of this time scale the relaxation time scales ast int;t0Lz,
with z5260.1, which is quite similar to the value ofz found
for the decoupled cell quantum Monte Carlo and the class
Metropolis dynamics. Although the Handscomb dynam
depicts some characteristics of the classical spin-flip clu
dynamics it has not a similar effect on dealing with the cr
cal slowing down.

It is relevant to mention here that the present Handsco
prescription, which inserts or removes transposition ope
tors at the extremes of the permutation sequence, is the
that provide the simplest algorithm to control the dynam
in the permutation phase space. A natural generalization
insert and remove operators at random locations within
sequence. This would drastically change its cycle struct
with all sites being able to have their status updated o
single step. It would be valuable to estimate the efficiency
such relaxational dynamics at criticality as well as that
other generalizations of the Handscomb prescription as
plied to antiferromagnet and large spin models.
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