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We investigate the critical relaxational dynamics of 8w 1/2 Heisenberg ferromagnet on a simple cubic
lattice within the Handscomb prescription, on which a diagrammatic series expansion of the partition function
is computed by means of a Monte Carlo procedure. Using a phenomenological renormalization-group analysis
of graph quantities related to the spin susceptibility and order parameter, we obtain precise estimates of the
critical exponents relationg/v=1.98+0.01 andB/v=0.512+0.002 and of the Curie temperatukgT./J
=1.6778£0.0002. The critical correlation time,,; of both energy and susceptibility is also computed. We
found the number of Monte Carlo steps needed to generate uncorrelated diagram configurations scales with the
system’s volume. We estimate the efficiency of the Handscomb method, comparing its ability in dealing with
the critical slowing down to that of other quantum and classical Monte Carlo prescriptions.

I. INTRODUCTION spin models is that cluster dynamics are usually much more
effective in overcoming the critical slowing down than those
The slowing down of the relaxation to thermal equilib- which are based on single spin-flip procedures. For example,
rium is an important physical phenomenon associated witlthe cluster Monte Carlo algorithm introduced by
the build up of long-range correlations at the critical point of Swendsen-Warfgs known to have a very fast convergence
spin systems. According to the finite-size scaling hypothesigo equilibrium at the critical point in contrast to the slower
the critical relaxation time scales with the system sizeras convergence of local dynamics such as Metropolis and heat-
«L?, with the dynamical critical exponertt governing the bath. For the isotropic classical Heisenberg model it has been
rate of convergence towards thermal equilibrium. The valudound thatz~2 for Metropoli€ and z~0 for the single
of zdepends on the particular equation of motion of the ordeclustef® Monte Carlo dynamics.
parameter and of the conservation laws that apply to the spin The traditional spin-flip Monte Carlo algorithms as ap-
system. In particular, the dynamic scaling theory predictgplied to classical spin systems can not be directly extended to
that for the classical isotropic Heisenberg model with con-quantum spin models. The problem resides in the fact that
served order parametez=d-—pB/v (z~2.5 for d=3)! the Hamiltonian is not, in general, diagonal in the spin con-
which is consistent with both experimehtsand numerical ~ figuration basis. A quantum Monte Carlo method was intro-
simulations® For a recent review see Ref. 5. duced by Handscomb for the calculation of the thermody-
Monte Carlo simulation is a powerful tool to study the namical properties of quantum Heisenberg ferromagfifets.
equilibrium properties of a spin system through some stoThe main difference of this technique in comparison to tra-
chastic relaxational dynamics. It defines a Markovian pro-ditional Monte Carlo algorithms is that the sample space is
cess in which the associated stochastic model evolves in theot related to any kind of physical phase space. It is the
phase space according to certain transition probabilities. Thediagrammatic series of the partition function that is calcu-
transition rates between two distinct spin configurations ardated by means of the Monte Carlo method. The Handscomb
imposed to satisfy the detailed balance condition in order tanethod has been successfully used to compute the thermo-
lead the system to its equilibrium state distribution. The dy-dynamical properties of the HeisenbergS=1/2
namical evolution of the stochastic model can be thought oferromagnéet'~**and extended to a form applicable to a se-
resulting from the interactions among its many degrees ofies of quantum spin modets.
freedom. However, the evolution of the model system under Another algorithm commonly used in Monte Carlo simu-
the Monte Carlo dynamics do not need to be consistent witltations of quantum spin models is based on the use of the
any motion equation. In this context, the critical exponent generalized Trotter formula to map the quantum system onto
characterizes, therefore, the rate at which a particular set ¢f classical system with an additional imaginary time
stochastic dynamical rules generates uncorrelated spin codimension'® The S=1/2 Heisenberg model has been exten-
figurations. sively studied within this line. Recently, a decoupled cell
A general feature of Monte Carlo simulations of classicalmethod for quantum Monte Carlo based on the Suzuki-
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Trotter approach has been used to compute the critical dywherek(C,) is the number of cycles in the irreducible rep-
namical exponent of the S=1/2 Heisenberg model on the resentation of the permutatid®(C,). It is straightforward to
simple cubic latticé” It was found thaz~2 which is quite  show that any physical observable can be expressed in terms
similar to the value obtained from simulations of the classi-of the diagram structure. For instance, the internal energy is
cal Heisenberg model under Metropolis dynandics. related to the average number of transposition operators in
In the present work, we are going to investigate both thehe diagrams and the susceptibility to the average size of the
static and dynamic critical properties of tie=1/2 Heisen-  cycles in the diagram’s irreducible representafion.
berg ferromagnet on the simple cubic lattice by means of the The Handscomb Monte Carlo method organizes a random
Handscomb dynamics. We will employ a phenomenologicalvalk in the space of the diagran® which hasp(C,) as the
renormalization group to obtain precise estimates of the critilimit distribution. The dynamics suggested by Handscomb
cal temperature and some static critical exponents. By enconsists of three types of stefs: Step forward, chosen with
ploying a so-called moving block bootstragMBB)  probability f,, which tries to include a randomly chosen
technique® we are going to calculate the equilibrium relax- bond to the right of the permutation operat6r) Step back-
ation time for the energy and susceptibility at criticality. The wards, chosen with probability-1f, , which tries to remove
critical time-displaced equilibrium correlation function will a bond from the left oP(C,); (iii) cyclic transposition, cho-
be computed as well. We will employ a finite-size scalingsen when step backwards is rejected, which moves a bond
analysis of the equilibrium relaxation time to obtain the criti- from the left to the right. The transition probabilities for
cal dynamical exponert associated to the Handscomb dy- performing each movement on the space of Mayer's dia-
namics and we contrast it with the results from the quantungrams are chosen in order to satisfy the detailed balance
decoupled cell method and the results from distinct Montecondition.

Carlo simulations of the classical Heisenberg model. After a single step of the Handscomb Monte Carlo dy-
namics, the irreducible representation of the sequéhayan
Il. THE HANDSCOMB MONTE CARLO METHOD have its cycle structure changed considerably. When two

] o sites belong to distinct cycles, the insertion of the corre-
Let us briefly draw the main ideas of the Handscombgyonding bond results in the coalescence of the two cycles of
method. Consider the Hamiltonian of a quantum spin systemermytations. On the other hand, i.e., when the sites belong
to be given by to the same cycle, the insertion breaks the cycle in two new
No ones. The same process occurs when a bond is removed from
sz H;, [H; H,]#0. (1) the sequence. The'refore,'entlre sets of sites can hav.e thglr
| status changed during a single Monte Carlo step and, in this
sense, the Handscomb dynamics is similar to the classical

The canonical average of a physical observablean be Monte Carlo cluster algorithms.

expanded in the form

Tr{Aexp—BH)] IIl. FINITE SIZE SCALING FOR THE SUSCEPTIBILITY

(A)= T exp—BH)] =Z ;r A(C)p(CH, (2 AND ORDER PARAMETER

whereB=1/kgT, 2 denotes a summation over all ordered The susceptibi_lity per spin of the quanttﬁ# 1/2 Heisen-
r berg model is written in terms of the cyclic structure of the

sets of indice<C,={i,i,, ...} (Mayer diagramsand irreducible representation &, as®
Tr{AH; - -H; ] L)
AC)= THH, ---H ] Bx=<l > a?) (6)
1 r N j=1 p
(_'B)rTr[H- CH ] where a; is the length of theth cycle of the permutation
_ ! "1 'r P(C,) and{---)p denotes an average with respect to the
p(Cy)= B : (3 ¢,-space probability distribution. In Fig. 1, we show our
> ; T TH - H results for the susceptibility from lattices &f spins with
r .

r L=16,24, and 32. In these simulations 180Monte Carlo
Oncep(C,)=0, it can be considered as a probability distri- Steps(insertion, removal or bond permutatjowere enough
bution and the canonical averages can be writter(As !0 let the system evolve to an equilibrium diagram configu-
=<A(Cr)>p(Cr)- This is the case of the Heisenbe$g=1/2  ration starting frorn_ an initial diagram containing no transpo-
ferromagnet. The Hamiltonian can be represented in terms éfmons..Af.ter equmbnum was reached, we averaged over 2
transposition operators as X 10* distinct dlagrams_, 190MC$ apart. These results. were
averaged over 10 distinct realizations of the numerical ex-
periment. The susceptibility exhibits a critical behavior
H=—-J2 Ei;, (49 around kgT./J=1.68 in agreement with previous Monte
Carlo estimate&’ For T>T,, x is only weakly dependent
SO.that the relevant trace to be Computed is that of a permwpn the system size; whereas it is near|y proportionaj%@t
tation operator low temperatures. Notice that equals the magnetization
second moment for temperatures beldwonce the magne-
TrP(CO=TE( ), Eqp), - Eip, =2 (9 tization is strictly zero Wﬁhin the Handg\(lzomb prescrigtion.
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FIG. 1. The susceptibility per spin as a function of temperature FIG. 2. The auxiliary functiong,(T,L,L") for the scaling of
for L=16,24, and 3Zfrom below). Due to an intrinsic symmetry of ~susceptibility data. The renormalizations were performed ftom
the Handscomb dynamics, the susceptibility equals the magnetiza=24 toL’ =16 (circles; L=32 toL’=16 (squares L=40toL'
tion second moment belo®,. The errors are much smaller than =16 (diamondg, and fromL =40 to L' =24 (triangles. Typical
the size of the symbols. error bars are shown. The solid lines are the results from renormal-
izations of the best fits of our original susceptibility data. These
In order to obtain a precise estimate of the critical tem-have a common point from which we estimate=1.677+0.001
perature, we implemented a  phenomenologicafndy/»=1.98+0.01.
renormalization-group analysis of the data from finite size
lattices as introduced by Nightingal€The basic assumption parameter. In the simulations of classical spin models, such a
is that near the transition the susceptibility of a finite latticequantity is the size of the largest cluster of spins which are in

of linear sizeL scales as the same state. This might suggest that the largest cycle
” " within a diagram in the context of Handscomb MC, may
x(T,L)=L""f.(tL™), (7)  exhibit the same scaling behavior as the magnetization.

wheret=|(T—T.)/T,| and (+) stands for distinct scaling Therefore,_ we will introduce a graph order parameter as the
functions above and beloW, . The renormalization of tem- 2verage size of the largest cycle of permutations.

perature is defined by the following transformation relating In Fig. 3, we plot the average sizg of the Iarggst cycle
lattices of two different sized., andL ': (normalized by the total number of sijeas a function of

temperature from simulations on lattices witk- 16,24, and
Y(T,L)=(L/L")Y"x(T',L") (8)  48. From this figure, one can see that the average size of the
largest cycle depicts an overall behavior similar to the one
with the fixed point givingT.. Then a set of auxiliary func- expected for an order parameter, and it will be considered as

tions is introduced as a true order parameter from here on. It also indicates a phase
o InDx(T,L)/x(T,L")]
gy(T.L,L)= , 9 0.5 ' ' '
In(L/L")

and these intersect as a function of temperature at a common 04

point from which we can directly measurg, and y/v ]

=0,(T¢,L,L"). In Fig. 2 we plot the auxiliary functions A 03}

g,(T,L,L") for typical renormalizations. Using all possible g

renormalizations with lattice sizds=16,24,32,40, and 48, c\tls 0.2 -

we estimatekgT./J=1.677-0.001 andy/v=1.98+0.01. |
These values are one order of magnitude more accurate than - 01 L
the previous Monte Carlo estimates from simulations on )
small lattices [=<10) which reported kgT./J
=1.68+0.01% 000 10
An even more accurate value for the critical temperature ' ' k.T/J
can be found by employing a renormalization study of criti- B
cal quantities which are known to depict smaller fluctuations g 3 The average size of the largest cytermalized the
near the critical point such as the magnetization itself. Unyoa) number of sitesy as a function of temperature far= 16,24,
fortunately, as we mention before, the magnetization is exand 48. At high temperatures all cycles are small indicating no
actly zero for all temperatures due to an intrinsic symmetrylong-range order an# vanishes. With lowering, the onset of the
of the Handscomb dynamics. However, we can explore th@srromagnetic order makes itself felt aroukgT,/J~1.68, andy
cycle structure of the Mayer diagrams to introduce a grapltart to grow until saturation. At criticalityy shows power-law size
guantity which display the same critical behavior of the orderdependence.
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FIG. 4. The auxiliary functiong,(T,L,L") for the scaling of
the order parameter data. The renormalizations were performed
from L=24 to L'=16 (circleg; L=40 to L'=16 (squarey L
=48 toL’' =16 (triangles up and fromL =48 toL' =24 (triangles
down). Typical error bars are shown. The solid lines are the results <= g 5
from renormalizations of the best fit of our original order parameter ¢
data. From the interception of these functions computed for all pos-
sible renormalizations with lattice sizés=16,24,32,40, and 48 we
estimatekg T /J=1.6778=0.0002 and3/v=0.512+0.002.

transition aroundkgT./J~1.68. A renormalization analysis 0.0 0 ' 100 ' 200 300

performed on the order parameter data is shown in Fig. 4. time (MCS/2000)

From these data we founkgT./J=1.6778-0.0002 and

B/v=0.512+0.002. To the best of our knowledge, the pres- FIG. 5. The time-displaced equilibrium correlation function of
ently reported values fdtgT./J, v/v and B8/v are the most  the susceptibility and energy at criticality for several lattice sizes.
accurate Monte Carlo estimates to date for the quantum 3D

Heisenberg ferromagnet. Our quoted valueTeiis in com- started from a diagram containing no transposition and we
plete agreement with the most accurate high-temperature sebserved that typically 136’ configurations were needed to
ries study which yielded/kgT.=0.596@5).?* The critical ~ bring the system to equilibrium. So we discarded the appro-
exponents are in excellent agreement with the best estimat@siate number of configurations for equilibration, after which

400 500

for the classical Heisenberg ferromagfiet. we recorded the susceptibility and energy evéty-2000
MCS, generating long equilibrium time series of®1fea-

IV. CRITICAL RELAXATION OF THE SPIN-1 /2 surements each. , , _
HEISENBERG MODEL The time-displaced correlation functiofsee Fig. »were

obtained byC(t)=A4(t)/A4(0), whereA(t) is the auto-

The critical relaxation within the Handscomb prescription covariance function given by
can be investigated by computing some equilibrium time-
displaced correlation function€(t) at the Curie tempera- 1
ture. We look at the equilibrium relaxation timewhich is Ag()= n—t;
expected to depict a power-law increase with the system size
L whose exponent characterizes the critical relaxation pron is the length of the time series, andepresents the physi-
cess. In particular, it governs the size dependence of the rat@l property one is interested in.
at which uncorrelated configurations are generated during the Here, we computedC (t) and Cg(t), the correlation
Monte Carlo temporal evolution in phase space. function of the susceptibility and energy, respectively. Typi-

The fast growth of the relaxation time is referred to as thecal equilibrium traces of the susceptibility and energy are
critical slowing down which may be governed by severalshown in Fig. 6, where the microscopic time scale used
relaxation moded’ One generally is interested in the slower equals 2000 MCS. From these we can infer that the number
relaxation modes, i.e., the longest relaxation times. Theresf MCS needed to generate two diagram configurations with
fore, it is safer to work with the integrated correlation time uncorrelated susceptibilities is much smaller than the one
given by required to generate uncorrelated energies.

In practice,;,; was estimated by

n—

(i =€) (Qi+¢—(a)), (11

t
=1

Tim=J C(t)dt. (10
° Ting= 2, Co(V) (12

In order to estimate;,;, we perform a very long MC simu- ~

lation on L3 simple cubic lattices, with L and the sum was cut off at the first negative value¢f).

=16,20,24,28,32,36,40,44,48, at the previously calculated Despite our long runs we were not able to get reliable

critical temperaturekgT./J=1.6778. The simulation is estimates ofr,,; by integratingC(t) for the largest lattices
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The behavior of the ratio?/ o3 is illustrated in Fig. 7 for
the susceptibility. The error increases with the block size

FIG. 6. An equilibrium trace of the susceptibilify and energy ~ until it becomes roughly size independent for block length
E at criticality. Local quantities, as energy, are more time correlatedarge enough. The maximum value reached by error corre-
than nonlocal ones due to the cluster nature of the Handscom®ponds to the actual standard error of the mean.
Monte Carlo method. The underlying idea of the MBB method is that if the

block length is large enough, observations belonging to dif-
ferent blocks are nearly independent, while the correlation
present in observations forming each block is retained.

Having an estimate tozlaé, Eq.(13) can be employed to
extractri,;. The above outlined procedure was applied for
the data of the susceptibility and energy of all lattices. Good
agreement was achieved between the estimates,pbb-
tained from MBB and by applying directly E¢L2) for small
lattices.

The computed equilibrium relaxation times from both,

whereo is the standard deviation treating all data as if theySusceptibility and energy, are plotted in Fig. 8 as obtained
were statistically independent andis the actual statistical from lattices of sizel. =16,24,28. . .,48. Notice that, al-
uncertainty. This variance inflation correctly takes into ac-though7i, is quite smaller for the susceptibility, both exhibit
count the correlations of the MC data. the same power-law size dependence. A linear best fit for the

It is not a simple matter to access the actual error in €nergy and susceptibility data yields 3.0.1 for the regres-
finite time series of correlated data. Here we employed th&ion coefficient. Therefore, the equilibrium relaxation time
moving block bootstragMBB) method® which exploits re-  Scales asrip«<L>%%% This means that, within the Hand-
sampling techniques. Within the MBB scheme a block of

simulated. It is well known tha€(t) fluctuates wildly for
larget, hampering the convergence of its integral.

On the other hand, in the context of MC simulations the
error associated with a given quantity can be writtef? as

2T
St

2

o?=od 1+ —|, (13

observations is defined by its length and by its starting point 8.0 . .
in the series. For instanc®;={q;,q; .1, - - - ,0i+} defines
the ith block of | observations. A MBB sample is then ob- 01
tained by(i) randomly drawing with replacement from the 601 4 T |
set of all possible overlapping blocks of sigg(ii) concen- . x
trating the selected blocks and forming a replicated series. £ 40 b i
Each set of replicated data obtained in this way yields one =
estimate for the sample mean. The drawing is repeated many
times and the block-size-dependent error is approximated by 20 i
the standard deviation of the bootstrap generated mean val-
ues.
It can be shown that in the case of arithmetic meaf, 0.02.5 30 25 a0

can be calculated exactly without resamplffidzor a series
with n observationsg,, andk blocks of sizel, o2 is given
by18

In(L)

FIG. 8. The equilibrium relaxation time versus linear sizéor

susceptibility and energy. The error in our estimates7gf is

n—1 |
1
T2

t=1

2 1 14

(Qj+t_<Q>)} .

j=0

around 2%. Althoughs;,; is much smaller for the susceptibility,
both quantities scale the same way. The microscopic time scale
used is 2000 MCS.
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scomb dynamics, the number of Monte Carlo steps per sitef sites involved in a single Monte Carlo step is then propor-
required to generate uncorrelated diagram configurations aional to 1N(a?)~ x~L”'*. Within this reasoning, the aver-
criticality is roughly size independent. age fraction of sites updated in a MCS scales.&&/L¢.
Therefore, a time scale which would correspond to a lattice
sweep in spin-flip dynamics would bg~L%"”"*. In units

. . of this time scale the relaxation time scales g~ L7,

In summary, we performed Monte Carlo simulations Ofwith z=2=*0.1, which is quite similar to the value afound

the S= .1/2 He_-isenberg fe_rromagnet on the simple cubic Iat'for the decoupled cell quantum Monte Carlo and the classical
tice to investigate the critical relaxation of the Handscomb, etropolis dynamics. Although the Handscomb dynamics

quantum.Monte Carlo method_ Wh.'Ch sampl'es the space cgl picts some characteristics of the classical spin-flip cluster
permutation operators appearing In the series eXpansion gl namics it has not a similar effect on dealing with the criti-
the partition function. Precise estimates of the critical tem- slowing down

perature and exponentg» and /v were obtained from a 4 is relevant to mention here that the present Handscomb

phenomenologmgl _r'enormal|zat|on group analysis Of.qat?)rescription, which inserts or removes transposition opera-
from the susceptibility and order parameter. At the criticaly, s ot the extremes of the permutation sequence, is the one
%emper:atu_re V\('je. nlweasc?red tTe_equnhbngm re;a}(]atmn Mg at provide the simplest algorithm to control the dynamics
rom the time-displaced correlation functions of the Suscep;, e permutation phase space. A natural generalization is to
t!b|I|ty and energy(small '?tt'ces only. For the Iarg_est lat- insert and remove operators at random locations within the
tices L =32) 7, was estimated through the moving block goqence. This would drastically change its cycle structure
bootstrap technique. From either susceptibility or energy W& iin 411 sites being able to have their status updated on a

obtained that, at criticality, the number of Monte Carlo stepsgjng|e step. It would be valuable to estimate the efficiency of
(sampled permutation sequencesuired to generate uncor- g ,ch relaxational dynamics at criticality as well as that of

related equilibrium diagram configurations scales with theyqor generalizations of the Handscomb prescription as ap-

system’s volume. o _plied to antiferromagnet and large spin models.
Some care must be taken when estimating the eff|C|enc{/)

of the Handscomb method and comparing it with other
Monte Carlo prescriptions. First, the phase space sampled
within the Handscomb method is not related to any physical We are indebted to D.P. Landau for his suggestions and
space. Therefore, there is no direct relation between the timeritical reading of the manuscript. This work was partially
scales of the Handscomb and the traditional spin-flip dynamsupported by CNPg and CAPESrazilian research agen-
ics. However, a crude estimate can be drawn by consideringies. M.L.L. would like to thank the Physics Department at
that during an elementary Monte Carlo step of the HandUniversidade Federal de Pernambuco for hospitality during
scomb dynamics the sites belonging to a particular cycle othe Summer School 2000 where this work was partially de-
permutations have their status updated. The average numbegloped.

V. CONCLUSIONS
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