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A cubic crystal with orientationally disordered molecules, which mimics a plastic crystal of the cyanoada-
mantane family, under conditions of supercooling has been assumed to evolve into the metastable tetragonal
phase as suggested by Ostwald’s “law of stages.” Representing small domains of local tetragonal structures by
elastic dipoles, we have analyzed orientational relaxation of the grains embedded in an isotropic elastic
medium. The elastic dipole density-density correlation function has been used to discuss a possible ordering of
the domains. Implications of the model for elastic properties, duffuse scattering, and kinetics of the transfor-
mation of the supercooled plastic crystal have been discussed. The paper offers a contribution to the discussion
on how glassy are the molecular crystals with orientational disorder.

INTRODUCTION the pattern of the stable, low-temperature monoclinic phase.
The scattering data seems to indicate a local tetragonal
Molecular crystals are known for their rich polymorphism structure>® In the process of an ordering of the supercooled,
due to rotational and intramolecular degrees of freedommetastable phase, a growth of superstructure peaks at the
Structures governed by the closest-packing principle result iboundary point of the Brillouin zone indicates a slow order-
the formation of a multiminim&free) energy surface. The ing of the molecules in an antiferroelectric pattern. Correla-
stability or metastability of the structures is decided then bytion length for the ordering has ben estimated to be about
kinetics of corresponding nonequlibrium transitions. A su-two lattice distances. In addition, some signatures of an or-
percooled stable structure may result in a metastable statdering have been observed at the zone cdnteoints. With
which is not necessarily an ordered one. Orientationally distime, there is an increase in diffuse components together
ordered(plastio molecular crystals have been found to bewith a decrease of the Bragg peakstrom the experiments,
particularly sensitive for such a transformation and they formit has been concluded that the parallel evolution of Bragg
solids with frozen molecular orientations, after quenching.peaks at thd™ points and superstructure peaksXapoints
The state is glasslike, and the solids are called “glassyhave a common origin and that an ordering which appears
crystals.”* Among them, ethandlnd cyanoadamantane and below T4 develops in coherence with the parent, plastic
its mixed crystals(cyanoadamantane famjify have been phase.
found to be model systems. The main advantage of studying How one can imagine a structure in the supercooled plas-
the glassy state behavior in plastic crystals is that, contrary ttic phase? The simplest physical picture which appears from
conventional glasses, the systems keep translational symmtie observations suggest an ordering process at two levels.
try. On the other hand, this causes similarity between théirst, at a molecular level, the steric hindrance and dipolar
orientationally disordered state and a glassy state to such amteraction prefer to form antiferroelectric, local order. Such
extent that the question, how glassy are plastic crytaiss  an order causes tetragonal distortion to the cubic lattice. In-
to be addressed. In any case, often perfect single crystals deed, the experiments performed on the quenched
the orientationally disordered phases allows for detailectrystals’~’ could be best interpreted in terms of a local te-
structural and kinetic studies, which give us an insight intotragonal structure. As it has to evolve from a deeply
the metastability of molecular systems, the important probguenched orientationally disordered state, the antiferroelec-
lem within the molecular materials. tric order appears at rather short distances and small tetrag-
The glassy crystals of the cyanoadamantane family havenal domains are formedThere are some indications that
been objects of extensive studies for many years. Althougthe domains may have an orthorhombic strucfuset this is
significant progress has been achieved in understanding tleesmall distortion and we shall assume them as tetragonal.
transformations,a detailed picture of molecular and mesos-They are oriented along the cube main axes, orientations
copic structures of the glassy state is still missing. The glasspreferred by the molecules in the disordered phase. A growth
phase is obtained when the rotationally disordered cubiof a domain requires large reorientations of molecules and
phase is supercooled after deep quenching, close to a glaf&s the reason of steric hindrance none of the domains can
transition temperaturel(), Fig. 1. The crystal keeps its cu- grow at the expense of the others and a monodomain phase
bic symmetry, but local structures are different; the system i®f tetragonal symmetry cannot be formed. It is postulated
evidently in a metastable state. Structural data are difficult tahat there exists a locally preferred tetragonal structure that
interpret consistently, although there are some signatures irtannot be extended throughout space. This is a kind of frus-
dicating that in a quenched sample there is an ordering prdration that leads to the “frustration-limited domain” forma-
cess going on. It is not, however, an ordering according tdion, analogous to the situation in supercooled molecular
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n of the cyanoadamantane family can be treated as a composi-

G tion of different domaing? and that elastic effects are
Fm3m important® have already been suggested. Here we shall bring
s this intuition into a model.
t
\ R FORCE DISTRIBUTION AROUND A FROZEN
m MOLECULE; ELASTIC DIPOLES

ﬁ We are concerned with a crystal of the cyanoadamantane

family in the vicinity of the glass transition temperature. It is

— > a cubic crystal, supercooled below the temperature of the
T, Ter Tur T transformation cubic tetragonédee Fig. 1 The crystal is in

a highly metastable state and evolves, as the experiments
show? not towards its most stable structure, the monoclinic
one, but rather to the tetragon@hlled phase IV in Ref.)5
phase. We believe that this is merely a kinetic effect result-
ing from a competition of transformation rates. Guided by
this assumption, we assume that an evolution of supercooled

: "~ ¥ Yoplastic crystals, quenched near the glass transition tempera-
tal of the cyanoadmantane family, at least at the beginning 4 a g P

h i : f I I ure, proceeds via a formation ¢lightly) lower-symmetry
the annealing process, consists of very small tetragonal dqg 4| giryctures, tetragonal domains. A change into the ther-
mains with antiferroelectric local order. The time evolution

¢ h d bl q modynamically stable monoclinic phase requires much more
of such a state towards a more stable structure proceeds agydiic structural rearrangement and this is, we believe, the
(limited) growth of domains, seen as antiferroelectric order

. tored by th latti flecti 4 orderi reason for the apparent stability inversiomhus, in the sim-
ng (monltorg yt € super attice re ectioren oraering plest model approach, we shall assume that the supercooled
of the domains(monitored by the diffuse scattering at the

T-noints B S$Th : | cubic crystal contains three types of tetragonal domains.
-points Bragg pealis' Thus, at a mesoscopic scale 0ne May - gjnce the main effect of formation of tetragonal domains

see the supercooled plastic crystal as a powder of frustratqq the cubic crystal, Fig. 2, is the local stress, we shall rep-

tetragonal domains. Recently, some insight into a mOIeCUIarresent the domains by three €x,y,2) elastic dipoles, ori-

structure of possible metastable states has been obl%line% . :
; ted along the cube main axesy,2 and given by tensors
here we shall address the problem of ordering at the mesos- g 2 g y

copic level. P*=P.1+ P,D". (1)

At a molecular level, in the orientationally disordered,
high-temperature cubic phase, a molecule is in one of si®s=(2B+A)/3 is the isotropic, spherical part which plays a
“pocket states.” Neglecting an orientational distribution, arole of local pressure, anl,=(A—B)/3 is the anisotropic,
molecule can be represented as a superposition of six electriteviatoric part with deviator®*={D’;}={2,—1,—1}. The
dipoles, oriented along the cube axes. In the quenched, sedastic dipoles, representing diagonal stresses, can be consid-
percooled state, the dipoles tend to form small regions wittered as three-dimensional vect®%=[ P,,P»,,P33], and it
antiferroelectric order and local tetragonal symmetry. Suchmight be convenient to treat deviatoric tensors as vectors.
regions cause stress to the host cubic lattice, which we shall There can be a more microscopic picture behind the elas-
consider as a main effect. Dipolar electrostatic interactiortic dipoles which represent the tetragonal domains. Let us
between the domains will be neglected. Thus, at the mesogmagine the formation of a local stress in the cubic crystal of
copic scale, a grain is represented as a superposition of thrélee cyanoadamantane family. Deep undercooling of the ori-
elastic dipoles, representing three tetragonal domains orentationally disordered phase results in the freezing of a mol-
ented along the main axes of the cukey, andz The do- ecule in one of six “pocket states,” located along the main
mains interact via the elastic field of the host crystal. Theaxes of the cube, Fig.(@). The freezing causes extra forces,
frustration in the system is seen as a competition betwee¥ (R), acting on the surrounding molecules located at sites
short-range antiferroelectric coupling and long-range elasti®, apart from the frozen molecule. Assuming such a picture
interaction between the domains. We model the supercool€dFig. 2(b)] we calculate the forces exerted by the nearest
crystal as an elastic medium with embedded tetragonal “deneighbors. For example, for the frozen orientation alang
fects,” representing the domains. It has to be stressed thaixis, the forces acting on the neighbors located((61)
the notion of isolating these defects at the microscopic leveplane are different from those acting on the neighbors above
in a real system is, in general, not well defined. One may asknd below the plane. Moreover, there is an asymmetry in the
what is the defect and what is the medium? It is especiallyforces acting above and below the plane due to the dipolar
important for coherently embedded defects. Thus, the modelature of the cyarchloroadamantane molecule. This
we want to develop can only be used in a phenomenologicalauses a net excess force acting on the frozen molecule and
approach. We want to find the energetics and spatial corrds compensated by a displacemé@mtsumed smallalong the
lation of the domains, expecting that it might help to under-axis of the frozen orientation.
stand a mesoscopic structure and ordering in the supercooled The distribution of forces around a frozen molecule is
crystal, also that it might be related to the diffuse scatteringconveniently represented by force multipotészor a mol-
observed around the Bragg peaks close to a transition intecule in orientationy, the first nonzero multipole is the elas-
the glassy phase® An intuitive picture that the glassy state tic dipole, defined as

FIG. 1. Commonly used, schematic diagréinee enthalpy and
temperaturg of thermodynamical stabilities of plasti®), mono-
clinic (m), and tetragonalt) phases for cyanoadamantane family
crystals. T, indicates a transition into the glassy state.

liquids® As a result, the state of the supercooled plastic crys
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V“(q)=N‘1; VE(R)exp(igR). 3

When combined with Eq.2) the forces can be expressed in
terms of the elastic dipoles. For the molecule frozen in ori-
entationa=z [Fig. 2(b)], taking into account only nearest

neighbors, the forces are

1(q)=2Ba’ sing, cose,, (4a)

5(q) = 2Ba’ sing, cosey, (4b)

V4(q) =Aa’i sing,(Cosey+ cosey), (40)
%% P —— . where the angleg ,=1/2q,a are expressed in terms of the

wave-vector components,, and the lattice constant for the
Fm3m structurea. Parameterg\ and B specify the elastic
dipole strength, Eq(1). The force components for other ori-
entations of a frozen molecule can be obtained from the
above formula by appropriate permutation of the axes. In the
long-wavelengthelastig limit, g—0, we find

Vi(q—0)=ivPjq;, (5

and this(continuum approximation will be used in the pa-
per. In the next step, we shall analyze a distribution of the
centers of local stresses, considered as tetragonal domains.
There is no clear distinction between a small domain and a
frozen molecule, as there is complete coherency between the
tetragonal defects and the matrix. Thus we shall use the
terms “domain” and “local stress center” as synonyms, to
indicate just a center of elastic interaction.

LOCAL EQUILIBRIUM AND DENSITY FLUCTUATION
OF ELASTIC DIPOLES

Density of the domains at poirttin the system is denoted
aspo(x). Here we use the symbal to locate a center of a
local stress and in case of a frozen molecule this will be
equivalent toR, while for (slightly) larger domains it will
indicate the location of a center of a tetragonal grain. The

FIG. 2. (a) lllustration of the plastic crystal of cubiEm3m  crystal we are considering as a powder of domains is in a
symmetry with orientationally disordered molecules represented ametastable staténonergodig, therefore we assume a local
six “pocket states.” Broken lines indicate a cell that becomes a unithermodynamic equilibrium. Density of domains of typés
cell in the tetragonal phase(b) Visualization of three elastic di- given as
poles, as molecules with frozen orientations aleng, andz. For
the stress representation caused by the fixed orientation, there is no
distinction between opposite orientations along an axis. Tetragonalpa(x)po(X){ exp[—,BEa(x)]/ ; exd — BE.(X)];,
symmetry of the local stresses is indicated by the solid lines of a (6)
unit cell.

where 8=1KkT. E_(X) is the energy of interaction of the
domain in orientatiorx with the surrounding field formed by
pﬁ:(l/zv)E [VH(R)Rj+V{(R)R], (2 a distributio_n of domains. The essence pf our model !s that
R the energy is assumed to be purely elastic and determined by
the coupling of the excess force to a displacement

wherev is the unit-cell volume and the summation is, in i e

principle, over all neighbors that experience the extra forces. Eo(X)= = VEu(x) = = Vi(x)ui(x), (@)

The elastic dipole representation of the force distribution is aaind summation over repeated indices is assumed through the
convenient way to specify a local stress. In more detailethaper. The displacement at the site is partitioned into a ho-

calculations, however, one should use the forces to Charaﬁnogeneous part, expressed in terms of the strain tenaod
terize the frozen molecule or a grain of frozen molecules. linhomogeneous part(x),

is convenient to express the excess forces by the Fourier
transform, Ui(X) =& X+ W;(X). (8
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The inhomogeneous part is caused by the elastic coupling L
Gij(x,x") between stress centers, Opa(X)=—Bpo(X)/3 Ea(X)—§§ E.(x)|. (19
) — . 1N It is an interpretation of the local order parameter in terms of
Wi(x) XE Gij (X, (X, © energy competition. On introducing E(L1) into (15) one
obtains an elastic dipole density fluctuation as a response to
where a homogeneous, macroscopic strain,
0i(x)=2 VIOpa(X)=po(x)/3] (10 5pa(X)=Bpo()/3 PE—1 P2 e, (x)
is the density of the excess forces at site The elastic = Bpo(X)/3[ PL(dev) e (x), (16)

coupling, which in terms of elementary excitations is a vir-

tual phonon exchange, will bring a correlation between thavhere P{j(dev)=[P;—3Z,P{]. In case of thdocal thermo-

local stresses and cause domains density fluctuation. dynamic equilibrium, only the deviatoric part of the elastic
To proceed with the analysis, let us assume, that the exipoles, Pjj(dev), causes the density fluctuation. This is

cess forces around a tetragonal “defect” are well repre4nown as orientational elastic relaxatibhit is important in

sented by the elastic dipoles, local stress tensors, as specifiitk context of supercooled plastic crystal, treated as a powder

above. Within this approximation, the elastic energy gainof domains, because the crystal is a nonergodic system.

experienced by the domain locatedxais Thus, local stresses which appear at a glassy state of plastic
. " crystals may cause an orientational relaxation rather then dif-
Eo(X)=—P%(x)=—Pjj&ij(X), (1) fusional elastic relaxatiot The orientational relaxation is a

ource ofintrinsic frustrationand may be responsible for the

and for simplicity, the elastic dipole has been assumed to b inetic aspect of a formation of the glassy crystal.

independent on a site. This constrain is not essential for the
description.e(x) is the effective strain tensor acting at the

sitex. It is, in general, a sum of macroscopic uniform strain, FLUCTUATION DENSITY CORRELATION
g, and the local, inhomogeneous strain due to surrounding

elastic dipoles, Thus The density fluctuation expressed in Ed6) shows a

self-consistent dependence via the local strain field, coupled
to the elastic dipole density, Eq§l2) and (13). For this
eij(0)=¢ij+ 2 Kijim(XX")Pim(X"). (12 inter-relation itis impo,rtant to specify the elastic strain field,

x#x' the coupling,Kjjm(x,x"). As it follows from the elasticity
theory!! the coupling is conveniently expressed as the Fou-
rier transformation of corresponding elastic Green’s func-
X p(X') tion, Gijim(q). In order to take into account correlation be-

'Fim ' tween sites and exclude self-deformation of a ditg,(x

=x')=0, the transformation is formulated as folloWws:

The local strain is expressed by the elastic strain field
Kiim(X,x"), and the density of elastic dipoles at site

p|m<x'>=§ Spo(X) P, (13)

Kiiim (X, X" )=(1/N G;; —(G;;
The fluctuation in the elastic dipole density, i (XX = )% [Gijim(@) = (Gijim(@)a]

8po(X) = po(X) = po(X)/3, (14) xexgig(x—x")]. (17)

or equivalently, the density of elastic dipoles, Et@), is the The second term in the square brackets is the average over

key parameter. It determines local order and may serve as i€ Wave-vector space and assures that self-deformation is

local order parameterLet us observe that in an orientation- €xcluded from the elastic coupling. For an isotropic medium,

ally disordered statesp,(x)=0, at every site, while in the the e!ast|c Green'’s function is known analytically and the

state with a local orde®p,,(x) 0. The local order indicates COUPIing constants can be calculatéd.

a random freezing of the elastic dipoles, characteristic for the Let us denote

glassy state of supercooled plastic crystal. As follows from , 2w B

Eqg. (13), such random freezing gives rise to a static local Jap(X,x") = PoDijKijim (X,X") Dim, (18

stress, described by the elastic dipole density. The densitg the elasti due 1o int . f deviatori s of

fluctuation is, therefore, a proper parameter to characteriz S ? etf"lsc'f eTergy ue ? Itr'] erac '3” OI ?wa orlcfpiﬁr S0

the glassy state. Indeed, it is related to the three-states Po s[e € af Ic E'poleGS n ortljen a 'Orttf and B. In terms of the

model variable, used for orientational glassess,(x) Interaction, Eq(16) can be rewritten as

=n,(x)—1/3, wheren(x) is 1 if the site is occupied by the _ , ,

domain in orientatione. Thus, the equivalencedp ,(X) 9pa(X) = BLpo) 8 ap(x,X") 3p(X')

=(sa(X)), is evident. + Bl po(X)/3]PeD{ ejj , (19
From the local equilibrium condition, Ed6), with the

assumption that the elastic energy is smaller than the thermahd for the density fluctuation as a response to macroscopic

energy, we find the density fluctuation uniform strain, one gets
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pressed in Eq(24) blows up; therefore, a transition to a

0pa(X)= BLpo(X)/3] 2 [1-Bpo(x)/33]H(x,x") glassy crystal Ty) is expected to appear before a hypotheti-
X apB cal ferroelastic ordering.
5 PODiBjSij . (20) The density fluctuation correlation, determined by the sus-

ceptibility, Eq.(24), shows theg dependence via the elastic

This is an important relation as it shows that the local elastidnteraction termj(q). In the continuum limitq—0, the in-
dipole density fluctuation is generated by a uniform strain, adéraction between tetragonal domamand 8, embedded in
appears in a crystal due to a thermal stress, for example. TH#! isotropic elastic medium, has the following form:
effect may have some significance in a strongly nonequlib-

rium system of the supercooled plastic crystal and can result Jaﬁ(qﬁo):(pg/cw 2 Di“nizDF
in a different distribution of the elastic domains, depending [

on how the phase has been prepa@dhermal history of a
samplg. Indeed, for the cyanoadamantane family it has been
observed that thermodynamical stability of the phase with
tetragonal domains was strongly dependent on the conditions XY2,dNa)Y2,0Ng)
of annealing’

To get a better insight into the correlation between elastiavhereY, ((n,) = (3n2—1), and the unit vecton=g/q has
dipoles, we have to solve the self-consistent @§). Here, been used to specify a direction of the wave vector. The
we shall take advantage, mentioned in the Introduction, og&lastic constants;j, of the medium are written in Voigt's
considering the plastic crystal, which keeps translationahotation. The self-deformation term has been calculated for
symmetry in the supercooled, glassy state. Now, 8} is  an elastically isotropic medium with embedded tetragonal
rewritten as defects!®

—3{(C1ptCyg)/Cay}

- Eself: (26)

3po(0) = BLpo/3]3p(a) Sp(—a) + BLpo/3]PoDijeij , Eeir= 3P5/2C44 2/5+ 444/ 15¢14]. 27

Equation(26) shows that the elastic interaction in the limit
and the wave-vectoréq) dependent density fluctuation, as d—0 is not well defined, analogously to electric dipolar in-

the response to uniform strain is teraction. The matrix],z(q—0) has different values de-
pending on the direction from which one approachesghe

S = - -1 Bg.. =0 point. This means that when a ferroelastic instabilit
Pa(@) = BLpo/3{1~[Bpo/3]1I(a)},5PoDijei; . (22 P y

temperature is estimated from the condition, Ex§), it will
The g dependence of the average dengityhas been ne- depend on the shape of a sample. With the help of(Z).
glected. The inverse matrix in E€R2) plays a role of elastic this dependence can be found.
screening In the continuum limit, §—0), the density fluctuation
correlation function does not depend on a value of the wave
HQ)={1-[Bpo/31I(q)} 1, (23)  vector, only on its direction. In order to get a spatial corre-
) o lation for the density fluctuations we need an expleitie-
and §hows h_ow the uniform strain f_|eld is screened by th‘bendence of the susceptibility, EQR4). This requires the
elastic coupling between the domains. Eigenvalues of thgastic interaction between domains to be expressed by Fou-

screening matrixd(q) are the energies of density fluctuation rier transforms of the excess forces, specified in @j.
waves, collective modes, which are the elementary excita-

tions of the elastic_ field. T_hey may be_ seen as collective Jaﬁ(q)=Via(q)(3ij(q)v].5(—q)—Ese”, (28
analogs of the localized excitations in orientational glasses, ] ] .
also called boson peaks. The matrix has to reflect the symthe coupling of the excess forces is, however, still kept
metry of the system, cubic in the case of the cyanoadamarwlthlrj th_e continuum approximation and the elastic Green'’s
tane family. function is
The response function,

P Gij(@) = (L) (n). (29

Xap(@)=BLpo/3{1-[Bpo/313(A)} .3 (24 Assuming, as before, that the cubic crystal in an orientation-

. . . . ) ally disordered state can be approximated by an isotropic
is the density fluctuation correlation function. The systemg3siic medium, the matri;(n) i515.16

becomes unstable against the formation of a density fluctua-
tzig?owsve, fvc\)/:wen the energy of a fluctuation wave becomes Qii(N) = (Le4n)[ 8 —{(Caz+ Can/Cimini].  (30)
o9 On introducing Eq(28) into Eq. (24), an explicitq depen-
de{9(q)|=0. (25)  dence of the density fluctuation correlation can be calculated.
If the elastic interaction given by E@28) has its minimum
In the limit, g— 0, the instability corresponds to a formation value at wave vectayq=q.# 0, then from the instability con-
of one macroscopic domain, a tetragonal phase, in the pradition, Eqg. (25), one finds the critical temperature for a
cess of a continuous, ferroelastic phase transition. Howevetspinodal decomposition,” e.g., the temperature below
as follows from the above considerations, local stress denswhich the tetragonal domains are formed in a pattern of a
ties are created before the generalized susceptibility exstatic density fluctuation wave with periodicity given gQy.
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The instability condition, Eq(25), specifies a surface in the
reciprocal space, which separates the disordered from or- S=S"+(po/3)P3Y, (D) xap(0)(S°DF).  (37)
dered phases. The surface is essentially determined by the “p
elastic interaction)(q). The macroscopic, cubic symmetry of the supercooled crystal
gives renormalization of two elastic compliance components
(HYPOTHETICAL ) FERROELASTICITY OF THE (in the Voigt's notation,
SUPERCOOLED PLASTIC CRYSTAL
_ _ _ _ S1=S11+2(po/3)P5(SH— S12) %X, (38)
To discuss the possible ferroelastic behavior of the super-

cooled crystal we shall analyze the instability condition, Eq. -0 _ 20 _ 2
(25), at the Brillouin-zone centeg=0. As follows from the S12 ng (Po/3)Po(S1y 5(1)2) X 39
elasticity theory}!'® the elastic Green’s function for the  where
point is just the compliance tens& The elastic screening
matrix is X t=KT=po/3[3P§(S}—S1)? ~Eserl. (40

9(0)={1—[Bpo/3]13(0)} 1, (31) The important consequence of the orientational elastic relax-
ation is that is does not change the compressibility modulus
where the elastic energy for the coupling of domains is giverof the systemA =(S;;+2S;,). For dynamical experiments,
as one has to replace the static susceptibility by its frequency
dependence, assuming a relaxator-type procegs’
Jap(0) =1 3PF/2C 44— Ee]DIDY . B2 Sy Y(1+iwr) "%, with a possible distribution of the relax-

The enerav in the sauare brackets is the barrier heiaht foation times. For the orientational relaxation, the characteris-
9y d 9 fic time is related to a barrier height for reorientation of a

reorientation of a domain. Equatid32) indicates that or- tetragonal domain.

thogonal orientations of neighboring domains are energeti- Relations(38) and (39) indicates the softening of they
cally favored. Such an arrangement, however, is a source of

frustration in the three-dimensional cubic latti€eThis €lastic constant and the hardening @f with decreasing

. . o S temperature. It is seen that the elastic interaction, modified
might be an important intrinsic frustration in glassy crystals X . ;
) by self-deformation energy, which takes into account the
of the cyanoadamantane family.

As follows from the instability condition, the density fluc- correlation between domains, gives a Curie-Weiss-type tem-
perature dependence for the elastic compliance components.

:Ezriélon correlation function becomes infinite at the temperawe may expect, therefore, that for '_[he supercooled plastip
crystal of the cyanoadamantane family, there are changes in
2 thermoelastic properties, according to the assumed physical
KTe=po/3 3P/2Cas~ Eserl, 33 picture of the s@stgm. Within the pigture, the glassy crssél is
which is the critical temperature fghypothetical ferroelas-  formed by undercooling, when the elastic interaction be-
tic transition—an ordering of domains. One may estimate dween domains is weak, smaller than the thermal energy, and
value of the elastic dipole, assuming that thgpothetical ~ unable to order the domains. However, the random interac-
ferroelastic transition temperature for the cyanoadamantari#on between the domains is important. The randomness is
family is below 100 K. Taking elastic constants estimated forthe effect of frustration caused by distributing tetragonal do-
the glassy crystalsee the Appendix the deviatoric part of mains within global cubic structure. When the lattice be-
the elastic dipoles is expected in the rangg~10"!  comes softer, the deformations become larger; therefore, the
+10 2 GPa. random elastic coupling between the domains increases as
An important consequence of the ferroelastic ordering othe lattice softens. This increasing random elastic coupling
domains is a renormalization of the elastic properties of théeads to the stabilization of the glassy crystal, before it be-
system. LetS” denote the elastic compliance tensor of thecomes unstable and elastically ordered. Therefore, the fol-
orientationally disordered crystal amda macroscopic stress. lowing physical picture of transformations in the supercooled
For the orientational stress relaxation, total strain experiplastic crystal is expected. When the cubic orientationally
enced by the macroscopic system is the sum of the elastidisordered crystal is undercooled, the short-range coupling
(Sog') and plastic straingthe density of elastic dipoleg). between molecules tends to form triple-degenerate tetragonal

Written in the tensor notation, we have defects which act as local stress centers. For such a system
with long-range interaction, a strongly discontinuous phase
e=So+p], (34) transition is expectetf: When a sample is cooled down be-

low Ty, a glassy phase is formed as a result of the random
elastic coupling. This appears well befdfg/pothetical fer-
roelastic ordering of domains, which requires stronger elastic

where the elastic dipole density calculated from EdS),
(22), and(24) is

couplings.
p=P3D"y, ;Do (35 Ping
For the total strain one gets IMPLICATION FOR THE DIFFUSE SCATTERING
e=S1+ DaxaﬁDBSO]O_’ (36) According to the kinematic theory of x-ray scattering, the

scattering intensity at poinQ=q+2wH, whereH is a
and the renormalized compliance tensor can be identified reciprocal-lattice vector, is given
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lai(Q)=(|Ae(q)[?), (41)

whereA¢(q) is a fluctuation in the scattering amplitude at
point g. For the crystal composed of the tetragonal stress
centers, this fluctuation is due to both the density fluctuation
of domainsép,(q) and inhomogeneous displacemex(ty)
produced by the local stress. The displacement has been al-
ready calculated and from Eq®) and(10) one finds

sso.s
|

w(q)=G(q) X, V4q)pu(Q). (42)

Assuming the inhomogeneous displacements are small, the
scattered amplitude fluctuation is

A<P(CI)=§ [Af,+ifQG(q)V“(a)]dp.(q). (43

Af,=f,—fqis the difference between the scattering factors
for different tetragonal domains and the reference, disordered Q
crystal;f is the average scattering factor. When E4p) is

introduced into Eq(41), the intensity of diffuse scattering is FIG. 3. The contribution to diffuse scattering due to local
conveniently expressed in terms of the density fluctuatiorstresseslses{Qy,Qy). calculated according to E¢49). The elas-

correlation function, tic constants used in calculations are as given in the Appendix and
elastic dipoles representing the local stresses are given bylEq.
14 Q) = B~ X ap(DF o(AF 5(—q), (44)  with parameter\=0.1 GPa an®3=0.2 GPa.
where Istreng):lgilXaB(Q)fzqiz[QiQij(n)Pjojnj
Fo(@)=[Af,+fQG(q)V*(q)]. (45) X[QiQ(MPLN], (49)

All quantities needed to calculate the scattering intensity are —p-1 -110.0.. Bn.
known and have been written explicitly for the model. More- lasyd Q=8 Xap(@)2 TATLQ TTQY; (M PN ).
over, one may choose between the continuum limit, valid for ) ) _ ) _
smallq vectors, and an approximation valid for larger wave The term in Eq.(48) gives information about local orienta-
vectors. In the latter case we use Fourier transforms of thonal order. For a disordered system it is reduced to so-
excess forces as given by Eqd) and for the density fluc- called Laue scattering. The contribution given by E&) is
tuation susceptibility we use E4) with the elastic energy due to local stresses produced by orientationally frozen mol-
given by Eq.(28). The elastic Green’s function is still, how- €cules, e.g., it is a direct effect of the transformation and
ever, in the limit ofq—0. To go beyond this limitation, we formation of a new phase. In our model it is a formation of
need to know explicitely a dynamical matrix for the System_tetragonall“d.efects.” as the coh.erent nucleous of a tetragonal
In the context of diffuse scattering, it is convenient to usePhase. This intensity is proportional to the square of the elas-
the continuum approximation, the lingt—0. Within the ap-  tic dipoles and Fig. 3 presents the contributlgf.s{Qx,Qy)
proximation, the excess forces are expressed as in(3g. qalculated according to E¢49) W|th parameters _representq—
and then scattering intensity is given explicitly in terms oftive of the cyanoadamantane family crystals. Finally, the in-

elastic dipoles tensity expressed by E¢G0) is due to coupling between the
orientational order and the local stress and causes an asym-
16 Q) =B~ X ap(D[Af,+TQG(q)Pq] metry of the diffuse scattering around a node of reciprocal
5 space. How strong the asymmetry is depends not only on the
X[Afg+fQG(q)P ], (46)  strength of the elastic dipole but also on the difference in
and written in terms of components scatter_ing factorsAf_a. In (_)'Fhe_r words, it depenqls how dif-
ferent in the scattering ability is a new phase with respect to
14it(Q)= B xup(W[Af,+fq 1Q;Q; (N)P%N;] the matrix. In a limiting case, when this difference is negli-
a b o W gible, the diffuse scattering intensity is given by E4Q). On
x[Afﬂ+fq*1QiQij(n)Pﬁnj]. (47) the other hand, if the asymmetric contribution is not negli-

Equation(29) has b dt the G 's functi ible, it becomes more important than the one due to defor-
quation(29) has been used to express the Green’s functio ations, because the asymmetric contribution depends on

in terms of a direction of _the wave vectar=q/q. For th? the elastic dipole in the first power, while the deformation
model considered, only diagonal elements of the elastic d'(’:ontribution depends on the square of the local stress.
pole tensor are nonzero.

For an analysis of the diffuse scattering it is convenient to KINETIC ASPECT
express the intensity as a sum of three terms
For every metastable system it is important that a re-
|densm(Q)=ﬁ_1XaB(Q)[AfaAf5], (48 sponse to a perturbation is a nonequilibrium one. The super-
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cooled plastic crystal is considered as responding to a ther-

mal stress applied to the system in a process of annealing. Ag(q,t)=2 [Af,+ifQG(A)V(Q)]8p.(a,)

This response is assumed to be due to the orientational re- “

laxation of the frustrated elastic domains. Thus, it is impor- X[1—exp(—t/7y)], (56)
tant to ask what is a time evolution of the elastic domains

and how the response is influenced by the relaxation procesand the time evolution of the diffuse scattering due to reori-
The elastic dipole density fluctuation for the tetragonal do-entation of elastic domains is expressed as

mains, which will be reached at thermodynamical equilib- 5
rium, is denoted as lair( Q.0 =(|Ae(q,1)[%). (57)

_ « Numerous studies of transformation kinetics of the super-

9pa(8,0) = x7(A)PoD s, (51) cooled cyanoadamantane family crystals using diffraction
where y1(q) is the transverse eigenvalue of the susceptibilmethods were summarized in Refs. 5 and 6. They were con-
ity, Eq. (24). The time evolution of the elastic dipole density centrated, however, on a time evolution of superstructure

fluctuation is assumed to follow the first-order kinetics, ~ Peaks, which have been assumed to change parallely to dif-
fuse scattering around the Bragg peaks. What became clear
8pa(A,1)=8p,(0,%)[1—exp(—t/7g)], (52 from the studies was that the evolution of the supercooled

plastic crystal after a deep quench, towards metastable
wherer, is a relaxation time for a process of ordering of thetragona) phase, follows a kinetics which depends on the
elastic domains according to a pattern of density waves chakuperstructure peak taken as a probe. The time evolution of
acterized by the wave vectar. In a general case one may peak intensities fof121) reflection follows the strech expo-
have a distribution of the relaxation times, while in a situa-nent law, while for(300 reflection it follows simple expo-
tion that the ordering process follows a particular pattésn  nential dependenc®,as predicted in the simple model. The
example a ferroelastic onghe process is characterized by observations suggest that the model does reflect some of es-
one relaxation time. The kinetics of the ordering of the elassential features of the transformations but has to be improved
tic domains might be quite complicated, indeed. for more quantitative comparison with experiment.

On measuring an elastic response directly one can probe a
quetlcs of the ferroela_stlc order_|ng1(:0) .from a time evo- CONCLUDING REMARKS
lution of the renormalized elastic compliance tensor,

In an attempt to find a physical picture of transformations

S(t)=S[1+D*,zDPS|[1—exp(—t/7)].  (53)  which take place in supercooled plastic crystals after deep
quenching, we have been guided by the empirical rule,
known as Ostwald’s law of stages. Taking the crystals of the

cyanoadamantane family as a model system, we have been

atlotn does r"EOt Zgang_i the compressublllty fnj(ﬁdutl_us of th%onsidering a cubic crystal with orientationally disordered
systemsee Eq/(40)]. Thus, measurements of the time evo- o+ jes as evolving under conditions of supercooling not

lution of a unit-cell volume or cell parameters do not probe 8nto the most stabléand orderel phase(monoclinio but

dynamlqs Of. the orlentat_lonal r(_alaxatlon. Howe\(er, they dorather into a metastable phase of tetragonal symmetry, easier
probe diffusional relaxation which takes place in a syste

. o Mo reach kinetically. This has suggested the supercooled crys-
when a global thermodynamical equilibrium is assumed. Thq | as a mixture of coherersmal) domains with tetragonal

isothermal relaxation of a lattice parameter of a supercoole cal structure, which introduces stress to the global cubic
°¥a§039§”]?”t?”e crystag ;)nb etlglng at 160| E‘Ihas.l.%quttice. The domains were characterized by elastic dipoles,
st Ieth' Ioﬁqwmg our ”:O er’] ut assuming giobal equilib- centers for long-range elastic interaction, which introduces
flum, the fatlice parameter change 1S frustration to the system. Elastic dipoles are frustrated in the
B cubic lattice and form an orientationally disordered state
Aa(t)/ao=po(1)(S11t S12)Ps, 54 With random interaction, which can mimic a glassy state of
whereP = A+ 2B is the isotropic part of the elastic dipole, de€ply quenched plastic crystals. We have analyzed the ori-
Eq. (1), anday is the lattice parameter at the reference state?”'[tat'o_nal Ife|c;l_X3tI0nd_0f the ecljastl(lz d||ptolgst hembled?'eddl'n fim
t=0. A time evolution of the changes are then due to &SOUOPIC elaslic medium, and calculated the elasuc dipole
dynamics of growing of the elastic domains, which may pedensity fluctuation as a local order parameter. The density-

As follows from the model, which has assumed tbeal
thermodynamic equilibrium, the orientational elastic relax-

assumed in simplest form density correlation function has been used to discuss a pos-
sible ordering of the tetragonal domains as a hypothetical
po(t)=po()[1—exp(—t/7)]. (55  ferroelastic transition into the tetragonal phase. Implications

of the model for elastic properties and diffuse scattering have
It is interesting to notice that the experiments performed fobeen analyzed, also in the context of kinetic experiments. It
the cyanoadamantane crystals have shown to fit the aboweas suggested that experiments on time evolution of elastic
time evolution with a relaxation time of the order 50 h. constants, which are renormalized by the orientational relax-
Much more often, the x-ray scattering intensity is used toation of domains, can provide a direct measure of the kinet-
probe the kinetics of ordering, as is in the case of cyanoaddes. As for the scattering experiments, numerous measure-
mantane family crystal$For this purpose, the scattering am- ments of kinetics might be correlated with the model
plitude fluctuation in Eq.(40) is replaced by its time- quantitatively, even to the extent that local stresses can be
dependent version, estimated and this will be an extension of the project.
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