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Supercooled plastic crystals as frustrated elastic domains: Phenomenological theory
for cyanoadamantane-family crystals
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A cubic crystal with orientationally disordered molecules, which mimics a plastic crystal of the cyanoada-
mantane family, under conditions of supercooling has been assumed to evolve into the metastable tetragonal
phase as suggested by Ostwald’s ‘‘law of stages.’’ Representing small domains of local tetragonal structures by
elastic dipoles, we have analyzed orientational relaxation of the grains embedded in an isotropic elastic
medium. The elastic dipole density-density correlation function has been used to discuss a possible ordering of
the domains. Implications of the model for elastic properties, duffuse scattering, and kinetics of the transfor-
mation of the supercooled plastic crystal have been discussed. The paper offers a contribution to the discussion
on how glassy are the molecular crystals with orientational disorder.
m
m

lt

b
u
ta
is

be
rm

ng
ss
d

yin
y
m
th
h

ls
ile
t

ob

av
ug

t
s
s
b

gl
-

lt
s
pr

t

se.
nal
d,

he
r-
la-
out
or-

ther
,
gg

ars
tic

las-
rom
vels.
lar
ch
In-

hed
e-
ly
lec-
trag-
t

al.
ons
wth
and
can
hase
ted
that
rus-
-
lar
INTRODUCTION

Molecular crystals are known for their rich polymorphis
due to rotational and intramolecular degrees of freedo
Structures governed by the closest-packing principle resu
the formation of a multiminima~free! energy surface. The
stability or metastability of the structures is decided then
kinetics of corresponding nonequlibrium transitions. A s
percooled stable structure may result in a metastable s
which is not necessarily an ordered one. Orientationally d
ordered~plastic! molecular crystals have been found to
particularly sensitive for such a transformation and they fo
solids with frozen molecular orientations, after quenchi
The state is glasslike, and the solids are called ‘‘gla
crystals.’’1 Among them, ethanol2 and cyanoadamantane an
its mixed crystals~cyanoadamantane family!3 have been
found to be model systems. The main advantage of stud
the glassy state behavior in plastic crystals is that, contrar
conventional glasses, the systems keep translational sym
try. On the other hand, this causes similarity between
orientationally disordered state and a glassy state to suc
extent that the question, how glassy are plastic crystals,4 has
to be addressed. In any case, often perfect single crysta
the orientationally disordered phases allows for deta
structural and kinetic studies, which give us an insight in
the metastability of molecular systems, the important pr
lem within the molecular materials.

The glassy crystals of the cyanoadamantane family h
been objects of extensive studies for many years. Altho
significant progress has been achieved in understanding
transformations,5 a detailed picture of molecular and meso
copic structures of the glassy state is still missing. The gla
phase is obtained when the rotationally disordered cu
phase is supercooled after deep quenching, close to a
transition temperature (Tg), Fig. 1. The crystal keeps its cu
bic symmetry, but local structures are different; the system
evidently in a metastable state. Structural data are difficu
interpret consistently, although there are some signature
dicating that in a quenched sample there is an ordering
cess going on. It is not, however, an ordering according
PRB 620163-1829/2000/62~13!/8835~9!/$15.00
.
in

y
-
te,
-

.
y

g
to
e-
e
an

of
d
o
-

e
h
he
-
sy
ic
ass

is
to
in-
o-
o

the pattern of the stable, low-temperature monoclinic pha
The scattering data seems to indicate a local tetrago
structure.5,6 In the process of an ordering of the supercoole
metastable phase, a growth of superstructure peaks at tX
boundary point of the Brillouin zone indicates a slow orde
ing of the molecules in an antiferroelectric pattern. Corre
tion length for the ordering has ben estimated to be ab
two lattice distances. In addition, some signatures of an
dering have been observed at the zone centerG points. With
time, there is an increase in diffuse components toge
with a decrease of the Bragg peaks.5,6 From the experiments
it has been concluded that the parallel evolution of Bra
peaks at theG points and superstructure peaks atX points
have a common origin and that an ordering which appe
below Tg develops in coherence with the parent, plas
phase.

How one can imagine a structure in the supercooled p
tic phase? The simplest physical picture which appears f
the observations suggest an ordering process at two le
First, at a molecular level, the steric hindrance and dipo
interaction prefer to form antiferroelectric, local order. Su
an order causes tetragonal distortion to the cubic lattice.
deed, the experiments performed on the quenc
crystals,5–7 could be best interpreted in terms of a local t
tragonal structure. As it has to evolve from a deep
quenched orientationally disordered state, the antiferroe
tric order appears at rather short distances and small te
onal domains are formed.~There are some indications tha
the domains may have an orthorhombic structure,8 but this is
a small distortion and we shall assume them as tetragon!
They are oriented along the cube main axes, orientati
preferred by the molecules in the disordered phase. A gro
of a domain requires large reorientations of molecules
for the reason of steric hindrance none of the domains
grow at the expense of the others and a monodomain p
of tetragonal symmetry cannot be formed. It is postula
that there exists a locally preferred tetragonal structure
cannot be extended throughout space. This is a kind of f
tration that leads to the ‘‘frustration-limited domain’’ forma
tion, analogous to the situation in supercooled molecu
8835 ©2000 The American Physical Society
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liquids.9 As a result, the state of the supercooled plastic cr
tal of the cyanoadmantane family, at least at the beginnin
the annealing process, consists of very small tetragonal
mains with antiferroelectric local order. The time evolutio
of such a state towards a more stable structure proceeds
~limited! growth of domains, seen as antiferroelectric ord
ing ~monitored by the superlattice reflections! and ordering
of the domains~monitored by the diffuse scattering at th
G-points Bragg peaks!.6 Thus, at a mesoscopic scale one m
see the supercooled plastic crystal as a powder of frustr
tetragonal domains. Recently, some insight into a molec
structure of possible metastable states has been obtai8

here we shall address the problem of ordering at the me
copic level.

At a molecular level, in the orientationally disordere
high-temperature cubic phase, a molecule is in one of
‘‘pocket states.’’ Neglecting an orientational distribution,
molecule can be represented as a superposition of six ele
dipoles, oriented along the cube axes. In the quenched
percooled state, the dipoles tend to form small regions w
antiferroelectric order and local tetragonal symmetry. Su
regions cause stress to the host cubic lattice, which we s
consider as a main effect. Dipolar electrostatic interact
between the domains will be neglected. Thus, at the me
copic scale, a grain is represented as a superposition of t
elastic dipoles, representing three tetragonal domains
ented along the main axes of the cube,x, y, andz. The do-
mains interact via the elastic field of the host crystal. T
frustration in the system is seen as a competition betw
short-range antiferroelectric coupling and long-range ela
interaction between the domains. We model the superco
crystal as an elastic medium with embedded tetragonal ‘
fects,’’ representing the domains. It has to be stressed
the notion of isolating these defects at the microscopic le
in a real system is, in general, not well defined. One may
what is the defect and what is the medium? It is especi
important for coherently embedded defects. Thus, the mo
we want to develop can only be used in a phenomenolog
approach. We want to find the energetics and spatial co
lation of the domains, expecting that it might help to und
stand a mesoscopic structure and ordering in the superco
crystal, also that it might be related to the diffuse scatter
observed around the Bragg peaks close to a transition
the glassy phase.5,6 An intuitive picture that the glassy stat

FIG. 1. Commonly used, schematic diagram~free enthalpy and
temperature! of thermodynamical stabilities of plastic~R!, mono-
clinic ~m!, and tetragonal~t! phases for cyanoadamantane fam
crystals.Tg indicates a transition into the glassy state.
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of the cyanoadamantane family can be treated as a comp
tion of different domains,10 and that elastic effects ar
important,5 have already been suggested. Here we shall b
this intuition into a model.

FORCE DISTRIBUTION AROUND A FROZEN
MOLECULE; ELASTIC DIPOLES

We are concerned with a crystal of the cyanoadamant
family in the vicinity of the glass transition temperature. It
a cubic crystal, supercooled below the temperature of
transformation cubic tetragonal~see Fig. 1!. The crystal is in
a highly metastable state and evolves, as the experim
show,5 not towards its most stable structure, the monocli
one, but rather to the tetragonal~called phase IV in Ref. 5!
phase. We believe that this is merely a kinetic effect res
ing from a competition of transformation rates. Guided
this assumption, we assume that an evolution of superco
plastic crystals, quenched near the glass transition temp
ture, proceeds via a formation of~slightly! lower-symmetry
local structures, tetragonal domains. A change into the th
modynamically stable monoclinic phase requires much m
drastic structural rearrangement and this is, we believe,
reason for the apparent stability inversion.7 Thus, in the sim-
plest model approach, we shall assume that the superco
cubic crystal contains three types of tetragonal domains.

Since the main effect of formation of tetragonal doma
in the cubic crystal, Fig. 2, is the local stress, we shall r
resent the domains by three (a5x,y,z) elastic dipoles, ori-
ented along the cube main axes~x,y,z! and given by tensors

Pa5Ps11P0Da. ~1!

Ps5(2B1A)/3 is the isotropic, spherical part which plays
role of local pressure, andP05(A2B)/3 is the anisotropic,
deviatoric part with deviatorsDx5$D11

x %5$2,21,21%. The
elastic dipoles, representing diagonal stresses, can be co
ered as three-dimensional vectorsPa5@P11,P22,P33#, and it
might be convenient to treat deviatoric tensors as vector

There can be a more microscopic picture behind the e
tic dipoles which represent the tetragonal domains. Let
imagine the formation of a local stress in the cubic crysta
the cyanoadamantane family. Deep undercooling of the
entationally disordered phase results in the freezing of a m
ecule in one of six ‘‘pocket states,’’ located along the ma
axes of the cube, Fig. 2~a!. The freezing causes extra force
V(R), acting on the surrounding molecules located at s
R, apart from the frozen molecule. Assuming such a pict
@Fig. 2~b!# we calculate the forces exerted by the near
neighbors. For example, for the frozen orientation alonz
axis, the forces acting on the neighbors located in~001!
plane are different from those acting on the neighbors ab
and below the plane. Moreover, there is an asymmetry in
forces acting above and below the plane due to the dip
nature of the cyano~chloro!adamantane molecule. Thi
causes a net excess force acting on the frozen molecule
is compensated by a displacement~assumed small! along the
axis of the frozen orientation.

The distribution of forces around a frozen molecule
conveniently represented by force multipoles.11 For a mol-
ecule in orientationa, the first nonzero multipole is the elas
tic dipole, defined as
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Pi j
a 5~1/2v !(

R
@Vi

a~R!Rj1Vj
a~R!Ri #, ~2!

where v is the unit-cell volume and the summation is,
principle, over all neighbors that experience the extra forc
The elastic dipole representation of the force distribution
convenient way to specify a local stress. In more deta
calculations, however, one should use the forces to cha
terize the frozen molecule or a grain of frozen molecules
is convenient to express the excess forces by the Fou
transform,

FIG. 2. ~a! Illustration of the plastic crystal of cubicFm3m
symmetry with orientationally disordered molecules represente
six ‘‘pocket states.’’ Broken lines indicate a cell that becomes a u
cell in the tetragonal phase.~b! Visualization of three elastic di-
poles, as molecules with frozen orientations alongx, y, andz. For
the stress representation caused by the fixed orientation, there
distinction between opposite orientations along an axis. Tetrag
symmetry of the local stresses is indicated by the solid lines o
unit cell.
s.
a
d
c-

It
ier

Va~q!5N21(
R

Va~R!exp~ iqR!. ~3!

When combined with Eq.~2! the forces can be expressed
terms of the elastic dipoles. For the molecule frozen in o
entationa5z @Fig. 2~b!#, taking into account only neares
neighbors, the forces are

V1
z~q!52Ba2i sinwx coswy , ~4a!

V2
z~q!52Ba2i sinwy coswx , ~4b!

V3
z~q!5Aa2i sinwz~coswx1coswy!, ~4c!

where the angleswa51/2qaa are expressed in terms of th
wave-vector componentsqa , and the lattice constant for th
Fm3m structurea. ParametersA and B specify the elastic
dipole strength, Eq.~1!. The force components for other or
entations of a frozen molecule can be obtained from
above formula by appropriate permutation of the axes. In
long-wavelength~elastic! limit, q→0, we find

Vi
z~q→0!5 ivPii

zqi , ~5!

and this~continuum! approximation will be used in the pa
per. In the next step, we shall analyze a distribution of
centers of local stresses, considered as tetragonal dom
There is no clear distinction between a small domain an
frozen molecule, as there is complete coherency between
tetragonal defects and the matrix. Thus we shall use
terms ‘‘domain’’ and ‘‘local stress center’’ as synonyms,
indicate just a center of elastic interaction.

LOCAL EQUILIBRIUM AND DENSITY FLUCTUATION
OF ELASTIC DIPOLES

Density of the domains at pointx in the system is denoted
asr0(x). Here we use the symbolx to locate a center of a
local stress and in case of a frozen molecule this will
equivalent toR, while for ~slightly! larger domains it will
indicate the location of a center of a tetragonal grain. T
crystal we are considering as a powder of domains is i
metastable state~nonergodic!, therefore we assume a loca
thermodynamic equilibrium. Density of domains of typea is
given as

ra~x!5r0~x!H exp@2bEa~x!#Y (
a

exp@2bEa~x!#J ,

~6!

where b51/kT. Ea(x) is the energy of interaction of the
domain in orientationa with the surrounding field formed by
a distribution of domains. The essence of our model is t
the energy is assumed to be purely elastic and determine
the coupling of the excess force to a displacementu,

Ea~x!52Va~x!u~x!52Vi
a~x!ui~x!, ~7!

and summation over repeated indices is assumed throug
paper. The displacement at the site is partitioned into a
mogeneous part, expressed in terms of the strain tensor« and
inhomogeneous partw(x),

ui~x!5« i j xj1wi~x!. ~8!
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The inhomogeneous part is caused by the elastic coup
Gi j (x,x8) between stress centers,

Wi~x!5(
x8

Gi j ~x,x8!v j~x8!, ~9!

where

v j~x8!5(
a

Vi
a~x8!@ra~x8!2r0~x8!/3# ~10!

is the density of the excess forces at sitex8. The elastic
coupling, which in terms of elementary excitations is a v
tual phonon exchange, will bring a correlation between
local stresses and cause domains density fluctuation.

To proceed with the analysis, let us assume, that the
cess forces around a tetragonal ‘‘defect’’ are well rep
sented by the elastic dipoles, local stress tensors, as spe
above. Within this approximation, the elastic energy g
experienced by the domain located atx is

Ea~x!52Pa«~x!52Pi j
a « i j ~x!, ~11!

and for simplicity, the elastic dipole has been assumed to
independent on a site. This constrain is not essential for
description.«(x) is the effective strain tensor acting at th
sitex. It is, in general, a sum of macroscopic uniform stra
«, and the local, inhomogeneous strain due to surround
elastic dipoles. Thus

« i j ~x!5« i j 1 (
xÞx8

Ki jlm~x,x8!plm~x8!. ~12!

The local strain is expressed by the elastic strain fie
Ki jlm(x,x8), and the density of elastic dipoles at si
x8,plm(x8),

plm~x8!5(
a

dra~x!Plm
a . ~13!

The fluctuation in the elastic dipole density,

dra~x!5ra~x!2r0~x!/3, ~14!

or equivalently, the density of elastic dipoles, Eq.~13!, is the
key parameter. It determines local order and may serve a
local order parameter. Let us observe that in an orientation
ally disordered state,dra(x)50, at every site, while in the
state with a local order,dra(x)Þ0. The local order indicates
a random freezing of the elastic dipoles, characteristic for
glassy state of supercooled plastic crystal. As follows fr
Eq. ~13!, such random freezing gives rise to a static lo
stress, described by the elastic dipole density. The den
fluctuation is, therefore, a proper parameter to characte
the glassy state. Indeed, it is related to the three-states
model variable, used for orientational glasses,12 sa(x)
5na(x)21/3, wherena(x) is 1 if the site is occupied by the
domain in orientationa. Thus, the equivalence,dra(x)
5^sa(x)&, is evident.

From the local equilibrium condition, Eq.~6!, with the
assumption that the elastic energy is smaller than the the
energy, we find the density fluctuation
g
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a
Ea~x!G . ~15!

It is an interpretation of the local order parameter in terms
energy competition. On introducing Eq.~11! into ~15! one
obtains an elastic dipole density fluctuation as a respons
a homogeneous, macroscopic strain,

dra~x!5br0~x!/3FPi j
a 2 1

3 (
a

Pi j
a G« i j ~x!

5br0~x!/3@Pi j
a~dev!#« i j ~x!, ~16!

wherePi j
a (dev)5@Pij

a21
3(aPij

a#. In case of thelocal thermo-
dynamic equilibrium, only the deviatoric part of the elas
dipoles, Pi j

a (dev), causes the density fluctuation. This
known as orientational elastic relaxation.13 It is important in
the context of supercooled plastic crystal, treated as a pow
of domains, because the crystal is a nonergodic syst
Thus, local stresses which appear at a glassy state of pl
crystals may cause an orientational relaxation rather then
fusional elastic relaxation.14 The orientational relaxation is a
source ofintrinsic frustrationand may be responsible for th
kinetic aspect of a formation of the glassy crystal.

FLUCTUATION DENSITY CORRELATION

The density fluctuation expressed in Eq.~16! shows a
self-consistent dependence via the local strain field, coup
to the elastic dipole density, Eqs.~12! and ~13!. For this
inter-relation it is important to specify the elastic strain fie
the coupling,Ki jlm(x,x8). As it follows from the elasticity
theory,11 the coupling is conveniently expressed as the F
rier transformation of corresponding elastic Green’s fun
tion, Gi jlm(q). In order to take into account correlation b
tween sites and exclude self-deformation of a site,Ki jlm(x
5x8)50, the transformation is formulated as follows:15

Ki jlm~x,x8!5~1/N!(
q

@Gi jlm~q!2^Gi jlm~q!&q#

3exp@ iq~x2x8!#. ~17!

The second term in the square brackets is the average
the wave-vector space and assures that self-deformatio
excluded from the elastic coupling. For an isotropic mediu
the elastic Green’s function is known analytically and t
coupling constants can be calculated.16

Let us denote

Jab~x,x8!5P0
2Di j

a Ki jlm~x,x8!Dlm
b ~18!

as the elastic energy due to interaction of deviatoric parts
the elastic dipoles in orientationsa and b. In terms of the
interaction, Eq.~16! can be rewritten as

dra~x!5b@r0~x!/3#Jab~x,x8!drb~x8!

1b@r0~x!/3#P0Di j
a « i j , ~19!

and for the density fluctuation as a response to macrosc
uniform strain, one gets
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dra~x!5b@r0~x!/3#H(
x8

@12br0~x!/3J#21~x,x8!J
ab

3P0Di j
b « i j . ~20!

This is an important relation as it shows that the local ela
dipole density fluctuation is generated by a uniform strain
appears in a crystal due to a thermal stress, for example.
effect may have some significance in a strongly nonequ
rium system of the supercooled plastic crystal and can re
in a different distribution of the elastic domains, depend
on how the phase has been prepared~a thermal history of a
sample!. Indeed, for the cyanoadamantane family it has b
observed that thermodynamical stability of the phase w
tetragonal domains was strongly dependent on the condit
of annealing.17

To get a better insight into the correlation between ela
dipoles, we have to solve the self-consistent Eq.~19!. Here,
we shall take advantage, mentioned in the Introduction
considering the plastic crystal, which keeps translatio
symmetry in the supercooled, glassy state. Now, Eq.~19! is
rewritten as

dra~q!5b@r0/3#Jab~q!drb~2q!1b@r0/3#P0Di j
a « i j ,

~21!

and the wave-vector-~q! dependent density fluctuation, a
the response to uniform strain is

dra~q!5b@r0/3#$12@br0/3#J~q!%ab
21P0Di j

b « i j . ~22!

The q dependence of the average densityr0 has been ne-
glected. The inverse matrix in Eq.~22! plays a role of elastic
screening

q~q!5$12@br0/3#J~q!%21, ~23!

and shows how the uniform strain field is screened by
elastic coupling between the domains. Eigenvalues of
screening matrixq(q) are the energies of density fluctuatio
waves, collective modes, which are the elementary exc
tions of the elastic field. They may be seen as collect
analogs of the localized excitations in orientational glasse18

also called boson peaks. The matrix has to reflect the s
metry of the system, cubic in the case of the cyanoadam
tane family.

The response function,

xab~q!5b@r0/3#$12@br0/3#J~q!%ab
21 ~24!

is the density fluctuation correlation function. The syste
becomes unstable against the formation of a density fluc
tion wave, when the energy of a fluctuation wave becom
zero, e.g., for

detuq~q!u50. ~25!

In the limit, q→0, the instability corresponds to a formatio
of one macroscopic domain, a tetragonal phase, in the
cess of a continuous, ferroelastic phase transition. Howe
as follows from the above considerations, local stress de
ties are created before the generalized susceptibility
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pressed in Eq.~24! blows up; therefore, a transition to
glassy crystal (Tg) is expected to appear before a hypothe
cal ferroelastic ordering.

The density fluctuation correlation, determined by the s
ceptibility, Eq. ~24!, shows theq dependence via the elast
interaction termJ(q). In the continuum limit,q→0, the in-
teraction between tetragonal domainsa andb, embedded in
an isotropic elastic medium, has the following form:

Jab~q→0!5~P0
2/c44!F(

i
Di

ani
2Di

b

23$~c121c44!/c11%

3Y2,0~na!Y2,0~nb!G2Eself, ~26!

whereY2,0(na)5(3na
221), and the unit vectorn5q/q has

been used to specify a direction of the wave vector. T
elastic constantsci j lm of the medium are written in Voigt’s
notation. The self-deformation term has been calculated
an elastically isotropic medium with embedded tetrago
defects,16

Eself53P0
2/2c44@2/514c44/15c11#. ~27!

Equation~26! shows that the elastic interaction in the lim
q→0 is not well defined, analogously to electric dipolar i
teraction. The matrixJab(q→0) has different values de
pending on the direction from which one approaches thq
50 point. This means that when a ferroelastic instabil
temperature is estimated from the condition, Eq.~25!, it will
depend on the shape of a sample. With the help of Eq.~26!
this dependence can be found.

In the continuum limit, (q→0), the density fluctuation
correlation function does not depend on a value of the w
vector, only on its direction. In order to get a spatial cor
lation for the density fluctuations we need an explicitq de-
pendence of the susceptibility, Eq.~24!. This requires the
elastic interaction between domains to be expressed by F
rier transforms of the excess forces, specified in Eq.~4!,

Jab~q!5Vi
a~q!Gi j ~q!Vj

b~2q!2Eself. ~28!

The coupling of the excess forces is, however, still ke
within the continuum approximation and the elastic Gree
function is

Gi j ~q!5~1/q2!V i j ~n!. ~29!

Assuming, as before, that the cubic crystal in an orientati
ally disordered state can be approximated by an isotro
elastic medium, the matrixV i j (n) is15,16

V i j ~n!5~1/c44!@d i j 2$~c121c44!/c11%ninj #. ~30!

On introducing Eq.~28! into Eq. ~24!, an explicitq depen-
dence of the density fluctuation correlation can be calcula
If the elastic interaction given by Eq.~28! has its minimum
value at wave vectorq5qcÞ0, then from the instability con-
dition, Eq. ~25!, one finds the critical temperature for
‘‘spinodal decomposition,’’ e.g., the temperature belo
which the tetragonal domains are formed in a pattern o
static density fluctuation wave with periodicity given byqc .
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The instability condition, Eq.~25!, specifies a surface in th
reciprocal space, which separates the disordered from
dered phases. The surface is essentially determined by
elastic interactionJ(q).

„HYPOTHETICAL … FERROELASTICITY OF THE
SUPERCOOLED PLASTIC CRYSTAL

To discuss the possible ferroelastic behavior of the su
cooled crystal we shall analyze the instability condition, E
~25!, at the Brillouin-zone center,q50. As follows from the
elasticity theory,11,16 the elastic Green’s function for theG
point is just the compliance tensorS. The elastic screening
matrix is

q~0!5$12@br0/3#J~0!%21, ~31!

where the elastic energy for the coupling of domains is giv
as

Jab~0!51/3@3P0
2/2c442Eself#Di

aDi
b . ~32!

The energy in the square brackets is the barrier height
reorientation of a domain. Equation~32! indicates that or-
thogonal orientations of neighboring domains are energ
cally favored. Such an arrangement, however, is a sourc
frustration in the three-dimensional cubic lattice.18 This
might be an important intrinsic frustration in glassy cryst
of the cyanoadamantane family.

As follows from the instability condition, the density fluc
tuation correlation function becomes infinite at the tempe
ture

kTc5r0/3@3P0
2/2c442Eself#, ~33!

which is the critical temperature for~hypothetical! ferroelas-
tic transition—an ordering of domains. One may estimat
value of the elastic dipole, assuming that the~hypothetical!
ferroelastic transition temperature for the cyanoadaman
family is below 100 K. Taking elastic constants estimated
the glassy crystal~see the Appendix!, the deviatoric part of
the elastic dipoles is expected in the range,P0'1021

41022 GPa.
An important consequence of the ferroelastic ordering

domains is a renormalization of the elastic properties of
system. LetS0 denote the elastic compliance tensor of t
orientationally disordered crystal ands a macroscopic stress
For the orientational stress relaxation, total strain exp
enced by the macroscopic system is the sum of the ela
(S0s) and plastic strains~the density of elastic dipolesp!.
Written in the tensor notation, we have

«5S0@s1p#, ~34!

where the elastic dipole density calculated from Eqs.~13!,
~22!, and~24! is

p5P0
2DaxabDbS0s. ~35!

For the total strain one gets

«5S0@11DaxabDbS0#s, ~36!

and the renormalized compliance tensor can be identifie
r-
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S5S01~r0/3!P0
2(

ab
~S0Da!xab~0!~S0Db!. ~37!

The macroscopic, cubic symmetry of the supercooled cry
gives renormalization of two elastic compliance compone
~in the Voigt’s notation!,

S115S11
0 12~r0/3!P0

2~S11
0 2S12

0 !2x, ~38!

S125S12
0 2~r0/3!P0

2~S11
0 2S12

0 !2x, ~39!

where

x215kT2r0/3@3P0
2~S11

0 2S12
0 !22Eself#. ~40!

The important consequence of the orientational elastic re
ation is that is does not change the compressibility modu
of the system,D5(S1112S12). For dynamical experiments
one has to replace the static susceptibility by its freque
dependence, assuming a relaxator-type process,x21

→x21(11 ivt)21, with a possible distribution of the relax
ation times. For the orientational relaxation, the characte
tic time is related to a barrier height for reorientation of
tetragonal domain.

Relations~38! and ~39! indicates the softening of thec11
elastic constant and the hardening ofc12 with decreasing
temperature. It is seen that the elastic interaction, modi
by self-deformation energy, which takes into account
correlation between domains, gives a Curie-Weiss-type t
perature dependence for the elastic compliance compon
We may expect, therefore, that for the supercooled pla
crystal of the cyanoadamantane family, there are change
thermoelastic properties, according to the assumed phys
picture of the system. Within the picture, the glassy crysta
formed by undercooling, when the elastic interaction b
tween domains is weak, smaller than the thermal energy,
unable to order the domains. However, the random inte
tion between the domains is important. The randomnes
the effect of frustration caused by distributing tetragonal d
mains within global cubic structure. When the lattice b
comes softer, the deformations become larger; therefore
random elastic coupling between the domains increase
the lattice softens. This increasing random elastic coup
leads to the stabilization of the glassy crystal, before it
comes unstable and elastically ordered. Therefore, the
lowing physical picture of transformations in the supercoo
plastic crystal is expected. When the cubic orientationa
disordered crystal is undercooled, the short-range coup
between molecules tends to form triple-degenerate tetrag
defects which act as local stress centers. For such a sy
with long-range interaction, a strongly discontinuous pha
transition is expected.12 When a sample is cooled down be
low Tg , a glassy phase is formed as a result of the rand
elastic coupling. This appears well before~hypothetical! fer-
roelastic ordering of domains, which requires stronger ela
couplings.

IMPLICATION FOR THE DIFFUSE SCATTERING

According to the kinematic theory of x-ray scattering, t
scattering intensity at pointQ5q12pH, where H is a
reciprocal-lattice vector, is given by19
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I dif~Q!5^uDw~q!u2&, ~41!

whereDw(q) is a fluctuation in the scattering amplitude
point q. For the crystal composed of the tetragonal str
centers, this fluctuation is due to both the density fluctuat
of domainsdra(q) and inhomogeneous displacementw(q)
produced by the local stress. The displacement has bee
ready calculated and from Eqs.~9! and ~10! one finds

w~q!5G~q!(
a

Va~q!dra~q!. ~42!

Assuming the inhomogeneous displacements are small
scattered amplitude fluctuation is

Dw~q!5(
a

@D f a1 i f QG~q!Va~q!#dra~q!. ~43!

D f a5 f a2 f 0 is the difference between the scattering fact
for different tetragonal domains and the reference, disorde
crystal; f is the average scattering factor. When Eq.~43! is
introduced into Eq.~41!, the intensity of diffuse scattering i
conveniently expressed in terms of the density fluctuat
correlation function,

I dif~Q!5b21xab~q!Fa~q!Fb~2q!, ~44!

where

Fa~q!5@D f a1 f QG~q!Va~q!#. ~45!

All quantities needed to calculate the scattering intensity
known and have been written explicitly for the model. Mor
over, one may choose between the continuum limit, valid
small q vectors, and an approximation valid for larger wa
vectors. In the latter case we use Fourier transforms of
excess forces as given by Eqs.~4! and for the density fluc-
tuation susceptibility we use Eq.~24! with the elastic energy
given by Eq.~28!. The elastic Green’s function is still, how
ever, in the limit ofq→0. To go beyond this limitation, we
need to know explicitely a dynamical matrix for the syste

In the context of diffuse scattering, it is convenient to u
the continuum approximation, the limitq→0. Within the ap-
proximation, the excess forces are expressed as in Eq.~5!,
and then scattering intensity is given explicitly in terms
elastic dipoles

I dif~Q!5b21xab~q!@D f a1 f QG~q!Paq#

3@D f b1 f QG~q!Pbq#, ~46!

and written in terms of components

I dif~Q!5b21xab~q!@D f a1 f q21QiV i j ~n!Pj j
a nj #

3@D f b1 f q21QiV i j ~n!Pj j
b nj #. ~47!

Equation~29! has been used to express the Green’s func
in terms of a direction of the wave vector,n5q/q. For the
model considered, only diagonal elements of the elastic
pole tensor are nonzero.

For an analysis of the diffuse scattering it is convenien
express the intensity as a sum of three terms

I density~Q!5b21xab~q!@D f aD f b#, ~48!
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I stress~Q!5b21xab~q! f 2q22@QiV i j ~n!Pj j
a nj #

3@QiV i j ~n!Pj j
b nj #, ~49!

I asym~Q!5b21xab~q!2 f D f aq21@QiV i j ~n!Pj j
b nj #.

~50!

The term in Eq.~48! gives information about local orienta
tional order. For a disordered system it is reduced to
called Laue scattering. The contribution given by Eq.~49! is
due to local stresses produced by orientationally frozen m
ecules, e.g., it is a direct effect of the transformation a
formation of a new phase. In our model it is a formation
tetragonal ‘‘defects’’ as the coherent nucleous of a tetrago
phase. This intensity is proportional to the square of the e
tic dipoles and Fig. 3 presents the contributionI stress(Qx ,Qy)
calculated according to Eq.~49! with parameters representa
tive of the cyanoadamantane family crystals. Finally, the
tensity expressed by Eq.~50! is due to coupling between th
orientational order and the local stress and causes an a
metry of the diffuse scattering around a node of recipro
space. How strong the asymmetry is depends not only on
strength of the elastic dipole but also on the difference
scattering factors,D f a . In other words, it depends how dif
ferent in the scattering ability is a new phase with respec
the matrix. In a limiting case, when this difference is neg
gible, the diffuse scattering intensity is given by Eq.~49!. On
the other hand, if the asymmetric contribution is not neg
gible, it becomes more important than the one due to de
mations, because the asymmetric contribution depends
the elastic dipole in the first power, while the deformati
contribution depends on the square of the local stress.

KINETIC ASPECT

For every metastable system it is important that a
sponse to a perturbation is a nonequilibrium one. The su

FIG. 3. The contribution to diffuse scattering due to loc
stresses,I stress(Qx ,Qy), calculated according to Eq.~49!. The elas-
tic constants used in calculations are as given in the Appendix
elastic dipoles representing the local stresses are given by Eq~1!
with parametersA50.1 GPa andB50.2 GPa.
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cooled plastic crystal is considered as responding to a t
mal stress applied to the system in a process of annea
This response is assumed to be due to the orientationa
laxation of the frustrated elastic domains. Thus, it is imp
tant to ask what is a time evolution of the elastic doma
and how the response is influenced by the relaxation proc
The elastic dipole density fluctuation for the tetragonal d
mains, which will be reached at thermodynamical equil
rium, is denoted as

dra~q,`!5xT~q!P0Di
a« i i , ~51!

wherexT(q) is the transverse eigenvalue of the suscepti
ity, Eq. ~24!. The time evolution of the elastic dipole densi
fluctuation is assumed to follow the first-order kinetics,

dra~q,t !5dra~q,`!@12exp~2t/tq!#, ~52!

wheretq is a relaxation time for a process of ordering of t
elastic domains according to a pattern of density waves c
acterized by the wave vectorq. In a general case one ma
have a distribution of the relaxation times, while in a situ
tion that the ordering process follows a particular pattern~for
example a ferroelastic one! the process is characterized b
one relaxation time. The kinetics of the ordering of the el
tic domains might be quite complicated, indeed.

On measuring an elastic response directly one can pro
kinetics of the ferroelastic ordering (q50) from a time evo-
lution of the renormalized elastic compliance tensor,

S~ t !5S0@11DaxabDbS0#@12exp~2t/t0!#. ~53!

As follows from the model, which has assumed thelocal
thermodynamic equilibrium, the orientational elastic rela
ation does not change the compressibility modulus of
system@see Eq.~40!#. Thus, measurements of the time ev
lution of a unit-cell volume or cell parameters do not prob
dynamics of the orientational relaxation. However, they
probe diffusional relaxation which takes place in a syst
when a global thermodynamical equilibrium is assumed. T
isothermal relaxation of a lattice parameter of a supercoo
cyanoadamantane crystal, on aging at 160 K, has b
studied.7 Following our model, but assuming global equilib
rium, the lattice parameter change is

Da~ t !/a05r0~ t !~S111S12!Ps , ~54!

wherePs5A12B is the isotropic part of the elastic dipole
Eq. ~1!, anda0 is the lattice parameter at the reference sta
t50. A time evolution of the changes are then due to
dynamics of growing of the elastic domains, which may
assumed in simplest form,

r0~ t !5r0~`!@12exp~2t/t!#. ~55!

It is interesting to notice that the experiments performed
the cyanoadamantane crystals have shown to fit the ab
time evolution with a relaxation time of the order 50 h.7

Much more often, the x-ray scattering intensity is used
probe the kinetics of ordering, as is in the case of cyanoa
mantane family crystals.5 For this purpose, the scattering am
plitude fluctuation in Eq.~40! is replaced by its time-
dependent version,
r-
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Dw~q,t !5(
a

@D f a1 i f QG~q!Va~q!#dra~q,`!

3@12exp~2t/tq!#, ~56!

and the time evolution of the diffuse scattering due to reo
entation of elastic domains is expressed as

I dif~Q,t !5^uDw~q,t !u2&. ~57!

Numerous studies of transformation kinetics of the sup
cooled cyanoadamantane family crystals using diffract
methods were summarized in Refs. 5 and 6. They were c
centrated, however, on a time evolution of superstruct
peaks, which have been assumed to change parallely to
fuse scattering around the Bragg peaks. What became c
from the studies was that the evolution of the supercoo
plastic crystal after a deep quench, towards metastable~te-
tragonal! phase, follows a kinetics which depends on t
superstructure peak taken as a probe. The time evolutio
peak intensities for~121! reflection follows the strech expo
nent law, while for~300! reflection it follows simple expo-
nential dependence,20 as predicted in the simple model. Th
observations suggest that the model does reflect some o
sential features of the transformations but has to be impro
for more quantitative comparison with experiment.

CONCLUDING REMARKS

In an attempt to find a physical picture of transformatio
which take place in supercooled plastic crystals after d
quenching, we have been guided by the empirical ru
known as Ostwald’s law of stages. Taking the crystals of
cyanoadamantane family as a model system, we have b
considering a cubic crystal with orientationally disorder
molecules as evolving under conditions of supercooling
into the most stable~and ordered! phase~monoclinic! but
rather into a metastable phase of tetragonal symmetry, ea
to reach kinetically. This has suggested the supercooled c
tal as a mixture of coherent~small! domains with tetragona
local structure, which introduces stress to the global cu
lattice. The domains were characterized by elastic dipo
centers for long-range elastic interaction, which introduc
frustration to the system. Elastic dipoles are frustrated in
cubic lattice and form an orientationally disordered st
with random interaction, which can mimic a glassy state
deeply quenched plastic crystals. We have analyzed the
entational relaxation of the elastic dipoles embedded in
isotropic elastic medium, and calculated the elastic dip
density fluctuation as a local order parameter. The dens
density correlation function has been used to discuss a
sible ordering of the tetragonal domains as a hypothet
ferroelastic transition into the tetragonal phase. Implicatio
of the model for elastic properties and diffuse scattering h
been analyzed, also in the context of kinetic experiments
was suggested that experiments on time evolution of ela
constants, which are renormalized by the orientational re
ation of domains, can provide a direct measure of the kin
ics. As for the scattering experiments, numerous meas
ments of kinetics might be correlated with the mod
quantitatively, even to the extent that local stresses can
estimated and this will be an extension of the project.
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APPENDIX

Here we give the elastic constants, estimated from disp
sion curves for glassy crystals at 100 K:21 c1150.54 GPa
55.43109 dyna cm22, c4458.731022 GPa58.73108 dyna
cm22, c1250.37 GPa53.73109 dyna cm22 ~assuming iso-
tropic elastic medium!.
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