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Interacting topological defects on frozen topographies
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We propose and analyze an effective free energy describing the physics of disclination defects in particle
arrays constrained to move on an arbitrary two-dimensional surface. At finite temperature the physics of
interacting disclinations is mapped to a Laplacian sine-Gordon Hamiltonian suitable for numerical simulations.
We discuss general features of the ground state and thereafter specialize to the spherical case. The ground state
is analyzed as a function of the ratio of the defect core energy to the Young’s modulus. We argue that the core
energy contribution becomes less and less important in the limitR@a, whereR is the radius of the sphere and
a is the particle spacing. For large core energies there are 12 disclinations forming an icosahedron. For
intermediate core energies unusual finite-length grain boundaries are preferred. The complicated regime of
small core energies, appropriate to the limitR/a→`, is also addressed. Finally we discuss the application of
our results to the classic Thomson problem of finding the ground state of electrons distributed on a two sphere.
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I. INTRODUCTION

The theory of two-dimensional melting of essentially p
nar materials~monolayers! is a rich and well-developed
subject.1,2 An interesting aspect of melting in this low dimen
sion is that both the crystalline to hexatic and hexatic to fl
transitions can be driven by the sequential liberation
pointlike topological defects—dislocations in the form
case and disclinations in the latter. It is clearly importa
therefore to have a thorough understanding of the statis
mechanics of interacting topological defects. On the plane
topological defects are bound at zero temperature, bu
manifolds with more complicated topology excess free d
clinations must exist even at zero temperature.

The statistical mechanics of particles confined to froz
surfaces of constant positive and negative curvature was
cussed, e.g., in Refs. 3 and 4. It was argued that region
positive and negative curvature would promote the format
of unpaired disclinations, and that these might be scree
by clouds of dislocations. At low temperature, it was su
gested that the anisotropic interaction between these scr
ing dislocations would lead them to condense into gr
boundaries. The physics of particles on a quenchedrandom
topography was discussed in Ref. 5.

The simplest example of a surface with positive Gauss
curvature is the sphere. Dodgson studied the ground sta
the Abrikosov flux lattice in a model thin-film supercon
ductor on a sphere~subject to a field radiating from a mag
netic monopole at the center!, and found evidence for 12
fivefold disclination defects at the vertices of an icosahed
in an otherwise six-coordinated crystalline environmen6

This defect configuration is similar to one proposed
Lubensky and collaborators for lipid bilayer vesicles in t
hexatic phase,7 except that in hexatics the disclination ener
is reduced by screening due to an equilibrium concentra
of unbound dislocations. Later, Dodgson and Moore p
posed adding dislocations to the ground state of a sufficie
large vortex crystal in a spherical geometry to screen out
PRB 620163-1829/2000/62~13!/8738~14!/$15.00
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strains associated with 12 extra disclinations in the Abrik
sov phase.8 Vortices in a thin-film superconductor behav
like particles interacting with a repulsive logarithmic pa
potential. Another context in which crystalline ground sta
on a sphere arise is the so-calledThomson problem, where
the vortices are replaced by particles interacting with a
pulsive 1/r potential.9–11 Our own interest in this class o
problems was stimulated by the beautiful work of Al
Toomre,12 which we discuss later~and which hopefully will
be described by Toomre himself one day!!. Toomre’s ideas
also play a key role in a recent paper on the Thomson pr
lem by Pérez-Garrido and Moore.13 For a discussion of dis-
clination and dislocation defects for disklike configuratio
of electrons in the plane see Ref. 14.

Crystals on a negatively curved background~hyperbolic
spaces! are also of considerable interest.15 They appear in a
variety of contexts such as two-dimensional analogs of
frustration associated with tetrahedral packing in thr
dimensional flat space16 and certain aspects of surfac
physics17–19 and accompanying defect formation. The stru
ture of the discrete lattices associated with the Lobachev
plane H2 ~Ref. 20! are complex and would necessitate
interesting generalization of our formalism beyond the sco
of the present paper. On the other hand, the physics of to
logical defects in crystals onminimalsurfaces can be directly
addressed with our methods. Such crystals arise in the p
merization of fluid membranes21 such as the bicontinuou
~plumber’s nightmare! phase of amphiphilic bilayers. Th
excess sevenfold disclinicity required in these hyperbo
spaces will certainly give rise to novel defect arrays wh
we hope to study in the near future.

The study of melting and the nature of the ground state
curved manifolds may be a good testing ground for und
standing the new features that arise from the topological
fects required for particle arrays on surfaces with nontriv
topologies. Our approach is to work directly with the defe
themselves, and treat the particles within continuum ela
theory. This approach is more general than, say, a di
8738 ©2000 The American Physical Society
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PRB 62 8739INTERACTING TOPOLOGICAL DEFECTS ON FROZEN . . .
simulation of particles interacting with a logarithmic or 1r
potential, because all details of the pair potential are emb
ied in the elastic constants mediating the interaction betw
defects. By eliminating explicit reference to the particl
themselves, we also greatly reduce the number of degree
freedom needed to study the ground state. As we shall
the effective Hamiltonian used here, in which defects such
grain boundaries and dislocations are built up out of elem
tary disclinations, leads to a variety of interesting structu
not encountered in the plane.

The statistical mechanics of monolayers on curved s
faces such as the sphere may also be viewed as the in
bending rigidity limit of membranes with a spherical topo
ogy. Our investigation may therefore be considered a prel
to the careful incorporation of defects in the study of t
phase transitions of, e.g., membranes composed of
bilayers.22

It is useful to review expectations for low-temperatu
configurations of crystals in flat space.23 Although the
ground state is believed to be defect free, one can certa
consider the response to adding a single excess disclina
The stresses induced by such a disclination are very h
and the energy can be lowered by polarizing the surround
medium into dislocation pairs, as indicated schematically
Fig. 1.

When interactions between dislocations are taken into
count one might expect them to organize into grain bou
aries~i.e., lines of dislocations with Burgers vectors orient
perpendicular to the lines! to minimize the energy even fur
ther. Experiments on smectic liquid crystal films with tilte
molecules24 ~the tilt is used to force in an extra disclination!
reveal a pattern of five jagged grain boundaries radia
outward, consistent with this picture. Computer simulatio
with periodic boundary conditions have been used to st
the relaxation of a disclination quartet~two fives and two
sevens!, from an initial configuration where these defects
on the corners of a very large square in an otherwise
coordinated medium.25 After the relaxation, grain boundarie

FIG. 1. Schematic of an isolated threefold disclination, in
approximately four-coordinated medium. The elastic stress in
vicinity of the isolated disclination is relieved by the formation of
screening cloud of dislocations.
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joining the fives to the sevens appear. Relaxation of the
clination elastic stresses in this way occurs at a price—
core energies associated with the extra dislocations lead t
additional term in the energy which diverges linearly wi
system sizeR, as compared to theR2 divergence associate
with an unscreened disclination.26

A situation reminiscent of these flat space experime
occurs on surfaces of nonzero Gaussian curvature, e.g.
sphere. Although the Gaussian curvature of the sphere
proximately compensates the strains associated with isol
disclinations, for small core energies~or, equivalently, large
sphere radius compared to the particle spacing! it can still be
favorable to introduce extra screening dislocations into
ground state.

To see how screening of an isolated fivefold disclinati
by dislocations comes out on a sphere, it is helpful to fi
consider what happens in flat space. A fivefold disclinat
can be created by removing a wedge of material subtend
an angles52p/6 and then deforming the remaining mater
to close the gap.~The disclination in the square lattice of Fig
1 was made by removing a 2p/4590° wedge.! The resulting
stresses were calculated, e.g., in Ref. 27. We use polar c
dinatesr andf, measured from the center of the disclinatio
If m andl are the material elastic constants, the stress ten
is dominated bysff , where~neglecting logarithmic correc
tions due to boundary effects!

sff5
K0s

4p
, ~1!

andK0, the Young’s modulus, is related to the Lame´ coeffi-
cients by

K05
4m~m1l!

2m1l
. ~2!

Note thatsff is proportional to the disclination charges.
This approximately constant stress arises from the stretc
of material required to close the gap engendered by the m
ing wedge, and leads to theR2 divergence in disclination
energy with system sizeR.27 Consider now the fate of a
tightly bound dislocation pair~the Burgers’ vectors are equa
and opposite withubW u5a) placed in the stress field of thi
disclination. The stresssff creates a Peach-Kohler forc
which tries to tear the dislocation pair apart.28 We assume for
simplicity a purely radial separationDr between dislocations
with Burgers’ vectors in the tangential direction. The ener
of the pair then consists of 2Ed (Ed is the dislocation core
energy!, a logarithmic binding energy and a linear Peac
Kohler term ~proportional tosff) which tries to ‘‘ionize’’
the pair, similar to the effect of an electric field on a char
dipole,

Epair~Dr !52Ed1
K0b2

4p
lnS Dr

a D2
K0b

4p
s~Dr !. ~3!

The energy can be lowered onceDr exceedsDr * 'b/s'a
and the pair separates.29 One of the liberated dislocation
moves off to infinity while the other remains to help scre
the disclination. As more and more dislocations are crea

e



si

ea
u

l

th

ac
at
a
b

is
it

ce

th
r

-
to

-

be-
ns

the
rk-

s do
re-
et-

p a
ects
les.
stic
ad-
as

to a
en-
nd
an-

ini-
dis-
m
ic-
l is
ty
el,

ose
ri-

ted
of
f a

tive

he
ith
se
is

f
ere
za-
n

itor
ars.
o-
on
gu-
n-
ity
e-
ed

ain
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in this way, the stress is reduced until the dislocation den
nd in an annulus of widthdr at radiusr from the disclination
is28

nd~r !'S s

2p D 1

ra
. ~4!

Note that if these dislocations collapse to form a single lin
grain boundary radiating out from the disclination, the ang
lar deficits is related to the spacingl between dislocations in
the grain bys'a/ l . If the dislocations formm grain bound-
aries, the spacing will bel'am/s. In this paper we shal
study the casesm52 andm55.

The analysis sketched above is easily adapted to
curved surface of a sphere of radiusR. The angular deficits
associated with a circuit around a dislocation in flat sp
can now be compensated by the nonzero Gaussian curv
1/R2. Let us assume that a fivefold disclination is placed
the north pole of the sphere. We describe the physics
geodesic polar coordinates (r ,f) about this point with metric

ds25dr21R2sin2S r

RDdf2, ~5!

and work in the limitR@a. We expect that the stress
controlled by theeffectivedisclination charge inside a circu
at fixed geodesic distancer from the disclination@see Eq.
~13! below#, namely

se f f~r !5s2E
0

2p

dfE
0

r

dr8AgK

5s2
2p

R2 E0

r

R sinS r 8

R Ddr8

5
p

3
24p sin2S r

2RD . ~6!

Note thatse f f(r ) decreases with increasingr. In the limit of
weak curvatureR@a, we expect that the stress formula~1! is
replaced by

sff~r !5K0

se f f~r !

4p
, ~7!

with a corresponding weakening of the Peach-Kohler for
The reduction in the angular stresssff with increasing geo-
desic distance from the disclination arises because
stretching required to remove a wedge in flat space is
duced according to the metric~5!. We now expect the dislo
cations inm grain boundaries radiating from a disclination
exhibit avariable spacing between dislocations,

l ~r !'
am

se f f~r !
. ~8!

Note that the spacing diverges asr→r c
2 , where

r c

R
[Qc5cos21

5

6
533.56°. ~9!

The angular jumpDs(r )5se f f /m across the grain bound
aries thus becomes smaller with increasingr and these
ty
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boundaries eventually terminate when the dislocations
come sufficiently dilute. The total number of dislocatio
contained in them grain boundaries is approximately

Nd;
R

a
s~x!. ~10!

Our calculations support this picture, and we find that
extra dislocations seem to form grain-boundaries. Rema
ably, and in contrast to flat space, these grain boundarie
indeed stop or start inside the crystalline medium. Our
sults also hint at a branching pattern of grain-boundary n
works ~each radiating from a disclination!, reminiscent of
those found in Ref. 24.

The paper is organized as follows. In Sec. II we develo
formalism whose basic degrees of freedom are the def
themselves, rather than the underlying interacting partic
The particles themselves are treated within continuum ela
theory. As mentioned above, such a formalism has the
vantage of reducing the number of degrees of freedom
well as being rather universal in the sense that it applies
broad class of interaction potentials. Varying the pair pot
tial simply corresponds to changing the elastic moduli a
defect core energy of the model. The model has the adv
tage that defects can move directly to positions which m
mize the energy, without the constraints associated with
clination motion or dislocation climb in a crystalline mediu
which would attend a particle simulation. Despite its simpl
ity, finite temperature statistical mechanics of this mode
still not amenable to a direct analytic solution. A duali
mapping to an equivalent Laplacian sine-Gordon mod
however, yields a model with short-range interactions wh
lattice version should be straightforward to simulate nume
cally.

In contrast, the limit of zero temperature may be trea
analytically and we turn to this in the next three sections
the paper. In particular we discuss the ground state o
spherical crystal as a function of defect core energy rela
to the combination of elastic constants~Young’s modulus!
which determines defect interactions at large distances.

In Sec. VI we shift our attention from defects alone to t
underlying lattice structure. We first discuss lattices w
icosahedral symmetry. Our formalism applied to this ca
predicts the range of core energies for which the lattice
unstable to the formation of defects.

An interesting application for our formalism to theThom-
sonproblem,9,10 is outlined in Sec. VII A. The predictions o
our approach are in agreement with existing results wh
comparisons are available. A beautiful experimental reali
tion of the Thomson problem is provided by multielectro
bubbles trapped in liquid helium at low temperatures.30 Or-
der in electrons confined by a positively charged capac
plate to a helium surface has been studied for many ye
Except for capillary wave deformations, crystallization pr
ceeds in an essentially flat environment. At high electr
densities, curvature is introduced via an instability to a re
lar array of ‘‘dimples’’ in the helium surface, each contai
ing a million electrons or more. Upon increasing the dens
of positive charge below the surface further by adding a m
tallic tip to the anode, one can form completely submerg
multielectron spherical bubbles. Typical bubbles cont
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106–108 electrons. The outward electrostatic repulsion of
electrons on the inner surface of the helium bubble balan
against the surface tension of the helium interface to prod
bubbles with diameters in the range 10–100 microns. Res
for the Thomson problem have implications for trapped m
tielectron bubbles well below the flat space freezing tempe
ture.

II. FINITE TEMPERATURE

A. Free energy

As our main interest lies in the study of defects on tw
dimensional curved surfaces, we need a formalism that d
directly with the defect degrees of freedom themselves
rigorous geometrical derivation of the effective free ene
for the defects is given in Ref. 31. An equivalent derivati
may also be given by integrating out the phonon degree
freedom from the elastic Hamiltonian,32 with the appropriate
modifications for a general distribution of defects. The e
ergy of a two-dimensional crystal embedded in an arbitr
frozen geometry described by a metricgi j (x) is given by

E5K0E d2xAg~x!d2yAg~y![K~x!2s~x…#
1

D2U
xy

3[K~y!2s~y…#1KAE d2xAg~x!d2yAg~y!

3[K~x!2s~x…#
1

DU
xy

@K~y!2s~y…#, ~11!

whereg(x) is the determinant of the metric tensor,K(x) is
the associated Gaussian curvature, ands(x) the disclination
density,

s~x!5
p

3Ag~x!
(
i 51

N

qid~x,xi !, ~12!

with N disclinations located at the sitesxi of an underlying
triangulated particle array. The ‘‘charges’’qi may be posi-
tive or negative. Although we do not restrict the allow
values of the charge, we expect the unit charge defect
dominate for energetic reasons. A plus one charge co
sponds to a fivefold coordinated particle~a five disclination!
and a minus one charge corresponds to a sevenfold co
nated particle~a seven disclination!. Charges are attracted t
regions oflike-signGaussian curvature.

The first term of Eq.~11! represents a long-range elas
interaction andK0 is the Young’s modulus of Eq.~2!.32

The second term in Eq.~11! contains a single inverse
Laplacian operator, which is singular at short distances
to distortions of the lattice at distances less than the lat
spacing. This is the dominant term for hexatic membran
whereKA is the hexatic stiffness.32 In the present context
this singular contribution leads to a renormalized core ene
Ecore(KA) for each defect and it represents nonuniversal
tails of the interaction on the scale of the interparticle sp
ing a. The energy of Eq.~11! is thus simplified to
e
es
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E~K0!5K0E d2xAg~x!d2yAg~y![K~x!2s~x…#
1

D2U
xy

3@K~y!2s~y…#1NEcore . ~13!

Although it is not essential, we assume for convenience
the core energies of fivefold and sevenfold disclinations
identical. The partition function of our model is then

Z~b!5 (
N1 ,N2

dN12N2,6x

N1!N2!
yN11N2

3E )
m51

N1

dxm
1Ag)

n51

N2

dxn
2Age2bE(K0), ~14!

whereE(K0) is the first term in Eq.~13!, y is the disclination
fugacity e2bEcore (b is the inverse temperature!, N6 is the
total number of fives and sevens, respectively, andx is the
Euler characteristic of the surface. For a given microsco
interaction potential bothy andK0 are fixed. We shall find it
useful, however, to regard these as independent param
and discuss, in particular, the limits of large and smallEcore
compared toK0a2, wherea is the lattice constant.

Despite its elegant form this model is difficult to solv
analytically. It is, moreover, challenging for direct numeric
simulation because of the long-range interaction embodie
1/D2—see the explicit form forE(K0) given in Eqs.~28! and
~29! below. An alternative formulation is suggested by t
Laplacian roughening model for flat space melting.33,34 Di-
rect molecular-dynamics simulations or energy evaluati
of particles interacting with a specified potential35,12 are also
of considerable interest. Since this approach takes the
ticles as the primary degrees of freedom, rather than the
fects, it falls outside the scope of the present paper.

B. Sine-Gordon model

We now restrict ourselves to the case of spaces with
nus zero~Euler characteristicx52). We map the previous
model to a dual sine-Gordon model with purely short-ran
interactions. An adaptation of the treatment in Ref. 36 to t
case allows some simplifications.

Let us start with the identity

e2(b/2)*AgduAgdv[s(u)2K(u)](1/D2)[s(v)2K(v)]

5~det8D2!

3E Df8e2(1/2b)*duAgDfDfe2 i *duAgf(u)[s(u)2K(u)] .

~15!

Fixing the topology of the surface implies that the zero mo
must be eliminated from the path integral, as indicated by
primes in the determinant and the measure.

More concretely, the zero mode is the constant eigenfu
tion f0 of the Laplacian and orthonormal to all other eige
functions. By completeness therefore any configurationf
included in the measure of the path integral in Eq.~15! must
satisfy

^ff0&5f0E duAgf50. ~16!
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With this identity Eq.~14! becomes

Z~b!5E Df8F~f!e2(1/2b)*duAgDfDfe2 i *duAgfK(u)

[E Df8e2H(f), ~17!

where the last identification defines the HamiltonianH(f)
andF(f) is given by

F5 (
N1 ,N2

dN12N2,12

N1!N2!
yN11N2

3E )
m51

N1

dxm
1Ag)

n51

N2

dxn
2Age( ip/3)[f(xm

1)2f(xn
2)]

5 (
N1 ,N2

dN12N2,12

N1N2
S yE duAge( ip/3)if(u) D N1

3S yE duAge(2 ip/3)if(u) D N2

. ~18!

Upon writing the Kronecker delta as

dN12N2,125E
0

1

dx e2 i2px(N12N2212), ~19!

one finds

F~f!5E
0

1

dx e2 i12xe*duAgcos[(p/3)f(u)1x] . ~20!

Inserting this result in Eq.~17! and performing the integra
over thex variable leads to

H~f!5
1

2b S 3

p D 2E duAgDfDf22yE duAgcosf

1
3i

p E duAgKf. ~21!

The last~imaginary! term is a nuisance for practical applic
tions. For the case of the sphere, however, the Gaussian
vature is constant, and we have

E duAgKf5KE duAgf50, ~22!

where we have used Eq.~16!. The sine-Gordon representa
tion for the sphere takes a very simple form:

H~f!5
1

2b S 3

p D 2E duAgDfDf22yE duAgcosf.

~23!

Discretizing this expression for largey will yield a simple
model with integer variablesf(u). A numerical simulation
of this model seems the appropriate way to study the fi
temperature statistical mechanics of defect arrays o
sphere.33,34 We now turn to the limiting case of zero tem
perature.
ur-

e
a

III. ZERO-TEMPERATURE LIMIT

A. General surfaces

The zero-temperature limit requires the determination
the ground state by a minimization of the energy as a fu
tion of both the position and total number of defects. For
minimization with respect to the location of defects we s
that the energy Eq.~13! depends only on the difference be
tween the geometric curvature and the defect density. A
result the defects will arrange themselves to approxima
match the Gaussian curvature determined by the geomet
the confining surface. A complete screening of the Gauss
curvature would yield a crystal with zero elastic energy
zero temperature. An important example is that of a crys
with the symmetry of a perfect icosahedron. The 12 posit
disclinations located at its 12 vertices compensate the Ga
ian curvature. There are 12 fivefold coordinated particles
the vertices, and all the rest are sixfold coordinated.

As for the minimization with respect to total defect num
ber, it is clear that the second term of Eq.~13! is linear with
the number of defects, and so will clearly favor the lowe
possible number of them. The physics of the zero tempe
ture limit is therefore controlled by the competition betwe
the core energy cost of creating a defect and the compen
ing gain from the screening of Gaussian curvature when
fects are allowed to proliferate.

B. Spherical crystal

From now on we concentrate on a spherical crystal. Si
the sphere has Euler characteristic 2~genus 0! the chargesqi
of a set of disclinations must satisfy

E d2xAg~x!s~x!54p→(
i 51

N

qi512. ~24!

This implies that, even at zero temperature, a sphere con
at least 12 excess fivefold disclinations.

To evaluate the free energy Eq.~11! we compute first the
inverse square-Laplacian operator on a sphere of radiusR,

1

4p
x~ua,fa;ub,fb!5

1

D2

5R2(
l 51

`

(
m52 l

l Ym
l ~ua,fa!Ym

l* ~ub,fb!

l 2~ l 11!2
,

~25!

whereYm
l (u,f) are the spherical harmonics and (u,f) are

the usual spherical angles. Thel 50 term does not appear i
the sum, again as a result of the precise topology of
sphere@Eq. ~24!#. The absence of this zero mode leads to
finite sum. The expression Eq.~25! may also be written

x~ua,fa;ub,fb![x~b!5R2(
l 51

`
2l 11

l 2~ l 11!2
Pl~cosb!,

~26!

where

cosb5cosuacosub1sinuasinubcos~fa2fb! ~27!
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gives the lengthb of the geodesic arc connecting (ua,fa)
and (ub,fb) on the sphere. It is shown in Appendix B th
this last sum may be written37

x~ua,fa;ub,fb!5R2S 11E
0

(12cosb)/2

dz
ln z

12zD . ~28!

In Appendix A we discuss the flat-space limit of infini
sphere radius. In Fig. 2 we plotx/R2 @Eq. ~28!# as a function
of the geodesic distanceb. Although the formula Eq.~28! is
simple, it is not particularly suitable for rapid numeric
evaluation. In Appendix C we give alternative expressio
for x better suited to fast numerical evaluation.

The final expression for the total energy of a spheri
crystal with an arbitrary number of disclinations follow
from Eqs.~28! and ~13!:

E~K0!5
pK0

36
R2(

i 51

N

(
j 51

N

qiqjx~u i ,f i ;u j ,f j !1NEcore .

~29!
Our interpretation of the disclination density screeni

out the Gaussian curvature can be made more precise.
that

s~x!5
p

3Ag
(
i 51

N

qid~x,xi !

5
1

R2
1

p

3R2 (
l 51

`

(
m52 l

l

Ym
l ~u,f!(

i 51

N

qiYm
l* ~u i ,f i !

5K~x!1
p

3R2 (
l 51

`

(
m52 l

l

Ym
l ~u,f!(

i 51

N

qiYm
l* ~u i ,f i !,

~30!

where the topological constraint Eq.~24! has been used. Thi
last identity makes it clear that the set of equations

(
i 51

N

qiYm
l ~u i ,f i !50, ~31!

for all l>1 and allm, is the condition that the disclinatio
density exactly matches the Gaussian curvature. Because

FIG. 2. Plot ofx/R2 as a function of the geodesic angleb. Only
the intervalbP@0,p# is plotted.
s

l

ote

t is

difficult to imagine how discrete disclination charges cou
exactly cancel a smooth background Gaussian curvature
cannot expect that Eq.~31! will be satisfied in general for al
values ofl. We will, however, give examples where this s
of equations is partially satisfied. It is easy to see, in fact, t
in the limit of vanishing core energies, a configuration
defects satisfying Eq.~31! is an absolute minimum of the
energy Eq.~29!, since the latter can be rewritten as

E5
p2K0

9
R2(

l 51

`

(
m52 l

l U(
i 51

N

qiYm
l ~u i ,f i !U2

l 2~ l 11!2
1NEcore .

~32!

Equation ~31! then implies, forEcore50, that the energy
attains its minimum value of 0.

Finally, we note that an equivalent expression for Eq.~29!
is given by

E5
pK0

36
R2(

l 51

`
2l 11

l 2~ l 11!2 (
i 51

N

(
j 51

N

qiqj Pl~cosb i j !1NEcore .

~33!

Equations~32! and ~29! are useful because they express t
total energy as a sum of individuall-mode contributions

E5(
l 51

`

El , ~34!

with the order of magnitude of eachl-mode coefficient being
roughly

El;
2l 11

l 2~ l 11!2
. ~35!

By considering increasingly exotic arrangements of defe
we might hope to satisfy Eq.~31! for more and more lowl
modes. If we do not enhance the large-l contributions and do
not pay too large a price in defect core energy, then the t
energy will be small.

IV. LARGE CORE ENERGIES: ICOSAHEDRAL LATTICE

In the limit of large core energies the creation of ad
tional defects will be strongly penalized and the sphere w
contain only the minimum allowed 12 positive disclination
From symmetry considerations it is a good ansatz to ass
that these 12 disclinations minimize the repulsivex potential
acting between them by forming an icosahedronI.6,7 It is not
difficult to check that the icosahedron is in fact an extrem
of the energy Eq.~29!,

]E

]u i
U
I
50,

]E

]f i
U
I
50, ~36!

wherei 51, . . .,12. We have checked numerically that flu
tuations around this extremum increase the energy. Allow
the fluctuations to relax results in fast convergence to
icosahedron. Our numerical minimization gives the icosa
dron as a global minimum. Thus our model successfully p
dicts an icosahedron minimum in the case where just
disclinations are allowed.
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From Eq.~32! the energy is a function of the quantity

Vm
l ~I!5(

i 51

12

Ym
l ~u i ,f i !, m52 l , . . . ,l , ~37!

where (u i ,f i) i 51, . . . ,12 are particular coordinates for a
icosahedronI on the sphere. This solution is obviously in
variant under the full icosahedral group plus inversions,Yh
5Y3Ci . SinceY is contained inSO(3), we canconstruct a
representation ofY out of the irreducible representations
SO(3). Wehave

(
m852 l

l

Dmm8
l

~gY!Vm8
l

51•Vm
l , ~38!

wheregY is any element belonging toY. That is,Vm
l is a

singlet of the icosahedral groupY. This in turn means that if
the trivial representation~the so-calledA representation! of
the icosahedral group is not contained as an induced re
sentation from the full rotational group, then Eq.~31! is ex-
actly satisfied for any 12 disclinations forming an icosah
dron,

Vm
l 5(

i
Ym

l ~u i ,f i !50, m52 l , . . . ,l . ~39!

It remains to identify those values ofl which contain the
trivial representation. This is easily answered from an ana
sis of the characters of the group. The number of triv
representationsnA contained in thel th representation o
SO(3) is given by

nA~ l !5
1

60F 2l 11112

sinH S l 1
1

2D 2p

5 J
sinS p

5 D

112

sinH S l 1
1

2D 4p

5 J
sinS 2p

5 D 120

sinH S l 1
1

2D 2p

3 J
sinS p

3 D

115 sinH S l 1
1

2DpJ G , ~40!

which is nonzero forl 56,10,12,16 and all evenl, l .16.38

Note that Eq.~39! is satisfied for alll-odd modes, as follows
from applying the inversion operatorI, the generator of the
Ci subgroup ofYh .

The icosahedral solution screens out the Gaussian cu
ture very effectively. Equation~31! is partially satisfied, par-
ticularly for low l. The icosahedral lattice allows for nonze
contributions for only three (l 56,10,12) of the first 15 pu-
tative contributions in Eq.~30!. A numerical evaluation gives
the energy of an icosahedronEI as

EI50.604S pK0

36
R2D112Ecore , ~41!
re-

-

-
l

a-

whereEcore is the core energy of a single disclination. I
precise value is nonuniversal and depends on short dist
details of the microscopic pair potential. The coefficient
pK0R2/36 is universal, independent of short-distance pro
erties. Let us study it in more detail. In Table I we show t
relative contribution from eachl mode. It is apparent that th
first allowed nonzero contributionl 56 accounts for almos
80% of the total energy of the icosahedron. Note also
relatively rapid convergence of the expansion; truncating
to the l 5100 mode gives a result which differs by less th
0.2% from the actual result, Eq.~41!. It is remarkable how
much the energy would be reduced by canceling out thl
56 mode without further enhancing higherl modes.

V. SMALL CORE ENERGIES: PROLIFERATION
OF DEFECTS

If the defect core energies are small then the elastic
ergy may be reduced by creating additional defects. The
pological constraint Eq.~24! requires that additional defect
appear in pairs of opposite charge. The challenge now i
understand and study the different possible distributions
these charges and the reduction in energy that those b
about when compared with the pure icosahedral case.
general form of the energy is, similarly to Eq.~41!,

E5C
pK0a2

36 S R

a D 2

1NEcore , ~42!

where we introduce theC coefficient as a convenient param
etrization of the elastic part of the energy. In the limitR/a
→`, wherea is the particle spacing, we expect grain boun
aries containingN;R/a dislocations emerging from eac
disclination. Hence the elastic term willalways dominate
over the core energy term in this limit. The critical sphe
radiusR5Rc above which long-range elastic energies dom
nate is given byRc;const(36Ecore /pK0a2)a.

If the total number of defects is large, an unconstrain
minimization of Eq. ~29! becomes an involved numerica
problem. Instead of pursuing this further, we develop diff
ent approximations that allow us to tackle the case of a la
number of defects while still capturing the most importa
features of the problem.

With results for a particular defect ansatz expressed a
Eq. ~42!, we need to determine the minimum distance
closest approach of neighboring plus-minus defect pa

TABLE I. The first column is the particular mode considere
El

I is the contribution of thel mode to the total energy andEt
I the

running sum after adding all modes less than or equal tol. For
convenience we setEcore50 andpK0R2/3651 in this table.

l El
I Et

I l El
I Et

I

6 0.4669 0.4669 30 0.0017 0.5925
10 0.0329 0.4999 40 0.0012 0.5975
12 0.0507 0.5506 50 0.0004 0.5997
16 0.0129 0.5635 80 0.0001 0.6025
18 0.0125 0.5760 100 331025 0.6031
20 0.0004 0.5764 ` 0 0.6043
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Upon identifying this distance witha, we can obtain the tota
number of particlesM embodied in the defect configuratio
via the identification

M'
8p

A3a2
R2. ~43!

A. Icosahedral approximation

Let us add new sets of 12 defects, each set lying on
vertices of an icosahedron. That is, we consider Eq.~29!, not
as a function of individual defects, but as a function of ico
hedra of defects. From the mathematical arguments in
previous section, we can guarantee that thel modes which
vanish in the expansion Eq.~32! for the pure icosahedra
case, will continue to do so within this approach. Since m
of the low l modes, which dominate the energy, vanish
any icosahedron, we expect that the Euler angles of the
of icosahedra may be arranged to cancel the remaining
vanishing low-l contributions. Our hope is that the energ
bounds derived from this constrained problem provide a r
sonable picture of the full unconstrained model.

If there aren1
I icosahedra of fives, andn2

I icosahedra of
sevens, the topological constraint Eq.~24! becomes

n1
I 2n2

I 51. ~44!

For a given configuration the energy is given by

EnI5CnI
pK0

36
R2112~2n121!Ecore , ~45!

where theC coefficient is a function of 3(n1
I 1n2

I 21)
56n1

I variables. Let us first choose a distinguished icosa
dron with explicit coordinates

~u,f![H ~0,any!,S g,
2pk

5 D
0<k<4

,S p2g,
p

5

1
2pk

5 D
0<k<4

,~p,any!J , ~46!

where g5cos21(1/A5). Each of the remaining icosahed
may then be parametrized by the set of three Euler an
necessary to bring them to the position described by
~46!.

The problem is to minimize over this set of Euler angle
We perform this minimization using a direction s
algorithm.39 From the results shown in Table II, it is clea
that the energy coefficientC is reduced by the addition o
defects. It is therefore favorable to form defects for a su
ciently small core energy.

Another important issue is the precise arrangement of
fects in the ground state. Forn1,5 we find the remarkable
appearance of finite grain boundaries—finite strings of in
laced fives and sevens, as depicted schematically in Fig
These grain boundaries are not always perfectly linear,
though one does find alternating disclination chains cluste
along geodesic line segments. Occasionally one finds d
cations, i.e., disclination pairs, displaced from this geode
by a few lattice spacings. The ground state we find, for
casen154, is depicted in Fig. 4, and nicely illustrates th
e
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above features. Note that although the local structure of th
grain boundaries mimics that expected for flat space, the
vature of the sphere allows these linear structures to te
nate, consistent with the discussion in the Introduction.

For the casen155 we still observe finite grain bound
aries, but they show a tendency to spiral. This tendency
comes more pronounced for the casen156, where the finite
strings evolve into more complicated structures.

The picture emerging then within the icosahedral appro
mation is that small core energies favor a proliferation
defects. Below a critical number of defects of order 100,
ground state is well described by 12 finite grain boundar
each one seeded by a defect in the original icosahed
Above the critical number of defects the finite grain boun
aries tend to branch and develop tentacles: the linear cha
ter of the pattern is lost.

B. String dominated regime

In this section we examine the relative orientation of t
finite grain boundaries discussed in the previous section.
ansatz is provided by a solution having the form depicted
Fig. 5. There is an axis of threefold rotational (C3) symme-
try at the center of the triangle formed by the geodesics c
necting the three nearest-neighbor disclinations of the ico
hedral array which forms the starting point of this variation
ansatz. Finite grain boundaries are constructed by adding
fects along the geodesic which joins the purely icosahe
sites with the center ofC3 symmetry. The midpoints of the
grain boundaries form an icosahedron. The only free par
eter in the model is the lattice spacing. This parameter m
be fixed by minimizing the energy with respect to the latti
spacing,

TABLE II. Table of results for the minimum-energy coefficien
as defined in Eq.~45!, obtained within the icosahedral approxim
tion as a function of the numbern1

I of icosahedral clusters of posi
tive charge. The penultimate column gives the average geod
distance between neighboring charges. The last column gives
corresponding total number of particles, as estimated from Eq.~43!.

n1
I Total CnIt

a/R M

1 12 0.60 g 12
2 36 0.45 0.09 1791
3 60 0.38 0.06 4031
4 84 0.34 0.03 16124
5 108 0.30 0.02 36279
6 132 0.257 0.02 36279

FIG. 3. Particle configurations near a finite grain bounda
Circles represent five-coordinated sites and squares represent s
coordinated sites.
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dE~a!

da
50. ~47!

The interpretation of this extremal lattice spacing is d
cussed in Sec. VI.

The results from this minimization are shown in Table I
When the total number of defects is less than a critical va
~approximately 110! this C3 solution has energies slightl
lower than those found within the icosahedral approxim
tion. This is remarkable if one recalls that thisC3-symmetric
solution is obtained by minimizing with respect to onlyone
parameter, the lattice spacing. The results obtained from
icosahedral approximation itself are in rough agreement w
this very simple ansatz, as apparent from Fig. 6. Table
also makes clear that there is little gain in energy when
total number of defects exceeds the critical value, even in
limit of a very large number of defects. This is consiste
with the picture that purely linear finite grain boundaries a
replaced by more complicated structures when the numbe
defects is large.

A more sophisticated treatment ofstrings, motivated by
the discussion of dislocations in the Introduction, wou
build the grain boundaries from disclination dipoles w

FIG. 4. Six views of the ground-state configuration for t
icosahedral solution with seven sets of icosahedral defect clus
The top figure in each column shows the north and south p
respectively. The subsequent views are obtained by successive
body 120° rotations of the entire sphere, using the right-hand r
about an axis running from the north pole to the south pole.
-

e

-

he
h
II
e
e

t
e
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fixed size and then allow a variable spacing between th
dislocations. We hope to pursue this approach in a fut
publication.

C. Large number of defects

We now have conclusive evidence that additional defe
can lower the total energy of the system for small core
ergies. Defects will then proliferate and form highly comp

rs.
e,
gid
e,

FIG. 5. Six views of the ground-state configuration for theC3

solution with a large number of defects. The views are related a
Fig. 4.

TABLE III. The minimum energy coefficient@see Eq.~45!# for
the C3 solution, as a function of the total number of defects. T
last column gives the lattice spacinga as determined from Eq.~47!.

Total C a

12 0.60 g
36 0.44 0.121
60 0.37 0.085
84 0.34 0.062
108 0.32 0.051
132 0.31 0.042
252 0.28 0.024
492 0.26 0.012
972 0.255 0.006



i
e.
tu
o
ec

s
on
n
in
in
ca
m

ar-
he-
ave

n,

g
nds
t
tic

uc-
, as

in

u
4.

o

-
c-
lue

ur
e

PRB 62 8747INTERACTING TOPOLOGICAL DEFECTS ON FROZEN . . .
cated patterns. A detailed investigation of this regime is
progress, with complete results to be presented elsewher
this section we present one example of a branched struc
that has lower energy than any of the linear structures c
sidered so far. The structure we analyze consists of def
arranged in star patterns, orpentagonal buttonsin the termi-
nology of Toomre12 ~see Fig. 7!. To study these structure
we construct rings of five disclinations forming a pentag
with its center at the position of the icosahedron, as show
Fig. 7. As free parameters we leave the radius of each r
and the angle each ring forms with a given geodesic join
the center of a star to that of its neighbor. The topologi
constraint Eq.~24! implies that there must be the same nu
ber of rings of fives as sevens.

FIG. 6. Six views of the ground-state configuration for the s
perposition of theC3 solution and the icosahedral solution Fig.
The views are related as in Fig. 4.

FIG. 7. Example of a simple star defect with two rings, one
fives ~circles! and one of sevens~squares!.
n
In
re

n-
ts

in
g,
g
l

-

From Table IV we see the energy for 132 defects is m
ginally lower than the corresponding value for the icosa
dral approximation. For more defects the star clusters h
significantly lower energy than theC3 solution. It is remark-
able that all the disclinations in this ground-state solutio
other than the 12 seed disclinations, bind to formradial dis-
locations as illustrated in Fig. 8!. Furthermore, the relative
orientation of the different rings conform to a rhombic tilin
of the sphere consisting of 30 completely regular diamo
~the rhombic tricontahedron!, as shown in the bottom-lef
picture of Fig. 8. Note that by minimizing the defect elas
energy we obtain adynamically generatedparticle spacing,
for a fixed sphere radius, which optimizes the given str
ture. Further investigation of these pentagonal buttons
well as other more involved structures, will be presented
the future.

-

f

TABLE IV. Table of results for the minimum-energy coeffi
cient, as defined in Eq.~45!, obtained within star defects as a fun
tion of the total number of defects. The last column gives the va
of the particle spacinga.

Total C a/R

132 0.255 0.04
252 0.170 0.025

FIG. 8. Six views of the ground-state configuration for fo
rings ofpentagonal buttons. The views are related as in Fig. 4. Th
bottom-left view shows the associated rhombic tiling~the rhombic
tricontahedron! of the sphere.



he
ts
it

n
lu

ly
tu
on
u

in
ur
t-
ol

12
nl
o
a
d

he
tio

a
e
en
fo

tic
tic
-
re

g,
lue
to
e

ge
be
re

f

ffi-
f
ed,

e

qs.

s
all
Eq.
et
ice

-
ce

in-

re
c. V

for
ility.

th

.
a

or
d-

8748 PRB 62MARK J. BOWICK, DAVID R. NELSON, AND ALEX TRAVESSET
It is natural, at this point, to ponder the nature of t
ground state in the limit of an infinite number of defec
with vanishing core energy or, equivalently, in the lim
R/a→`. We have, in fact, already addressed this questio
Sec. III B, where we proved that the only zero energy so
tion is an arrangement of defects$qi ,(u i ,f i)% i 51, . . . satis-
fying Eq. ~31!. In this case the defect density would be ful
rotational invariant and screen out the Gaussian curva
completely. Currently we find solutions that seem to be c
verging to this limiting case, but it is open as to how acc
rately one can achieve the desired limitC50.

VI. INSTABILITIES OF ICOSAHEDRAL LATTICES

Our discussion so far has focused entirely on analyz
the distribution of topological defects on the sphere. We t
our attention now to the implications for the underlying la
tice structure. We thus take into account the regular sixf
coordinated nodes as well as the defects and examine
resultant lattices.

In the limit of large core energies our model predicts
disclinations forming an icosahedron. Lattices whose o
defects are 12 positive disclinations sitting at the vertices
an icosahedron may be constructed easily, since they
characterized by the path between two nearest-neighbor
clinations. For a type (n,m) lattice this path consists ofn
straight steps from a given disclination, a 120° turn, and t
m more straight steps to the nearest-neighbor disclina
~see Fig. 9!. The total number of particlesM within this
(n,m) ~icosadeltahedral! lattice is

M510~m21n21mn!12. ~48!

Within our model, the energy for these configurations h
been computed in Eq.~41!. Since the core energy is sensitiv
to the short-distances properties of the model, differ
icosadeltahedral lattices will have different energies, even
an arbitrarily large number of particles.

Since most of the triangles in an icosadeltahedral lat
cannot be equilateral there is no uniquely defined lat
spacing. An average lattice spacinga can, however, be esti
mated. On the sphere, the distance between two nea
neighbor disclinations is given byRg @g5cos21(1/A5)#.
For the (n,0) case we have the relationRg5n3a, and
therefore

a5
Rg

n
. ~49!

FIG. 9. The construction of a type~n,m! icosadeltahedral lattice
The filled circles indicate two nearest-neighbor fivefold disclin
tions.
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Any other sensible way of estimating the lattice spacin
such as the size of a disclination dipole, should give a va
of the same order. In the following we restrict ourselves
(n,0) lattices for simplicity, but it is easy to generalize th
formulas to arbitrary (n,m) icosadeltahedral lattices.

From previous sections we know that there will be a ran
of core energies for which the icosahedral lattices will
unstable to the formation of defects. To visualize this mo
clearly, let us take theC3 solution of Sec. V B for the case o
finite grain boundaries having just three defects~a 5-7-5 con-
figuration!, and plot theC coefficient as a function of the
lattice spacing. The result is shown in Fig. 10. For su
ciently large lattice spacings theC coefficient exceeds that o
a single icosahedral lattice. As the lattice spacing is reduc
there is a critical particle spacinga* , such that theC coef-
ficient of theC3 solution becomes smaller than that of th
pure icosahedral lattice. Restricting ourselves to the (n,0)
icosadeltahedral configurations, we find from Fig. 10, E
~49!, and~48!

a* /R;0.2→n~a* !55.5→M ~a* !5305, ~50!

where we explicitly display the dependence ona* . This
result implies that the pure (n,0) icosadeltahedral lattice i
unstable to the formation of defects for sufficiently sm
core energies and more than 316 particles. Alternatively,
~43! gives M5363, consistent with the estimate above. L
us point out that the minimum of the energy occurs at latt
spacingac50.121~number of particlesMc51256). For lat-
tice spacings belowac the disclinations will prefer to remain
separated by a distanceac . This is accomplished by string
ing sixfold coordinated particles between defects. Sin
lower energy configurations may be formed by allowing
terpolating dislocations instead, we regardMc as the maxi-
mum number of particles for which this particular structu
is stable. The particle numbers quoted in the tables of Se
should be interpreted as the correspondingMc .

This shows that the minimum of the energy is attained
lattice spacings smaller than those necessary for stab
Finally, in the limit of vanishing lattice spacing, theC3 so-
lution becomes equivalent to a pure icosahedron, and boC
coefficients merge.

-

FIG. 10. TheC coefficient as a function of the lattice spacing f
the C3 solution corresponding to a three length finite grain boun
ary. The straight line corresponds to theC coefficient for a pure
icosahedron.
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VII. DISCUSSION AND CONCLUSIONS

A. Thomson problem

The Thomson problem can be stated as finding the gro
state of an arbitrary number of positive charges interac
through the usual 3d Coulomb potential, but with the furthe
constraint that these charges must lie on a sphere. Since
problem falls within the universality class of our model
serves as a good testing ground.

The Thomson problem has proven to be extremely d
cult to analyze numerically, basically because of the la
number of metastable states. Early analyses10 showed that
the ground state of the system for small numbers of cha
was an icosadeltahedral lattice. Since a small numbe
charges corresponds to a large particle spacing this foll
from our model as well. Some rules were also conjecture
decide on the true ground state when several icosadeltah
lattices were possible for a given number of charges. Th
rules could be examined within our model provided we
able to isolate the dependence of the core energy on
lattice type.

Subsequent numerical work11 provided convincing evi-
dence that the ground state, for a sufficiently large numbe
charges, does not have icosahedral symmetry. The cri
number of charges for which additional defects arise se
to be around 400,12 which is in agreement with our results.
is also found that these additional defects first arrange th
selves into finite grain boundaries,12 as seen in our model
For more charges the ground state in the Thomson prob
becomes very complex and the true ground state is
known. New configurations~one of the simplest beingpen-
tagonal buttons! appear to be energetically favorable in t
early stages of this limit. This observation12 is in agreement
with our model as well.

In the work of Ref. 12~see also Ref. 13! it is also ob-
served that the ground-state energy for a large numbe
charges seems to converge to the energy that one would
tain in the unrealizable situation that all the charges are
cated on equilateral triangles. This limit corresponds to
defect density completely screening out the Gaussian cu
ture. The defect density therefore satisfies Eq.~31!, which we
proved is the absolute minimum of our model in the limit
vanishing core energy. We think that the comparison of
model with the Thomson problem is very promising and
currently underway.

B. Outlook

In this paper our first task was to propose and study
effective free energy for disclination defects in particle
rays constrained to move on the surface of a tw
dimensional sphere. The finite-temperature problem does
seem to be analytically solvable but we propose a discret
Laplacian sine-Gordon model amenable to direct numer
methods. The structure of the ground state, however, is m
more amenable to analytic methods. In this paper we foun
necessary to make some simplifying ansatz, with subseq
numerical evaluation. The ground-state structure depend
the ratio of disclination core energies to the Young’s mod
lus. On the sphere topology demands there be a total ex
disclinicity charge of 12. This excess charge can seed dif
ent ground-state structures, compared to flat space. For
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core energies@or R/a<36Ecore /(pK0a2)] the disclinations
arrange themselves to form an icosahedron. For intermed
core energies@i.e., R/a>36Ecore /(pK0a2)] grain bound-
aries develop which terminate freely within the medium. T
regime of still lower core energies, corresponding toR/a
→`, was found to be surprisingly complex—interesting d
fect arrangements make their appearance.

Currently we are actively investigating the regime
small or vanishing defect core energy, including a detai
comparison of the predictions of our model with numeric
results from the Thomson problem. A rigorous determinat
of the ground state for the Thomson problem is presen
computationally prohibitive when the particle numbers e
ceedO(500). Our methods enable us to reach particle nu
bers ofO(10,000) or more with the same computational e
fort. Finally we believe that the rich symmetry structu
underlying Eq.~31! may provide a direct analytic determina
tion of the exact ground state in the limit of a large numb
of particles and further work in this direction is certain
warranted.
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APPENDIX A: INFINITE RADIUS LIMIT

In this Appendix we discuss in more detail the largeR
limit of the energy function Eq.~29!. It is readily seen from
dimensional analysis and linearity that thex function of Eq.
~28! scales likeR2.

Now consider a single isolated disclinationq1 located at
point P1 on the sphere, together with a single dislocatio
with Burgers vectorb2, located at pointP2. From Eq.~29!
the total energy is

E5
pK0

36 Fq1
2R21ub2uq1f ~P1 ,P2!R1ub2u2lnS R

2aD G ,
~A1!

where f (P1 ,P2) is a function whose explicit form does no
matter for the present analysis. The quadraticR dependence
comes from the isolated disclination, the linearR dependence
comes from the dislocation-disclination interaction and
logarithmic term comes from the dislocation energy. In t
infinite-radius limit of the sphere we see therefore that
various defect energies scale identically to those in a
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space system of sizeR.27,33 The nature of the ground state
however, is dramatically changed.

APPENDIX B: BIHARMONIC OPERATOR ON
THE SPHERE

The evaluation of the inverse biharmonic operator on
sphere is rather tedious. We outline the steps for a sphe
unit radius. The simplest approach is to first compute
inverse harmonic operator. The sum overm is performed as
in Eq. ~26!. The result involves only Legendre polynomia
and is

G~x![
1

4pD
5(

l 50

` S 1

l 11
1

1

l D Pl~x!. ~B1!

The sums overl may be performed using the identities

(
l 50

`
1

l 11
Pl~x!5E

0

1

du
1

~122ux1u2!1/2
~B2!

and

(
l 51

`
1

l
Pl~x!5 lim

e→0
S E

e

t

du
1

u~122ux1u2!1/2
2E

e

1du

u D .

~B3!

The resultant integrals are readily evaluated, yielding

G~x!52 lnS 12x

2 D21. ~B4!
o

,

e
of
e

The inverse biharmonic operator now follows from the res
Dx(x)5G(x).

APPENDIX C: EVALUATION OF x

Performing a trivial integration by parts in Eq.~28!, we
get

x~b!511t@ ln~ t !21#1E
0

t

dz
z ln z

12z
, ~C1!

with t5(12cosb)/2. The last integral may be expressed v
a change of variables as

E
0

x

dz
z ln z

12z
52E

u

`

dx
xe2x

ex21
, ~C2!

with u5 ln(1/t). Finally one can expand for smallu and large
u as

E
u

` xe2x

ex21
55

p2

6
2S u2

u2

4
1 (

k51
Bk

u2k11

~2k11!! D 2eu~u11!

(
n51

S u1
1

n11D e2(n11)u

n11
,

~C3!

whereBk are the Bernoulli numbers. These expansions
very useful as they allow a numerical evaluation ofx with
arbitrary precision with negligible computational time.
fact we save, on average, a factor of 2000 in time compa
to a direct evaluation of the integral using Romberg integ
tion.
.
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