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We propose and analyze an effective free energy describing the physics of disclination defects in particle
arrays constrained to move on an arbitrary two-dimensional surface. At finite temperature the physics of
interacting disclinations is mapped to a Laplacian sine-Gordon Hamiltonian suitable for numerical simulations.
We discuss general features of the ground state and thereafter specialize to the spherical case. The ground state
is analyzed as a function of the ratio of the defect core energy to the Young’s modulus. We argue that the core
energy contribution becomes less and less important in the Renid, whereR is the radius of the sphere and
a is the particle spacing. For large core energies there are 12 disclinations forming an icosahedron. For
intermediate core energies unusual finite-length grain boundaries are preferred. The complicated regime of
small core energies, appropriate to the liRia— =, is also addressed. Finally we discuss the application of
our results to the classic Thomson problem of finding the ground state of electrons distributed on a two sphere.

[. INTRODUCTION strains associated with 12 extra disclinations in the Abriko-
sov phasé&. Vortices in a thin-film superconductor behave

The theory of two-dimensional melting of essentially pla- like particles interacting with a repulsive logarithmic pair
nar materials(monolayer$ is a rich and well-developed potential. Another context in which crystalline ground states
subject!? An interesting aspect of melting in this low dimen- on a sphere arise is the so-callédomson problemwhere
sion is that both the crystalline to hexatic and hexatic to fluidthe vortices are replaced by particles interacting with a re-
transitions can be driven by the sequential liberation ofpulsive 1f potential®~'* Our own interest in this class of
pointlike topological defects—dislocations in the former problems was stimulated by the beautiful work of Alar
case and disclinations in the latter. It is clearly importantToomrel? which we discuss latefand which hopefully will
therefore to have a thorough understanding of the statisticdle described by Toomre himself one dayfoomre’s ideas
mechanics of interacting topological defects. On the plane alilso play a key role in a recent paper on the Thomson prob-
topological defects are bound at zero temperature, but olem by Peez-Garrido and Mooré& For a discussion of dis-
manifolds with more complicated topology excess free dis<lination and dislocation defects for disklike configurations
clinations must exist even at zero temperature. of electrons in the plane see Ref. 14.

The statistical mechanics of particles confined to frozen Crystals on a negatively curved backgrouinyperbolic
surfaces of constant positive and negative curvature was dispacesare also of considerable interé3tThey appear in a
cussed, e.g., in Refs. 3 and 4. It was argued that regions ofariety of contexts such as two-dimensional analogs of the
positive and negative curvature would promote the formatiorirustration associated with tetrahedral packing in three-
of unpaired disclinations, and that these might be screenedimensional flat spa¢® and certain aspects of surface
by clouds of dislocations. At low temperature, it was sug-physics’~'?and accompanying defect formation. The struc-
gested that the anisotropic interaction between these screetwre of the discrete lattices associated with the Lobachevsky
ing dislocations would lead them to condense into grainplaneH2 (Ref. 20 are complex and would necessitate an
boundaries. The physics of particles on a quenatlaedom  interesting generalization of our formalism beyond the scope
topography was discussed in Ref. 5. of the present paper. On the other hand, the physics of topo-

The simplest example of a surface with positive Gaussiarogical defects in crystals ominimalsurfaces can be directly
curvature is the sphere. Dodgson studied the ground state afldressed with our methods. Such crystals arise in the poly-
the Abrikosov flux lattice in a model thin-film supercon- merization of fluid membranéssuch as the bicontinuous
ductor on a spheré&subject to a field radiating from a mag- (plumber’s nightmarg phase of amphiphilic bilayers. The
netic monopole at the cenjerand found evidence for 12 excess sevenfold disclinicity required in these hyperbolic
fivefold disclination defects at the vertices of an icosahedrorspaces will certainly give rise to novel defect arrays which
in an otherwise six-coordinated crystalline environnfent. we hope to study in the near future.

This defect configuration is similar to one proposed by The study of melting and the nature of the ground state on
Lubensky and collaborators for lipid bilayer vesicles in thecurved manifolds may be a good testing ground for under-
hexatic phasé except that in hexatics the disclination energy standing the new features that arise from the topological de-
is reduced by screening due to an equilibrium concentratioffiects required for particle arrays on surfaces with nontrivial

of unbound dislocations. Later, Dodgson and Moore protopologies. Our approach is to work directly with the defects

posed adding dislocations to the ground state of a sufficientlthemselves, and treat the particles within continuum elastic
large vortex crystal in a spherical geometry to screen out théheory. This approach is more general than, say, a direct
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joining the fives to the sevens appear. Relaxation of the dis-
clination elastic stresses in this way occurs at a price—the
core energies associated with the extra dislocations lead to an
additional term in the energy which diverges linearly with
system sizeR, as compared to thB? divergence associated
with an unscreened disclinatich.

A situation reminiscent of these flat space experiments
occurs on surfaces of nonzero Gaussian curvature, e.g., the
sphere. Although the Gaussian curvature of the sphere ap-
proximately compensates the strains associated with isolated
disclinations, for small core energiésr, equivalently, large
sphere radius compared to the particle sp3adincan still be
favorable to introduce extra screening dislocations into the
ground state.

To see how screening of an isolated fivefold disclination
by dislocations comes out on a sphere, it is helpful to first
consider what happens in flat space. A fivefold disclination
can be created by removing a wedge of material subtending

FIG. 1. Schematic of an isolated threefold disclination, in anan angles=2=/6 and then deforming the remaining material
approximately four-coordinated medium. The elastic stress in théo close the gapThe disclination in the square lattice of Fig.
vicinity of the isolated disclination is relieved by the formation of a 1 was made by removing ar24=90° wedge). The resulting
screening cloud of dislocations. stresses were calculated, e.g., in Ref. 27. We use polar coor-
dinatesr and ¢, measured from the center of the disclination.

simulation of particles interacting with a logarithmic or 1/ If w and\ are the material elastic constants, the stress tensor

potential, because all details of the pair potential are embodS dominated by, , where(neglecting logarithmic correc-
ied in the elastic constants mediating the interaction betweelions due to boundary effegts

defects. By eliminating explicit reference to the particles

themselves, we also greatly reduce the number of degrees of _ Kos 1
freedom needed to study the ground state. As we shall see, T~ 4 @
the effective Hamiltonian used here, in which defects such as

grain boundaries and dislocations are built up out of elemenandK, the Young’s modulus, is related to the Lawmeffi-
tary disclinations, leads to a variety of interesting structuresients by

not encountered in the plane.

The statistical mechanics of monolayers on curved sur- Au(p+N)
faces such as the sphere may also be viewed as the infinite 0:2,M—+)\
bending rigidity limit of membranes with a spherical topol-
ogy. Our investjgation may therefore be ponsidered a preludgpte thate 4, is proportional to the disclination charge
to the careful incorporation of defects in the study of theThis approximately constant stress arises from the stretching
phase transitions of, e.g., membranes composed of lipig material required to close the gap engendered by the miss-
bilayers: _ , ing wedge, and leads to tHe? divergence in disclination

It is useful to review expectations for Iow—temperatureenergy with system siz&%’ Consider now the fate of a

configurations of crystals in flat spat®.Although the _ tightly bound dislocation paifthe Burgers’ vectors are equal
ground state is believed to be defect free, one can certainl nd opposite withb|=a) placed in the stress field of this

consider the response to adding a single excess disclinatiof. . " ".
b 9 9 isclination. The stres# ,, creates a Peach-Kohler force

The stresses induced by such a disclination are very hig hich tries to tear the disiocati ir anZhy f
and the energy can be lowered by polarizing the surrounding. Ich tries to tear the dislocation pair ap € assume for
implicity a purely radial separatiakr between dislocations

ngmlu.m into dislocation pairs, as indicated schematically |nWith Burg_ers’ vectors _in the tangen;ial dire;tion. The energy
When interactions between dislocations are taken into ach the pair then_con_ssts_ Oﬂ% (Eq is the d'S|O(.:at'°n core
count one might expect them to organize into grain bound-energy’ a Iogar|thm!c binding energy anq a Ilrlﬁzar-Pe”ach-
aries(i.e., lines of dislocations with Burgers vectors orientedKOhler. term (proporuonal toog4) which t.”e? to “ionize
perpendicular to the linggo minimize the energy even fur- the pair, similar to the effect of an electric field on a charge
ther. Experiments on smectic liquid crystal films with tilted dipole,
moleculed’ (the tilt is used to force in an extra disclinatjon
reveal a pattern of five jagged grain boundaries radiating
outward, consistent with this picture. Computer simulations
with periodic boundary conditions have been used to study
the relaxation of a disclination quartéwo fives and two The energy can be lowered onde exceedsAr* ~b/s~a
seveny from an initial configuration where these defects sitand the pair separaté$.0One of the liberated dislocations
on the corners of a very large square in an otherwise sixmoves off to infinity while the other remains to help screen
coordinated mediurf®, After the relaxation, grain boundaries the disclination. As more and more dislocations are created

@
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Epair(Ar) = 2Ed+ ?In

Ar

Kob
a —ES(AI'). (3)
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in this way, the stress is reduced until the dislocation densitypoundaries eventually terminate when the dislocations be-
ng in an annulus of widthdr at radiusr from the disclination come sufficiently dilute. The total number of dislocations
is?8 contained in them grain boundaries is approximately

s\ 1
nd(r)w(z = 4 Nd~§s(x). (10

Note that if these dislocations collapse to form a single linear ) o ]
grain boundary radiating out from the disclination, the angu-Our calculations support this picture, and we find that the
lar deficits is related to the spacirigoetween dislocations in €xtra dislocations seem to form grain-boundaries. Remark-
the grain bys~a/I. If the dislocations forrm grain bound- ~ @bly, and in contrast to flat space, these grain boundaries do
aries, the spacing will bé~amvs. In this paper we shall indeed stop or start |n5|de the crystalline medlum. Our re-
study the casesi=2 andm=5. sults also hint at a branching pattern of grain-boundary net-
The analysis sketched above is easily adapted to thworks (each.radiating from a disclinatipnreminiscent of
curved surface of a sphere of radiRsThe angular deficis ~ those found in Ref. 24.
associated with a circuit around a dislocation in flat space The paper is organized as follows. In Sec. Il we develop a
can now be compensated by the nonzero Gaussian curvatd@malism whose basic degrees of freedom are the defects
1/R?. Let us assume that a fivefold disclination is placed atheémselves, rather than the underlying interacting particles.
the north pole of the sphere. We describe the physics b he particles themselves are treated within continuum elastic

geodesic polar coordinates, ¢b) about this point with metric  €ory. As mentioned above, such a formalism has the ad-
vantage of reducing the number of degrees of freedom as

well as being rather universal in the sense that it applies to a
de?, (5 broad class of interaction potentials. Varying the pair poten-
tial simply corresponds to changing the elastic moduli and
and work in the limitR>a. We expect that the stress is defect core energy of the model. The model has the advan-
controlled by theeffectivedisclination charge inside a circuit tage that defects can move directly to positions which mini-
at fixed geodesic distanaefrom the disclination[see Eq. mize the energy, without the constraints associated with dis-
(13) below], namely clination motion or dislocation climb in a crystalline medium
) r which would attend a particle simulation. Despite its simplic-
D / ity, finite temperature statistical mechanics of this model is
Ser(r)=s J; d(ﬁfodr VoK still not amer?able to a direct analytic solution. A duality
mapping to an equivalent Laplacian sine-Gordon model,
2m (v (r') however, yields a model with short-range interactions whose
=S- ?L Rsin| =|dr lattice version should be straightforward to simulate numeri-
cally.
r In contrast, the limit of zero temperature may be treated
(ﬁ) (6) analytically and we turn to this in the next three sections of
the paper. In particular we discuss the ground state of a
Note thats.(r) decreases with increasimgin the limit of  spherical crystal as a function of defect core energy relative
weak curvaturdR>a, we expect that the stress formdla is  to the combination of elastic constar(téoung’s modulus

r
ds?=dr?+ stinz(ﬁ

R

T
=§—47T Sil’]2

replaced by which determines defect interactions at large distances.
In Sec. VI we shift our attention from defects alone to the
o441 =K Seri(r) @) underlying lattice structure. We first discuss lattices with
¢¢ O 47 icosahedral symmetry. Our formalism applied to this case

predicts the range of core energies for which the lattice is

with a corresponding weakening of the Peach-Kohler forceUnstable to the formation of defects.

gg:.éeﬂgsigﬁgén ]f:]oemant%lélagZtéﬁﬁgﬁovxitg;nszsazigcgagig' th An interesting application for our formalism to tAigom-
ic d . Isclinatl n US€ N&onproblem?™is outlined in Sec. VIl A. The predictions of
stretching required to remove a wedge in flat space is re-

g - our approach are in agreement with existing results where
duqed a_ccordln_g o the m_etr(6). ‘_’V? now expect th_e d'.SIO comparisons are available. A beautiful experimental realiza-
cations inm grain boundaries radiating from a disclination to

exhibit avariable spacing between dislocations tion of the Thomson problem is provided by multielectron
xnibit avari pacing betw ! lons, bubbles trapped in liquid helium at low temperatute®r-

der in electrons confined by a positively charged capacitor

am
I(r)~ . (8) plate to a helium surface has been studied for many years.
Serr(1) Except for capillary wave deformations, crystallization pro-
Note that the spacing diverges st , where ceeds in an essentially flat environment. At high electron

densities, curvature is introduced via an instability to a regu-

5 lar array of “dimples” in the helium surface, each contain-
E@c=00§1§=33-56°- (9)  ing a million electrons or more. Upon increasing the density
of positive charge below the surface further by adding a me-
The angular jumpAs(r)=se¢;/m across the grain bound- tallic tip to the anode, one can form completely submerged
aries thus becomes smaller with increasingand these multielectron spherical bubbles. Typical bubbles contain

le

R
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10°-10 electrons. The outward electrostatic repulsion of the 1
electrons on the inner surface of the helium bubble balances E(Kg)= Kof d>x\g(x)d?yVg(Y[K(X) —s(¥)]—
against the surface tension of the helium interface to produce A Xy
bubbles with diameters in the range 10—100 microns. Results _
for the Thomson problem have implications for trapped mul- XIK(Y) =S)]*+NEcore: (13
tielectron bubbles well below the flat space freezing temperaAlthough it is not essential, we assume for convenience that
ture. the core energies of fivefold and sevenfold disclinations are
identical. The partition function of our model is then

II. FINITE TEMPERATURE 5N+*N_,6X

ZB)= 2

yN+ N
A. Free energy NN. NLINCZ!

As our main interest lies in the study of defects on two- N, N_
dimensional curved surfaces, we need a formalism that deals x| 11 dx; Joll dx;, Jge FEKI - (14)
directly with the defect degrees of freedom themselves. A w=1 v=1

rigorous geometrical derivation of the effective free energyvhereE(K,) is the first term in Eq(13), y is the disclination
for the defects is given in Ref. 31. An equivalent derivationfugacity e PEcore (B is the inverse temperatyreN.. is the
may also be given by integrating out the phonon degrees qha| nymber of fives and sevens, respectively, grig the
freedom from the elastic Hamiltonidfwith the appropriate gyjer characteristic of the surface. For a given microscopic

modifications for a general distribution of defects. The enyiaraction potential botl andK,, are fixed. We shall find it
ergy of a two-dimensional crystal embedded in an arbitrary,sef| however, to regard these as independent parameters
frozen geometry described by a metgg(x) is given by and discuss, in particular, the limits of large and snal,e

compared tdK,a?, wherea is the lattice constant.
Despite its elegant form this model is difficult to solve
analytically. It is, moreover, challenging for direct numerical
Xy simulation because of the long-range interaction embodied in
1/A%—see the explicit form foE(K,) given in Eqs(28) and
X[K(Y)_S(y)]+KAf d2x\/g(x)d2y\g(y) (29) below. An alternative formulation is suggested by the
Laplacian roughening model for flat space meltiig* Di-
rect molecular-dynamics simulations or energy evaluations
[K(y)—s(y)], (11)  of particles interacting with a specified poterfttdf are also
Xy of considerable interest. Since this approach takes the par-
ticles as the primary degrees of freedom, rather than the de-
whereg(x) is the determinant of the metric tens#(x) is  fects, it falls outside the scope of the present paper.
the associated Gaussian curvature, sf)d the disclination
density, B. Sine-Gordon model

1
E=Ko | X GG~ ST

1
X[K(X)—S(X)]X

We now restrict ourselves to the case of spaces with ge-

. N nus zero(Euler characteristiogg=2). We map the previous
S(X)= —— >, qi8(x,X), (12 model to a dual sine-Gordon model with purely short-range
3vg(x) =1 interactions. An adaptation of the treatment in Ref. 36 to this
case allows some simplifications.
with N disclinations located at the sites of an underlying Let us start with the identity

triangulated particle array. The “chargesj; may be posi- o 5
tive or negative. Although we do not restrict the allowed e~ (A2 vgdugdvls(u)~K(W)](I/AT)[s(v) ~K(@)]
values of the charge, we expect the unit charge defects to

dominate for energetic reasons. A plus one charge corre- = (det A?)

sponds to a fivefold coordinated particke five disclination B _

and a minus one charge corresponds to a sevenfold coordi- xf D' e~ M) AuGAGAsa=ifduigh(u)[s(u) =K ()]
nated particlga seven disclination Charges are attracted to

regions oflike-sign Gaussian curvature. (15

The first term of Eq(11) represents a long-range elastic riing the topology of the surface implies that the zero mode

: : : , 32
interaction andK, is the Young’s modulus of Eq2). must be eliminated from the path integral, as indicated by the
The second term in Eq1l) contains a single inverse- primes in the determinant and the measure.

Laplacian operator, which is singular at short distances due ;qre concretely, the zero mode is the constant eigenfunc-

to distortions of the lattice at distances less than the latticg,, &, of the Laplacian and orthonormal to all other eigen-
spacing. This is the dominant term for hexatic membranesy,ctions. By completeness therefore any configuraiion

whereK, is the hexatic stiffnes¥. In the present context, jycjyded in the measure of the path integral in Eds) must
this singular contribution leads to a renormalized core energiatisty

E.ore(Ka) for each defect and it represents nonuniversal de-
tails of the interaction on the scale of the interparticle spac-
ing a. The energy of Eq(11) is thus simplified to (@o)= ¢’0j duy/ge=0. (16)
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With this identity Eq.(14) becomes
Z(B)=J D¢/f(¢)e—(1/26)fdu\@A¢A¢efifdu\f§¢K(u)

= f D¢,9_H(¢),

where the last identification defines the Hamiltonid¢)
and F(¢) is given by

17

ON, -N_12

N TN yN+ N

f:
NN

N, N_
1 dX;\/EH dX;\/ae(iw/B)M(x;)—tb(X;)]
n=1 v=1

5N ~N_ 12( +
= du e(w/S)lqﬁ(U))
N+E,N, NLN_ yf Vo
o N_
X(yf du\/ge(lw/3)|¢(u)) (18)
Upon writing the Kronecker delta as
1 )
5N+—N7,12: fo dx e7|27-rx(N+fN,712)' (19)
one finds
1 ) =
]_-( ¢) — fo dx ef|12xefdu\sgcos[(7-r/3)¢(u)+x]_ (20)

Inserting this result in Eq(17) and performing the integral
over thex variable leads to

H(¢)=

3
25 7 ) fdu\/§A¢A¢—2yf duy/gcose

3i
+;f duygKe.

(21)

The last(imaginary term is a nuisance for practical applica-
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Ill. ZERO-TEMPERATURE LIMIT
A. General surfaces

The zero-temperature limit requires the determination of
the ground state by a minimization of the energy as a func-
tion of both the position and total number of defects. For the
minimization with respect to the location of defects we see
that the energy Eq13) depends only on the difference be-
tween the geometric curvature and the defect density. As a
result the defects will arrange themselves to approximately
match the Gaussian curvature determined by the geometry of
the confining surface. A complete screening of the Gaussian
curvature would yield a crystal with zero elastic energy at
zero temperature. An important example is that of a crystal
with the symmetry of a perfect icosahedron. The 12 positive
disclinations located at its 12 vertices compensate the Gauss-
ian curvature. There are 12 fivefold coordinated particles at
the vertices, and all the rest are sixfold coordinated.

As for the minimization with respect to total defect num-
ber, it is clear that the second term of Ef3) is linear with
the number of defects, and so will clearly favor the lowest
possible number of them. The physics of the zero tempera-
ture limit is therefore controlled by the competition between
the core energy cost of creating a defect and the compensat-
ing gain from the screening of Gaussian curvature when de-
fects are allowed to proliferate.

B. Spherical crystal

From now on we concentrate on a spherical crystal. Since
the sphere has Euler characteristi@g2nus 0 the charges;
of a set of disclinations must satisfy

N
f d2x\/g(x)s(x) =47r—>__21 qi=12.

This implies that, even at zero temperature, a sphere contains
at least 12 excess fivefold disclinations.

To evaluate the free energy E@.1) we compute first the
inverse square-Laplacian operator on a sphere of rdglius

(24)

1 a sa.pgb b 1
Ex(ﬁ,qﬁiﬂ,cﬁ):p

tions. For the case of the sphere, however, the Gaussian cur-

vature is constant, and we have

f du\/§|<¢=|<fdu¢§¢=o,

(22)

Yinl 0% %) Yo (6°,°)
. 12(14+1)2

(29

where we have used E(L6). The sine-Gordon representa- where Y} (6,4) are the spherical harmonics and, ¢) are

tion for the sphere takes a very simple form:

H(¢)——( ) fdufMAd; 2yf duy/gcose.
(23

Discretizing this expression for largewill yield a simple
model with integer variableg(u). A numerical simulation

of this model seems the appropriate way to study the finite

the usual spherical angles. The 0 term does not appear in
the sum, again as a result of the precise topology of the
spherg Eg. (24)]. The absence of this zero mode leads to a
finite sum. The expression ER5) may also be written

x(62,¢% 6°,¢°)=x(B)=R 22 Pi(cosB),

(26)

+1
2(| 1)?

temperature statistical mechanics of defect arrays on @here

sphere®®3* We now turn to the limiting case of zero tem-

perature.

cosB=cos#?cosd®+ sin #3sin A°co p*— ¢°)

(27)
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1 difficult to imagine how discrete disclination charges could
exactly cancel a smooth background Gaussian curvature, we
cannot expect that E431) will be satisfied in general for all
values ofl. We will, however, give examples where this set

s of equations is partially satisfied. It is easy to see, in fact, that
X in the limit of vanishing core energies, a configuration of
B defects satisfying Eq(31) is an absolute minimum of the
00 : 2 3 energy Eq.(29), since the latter can be rewritten as
1
2
2K o Yl 01, 60)
05 _ "o R2
= +NEgore-
Elm—fl | (|+1)2 core
(32)
-1 Equation (31) then implies, forE.,=0, that the energy

attains its minimum value of 0.
Finally, we note that an equivalent expression for §)
is given by

FIG. 2. Plot ofy/R? as a function of the geodesic angleOnly
the interval [ 0,7] is plotted.

gives the lengthd of the geodesic arc connecting®( ¢?) N N
and (0°,4°) on the sphere. It is shown in Appendix B that g— > > qiq:P(cosB;i) + NEggre.
this last sum may be writtéh 36 “h+ics ! N core

(33

(1—cosp)/2 .
1+f € dzln_z). (29) Equations(32) and(29) are useful because they express the
1-z total energy as a sum of individukinode contributions

X(6%,6% 6°,¢°) =R?

In Appendix A we discuss the flat-space limit of infinite %
sphere radius. In Fig. 2 we plgf R? [Eq. (28)] as a function E=> E, (34)
of the geodesic distange. Although the formula Eq(28) is =1
simple, it is not particularly suitable for rapid numerical
evaluation. In Appendix C we give alternative expression
for y better suited to fast numerical evaluation.

The final expression for the total energy of a spherical 2141
crystal with an arbitrary number of disclinations follows El~————.
from Egs.(28) and (13): 12(1+1)2

with the order of magnitude of ea¢fmode coefficient being
S'roughly

(39

N N By considering increasingly exotic arrangements of defects,
E(Ko)— 2 2 Gig; x( 0,660, ¢)+NEsoe. we might hope to satisfy Eq31) for more and more low
=1j=1 modes. If we do not enhance the laidgesentributions and do

(29 not pay too large a price in defect core energy, then the total
Our interpretation of the disclination density screeningenergy will be small.

out the Gaussian curvature can be made more precise. Note
that IV. LARGE CORE ENERGIES: ICOSAHEDRAL LATTICE

N In the limit of large core energies the creation of addi-
s(X) = Z i0(X,X;) tional defects will be strongly penalized and the sphere will
- contain only the minimum allowed 12 positive disclinations.
s 2] N From symmetry considerations it is a good ansatz to assume
= _2 — > 2 y! (9,¢)2 aiY* (6, ) that these 12 disclinations minimize the repulsivpotential
R® 3R I=1m= =1 acting between them by forming an icosahedfdi It is not
difficult to check that the icosahedron is in fact an extremum

+—E 2 Yl (0, ¢>2 qY' (6,4,  Of the energy Eq(29),

JE 0 JE 0 -
30 A = y o4 = ’
| | 30 56, o,
where the topological constraint E@4) has been used. This _ _
last identity makes it clear that the set of equations wherei=1, ...,12. We have checked numerically that fluc-

tuations around this extremum increase the energy. Allowing

N | the fluctuations to relax results in fast convergence to the

21 aiYm(6;,¢1)=0, (3D icosahedron. Our numerical minimization gives the icosahe-

dron as a global minimum. Thus our model successfully pre-

for all I=1 and allm, is the condition that the disclination dicts an icosahedron minimum in the case where just 12
density exactly matches the Gaussian curvature. Because itdésclinations are allowed.
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From Eq.(32) the energy is a function of the quantity TABLE I. The first column is the particular mode considered.
E{ is the contribution of thé mode to the total energy arkf the
running sum after adding all modes less than or equadl teor
V'm(I)=El Y0, ), m=—1,...], (37)  convenience we sé =0 and7K,R?/36=1 in this table.

=

12

. . 7 A T T
where @;,4)i-1 1, are particular coordinates for an ! Ei = | Ei E;

icosahedrorf on the sphere. This solution is obviously in- ¢ 0.4669  0.4669 30 0.0017 0.5925
variant under the full icosahedral group plus inversiais, 0.0329  0.4999 40 0.0012 0.5975
=YXC;. Since) is contained irSO(3), we canconstruct a 0.0507  0.5506 50 0.0004 0.5997
representation o out of the irreducible representations of 16 00129 05635 80 0.0001 0.6025
SO(3). Wehave 18 00125 05760 100 810°°  0.6031

I 20 0.0004 0.5764 e 0 0.6043

> DL (g)V., =1V, (39)

m'=—1
whereE, is the core energy of a single disclination. Its
precise value is nonuniversal and depends on short distance
details of the microscopic pair potential. The coefficient of
7K oR?/36 is universal, independent of short-distance prop-
rties. Let us study it in more detail. In Table | we show the
relative contribution from eachmode. It is apparent that the
Tfirst allowed nonzero contribution=6 accounts for almost
80% of the total energy of the icosahedron. Note also the
relatively rapid convergence of the expansion; truncating up
V'm=2 Y'm( 0,,¢6)=0, m=—1,...|. (39 to thel =100 mode gives a result which differs by less than
i 0.2% from the actual result, E¢41). It is remarkable how
It remains to identify those values dfwhich contain the Much the energy would be reduced by canceling outlthe
trivial representation. This is easily answered from an analy=6 mode without further enhancing highemodes.
sis of the characters of the group. The number of trivial

where gy is any element belonging ty. That is,V'm is a
singlet of the icosahedral grogp This in turn means that if
the trivial representatiofithe so-calledA representationof
the icosahedral group is not contained as an induced repr
sentation from the full rotational group, then Eg&1) is ex-
actly satisfied for any 12 disclinations forming an icosahe
dron,

representations1, contained in thelth representation of V. SMALL CORE ENERGIES: PROLIFERATION
SQ(3) is given by OF DEFECTS
) 1\ 27 If the defect core energies are small then the elastic en-
1 sim | 1+ I ergy may be reduced by creating additional defects. The to-
na(l)= 0 21+1+12 pological constraint Eq(24) requires that additional defects
0 sin Z) appear in pairs of opposite charge. The challenge now is to
) understand and study the different possible distributions of
1\ 4 1\ 2 these charges and the reduction in energy that those bring
i ) i i ol about when compared with the pure icosahedral case. The
sim | 1+ sim | I+
2] 5 2] 3 general form of the energy is, similarly to E@t1),
+12 +2
) 277') ) (77)
sin| — sin| = 2 2
5 3 WKOa R
= 36 (E) +NEcores (42
1 . .. . _
+15sin | 1+ _) e (40) Wh_ere_we introduce th@ coefficient as a convenlent_pgram
2 etrization of the elastic part of the energy. In the liRita

—oo, Wherea is the particle spacing, we expect grain bound-

aries containingN~R/a dislocations emerging from each
which is nonzero fol =6,10,12,16 and all eveh I>16®  disclination. Hence the elastic term wilways dominate
Note that Eq(39) is satisfied for all-odd modes, as follows over the core energy term in this limit. The critical sphere
from applying the inversion operatdy the generator of the radiusR=R, above which long-range elastic energies domi-
C; subgroup of)}, . nate is given byR.~ const(3®, ./ mK,a?)a.

The icosahedral solution screens out the Gaussian curva- |f the total number of defects is large, an unconstrained
ture very effectively. Equatio(81) is partially satisfied, par- minimization of Eq.(29) becomes an involved numerical
ticularly for low I. The icosahedral lattice allows for nonzero problem. Instead of pursuing this further, we develop differ-
contributions for only threel 6,10,12) of the first 15 pu- ent approximations that allow us to tackle the case of a large
tative contributions in Eq30). A numerical evaluation gives number of defects while still capturing the most important

the energy of an icosahedrd&f as features of the problem.
K With results for a particular defect ansatz expressed as in
I_ ™o _, Eqg. (42), we need to determine the minimum distance of
E 060‘( 36 R%|+1%core, (43 closest approach of neighboring plus-minus defect pairs.




PRB 62 INTERACTING TOPOLOGICAL DEFECTS ON FROZEN . .. 8745

Upon identifying this distance with, we can obtain the total TABLE II. Table of results for the minimum-energy coefficient,
number of particlesM embodied in the defect configuration as defined in Eq(45), obtained within the icosahedral approxima-
via the identification tion as a function of the number; of icosahedral clusters of posi-
tive charge. The penultimate column gives the average geodesic
8 distance between neighboring charges. The last column gives the
M~ \/§a2 R2. (43 corresponding total number of particles, as estimated fron{43).
nZ Total Cnz, a/lR M
A. Icosahedral approximation 1 12 0.60 y 12
Let us add new sets of 12 defects, each set lying on the 36 0.45 0.09 1791
vertices of an icosahedron. That is, we consider(2§), not 3 60 0.38 0.06 4031
as a function of individual defects, but as a function of icosay 84 0.34 0.03 16124
hedra of defects. From the mathematical arguments in thg 108 0.30 0.02 36279
previous section, we can guarantee thatltmeodes which ¢ 132 0.257 0.02 36279

vanish in the expansion E¢32) for the pure icosahedral
case, will continue to do so within this approach. Since most

of the low | modes, which dominate the energy, vanish forapoyve features. Note that although the local structure of these
any icosahedron, we expect that the Euler angles of the se{fain boundaries mimics that expected for flat space, the cur-
of icosahedra may be arranged to cancel the remaining Nouture of the sphere allows these linear structures to termi-

vanishing lowt contributions. Our hope is that the energy nate, consistent with the discussion in the Introduction.
bounds derived from this constrained problem provide a rea- For the casen, =5 we still observe finite grain bound-

sonable picturezo_f the full unconstrained model. aries, but they show a tendency to spiral. This tendency be-
If there aren’, |co_sahedra of _flves, and” icosahedra of  comes more pronounced for the case= 6, where the finite
sevens, the topological constraint Eg4) becomes strings evolve into more complicated structures.
The picture emerging then within the icosahedral approxi-
nZ—nf=1. (44) P ging pp

mation is that small core energies favor a proliferation of
For a given configuration the energy is given by defects. Below a critical number of defects of order 100, the
ground state is well described by 12 finite grain boundaries,
- Ko _, each one seeded by a defect in the original icosahedron.
E —CnlﬁR +12(2n. = 1)Ecore, (45 Above the critical number of defects the finite grain bound-
aries tend to branch and develop tentacles: the linear charac-
where theC coefficient is a function of 3¢ +n%—1) ter of the pattern is lost.
=6n’ variables. Let us first choose a distinguished icosahe-

dron with explicit coordinates B. String dominated regime

2k T In this section we examine the relative orientation of the
(0,¢)= [ (0,any,| v, ?) ( TV finite grain boundaries discussed in the previous section. One
O<k=4 ansatz is provided by a solution having the form depicted in
27k Fig. 5. There is an axis of threefold rotation&4) symme-
+ ?) ,(W,an)b} , (46)  try at the center of the triangle formed by the geodesics con-
O<k=<4

necting the three nearest-neighbor disclinations of the icosa-

where y=cos }(1//5). Each of the remaining icosahedra hedral array which forms the starting point of this variational
may then be parametrized by the set of three Euler angleansatz. Finite grain boundaries are constructed by adding de-
necessary to bring them to the position described by Ecfects along the geodesic which joins the purely icosahedral
(46). sites with the center of€; symmetry. The midpoints of the

The problem is to minimize over this set of Euler angles.grain boundaries form an icosahedron. The only free param-
We perform this minimization using a direction set €ter in the model is the lattice spacing. This parameter may
algorithm® From the results shown in Table I, it is clear be fixed by minimizing the energy with respect to the lattice
that the energy coefficient is reduced by the addition of SpPacing,
defects. It is therefore favorable to form defects for a suffi-
ciently small core energy.

Another important issue is the precise arrangement of de- A“‘V
fects in the ground state. Far, <5 we find the remarkable A
appearance of finite grain boundaries—finite strings of inter-
laced fives and sevens, as depicted schematically in Fig. 3.
These grain boundaries are not always perfectly linear, al-
though one does find alternating disclination chains clustered
along geodesic line segments. Occasionally one finds dislo-
cations, i.e., disclination pairs, displaced from this geodesic FIG. 3. Particle configurations near a finite grain boundary.
by a few lattice spacings. The ground state we find, for thecircles represent five-coordinated sites and squares represent seven-
casen, =4, is depicted in Fig. 4, and nicely illustrates the coordinated sites.
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FIG. 4. Six views of the ground-state configuration for the 5 [
icosahedral solution with seven sets of icosahedral defect clusters. e
The top figure in each column shows the north and south pole, o i .
respectively. The subsequent views are obtained by successive rigid Fl_G' 5'_ Six views of the ground-state conf_lguratlon for g .
body 120° rotations of the entire sphere, using the right-hand rul solution with a large number of defects. The views are related as in

about an axis running from the north pole to the south pole. Fig. 4

fixed size and then allow a variable spacing between these
dE(a) dislocations. We hope to pursue this approach in a future
da_ 9 (47 publication.

C. Large number of defects

The interpretation of this extremal lattice spacing is dis-
cussed in Sec. VI.

The results from this minimization are shown in Table Ill.

When the total number of defects is less than a critical valu

(approximately 11Pthis C3, splution .has energies SIighFIy TABLE lll. The minimum energy coefficierltsee Eq.(45)] for
lower than those found within the icosahedral approximasye C; solution, as a function of the total number of defects. The

tion. This is remarkable if one recalls that tlig-symmetric |55t column gives the lattice spaciags determined from Eq47).
solution is obtained by minimizing with respect to orge

We now have conclusive evidence that additional defects
can lower the total energy of the system for small core en-
eergies. Defects will then proliferate and form highly compli-

parameter, the lattice spacing. The results obtained from thegtg) c a
icosahedral approximation itself are in rough agreement with
this very simple ansatz, as apparent from Fig. 6. Table [I12 0.60 Y
also makes clear that there is little gain in energy when th&6 0.44 0.121
total number of defects exceeds the critical value, even in th€0 0.37 0.085
limit of a very large number of defects. This is consistent84 0.34 0.062
with the picture that purely linear finite grain boundaries arel08 0.32 0.051
replaced by more complicated structures when the number df32 0.31 0.042
defects is large. 252 0.28 0.024
A more sophisticated treatment sfrings motivated by 492 0.26 0.012
the discussion of dislocations in the Introduction, wouldg72 0.255 0.006

build the grain boundaries from disclination dipoles with
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TABLE IV. Table of 