PHYSICAL REVIEW B VOLUME 62, NUMBER 13 1 OCTOBER 2000-I

Effect of surface defects on the first field for vortex entry in type-Il superconductors
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The effect of arbitrary-size surface defects on conditions for vortex entry in bulk type-1l superconductors is
studied by numerically solving the time-dependent Ginzburg-Landau equations. It is found out that the field
H.n for a vortex entry in a sample decreases with a larger size of defects, yet, beginning from a certain size, it
practically stops varying and sets at a minimum possible \/dlﬂé (which is larger than the first critical field
H.1). An interpolation expression is found to describe figl§" as a function of Ginzburg-Landau parameter
«, which fits the numerical results with a high degree of accuracy.

The effect of a surfacdedge, geometricalbarrier on dom “force” simulating fluctuations of the order
magnetic characteristics of type-Il superconductors has begrarametet® and Re stands for “real part of.” The magnetic
an issue of considerable interest receftyA closely re- field is measured in units ., = ®o/27£2 which is the second
lated problem is the onset of a magnetic fl(wortices in critical field.
superconducting samples. The influence of an ideefect- Consider a bulk superconductor—fe<y<<oo,—oo<z
free) surface on the conditions for the first vortex entry was<<«) of width D in an external magnetic fielti=(0,0H)
studied in detail in a number of worksee, for example, (see Fig. 1 Further we will focus on the influence produced
Refs. 7-9 for bulk superconductors. It was shown that vor- by a chain of identical surface defe¢taeasuring X w) with
tices start penetrating in bulk type-ll superconductors at periodS>\ on the first field for flux penetration. There-
some critical fieldHg (nearly the value of thermodynamical fore, we can choose a leng8of this superconductor, which
field H;) which is larger tharH,, i.e., the first critical field. has a surface defect, and set periodic boundary conditions
It is obvious that surface defects will decrease figlg, for ~ ¥(—S/2)=V(S/2), A(—S/2)=A(S/2) along they direc-
the first vortex entry in a superconductét,,<Hg. In Refs.  tion. Since the selected peri&ls large and the width of the
10-13 the influence of small-sife' (<X which is the Lon-  defects under study are smal,<2\, it may be assumed
don penetration depttand large-siz&® (>\) surface de- that here we study the influence of one isolated defect on the
fects on the value oH,, for bulk type-ll superconductors value of fieldH., (as numerical calculations show, the value
was studied within the London model. In Ref. {see also of H,, reached for an isolated defect is less than the one
Ref. 13 an analytical expressidd™"=H.\/=/x was derived  corresponding to the chain of the identical surface defdcts
in the limit x> 1 for a minimum possible fiel#i™" (feasible ~ The boundary conditions for Eqs(l) and (2) at the
for thin deep>\ cracks. The effect of surface roughness on superconductor-vacuum interface have a standard f&rm:
the conditions providing stability of a vortex-free superflow XA|,=H and (-=iV—A)¥|,=0. Calculations within the
of liquid helium *He was considered in Ref. 14. It was es- London model show that the current density tends to infinity
tablished that surface defects are responsible for a decreagéen approaching the interior corners of the defgdints
in the critical rate of a vortex-free superflow,, nearly ~AB in Fig. 1) (see, for example, Refs. 12 and)13s a
~(1/¢)"-fold (wherel is the defect length is the coherence
length, indexn>0 depends on the defect widih).

The objective of this work was to study the effect of
rectangular-shaped surface defects on the first field for vor-
tices entry in bulk type-II superconductors, based on numeri-
cal solution of the time-dependent Ginzburg-Landau
equation®’ [ z

v

—=—E[(—iV—A)Z\P+\P(|\If|2—1)]+ (1)
at C X

A _
E:RQ\P*(—IV—A)‘I’]—Kz rotrotA. 2)

The length here is scaled in ungéT), the time is in units
r=4mo,N%(T)/c?, the vector potentialA is in units
Dyl (27E), wheredy=ch/2e is a magnetic flux quantum, FIG. 1. The bulk superconductor—e<y<o,—ow<z<®)
o, the normal-state conductivity of a superconducithe  with surface defectchain of defects—see téxin an external mag-
coefficient of proportionality®!’ y is the dimensionless ran- netic fieldH=(0,0H).
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FIG. 2. Vortex entry timet., as a function of an applied mag- FIG. 3. Dependence of fieldH,, on a defect length atv
netic fieldH. Circles are fork=7, dots fork=5, and stars fok = const for type-Il bulk superconductok &5), obtained from the
=2. The results were obtained for a defect with size2\; w results of numerical calculation of Eg4) and(2). Curve 1(dotg
=¢. is for a defect withw=1¢£, curve 2(starg is for w=2¢, and curve

. . . 3 (circleg is for w=3¢&.
result, the order parameter in these points within the ( 9 ¢

Ginzburg-Landau model will be zero. This circumstance ha%he situation by the Josephson currents flowing through a

been accounted for in our numerical calculations by Settm%efect. This factor is responsible for a lower current density

W=0in the interior defect corners. near a interior defect corner and, hence, a highgr There-
Equations(1) and (2) were solved numerically by the . T ’ '
fore, a change in the value di., in the range of small

method described in detail in Ref. 18. Specifically, we used a . N
new variableU; — exp(—i [ Aidx) (x,=X.y), which allows to widths w~ ¢ of a defect should be less abrupt, than that

satisfy the condition of gauge invariance for E¢B.and(2) shown in Fig. 4(be_cause we neglected the effect of the Jo-
. sephson currents in our calculatipns
on the computational mesh. The dependenceld (1) andH.(w) were analyzed for
The superconductor parameters were chosen as fO||0W%Zther valﬂes of thee Ginzbu? Landau argmetak (
width D=10\, periodS=10\. The value of the consta®, g P

. : =2,3,7,10), which yielded the following resultsimilar to
coordinate fx,Ay) and time Q1) step was chosen so as to the abové (i) atl=2A\ the fieldH,, practically stops to vary

minimize the count time; it turned out that the obtained re- d hes its mini Lieor the gi d defect
sults were practically independent of a valueQofwe chose an reac- es IS minimum vajutor the givenk and detec
C=0.5), Ax (if Ax=Ay=1.0) andAt [if At=<1/(2xAX)2]. width w); (ii) the most sharp chanddecreaskgin the value

Note that the values foH.; and Hg obtained in this work of Hen occurs in the range of defect widths<Qv<2¢.
agreed to within the numerical accuracy 2%) with the

results reported in Ref. 20 and Ref. 9 for fields; andHq, 0.094

respectively. 0.002 |
Let us define the value of the field,,. By H, here we

denote the value of a magnetic field, at which the tigeof 0.09

the first vortex entry in a surface-defect superconductor doe: jeq |
not exceed 100 (the magnetic field instantly is increased
from zero toH.). In Fig. 2 the vortex entry time is shown I 0.086 |
versus the value of the applied magnetic fidlt three dif- \50084 I
ferent values of Ginzburg-Landau parametet2,5,7). The '
mistake inherent in such a finding of thk,, value is, as can 0.082 |
be easily seen from Fig. 2, not more than 1%.

Let us first consider the value of fiel,, as a function of 0.08 1
length and width of defect for a superconductor witk5. 0.078
In Fig. 3 it is clearly seen that starting from the lendth
>10¢, the field H,, reaches its minimum and practically 0~0760

. : ; 1 2 3 4 5
does not vary with a further increase in the defect length. W/§
Defect widthw determines the minimum possible value of
field Hey: the narrower the defect, the lower is figtd,,; the FIG. 4. Dependence of fieldl,, on a defect width at=const

most sudden change in its value being in the rangen0  for a type-Il bulk superconductoi=5), obtained from the results
<2¢ (see Fig. 4. It should be noted that in real samples, asof numerical calculation of Eq$l) and(2). Curve 1(circles is for
a defect width is decreasing to dimensions of the order of defect withl =15¢, curve 2(star$ is for |=10¢, and curve 3
coherence lengtlf, an increasing influence is produced on (dotg is for | =5¢.
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FIG. 5. FieldsH, (circles, Hgmnin (dot9, andH,, (star$ versus funct_ions of the Ginzb_urg-Landau parameter. The solid line was
the value of the Ginzburg-Landau parameteAll fields have been  OPtained from expressioni8) and (4) and dotted line from Eq(3)
found by numerical solution of Eq¢l) and (2). Curve 1 corre- @nd dependencHs(K)=@(1+ m)/&‘ [which is valid for
sponds to expressidd), curve 2 is for Eq(3), and curve 3 for the K= 1.1(Rf3f. 9]. Th_e small dlscontln_uny of the sollql curve is con-
dependenced () taken from Ref. 9. In the inset are the same Nected with the mistake of approximate expressi@)sand (4),
quantities (curves 3a, 2a, and 1a, respectivelgurve 3b is for whlch_are discontinuous functions a& 5. The solid curve jump at
thermodynamical fieldH = 1/\2, curve 2b is for the dependence <=2 IS less than the accura¢g%) of these expressions.
H™N= /7/2/x*? obtained in Ref. 12, and curve 1b corresponds to
the “classic” expression for the first critical field ;; = In(x)/2«2.
m 1/\/§$ eSS

Note that unlike the results in Ref. 14, we have shown Hmin_ (4x/3) @)
field He, to have a minimum possible valugor a given en 1.03
defect width different from zero, whereas in Ref. 14 the Y
quantityq, characterizing stability of a vortex-free superflow K
in “He proved to be proportional t@&{l)"(n>0) and for an
infinite-length defect it reduces to zero. It can be shown that 1 1N2=<x=<5
for type-1l superconductors having large values wofand (\/EK)% K=,
surface defects meeting the conditiar<| <\ the fieldH,, Hg, = (4)
will also be proportional to &/1)" (where, same as in the In(x)+0.55
liquid “He case, the power index>0). Such similarity be- 2 2
tween superconductors arféle can be accounted for by the

fact that formally it may be assumed thai:w in 4He. When Seeking an approximation expresstm we as-
The obtained data led us to a conclusion that the entrgymed that in the limit of large values ef it should ap-

field Her(I =2\, w=1¢) slightly (by aboutgfev% percent for roach the asymptotics obtained in Refs. 12 and H3"
k>1) exceeds the minimum attainable fi¢hf" for vorti- ;1,32 Similarly, field H,, was sought for on the assump-

ces entry in a superconductor with surface defects for a givefon, that in the limit x> 1 expression(4) should coincide

value of k. Based on this conclusion we plotted a depen-yth the “classic” expressiorH ., = In(k)/2x2 (see, for ex-

dence of fieldHgy"=He(I =2\, w=1¢£) on the Ginzburg- ample, Ref. 21 In the limit of small« the best dependences
Landau parametex, as shown in Fig. %for k<1 the length  (in terms of agreement with the numerical results and sim-
of a defect was B, the width was 0.8). In the same figure pjicity of expression were Egs.(3) and (4) (at 1N2<«
we provide the dependenceig(«) andHc,(x). Itis easily <5y gptained for the fieldsi™™" andH.,, respectively. Note
seen that in the entire range of values in questioN2¥«x  that even forx=100 the difference of the above interpola-
<20 the fieldHZ," exceedsH,;. Note that atk=1/y2 also g expression for fieldH, from dependenceH,
the first field for vortex entry, even in the presence of surface- In(k)/2x% makes to a 13%.
defects, is larger than the first critical fiefit},; which in this In conclusion, the effect of surface defects on the first
case is equal to fieltH.,. Figure 6 shows the dependence field for vortex entry was investigated based on numerical
Hs/He" and Hgh'VHe, on the Ginzburg-Landau parameter. solution of the time-dependent Ginzburg-Landau equations.
One can see that both these quantities are, essentially, th#e study was carried out for isotropic bulk type-Il super-
monotonically increasing functions of parameter conductors, neglecting the effects arising due to the tempera-
For the dependenceés],"(x) andH,(«x) we derived in-  ture being nonzero. It is shown that the fighd, decreases
terpolation expressions that satisfy the numerical results witimonotonically with a growing length and a decreasing width
a high degree of accuradyhe error is not more than 2%) of a defect. Physically, variation of the vortex entry field for

(1-0.63k) 5=k=20,

5<k=<20.
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a superconductor with surface defects, as compared to that in superconductors of other geometrigs example,
defect-free superconductor, is accounted for by the fact thatuperconducting films in a perpendicular magnetic fiéha

in the former case the current density near the interior corpresence of surface/edge defects would be unable to reduce
ners of defects will largely exceed that on a superconductothe field for vortex penetration down to the valdg;. Ap-
surface. Therefore, first vortices will nucleatdue to the parently, a particular geometry would only quantitatively af-
depairing current density which sets somewhere in a supefect the dependence of the ratiblg/H™" and H™"/H,, on
conductor in the absence of weak coupling effeatsthese  the parameters of superconducting samples.

places. It was found out that field., practically reaches a

minimum possible valugdgy" for defects with a length The author is grateful to Dr. G. M. Maksimova, Dr. I. L.
=2\ and a widthw=¢. It is shown that fielH¢y" lies in the  Maksimov, and Dr. A. S. Mel'nikov for helpful discussions.
rangeH ., <Hgy'<Hs, and in the considered range of values The work was supported in part by the International Centre
for « it will be larger than fieldH ;. It should be expected for Advanced ResearciNCAS), Grant No. 99-02-3.
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