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Cooper pair dispersion relation for weak to strong coupling
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Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding
energy for any fermion number density and all coupling assuming a generic pairwise residual interfermion
interaction. Also considered are Cooper p&®’s) with nonzero center-of-mass moment(@MM) and their
binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent
linear term in the CMM dominates the pair excitation energy in weak couplitgp called the BCS regime
while the more familiar quadratic term prevails in strong couplitige Bose regime The crossover, though
strictly unrelated to BCS theonyer se is studied numerically as it is expected to play a central role in a model
of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all
dimensionalityd<2 for quadratic dispersion, but ronzerofor all d=1 for linear dispersion.

The original Cooper paifCP) problent in two (2D) and The CP dispersion relation enters into each summand in
three (3D) dimensions possesses ultraviolet divergences ithe BE distribution function of the boson number equation
momentum space that are usually removed via interactionom which the critical temperatur&. of BEC of CPs is
regularized with large-momentum cutoffOne such regu- extracted. The linear dependence on the CMM of CP binding
larized potential is the BC#nodel interactionwhich is of  for weak coupling leads to novel transition properties even in
great practical use in studying Cooper paifingnd 5 Heuristic BEC picture of superconductivityas BE-
superconductivity’. Although there are controversies over the condensing CPs. It is well known that BEC is possible only
precise pairing mechanism, and thus over the microscopig,. gimensionalitiesd>2 for usual nonrelativistic bosons
Hamiltonian appropriate for higli, superconductors, some i gquadratic dispersion; this limitation reappears in virtu-
of the properties of these materials have been explained Saa{TIy all BEC schemes thus far applied to describe supercon-

isfactorily within a BCS-Bose crossover pictfiré via a ductivity (Refs. 11,12 among othersBut for bosons with a
renormalized BCS theory for a short-range interaction. In th‘?inear dispersion r7elation as found here in weak coupling

weak-coupling limit of the BCS-Bose crossover description .
one recovers the pure mean-field BCS theory of weakl .EC can now occur for .ald>1. Here we discuss the CP
ispersion relation only in 2D. We have also performed a

bound, severely overlapping CPs. For strong coupling”.>F o ; : :
(and/or low density well separated, nonoverlappingo- similar analysis in 3D and obtained the linear to quadratic

called “local”) pairs appedrin what is known as the Bose Crossover in the dispersion relation. _
regime. It is of interest to detail how renormalized Cooper Consider a two-fermion system in the CM frame, with
pairing itself evolvesndependentlyf the BCS-Bose cross- €ach fermion of massy, interacting via the purely attractive
over picture in order to then discuss the possible Boseshort-range separable potenttal
Einstein(BE) condensatiolBEC) of such pairs. We address
this here in asingle CP picture, while considering also the Vpg= —v09p9q (€N
important caségenerally neglected in BCS thegrgf non-
zero center-of-mass-momentuf@MM) CPs that are ex- wherev =0 is the interaction strength and thg's are the
pected to play a significant role in BE condensates at highedimensionless form factorg,=(1+ p®pj) "% where the
temperatures. parameter, is the inverse range of the potential so that,
In this report we derive a renormalized Cooper equatiore.g.,po— = impliesg,=1 and corresponds to the contact or
for a pair of fermions interacting via either a zero- or a finite-delta potentialV(r)=—vy4d(r). The interaction mode{1)
range interaction. We find an analytic expression for the CAnimics a wide variety of possible dynamical mechanisms in
excitation energy up to terms quadratic in the CMM which issuperconductors: mediated by phonons, or plasmons, or ex-
valid for any coupling. For weak coupling only thimear  citons, or magnons, etc., or even a purely electronic interac-
term dominates, as it also does for the BCS modelion. In the first instance mentioned, two terms of the form
interaction® The linear term was mentioned for 3D as far (1) can simulate a Coulombic interfermion repulsion sur-
back as 1964Ref. 9, p. 33. For strong coupling we now rounded by a longer-ranged electron-phonon attraction. The
find that thequadraticterm dominates and is just the kinetic momentum-space Schiinger eigenvalue equation for a
energy of the strongly bound composite pair moving intwo-particle bound state in vacuum with binding eneBRy
vacuum. =0 for interaction(1) is®
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1 9& teraction the vacuum and CP binding energies for zero CMM
—= 2 _— 2 coincide forall coupling, a result apparently first obtained in
Vo K Bpt#h’ki/m Ref. 5. For a nonzero CMM the CP binding energlgscan
wherek is the wave number in the CM frame afdk?/2m  be calculated from Eqg6) and (7). For K#0 a minimum
the single-particle energy. threshold value oB,/Ef is found to be required to bind a
On the other hand, the CP equation for two fermionsCP.
above the Fermi surface with momenta wave veckgrand Equations(6) and (7) can be solved numerically for the

k, (and arbitrary CMM wave vectd =k, +k,) is given by ~ CP bindingAy for any CMM. For small CMM only Eq(6)

) is relevant; and this equation for small but nonzéfo
h2k? h2K?2

— —Ext+ —|C=—> ViCq. (3 and forK=0 can be subtracted one from the other. This
m 4m q gives the small-CMM expansiowalid for any coupling
where k=3 (k,—k,) is the relative momentumg=2E B2/Er=0,

— Ay the total pair energyAx=0 the CP binding energy, 2
qu<q|\If> its wave function in momentum space, and the ex=(Ao—Ay)=—fveK
prime on the summation implies restriction to statdmve 77
4\ Ep
1-{e-(5] ]B—z

the Fermi surface: vizl]k+K/2|>kg . For the separable in-
2
) 9k 1 4) where a nonnegativEP excitation energyx has been de-

teraction(1) Eq. (3) becomes +
K ﬁ2k2/m+AK_ZEF+ﬁ2K2/4m:v_o' fined, and the Fermi velocityyy comes from Eg/kg

h2K? 5
m+O(K ) 8

i ) i =hvg/2. The leading term in Eq8) is linear in the CMM,
Although the summand in Ed4) is angle-independent, the {o|16\ed by a quadratic term. The linear CP dispersion term
restriction on the sum arising from the filled Fermi sea is 3should not be confused with that of the many-bddyllec-
function of the relative wave vectde, and therefore angle tive) excitation spectrum in weak coupling. Only CPs can

dependentThe potential s_trengtho can be el_iminated be- undergo BEC while bosonic “excitations’(or modes or
tween Eqs(2) and(4) leading to the renormalized CP equa- hhonong cannot since the former afixedin number while

tion the latter are not. Indeed, the particle-hfdemetimes called
2 2 the Anderson-Bogoliubov-HiggéABH)] modes of excita-
Yk =S Yk tion energyfivK//d*®in d dimensions in the zero coupling
K By+%2k¥m T A23Em+Ag—2E-+#2K%4m’ limit are larger than the weak-coupling CP dispersion ener-

(5)  gies (2k)hveK and3veK (Ref. 9, p. 33in 2D and 3D°
respectively, while in 1D they happen to coincide—in spite

Instead of the arbitrary cutoff usually employed in dealing . . .
: ; . . 1 aqn - Of the fact that CPs and ABH-like modes are physically dis-
with delta interactions, in Ed5) we rely on physical "ob tinct entities. The coefficient of the quadratic term in E).

servables” for the sake of renormalization, viz., the ground- h ian 8B /Ee= A~ /E.~0.379 f
state binding energp, in vacuum. The sums in E@5) can changes i'gn N AL as one goes from
be transformed to integrals; the restriction in the second tern\ﬁveak B2=A0<E¢) 10 strong B,=Ao>E) coupling. If
arising from the filled Fermi sea leads to two different ex-YF (or Eg)—0 gxphcnly (dilute limit) the first two terms of

; ) ~ i Eq. (8) reduce simply to
pressions depending on wheth€=K/kg is <2 or >2,
as discussed in the Appendix. Letting all variables be dimen- £2K?2
sionless by expressing them either in units of the Fermi SK_}M’ 9
wave numberkg or of the Fermi energyE,:EhzkE/Zm,
viz., é=k/kg, E;ZEBZ/EF, ZKEAK/EF, etc., we define for anycoupling. This is clearly just the familiar nonrelativ-
aﬁzl—ZKIZ—RZME—Bﬁ, and 6 the angle between wave istic kinetic energy in vacuum of the compositgo-called

_ \/ﬁ ~ “local” ) pair of mass &n and CMM K. The same resul®)
vectorsk andK so thatéy(0)=V1—Ksin" 0/4+Kcosbtl2 g aiso found to hold in 3D.

and £)(0)=—\1—-K?sir? 0/4+K cos#/2. For a zero-range  Figure 1 shows exact numerical results for the zero-range
interaction,g,=1, after some algebra one gets potential @,=1) for different couplings of a CP excitation
_ energyex /Aq as function of CMMK/kg, both dimension-
2 m B ~ less. We note that the CBseak upwheneverA i turns from
200y 27— — |n—2 p K
fo doIn[£5(6) — el = 2 In 2 K<z, ©) positive to negative, i.e., vanishes, or by E®) when
ex/Ag=1. These points are marked in the figure by dots. In

p 12 2 5 addition to the exact results obtained by solving Efsand

a 2 0 0 (6) + BK n BZ ~ i . . .
—In[ 2]~ dgin————=5In—, K>2 (7), we also exhibit the results for the linear approximation
2 0 Eo+p; 22 [first term on the right-hand side of E@), dot-dashed lines,

(7)  wvirtually coinciding with the exact curve for alB,/Eg
_ o ~ . =0.1] as well as for the quadratic approximati¢tashed
Whergeo—arc5|n(2K)<w/22. FOZK_OSnIy Eq.(6) applles.,, parabolas as given by Eq(9) for stronger couplings. For
in which casefo(#) =1, aic=ap=1-A¢/2 and we obtain  weak enough coupling or large enough fermion density at
the surprising resuly=B,, i.e., for an attractive delta in- any nonzero coupling the exact dispersion relation is virtu-
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FIG. 1. Dimensionless CP excitation energy/A, vs K/kg,
calculated from Eqg6) and(7) for different couplingB, /E¢, full
curves. The dot-dashed line is the linear approximaftiartually
coincident with the exact curve f@,/Ex=<0.1) while the dashed
curve is the quadratic term of E(P). Dots denote values of CMM
wave number where the CP breaks up, i.e., whgre=0.

FIG. 2. Same as Fig. 1 but for couplings expressed gk .
The dot-dashed line is the linear approximation; the dashed curve is
the result for the finite-range interactipg= kg, and the full curve
is the zero-range result. For the finite-range potemtigdlE-=0.1,
0.5, 1.0, and 2.0 correspond B&,/Ex=0.469, 1.4, 2.45, and 4,
respectively. Dots and squares mark values of CMM wave number

where the CP breaks up.

ally linear—in spite of the divergencef the isolated qua-

dratic term in Eq(8) asB,/Ex—0. As coupling is increased Very gradually to equadraticrelation as coupling increases.

the quadratic dispersion relati@8) slowly begins to domi- For a zero-range pair interaction in the dispersion curve one

nate. The crossover from a linear to a quadratic dispersiotypically has a point of inflection with a positive slope sepa-

relation manifests itself by a change in curvature from con+ating a region of concave-down curvature for small CMM

cave down to concave up—these two regions being sepdrom a region of concave-up curvature for large CMM. For

rated by an inflection point that moves down towards thefinite-range pair interactions of sufficiently long range the

origin as coupling is increased to infinity. slope at the point of inflection changes from positive to zero
Figure 2 shows the CP excitation eneegy/ Ay as a func-  and eventually becomes negative. This leads to maxima and

tion of CMM K/kg calculated for the finite-range interaction “rotonlike” minima in the CP dispersion curves. These re-

form factor g,=(1+ pZ/p(Z,)*l’2 with po=kg for weak to  sults will play a critical role in a model of superconductivity

moderate coupling. To compare, we also plot the zero-rangbased on BE condensation of CPs as they will yielkn in

result as well as the linear relation given by the first term or2D as in the cuprates, BEC transition temperaturgshat

the right-hand side of Eq@8). The finite-range curves are interpolate between nonzero values in weak coupling with a

closer to the corresponding zero-range ones if labeled by

Ay /Eg instead of byB,/Er, as was done with all four sets

of curves.

Figure 3 exhibitsex /A, as a function ofK/kg for the 10
finite-range interaction withpy=Kkg for stronger couplings.
In this case there is no special advantage in labeling the 0.8
dispersion curves by, so B, was used with results for
B,/EF=3, 10, and 20 shown. In the zero-range case the 06
curves gradually tend to the quadratic formBsincreases. <|°
For finite-range,po=Kkg, the curves develop a maximum -~
followed by a minimum with a point of inflection in be- W< 0.4

tween. The slope at the point of inflection is now negative.
Although each curve tends to a quadratic form for large 0.2

enoughK/kg, they are quite different from it for small - T-C bie
K/kg . These “looped” dispersion curves are reminiscent of LT ql.?adraFtic

the “roton” excitation spectrurtf in liquid “He. 0.0
To summarize, the single CP problem with nonzero CMM
is tracked as it evolves in varying the interfermion short-

range pair interaction from weak to strong or in varying fer- g 3. Same as Fig. 1 but including also finite range at stronger
mion density from high to low, respectively, for any fixed couplingsB,/Eg. The full curve is the exact zero-range result; the
nonzero coupling. The CP excitation energy is exhibited as ghort-dashed one the quadratic approximation; the long-dashed one
function of its CMM. For weak coupling, the excitation en- the exact finite-range result withy= kg . Each set of three curves is
ergy is alinear dispersion relation in the CMM, and changes labeled by different values @, /E .

2 3 4 5 6
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linear CP dispersion relation down to the expecieg=0
value in strong coupling with a quadratic relation.
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where é=k/ke and K=K/kge. The equality leads to two
pairs of roots ing, sayé¢; ,=—a*b andé&; ,=a*b, where
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APPENDIX
The restriction that both particles lie above the Fermi se
in Eq. (5) can be written as

(k/kp = K/2kg)?— 1= &2+ ¢K cosf+K?4—1=0, (Al)

ForK<2, b>a, one root of the two pairs is positive and
the other negative. Thus, EGA1) can be satisfied provided
thaté>¢,,&5,€5, &4, Or specifically, ifé>¢y(0)=a+Db. For
K>2 and 6> 6,=arcsin(2K), b becomes imaginary and
Eqg. (Al) is satisfied for all¢. Therefore, there is no restric-
tion in the integration over¢é. However, for K>2 and
0< 6y, b<athe pair of rootst; , are both negative while the
pair &3 4 are both positivewith &3> £,). Consequently, in
%oth cases Eq(Al) is satisfied only if¢ is in the interval
[0.£5(0)=a—Db], and in the interval[ £&y(6),~], respec-
tively. Using these restrictions on tlgentegration in Eq(5)
one eventually arrives at Eq&) and (7).
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