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Cooper pair dispersion relation for weak to strong coupling
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Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding
energy for any fermion number density and all coupling assuming a generic pairwise residual interfermion
interaction. Also considered are Cooper pairs~CP’s! with nonzero center-of-mass momentum~CMM! and their
binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent
linear term in the CMM dominates the pair excitation energy in weak coupling~also called the BCS regime!
while the more familiar quadratic term prevails in strong coupling~the Bose regime!. The crossover, though
strictly unrelated to BCS theoryper se, is studied numerically as it is expected to play a central role in a model
of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all
dimensionalityd<2 for quadratic dispersion, but isnonzerofor all d>1 for linear dispersion.
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The original Cooper pair~CP! problem1 in two ~2D! and
three ~3D! dimensions possesses ultraviolet divergences
momentum space that are usually removed via interact
regularized with large-momentum cutoffs.2 One such regu-
larized potential is the BCSmodel interactionwhich is of
great practical use in studying Cooper pairing1 and
superconductivity.3 Although there are controversies over t
precise pairing mechanism, and thus over the microsco
Hamiltonian appropriate for high-Tc superconductors, som
of the properties of these materials have been explained
isfactorily within a BCS-Bose crossover picture4–7 via a
renormalized BCS theory for a short-range interaction. In
weak-coupling limit of the BCS-Bose crossover descript
one recovers the pure mean-field BCS theory of wea
bound, severely overlapping CPs. For strong coupl
~and/or low density! well separated, nonoverlapping~so-
called ‘‘local’’ ! pairs appear4 in what is known as the Bos
regime. It is of interest to detail how renormalized Coop
pairing itself evolvesindependentlyof the BCS-Bose cross
over picture in order to then discuss the possible Bo
Einstein~BE! condensation~BEC! of such pairs. We addres
this here in asingle-CP picture, while considering also the
important case~generally neglected in BCS theory! of non-
zero center-of-mass-momentum~CMM! CPs that are ex-
pected to play a significant role in BE condensates at hig
temperatures.

In this report we derive a renormalized Cooper equat
for a pair of fermions interacting via either a zero- or a fini
range interaction. We find an analytic expression for the
excitation energy up to terms quadratic in the CMM which
valid for any coupling. For weak coupling only thelinear
term dominates, as it also does for the BCS mo
interaction.8 The linear term was mentioned for 3D as f
back as 1964~Ref. 9, p. 33!. For strong coupling we now
find that thequadraticterm dominates and is just the kinet
energy of the strongly bound composite pair moving
vacuum.
PRB 620163-1829/2000/62~13!/8671~4!/$15.00
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The CP dispersion relation enters into each summan
the BE distribution function of the boson number equati
from which the critical temperatureTc of BEC of CPs is
extracted. The linear dependence on the CMM of CP bind
for weak coupling leads to novel transition properties even
a Heuristic BEC picture of superconductivity10 as BE-
condensing CPs. It is well known that BEC is possible on
for dimensionalitiesd.2 for usual nonrelativistic boson
with quadratic dispersion; this limitation reappears in virt
ally all BEC schemes thus far applied to describe superc
ductivity ~Refs. 11,12 among others!. But for bosons with a
linear dispersion relation as found here in weak couplin
BEC can now occur for alld.1. Here we discuss the CP
dispersion relation only in 2D. We have also performed
similar analysis in 3D and obtained the linear to quadra
crossover in the dispersion relation.

Consider a two-fermion system in the CM frame, wi
each fermion of massm, interacting via the purely attractive
short-range separable potential11

Vpq52v0gpgq , ~1!

wherev0>0 is the interaction strength and thegp’s are the
dimensionless form factorsgp[(11p2/p0

2)21/2, where the
parameterp0 is the inverse range of the potential so th
e.g.,p0→` impliesgp51 and corresponds to the contact
delta potentialV(r )52v0d(r ). The interaction model~1!
mimics a wide variety of possible dynamical mechanisms
superconductors: mediated by phonons, or plasmons, or
citons, or magnons, etc., or even a purely electronic inte
tion. In the first instance mentioned, two terms of the fo
~1! can simulate a Coulombic interfermion repulsion su
rounded by a longer-ranged electron-phonon attraction.
momentum-space Schro¨dinger eigenvalue equation for
two-particle bound state in vacuum with binding energyB2
>0 for interaction~1! is5
8671 ©2000 The American Physical Society
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1

v0
5(

k

gk
2

B21\2k2/m
, ~2!

wherek is the wave number in the CM frame and\2k2/2m
the single-particle energy.

On the other hand, the CP equation for two fermio
above the Fermi surface with momenta wave vectorsk1 and
k2 ~and arbitrary CMM wave vectorK[k11k2) is given by

F\2k2

m
2EK1

\2K2

4m GCk52(
q

8 VkqCq , ~3!

where k[ 1
2 (k12k2) is the relative momentum,EK[2EF

2DK the total pair energy,DK>0 the CP binding energy
Cq[^quC& its wave function in momentum space, and t
prime on the summation implies restriction to statesabove
the Fermi surface: viz.,uk6K /2u.kF . For the separable in
teraction~1! Eq. ~3! becomes

(
k

8
gk

2

\2k2/m1DK22EF1\2K2/4m
5

1

v0
. ~4!

Although the summand in Eq.~4! is angle-independent, th
restriction on the sum arising from the filled Fermi sea is
function of the relative wave vectork, and therefore angle
dependent. The potential strengthv0 can be eliminated be
tween Eqs.~2! and~4! leading to the renormalized CP equ
tion

(
k

gk
2

B21\2k2/m
5(

k

8
gk

2

\2k2/m1DK22EF1\2K2/4m
.

~5!

Instead of the arbitrary cutoff usually employed in deali
with delta interactions, in Eq.~5! we rely on physical ‘‘ob-
servables’’ for the sake of renormalization, viz., the groun
state binding energyB2 in vacuum. The sums in Eq.~5! can
be transformed to integrals; the restriction in the second t
arising from the filled Fermi sea leads to two different e
pressions depending on whetherK̃[K/kF is ,2 or .2,
as discussed in the Appendix. Letting all variables be dim
sionless by expressing them either in units of the Fe
wave numberkF or of the Fermi energyEF[\2kF

2/2m,

viz., j[k/kF , B̃2[B2 /EF , D̃K[DK /EF , etc., we define
aK

2 [12D̃K/22K̃2/4[2bK
2 , andu the angle between wav

vectorsk andK so thatj0(u)[A12K̃2 sin2 u/41K̃ cosu/2

andj08(u)[2A12K̃2 sin2 u/41K̃ cosu/2. For a zero-range
interaction,gk51, after some algebra one gets

E
0

p/2

du ln@j0
2~u!2aK

2 #5
p

2
ln

B̃2

2
, K̃,2, ~6!

p

2
ln@bK

2 #2E
0

u0
du ln

j08
2~u!1bK

2

j0
2~u!1bK

2
5

p

2
ln

B̃2

2
, K̃.2,

~7!

whereu05arcsin(2/K̃),p/2. ForK̃50 only Eq.~6! applies,
in which casej0(u)51, aK

2 [a0
2512D̃0/2 and we obtain

the surprising resultD̃05B̃2, i.e., for an attractive delta in
s

a

-

m
-

-
i

teraction the vacuum and CP binding energies for zero CM
coincide forall coupling, a result apparently first obtained
Ref. 5. For a nonzero CMM the CP binding energiesDK can
be calculated from Eqs.~6! and ~7!. For K̃Þ0 a minimum
threshold value ofB2 /EF is found to be required to bind a
CP.

Equations~6! and ~7! can be solved numerically for th
CP bindingDK for any CMM. For small CMM only Eq.~6!

is relevant; and this equation for small but nonzeroK̃

and for K̃50 can be subtracted one from the other. Th
gives the small-CMM expansionvalid for any coupling
B2 /EF>0,

«K[~D02DK!5
2

p
\vFK

1F12H 22S 4

p D 2J EF

B2
G \2K2

2~2m!
1O~K3!, ~8!

where a nonnegativeCP excitation energy«K has been de-
fined, and the Fermi velocityvF comes from EF /kF
5\vF/2. The leading term in Eq.~8! is linear in the CMM,
followed by a quadratic term. The linear CP dispersion te
should not be confused with that of the many-body~collec-
tive! excitation spectrum in weak coupling. Only CPs c
undergo BEC while bosonic ‘‘excitations’’~or modes or
phonons! cannot since the former arefixed in number while
the latter are not. Indeed, the particle-hole@sometimes called
the Anderson-Bogoliubov-Higgs~ABH!# modes of excita-
tion energy\vFK/Ad13 in d dimensions in the zero couplin
limit are larger than the weak-coupling CP dispersion ene
gies (2/p)\vFK and 1

2 \vFK ~Ref. 9, p. 33! in 2D and 3D,9

respectively, while in 1D they happen to coincide—in sp
of the fact that CPs and ABH-like modes are physically d
tinct entities. The coefficient of the quadratic term in Eq.~8!
changes sign atB2 /EF5D0 /EF.0.379, as one goes from
weak (B25D0!EF) to strong (B25D0@EF) coupling. If
vF (or EF)→0 explicitly ~dilute limit! the first two terms of
Eq. ~8! reduce simply to

«K→ \2K2

2~2m!
, ~9!

for any coupling. This is clearly just the familiar nonrelativ
istic kinetic energy in vacuum of the composite~so-called
‘‘local’’ ! pair of mass 2m and CMM K. The same result~9!
is also found to hold in 3D.

Figure 1 shows exact numerical results for the zero-ra
potential (gk51) for different couplings of a CP excitatio
energy«K /D0 as function of CMMK/kF , both dimension-
less. We note that the CPsbreak upwheneverDK turns from
positive to negative, i.e., vanishes, or by Eq.~8! when
«K /D051. These points are marked in the figure by dots.
addition to the exact results obtained by solving Eqs.~6! and
~7!, we also exhibit the results for the linear approximati
@first term on the right-hand side of Eq.~8!, dot-dashed lines
virtually coinciding with the exact curve for allB2 /EF
&0.1# as well as for the quadratic approximation~dashed
parabolas! as given by Eq.~9! for stronger couplings. For
weak enough coupling or large enough fermion density
any nonzero coupling the exact dispersion relation is vir
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ally linear—in spite of the divergenceof the isolated qua-
dratic term in Eq.~8! asB2 /EF→0. As coupling is increased
the quadratic dispersion relation~9! slowly begins to domi-
nate. The crossover from a linear to a quadratic dispers
relation manifests itself by a change in curvature from c
cave down to concave up—these two regions being se
rated by an inflection point that moves down towards
origin as coupling is increased to infinity.

Figure 2 shows the CP excitation energy«K /D0 as a func-
tion of CMM K/kF calculated for the finite-range interactio
form factor gp5(11p2/p0

2)21/2 with p05kF for weak to
moderate coupling. To compare, we also plot the zero-ra
result as well as the linear relation given by the first term
the right-hand side of Eq.~8!. The finite-range curves ar
closer to the corresponding zero-range ones if labeled
D0 /EF instead of byB2 /EF , as was done with all four set
of curves.

Figure 3 exhibits«K /D0 as a function ofK/kF for the
finite-range interaction withp05kF for stronger couplings.
In this case there is no special advantage in labeling
dispersion curves byD0 so B2 was used with results fo
B2 /EF53, 10, and 20 shown. In the zero-range case
curves gradually tend to the quadratic form asB2 increases.
For finite-range,p05kF , the curves develop a maximum
followed by a minimum with a point of inflection in be
tween. The slope at the point of inflection is now negati
Although each curve tends to a quadratic form for lar
enough K/kF , they are quite different from it for smal
K/kF . These ‘‘looped’’ dispersion curves are reminiscent
the ‘‘roton’’ excitation spectrum14 in liquid 4He.

To summarize, the single CP problem with nonzero CM
is tracked as it evolves in varying the interfermion sho
range pair interaction from weak to strong or in varying fe
mion density from high to low, respectively, for any fixe
nonzero coupling. The CP excitation energy is exhibited a
function of its CMM. For weak coupling, the excitation e
ergy is alinear dispersion relation in the CMM, and chang

FIG. 1. Dimensionless CP excitation energy«K /D0 vs K/kF ,
calculated from Eqs.~6! and~7! for different couplingsB2 /EF , full
curves. The dot-dashed line is the linear approximation~virtually
coincident with the exact curve forB2 /EF&0.1! while the dashed
curve is the quadratic term of Eq.~9!. Dots denote values of CMM
wave number where the CP breaks up, i.e., whereDK[0.
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very gradually to aquadratic relation as coupling increases
For a zero-range pair interaction in the dispersion curve
typically has a point of inflection with a positive slope sep
rating a region of concave-down curvature for small CM
from a region of concave-up curvature for large CMM. F
finite-range pair interactions of sufficiently long range t
slope at the point of inflection changes from positive to ze
and eventually becomes negative. This leads to maxima
‘‘rotonlike’’ minima in the CP dispersion curves. These r
sults will play a critical role in a model of superconductivi
based on BE condensation of CPs as they will yield,even in
2D as in the cuprates, BEC transition temperaturesTc that
interpolate between nonzero values in weak coupling wit

FIG. 2. Same as Fig. 1 but for couplings expressed asD0 /EF .
The dot-dashed line is the linear approximation; the dashed curv
the result for the finite-range interactionp05kF , and the full curve
is the zero-range result. For the finite-range potentialD0 /EF50.1,
0.5, 1.0, and 2.0 correspond toB2 /EF50.469, 1.4, 2.45, and 4
respectively. Dots and squares mark values of CMM wave num
where the CP breaks up.

FIG. 3. Same as Fig. 1 but including also finite range at stron
couplingsB2 /EF . The full curve is the exact zero-range result; t
short-dashed one the quadratic approximation; the long-dashed
the exact finite-range result withp05kF . Each set of three curves i
labeled by different values ofB2 /EF .
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linear CP dispersion relation down to the expectedTc[0
value in strong coupling with a quadratic relation.
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APPENDIX

The restriction that both particles lie above the Fermi
in Eq. ~5! can be written as

~k/kF6K /2kF!2215j26jK̃ cosu1K̃2/421>0, ~A1!
.

s.

H

H

r
e

a

where j[k/kF and K̃[K/kF . The equality leads to two
pairs of roots inj, sayj1,252a6b andj3,45a6b, where

a[(K̃/2)cosu, b[A12(K̃2/4)sin2 u, and u the angle be-
tweenk andK .

For K̃,2, b.a, one root of the two pairs is positive an
the other negative. Thus, Eq.~A1! can be satisfied provided
thatj.j1 ,j2 ,j3 ,j4, or specifically, ifj.j0(u)[a1b. For
K̃.2 and u.u0[arcsin(2/K̃), b becomes imaginary and
Eq. ~A1! is satisfied for allj. Therefore, there is no restric
tion in the integration overj. However, for K̃.2 and
u,u0 , b,a the pair of rootsj1,2 are both negative while the
pair j3,4 are both positive~with j3.j4). Consequently, in
both cases Eq.~A1! is satisfied only ifj is in the interval
@0,j08(u)[a2b#, and in the interval@j0(u),`#, respec-
tively. Using these restrictions on thej integration in Eq.~5!
one eventually arrives at Eqs.~6! and ~7!.
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