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Quantum-classical crossover of the escape rate in the cubic nanospin system
with a longitudinal field

Gwang-Hee Kim
Department of Physics, Sejong University, Seoul 143-747, Republic of Korea

~Received 23 March 2000; revised manuscript received 8 June 2000!

The quantum-classical crossover of the escape rate is studied in the cubic spin model based on the spin-
coherent-state path integral with the help of the instanton technique. It is found that for all values of a
longitudinal field the crossover is of the first order in the easy axis@001#, while of the second order in the easy
axis @111#. This feature is expected to be observable in existing experimental techniques.
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Recently the nanospin systems have been good candid
to display macroscopic quantum phenomena~MQP!.1 One of
several candidates is a single domain ferromagnetic par
with the magnetizationM whose direction is determined b
the magnetocrystalline anisotropy energy depending on
crystal symmetry. The direction ofM is changed by two
processes: thermal activation over the energy barrier
quantum tunneling through it. The former dominates at h
temperature, while the latter does so at low temperat
Thus, there is a crossover temperatureT0 between two re-
gimes. In this situation, whether the crossover aboutT0 can
be sharp~the first-order crossover! or smooth~the second-
order crossover, SC! is determined by the magnetic aniso
ropy constants and the external magnetic field. For the
namical situation, it is important to include the effect of t
environment on the escape rate caused by phonons,2 nuclear
spins,3 and Stoner excitations and eddy currents in meta
magnets.4 However, many studies have shown that the
fects are not strong enough to make the escape rate
tremely small.

The question of the crossover of the escape rate was s
ied by Affleck,5 and Larkin and Ovchinnikov,6 who showed
that SC can occur atT0 by using the standard instanton tec
nique. Chudnovsky7 gave the criterion to determine first- o
second-order crossover~FSC! based on the behavior of th
period of oscillations in the inverted potential. Since the
many theoretical studies have been performed in nano
systems with uniaxial or biaxial symmetry~UBS! based on
the simple mapping of the spin problem onto the parti
one8–11 and the periodic instantons.12 However, the methods
used in early calculations for UBS cannot be applied to ot
models of practical interest such as cubic symmetry, beca
in such a case it is not possible to obtain the one-dimensi
functional form of the action. Noting that in various aniso
ropy energies MQP can be treated by using the sp
coherent-state path-integral~SCSPI! method,1 it will be
highly required to have a new approach for the crossove
SCSPI. In this paper, employing the nonlinear perturbat
near the top of the barrier in one dimension studied in R
13, we briefly present the theoretical method to study
crossover for the system in SCSPI and apply it to the pr
lem of the crossover in the cubic system with a longitudi
field. In general, great care must be taken in SCSPI w
obtaining the exact tunneling rate, because the terms
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O(S0) in the exponent which give the prefactor in the tu
neling rate are incorrectly obtained.14 However, whether the
system with largeS(@1) becomes FSC is mostly dete
mined by the terms ofO(S) in the exponent of the tunneling
rate.9 Accordingly, our consideration will be focused on th
behavior of the WKB exponent. Considering two cases
cubic symmetry, we find that FSC in this system is det
mined by the sign of the anisotropy constant and there
only the first-order crossover in the easy axis@001#. This
result is of interest in the following perspective. In general
is well known that a large magnetic field but slightly le
than the critical field is a prerequisite for observing MQP
large spin systems (S@10).1 Meanwhile, the previous theo
retical studies about the crossover have shown that the fi
order regime in UBS can be observed in a small magn
field and substantially decreases with increasing the m
netic field. In order to observe the first-order crossover
those systems, their total spins should not be large. Thus
molecular clusters withS510 such as Mn12 ~Ref. 18! and
Fe8 ~Ref. 19! might be good candidates for observing FSC
UBS. If the total spin is larger (S@10), it is difficult to
observe the first-order crossover in UBS. However, in
cubic system the situation will be completely different. W
shall show that in the case of the easy axis@001# the first-
order crossover can be found for all values of the longitu
nal field. This indicates that such a large spin system can
also a good candidate for observing the first-order crosso
which is deemed as a practical advantage in future exp
ments.

Consider the SCSPI representation of the partition fu
tion given by

Z~b\!5 R D@M ~t!#exp~2SE /\!, ~1!

where b51/kBT, the path sum is over all periodic path
M (t)5M (t1b\), andSE is the action which includes the
Euclidean version of the magnetic LagrangianLE as

SE5E
0

b\ H i
M

g
@12cosu~t!#

df~t!

dt
1E@M ~t!#J dt,

~2!

whereg5gmB /\ andmB is the Bohr magneton. Quite gen
erally, the energyE in Eq. ~2! includes the magnetic aniso
8626 ©2000 The American Physical Society
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ropy energyEa , the exchange energyEex, the magnetic
dipole-dipole interactionEdd, and the Zeeman energyEH ,
which determine the switching process of the system.
many casesEdd can be contained inEa , which leads to the
effective anisotropy energy. In ferrimagnetic or antiferr
magnetic particles the exchange energy should be enhan
Using the two sublattice model,20 the effect of the exchang
interaction on the crossover can be neglected in the limi
y5(K/J)3(s2 /s1)!1, whereK is the anisotropy constan
J is the exchange constant, ands1,2 is the number of spin in
each sublattice.21 For K;1 K, J;100 K, ands2 /s1,1,
we obtainy!1, which is prevalent in many ferromagnet
particles. In this paper we will not take the exchange int
action into account and will simplify the system withE
5Ea1EH .

Now, from Eq.~2! the classical trajectory ofu and f is
determined by the Euler-Lagrange equation as

iMsuḟ52gEu , iMsuu̇5gEf , ~3!

wheresu[sinu, ḟ5df/dt, Eu5]E/]u and so on. In order
to study the criterion of FSC for the escape rate, we nee
decomposeu (f) into the position of the top of the barrierū

(f̄) and a fluctuation termdu (df), i.e., u5 ū1du (f5f̄
1df) for the behavior of the weakly time-dependent so
tions. Here the solutions of the equation of motion are
rametrized by the amplitudea of the oscillations, which
quantifies the difference between the thermal and the ti
dependent solutions near the top of the barrier. Our goal
solve Eq.~3! for du(t) anddf(t) and find the correction to
the oscillation period away from the thermal saddle po
Denoting dV(t)[@du(t), df(t)], we havedV(t1b\)
5dV(t) at finite temperature and write it as the Four
seriesdV(t)5(n52`

` dVn exp(iṽnt), whereṽn52pn/b\.
Proceeding the perturbation ofdV, we will obtain the cor-
rection dv([v2v0) at higher order wherev0 is a small
oscillation frequency in the lowest order near the top of
barrier. Meanwhile, Chudnovsky7 proposed that, if the oscil
lation period is a nonmonotonic~monotonic! function of a
wherea is a function ofE in the absence of dissipation, th
system exhibits the first-order crossover~the second-orde
crossover!. Following the criterion, the corrected perio
2p/v should be less~greater! than the period 2p/v0 in the
lowest order, i.e.,dv.0 for the first-order crossover an
dv,0 for SC.

Now, we shall apply the formalism to the cubic symme
whose anisotropy energy isEa5K(ax

2ay
21ay

2az
21az

2ax
2)

wherea8s are the direction cosines ofM andK the anisot-
ropy constant. In the case ofK.0 we have@001#, @001̄#,
@010#, @01̄0#, @100#, and@ 1̄00# for the easy axes. Without a
external field these directions are stable, whereas in the p
ence of the longitudinal field the initial orientation ofM
becomes metastable, as is shown in Fig. 1. Choosing its
tial direction to beẑ and applying the field along the2 ẑ, we
obtain the total energy

E~u,f!5K sin2u2
K

8
@71cos~4f!#sin4u1MH cosu,

~4!

and the classical trajectory
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2inpḟ14cu2~71c4f!su
2cu24h50, ~5!

2inpu̇2s4fsu
350, ~6!

whereM /(gK)5np , Hc52K/M , and h5H/Hc . Here Hc
is the critical magnetic field at which the barrier vanishes.
the thermal activation regime the solutions of Eqs.~5! and
~6! are ū5u0 and f̄50, where

cosu05
~9h2A81h226!1/31~9h1A81h226!1/3

62/3
. ~7!

Note thatu0 decreases monotonically with increasingh and
0<h,1 corresponds to 0,u0<p/4. In order to study FSC
we need to expand Eqs.~5! and ~6! into a series around
(u0 ,0) asu5u01du andf5df. Simple analysis for Eqs
~4!–~6! shows thatdu is real anddf imaginary. Thus, to
lowest order in perturbation theory, we can writedu
.aup1cos(vt) and df. iafp1sin(vt). Substituting them
into Eqs.~5! and ~6! while neglecting terms of order highe
thana, we have

fp1 /up15~10su0
212su0

3 !/~npv0!52npv0 /~2su0

3 !,

~8!

wherev05gHcsu0

2 A526su0

2 .

In order to see the behavior of the oscillation period v
the frequency we need to investigate Eqs.~5! and ~6! by
writing du.aup1cos(vt)1du2, and df. iafp1sin(vt)
1idf2, where du2 and df2 are of the order ofa2.
Neglecting terms of order higher thana2, we find v5v0,
and the corresponding perturbationsdu25t11t2cos(2vt)
anddf25 f sin(2vt) with

t152a2up1
2 cu0

~25242su0

2 !/@4su0
~526su0

2 !#, ~9!

t25a2up1
2 cu0

~15222su0

2 !/@4su0
~526su0

2 !#, ~10!

f 5a2up1
2 ~2cu0

!/A526su0

2 . ~11!

This implies that there is no shift in the oscillation frequenc
In order to find the change of the oscillation period, we p

FIG. 1. f p(h) vs h in cubic symmetry withK.0. Inset: shape of
energy~4! in the easy plane,f50, whereh is defined in the text.
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ceed to the third order of perturbation theory by writingdu
.aup1cos(vt)1du21du3, and df. iafp1sin(vt)1idf2
1idf3. Inserting them again into Eqs.~5! and~6! and retain-
ing only terms up toO(a3), we have for the change of th
frequency

v22v0
25a2up1

2 ~gHc/2!2f p~u0!, ~12!

where

f p~u!5
3su

2~4361747c2u1340c4u177c6u!

40248su
2

. ~13!

Using Eqs.~7! and ~12!, we obtain the correction ofv by
varyingh ~Fig. 1! andv.v0, i.e.,t,t0 wheret andt0 are
the period of the instanton just below and on the top of
barrier, respectively. Sincet(E) begins to decrease with de
creasingE from the top of the barrier butt(E0) eventually
goes to` where E0 is the bottom of the metastable we
there should be a minimum in some energy between
bottom of the metastable well and the top of the barrier. T
indicates that the whole shape oft is nonmonotonic. There
fore, we can use Chudnovsky’s criterion and find that
first-order crossover occurs at all value ofh. In quantum
tunneling of magnetization the practically interesting situ
tion is when the barrier height is small and the width
narrow in order to have the escape rate large. Such a s
tion is realized whene([12H/Hc)!1. In the meantime, in
order to observe the first-order crossover in UBS,H should
be as small as possible. If the total spin increases, e.gS
@10, the escape rate becomes extremely small in a s
magnetic field. The first-order regime vanishes in UBS w
a large spin. Therefore, the result obtained in the cubic s
tem with K.0 is very interesting because it gives som
possibility of observing the first-order crossover in the s
tem with a large spin (S@10).

Let us now consider the crossover forK,0, i.e., the cubic
system with an easy axes, e.g.,@111#, @ 1̄1̄1̄#, @111̄#, and so
on. In the absence of the field there are eight equivalent e
axes. However, applying the longitudinal field, the initial d
rection ofM becomes metastable, which is illustrated in F
2. Performing the coordinate transformation defined byax

FIG. 2. f n(h) vs h in cubic symmetry withK,0. Inset: shape of
energy~14! in the easy plane,f50, whereh is defined in the text.
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5(ax82ay8)/A2, ay5(ax81ay8)/A2, andaz5az8 and de-
noting u andf in x8y8z8, the total energy is represented

E52uKuFsin2u2
1

8
„72cos~4f!…sin4uG

1MH sinu i sinu cosf1MH cosu i cosu, ~14!

where the direction of the field isu i5arccos(1/A3) andf
50. The relation betweenh and theu position of the top of
the barrier (ū5u0) is given by

h~[H/Hc!53s2u0
~223su0

2 !/~8su i2u0
!, ~15!

where Hc54uKu/3M . Also, it is noted thatu0 decreases
monotonically with increasingh and 0<h,1 corresponds to
u i,u0<p/2. The correction of the frequency for this ca
can be calculated in the same fashion. As before we perf
the perturbation to third order and obtain the following equ
tion for the shift in the oscillation frequency:

v22v0
25a2un1

2 ~3gHc/4!2f n~u0!, ~16!

where we useddu.aun1cos(vt). Even though we have de
rived the analytic expression ofv0 and f n(u0), it is not illu-
minating to present their detailed forms which are comp
cated. We just illustrate the relation betweenf n(u0) andh in
Fig. 2. Evidentlyf n(u0),0 for h,1. This implies that there
is no first-order crossover in this case.

In Table I we summarize the quantities considered in
cubic symmetry fore!1. The approximate potential form a
easy plane (f50) is ed22(5/4)d4 for K.0. Quite gener-
ally, if the potential is of the formx22x3 or x22x4 in one
dimension, the crossover is always second order.7 However,
in Eq. ~12! we get f p(u0).0, which implies that the cross
over is first order forH&Hc . In fact, noting that such a
potential is not obtained by the effective action in one
mension, it is not certain whether the form,d22d4 gives rise
to SC. In other words, if the action in Eq.~1! is reduced to
the one with one-dimensional functional form in which th
effective potential is of the formd22d4, the crossover is
always second order. However, it is not possible to obt
such an effective action and the corresponding potentia
the cubic system forK.0. Therefore, our detailed analys
has shown that even though the form isd22d4 in Table I,
the system displays the first-order crossover.

To illustrate the above results with concrete numbers,
use the typical physical parameters. ForK/V

TABLE I. Approximate expressions in the cubic symmetry f
H&Hc , whered5u2u i and u i is the position of the metastabl
state.

K.0 K,0

E(d,0)/uKu ed22(5/4)d4 (2ed22A2d3)/3
u0 A2e/5 u i12A2e/3
v0 /(guKu/M ) 4e/A5 4e/A3
t1 /a2 25up1

2 /4u0 2un1
2 /A2e

t2 /a2 3up1
2 /4u0 A2un1

2 /4e
f /a2 2up1

2 /A5 22un1
2 /4e

f p(u0) or f n(u0) 120 u0
2 -8
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;106 erg/cm3, M /V;100 emu/cm3, and e;1022

21023,22 we haveT0;3023 mK with Hc;2 T. How-
ever, two cases in the cubic system are greatly differen
the temperature range (DT) of the crossover region. Quali
tative analysis shows thatDT/T0.1/S in the first-order
crossover andDT/T0.1/S1/2 in SC. For, e.g.,S;102, we
obtain DT/T0;0.01 for the former and 0.1 for the latte
respectively. Thus, the larger spin, the more favorable to
FSC in real experiments.

In conclusion, using the spin-coherent-state path integ
we have studied the crossover in cubic systems with a
gitudinal field. Considering two cases, we have found t
the crossover is of the first order forK.0, while of the
second order forK,0. The result is of interest theoreticall
and experimentally in three respects. First, until now mos
theoretical studies have been performed in UBS. Whether
crossover becomes first or second order in those system
-
,

,

in

st

l,
n-
t

f
he

is

determined by the relative magnitude of two anisotropy c
stants or the ratio of the field to the anisotropy consta
However, in the cubic system FSC is solely determined
the sign of the anisotropy constant. This is a unique feat
which has not yet been found. Second, in UBS the first-or
regime decreases greatly with increasing the field. This
plies that the number of total spin should not be so lar
However, in the cubic system the first-order crossover occ
for all values of the longitudinal field. Third, since the cros
over region (DT/T0) is inversely proportional to the tota
spin, the sharpness of the first-order crossover will be m
dramatic in larger spin system. These make the cubic sys
a good candidate for the experimental study.
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