PHYSICAL REVIEW B VOLUME 62, NUMBER 13 1 OCTOBER 2000-I

Quantum-classical crossover of the escape rate in the cubic nanospin system
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The quantum-classical crossover of the escape rate is studied in the cubic spin model based on the spin-
coherent-state path integral with the help of the instanton technique. It is found that for all values of a
longitudinal field the crossover is of the first order in the easy 04], while of the second order in the easy
axis[111]. This feature is expected to be observable in existing experimental techniques.

Recently the nanospin systems have been good candidat€€S°) in the exponent which give the prefactor in the tun-
to display macroscopic quantum phenomé&®P).: One of  neling rate are incorrectly obtainédHowever, whether the
several candidates is a single domain ferromagnetic particlsystem with largeS(>1) becomes FSC is mostly deter-
with the magnetizatiod whose direction is determined by mined by the terms oD(S) in the exponent of the tunneling
the magnetocrystalline anisotropy energy depending on theate? Accordingly, our consideration will be focused on the
crystal symmetry. The direction dfl is changed by two behavior of the WKB exponent. Considering two cases in
processes: thermal activation over the energy barrier angubic symmetry, we find that FSC in this system is deter-
quantum tunneling through it. The former dominates at highmined by the sign of the anisotropy constant and there is

temperature, while the latter does so at low temperaturdNly the first-order crossover in the easy aj@1]. This
Thus, there is a crossover temperatligebetween two re- result is of interest in the following perspective. In general, it

gimes. In this situation, whether the crossover abgtan is well known that a large magnetic field but slightly less

be sharp(the first-order crossoveor smooth(the second- fgfnetgeir?rg'(ﬁle;egéslg)qraggﬁ\';gﬁefo{hzbSreer\\//;ggsl\{[lr?e F;_m
order crossover, Sds determined by the magnetic anisot- ge spin sy : ' P

L retical studies about the crossover have shown that the first-
ropy constants and the external magnetic field. For the dy-

. SR _ order regime in UBS can be observed in a small magnetic
namical situation, it is important to include the effect of the

. s field and substantially decreases with increasing the mag-
environment on the escape rate caused by phohooslear hatic field. In order to observe the first-order crossover in

spins? and Stoner excitations and eddy currents in metallighyse systems, their total spins should not be large. Thus, the
magnet$. However, many studies have shown that the ef-molecular clusters witts=10 such as Mp, (Ref. 18 and
fects are not strong enough to make the escape rate egy, (Ref. 19 might be good candidates for observing FSC in
tremely small. UBS. If the total spin is larger $10), it is difficult to

The question of the crossover of the escape rate was stughserve the first-order crossover in UBS. However, in the
ied by Affleck? and Larkin and Ovchinniko%who showed  cubic system the situation will be completely different. We
that SC can occur af, by using the standard instanton tech- shall show that in the case of the easy g%161] the first-
nique. ChudnovsKygave the criterion to determine first- or order crossover can be found for all values of the longitudi-
second-order crossovéFSQ based on the behavior of the nal field. This indicates that such a large spin system can be
period of oscillations in the inverted potential. Since then,also a good candidate for observing the first-order crossover,
many theoretical studies have been performed in nanospighich is deemed as a practical advantage in future experi-
systems with uniaxial or biaxial symmetfWBS) based on ments.
the simple mapping of the spin problem onto the particle Consider the SCSPI representation of the partition func-
oné~'*and the periodic instantorté However, the methods tion given by
used in early calculations for UBS cannot be applied to other
models of practical interest such as cubic symmetry, because
in such a case it is not possible to obtain the one-dimensional Z(Bh)= Sg DIM(7)]exp(—Sg/h), (D
functional form of the action. Noting that in various anisot-
ropy energies MQP can be treated by using the spinwhere B=1/kgT, the path sum is over all periodic paths
coherent-state path-integradBCSP) method! it will be M(7)=M(7+ Bh), and St is the action which includes the
highly required to have a new approach for the crossover ifcuclidean version of the magnetic Lagranglanas
SCSPI. In this paper, employing the nonlinear perturbation
near the top of the barrier in one dimension studied in Ref. il M do(7)
13, we briefly present the theoretical method to study the SE= fo '7[1_0059(7)] g, TEIM(7)]1d7,
crossover for the system in SCSPI and apply it to the prob- )
lem of the crossover in the cubic system with a longitudinal
field. In general, great care must be taken in SCSPI wittwherey=gug/# and ug is the Bohr magneton. Quite gen-
obtaining the exact tunneling rate, because the terms ddrally, the energy in Eqg. (2) includes the magnetic anisot-
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ropy energyE,, the exchange energk.,, the magnetic 16
dipole-dipole interactiorEyy, and the Zeeman enerdy , 14l
which determine the switching process of the system. In

many case& 4 can be contained i, , which leads to the 12t

effective anisotropy energy. In ferrimagnetic or antiferro-
magnetic particles the exchange energy should be enhancec~

Using the two sublattice modé,the effect of the exchange _E_a
interaction on the crossover can be neglected in the limit of ”
y=(K/J) X (s,/s1)<<1, whereK is the anisotropy constant, 6f .
Jis the exchange constant, asg, is the number of spin in g
each sublatticd® For K~1 K, J~100 K, ands,/s;<1, M
we obtainy<<1, which is prevalent in many ferromagnetic 5|
particles. In this paper we will not take the exchange inter-
action into account and will simplify the system with 0T 0 03 04 05 08 07 o8 o5 i
=E,+Ey. h
Now, from Eq.(2) the classical trajectory of and ¢ is
determined by the Euler-Lagrange equation as FIG. 1. f,(h) vshin cubic symmetry wittK>0. Inset: shape of
. ) energy(4) in the easy planep=0, whereh is defined in the text.
iMsyp=—vEy, IMsy0=1vyE,, 3
wheres,=sin6, ¢=d¢/dr, E,=JIE/36 and so on. In order 2inpe+4cy— (7+C4y)S5e,—4h=0, ®)
to study the criterion of FSC for the escape rate, we need to . 5
decomposé (¢) into the position of the top of the barriér 2iNp0—5448,=0, (6)

(¢) and a fluctuation terndé (5¢), i.e., 0= 6+560 (p=¢  whereM/(yK)=n,, H.=2K/M, andh=H/H;. HereH,

+ 8¢) for the behavior of the weakly time-dependent solu-is the critical magnetic field at which the barrier vanishes. In
tions. Here the solutions of the equation of motion are pathe thermal activation regime the solutions of E(®. and
rametrized by the amplitude of the oscillations, which (6) are 9= g, and =0, where

guantifies the difference between the thermal and the time-

dependent solutions near the top of the barrier. Our goal is to (9h—+/81h2—6)Y3+ (9h+ \/81hZ—6)13
solve Eq.(3) for §6(7) and5¢(7) and find the correction to Costp= 273 .
the oscillation period away from the thermal saddle point. 6
Denoting 6Q(7)=[56(7), d¢(7)], we have §Q(7+B%)  Note thatd, decreases monotonically with increasimgnd
=o6Q(7) at finite temperature and write it as the Fourierg<h<1 corresponds to4€ 6,=< /4. In order to study FSC,
seriesoQ(7)=32i__, 6Q, explw,7), wherew,=27n/ph. we need to expand Eg¢5) and (6) into a series around
Proceeding the perturbation 62, we will obtain the cor- (6p,0) asf=6,+ 56 and ¢=J¢. Simple analysis for Egs.
rection w(=w— w) at higher order wherev, is a small ~ (4)—(6) shows thats¢ is real andé¢ imaginary. Thus, to
oscillation frequency in the lowest order near the top of thdowest order in perturbation theory, we can wri@)
barrier. Meanwhile, Chudnovskyroposed that, if the oscil- =af,;cos(7) and dp=iagy;sin(w7). Substituting them
lation period is a nonmonotonignonotonig¢ function ofa  into Egs.(5) and(6) while neglecting terms of order higher
wherea is a function ofE in the absence of dissipation, the thana, we have

system exhibits the first-order crossoughne second-order 3 3
crossover. Following the criterion, the corrected period — ®p1/0p1=(108g, =125y )/(Npwo) = —Npwo/ (28 ),

)

27/ w should be lessgreatey than the period 2Z/w in the (8
lowest order, i.e.dw>0 for the first-order crossover and _ 2 [
Sw<0 for SC. wherewo=yHsj /5 65290.

Now, we shall apply the formalism to the cubic symmetry In order to see the behavior of the oscillation period via
whose anisotropy energy iEa=K(a§a§+a§a§+a§a§ thg_frequenfy we need to investigate E@. and (_6) by
wherea's are the direction cosines df andK the anisot- WNtNg  d0=adp,coswn)+dt,, and 5"5_'&%15'”(‘”?

+id¢p,, where 60, and S¢, are of the order ofa“.

ropy constant. In the case >0 we have[001], [001], Neglecting terms of order higher thaf, we find w= w,

[010], [010], [100], and[100] for the easy axes. Without an and the corresponding perturbatiod,=t,+t,cos(2v7)
external field these directions are stable, whereas in the pregng 5¢,= f sin(2w?) with

ence of the longitudinal field the initial orientation ™

becomes metastable, as is shown in Fig. 1. Choosing its ini- ty=—a%05,C, (25— 4257 )/[4s,(5-657)],  (9)
tial direction to bez and applying the field along the z, we
obtain the total energy to=a%05,Cy, (15— 2257 )/[ 45, (5—6s5)], (10
. K :
E(6,¢)=K sir*9— 2 [7+cod4¢)]sin' 9+ MH coso, f=a26;,(2¢,)/\/5—6sj . (11

4 This implies that there is no shift in the oscillation frequency.
and the classical trajectory In order to find the change of the oscillation period, we pro-
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-4 T T T . TABLE |. Approximate expressions in the cubic symmetry for
’ H=<H., whereé=6—6; and 6; is the position of the metastable
St state.
I Z
I 1 K>0 K<0
7k & \ / 2
= / E(5,0)/|K| €%~ (5/4)8* (2e82—28%13
= s AR 6o J2¢€l5 6. +2\2¢l3
' wo ! (Y|K|IM) 4¢el\5 4el\3
9r t,/a? —56%,/46, — 02,1 \2¢
ol t,/a? 305,/46, V262, 14€
fla? 205,15 —262,/4¢€
A1t fo(6o) or fo(6o) 120 63 -8
12 0.2 0.4 06 0.8 1
h =(ay—ay)N2, ay=(ay+ay)/\2, anda,= a, and de-

) ) , noting 6 and ¢ in x"y’z’, the total energy is represented as
FIG. 2. f,,(h) vshin cubic symmetry witlKK <0. Inset: shape of

energy(14) in the easy planep=0, whereh is defined in the text. 1
E=—|K|| sirfo— §(7—cos(4¢))sin40

ceed to the third order of perturbation theory by writifi§

=a0,,CoS(7)+0,+3560;, and JSop=iady;sin(wr)+idp, +MH sing; sinf cos¢+ MH cosé, cos, (14)
+i8¢s. Inserting them again into Eq) and(6) and retain-

ing only terms up toO(a%), we have for the change of the where the direction of the field i§,=arccos(1{3) and ¢

=0. The relation betweeh and theé position of the top of

frequency . L

the barrier = 6,) is given by
w?— wi=a20%,(yH12)% (), (12
e h(=H/Hc)=85,(2-3,)/(8Sy4,), (19

where

where H.=4|K|/3M. Also, it is noted thatf, decreases
35%(436+ 747c,,+340c49+ 77Cey) monotonically with increasing and O<h<1 corresponds to
fo(0)= (13)  g,<6,<m/2. The correction of the frequency for this case

40— 485 : :
can be calculated in the same fashion. As before we perform

Using Egs.(7) and (12), we obtain the correction ob by  the perturbation to third order and obtain the following equa-
varyingh (Fig. 1) andw> wy, i.e., 7< 1o wherer andry are  tion for the shift in the oscillation frequency:
the period of the instanton just below and on the top of the 2 2
barrier, respectively. Sincg(E) begins to decrease with de- ? = wg=2a0hy(37H4)*fo( bo), (16)
creasingkE from the top of the barrier but(E,) eventually  where we used6=aé,,cosr). Even though we have de-
goes to whereE, is the bottom of the metastable well, rived the analytic expression afy andf,(6), it is not illu-
there should be a minimum in some energy between theninating to present their detailed forms which are compli-
bottom of the metastable well and the top of the barrier. Thigated. We just illustrate the relation betwefgi6,) andh in
indicates that the whole shape ofs nonmonotonic. There- Fig. 2. Evidentlyf,(6,)<0 for h<1. This implies that there
fore, we can use Chudnovsky’'s criterion and find that thegs no first-order crossover in this case.
first-order crossover occurs at all value lof In quantum In Table | we summarize the quantities considered in the
tunneling of magnetization the practically interesting Situa-cubic symmetry fore<1. The approximate potentiaj form at
tion is when the barrier helght is small and the width iSeasy p|ane @:0) is 652—(5/4)64 for K>0. Quite gener-
narrow in order to have the escape rate large. Such a situgﬂy, if the potential is of the formx2—x3 or x2—x* in one
tion is realized wher(=1—H/H;)<1. In the meantime, in  dimension, the crossover is always second ofdé¢owever,
order to observe the first-order crossover in UBSshould  in Eq. (12) we getf ,(6o)>0, which implies that the cross-
be as small as possible. If the total spin increases, 8.9., over is first order forH<H,. In fact, noting that such a
>10, the escape rate becomes extremely small in a sma§otential is not obtained by the effective action in one di-
magnetic field. The first-order regime vanishes in UBS withmension, it is not certain whether the fordt— 6% gives rise
a large spin. Therefore, the result obtained in the cubic sysp SC. In other words, if the action in E¢L) is reduced to
tem with K>0 is very interesting because it gives somethe one with one-dimensional functional form in which the
possibility of observing the first-order crossover in the sys-effective potential is of the forms?2— 5%, the crossover is
tem with a large spin&>10). always second order. However, it is not possible to obtain
Let us now consider the crossover 0, i.e., the cubic  sych an effective action and the corresponding potential in
system with an easy axes, e[dl11], [111], [111], and so the cubic system foK>0. Therefore, our detailed analysis
on. In the absence of the field there are eight equivalent eadyas shown that even though the formés— 6% in Table |,
axes. However, applying the longitudinal field, the initial di- the system displays the first-order crossover.
rection ofM becomes metastable, which is illustrated in Fig.  To illustrate the above results with concrete numbers, we
2. Performing the coordinate transformation defineddjy use the typical physical parameters. FoK/V
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~10° erg/cn?, M/V~100 emu/ch, and e~10 2  determined by the relative magnitude of two anisotropy con-
—1073% we haveT,~30-3 mK with H.~2 T. How- stants or the ratio of the field to the anisotropy constant.
ever, two cases in the cubic system are greatly different iffowever, in the cubic system FSC is solely determined by

the temperature rang@\{T) of the crossover region. Quali- the sign of the anisotropy constant. This is a unique feature
tative analysis shows thahT/T,=1/S in the first-order which has not yet been found. Second, in UBS the first-order

crossover and\T/To=1/S2 in SC. For, e.g.S~1(, we regime decreases greatly with increasing the field. This im-

obtain AT/T-~0.01 for the former and 0.1 for the latter plies that the number of total spin should not be so large.
o_- : ' However, in the cubic system the first-order crossover occurs

Lessgﬁf]“;’:;}’ eig‘e‘fi’nﬁgf]tfrger spin, the more favorable to tesh) 2 1es of the longitudinal field. Third, since the cross-
: pver region AT/T,) is inversely proportional to the total

In conclusion, using the spin-coherent-state path integrag in, the sharpness of the first-order crossover will be more
we have studied the crossover in cubic systems with a lonzP'": P

gitudinal field. Considering two cases, we have found thapramatic in 'f?“ger Spin system. _These make the cubic system
the crossover is of the first order féa€>0, while of the a good candidate for the experimental study.

second order foK<<0. The result is of interest theoretically | am indebted to D. A. Gorokhov for many useful discus-
and experimentally in three respects. First, until now most osions. This work was supported by Grant No. 1999-1-114-
theoretical studies have been performed in UBS. Whether th@02-5 from the Interdisciplinary Research Program of the
crossover becomes first or second order in those systems KOSEF.
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