PHYSICAL REVIEW B VOLUME 62, NUMBER 13 1 OCTOBER 2000-I

Raman scattering cross section of spin ladders
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The Raman scattering spectra from magnetic excitations in an antiferromagneti% spinteg ladder is
investigated for weak and strong interladder coupling. In the first case, a cusp in the Raman intensity is
obtained at a frequency twice the gap. In the second case, a peak at twice the gap replaces the cusp. We discuss
the relevance of our calculation to recent experiments on,Oa¥nd Si,Cu,40,;.

Raman scattering is an experimental technique that hasith experiment. We discuss briefly what could be missing
provided valuable information about the spin dynamics inin the Majorana fermions description. On the other hand, the
guasi-one-dimensional antiferromagnets in the recent year8OT predicts correctly the presence of peaks in the Raman
Since Raman scattering is sensitive to singlet excitations, thistensity at twice the gap.
technique is complementary of neutron diffraction which is We consider two coupled antiferromagnetis=1/2
sensitive to triplet excitations. It has been used to probe spirHeisenberg chains, whose Hamiltonian is
1/2 chains, spin-1 chaing, spin-Peierls systenis® and spin
ladders’~°In particular, Raman scattering has been very use-
ful in the analysis of magnetic excitations in the spin-Peierls
compound CuGe® The bosonized theory of dimerized ) ) ) )
spin-1/2 states that is believed to describe the dimerized lowwhereJ>0 andJ, >0 denotes the intrachain and interchain
temperature phase of spin-Peierls systems predicts the a@ntl_ferromagnetm interactions, r(_aspectwel_y. Th_e interaction
pearance of a singlet bound state of two triplet excitations aff light with the antiferromagnetic fluctuations is described
an energyy3A, whereA is the spin gapg? Such a singlet by Loudon-Fleury’$?*3 photon-induced superexchange op-
bound state has been successfully observed in Raman sc&f&tor
tering experiments on CuGgdor T<Tgp at an energy
1.79, close to the theoretical prediction. Moreover, the Hr=>, (E’I.gij)(ﬁfs. g”)sj.g, 2)
peak was not observed in the uniform phase-(Tsp), show- i
ing that it is characteristic of the dimerized ph&séFor T - o .
>Tep, a broad band of magnetic excitations is obser‘\/ed.‘thereE'(ES) are the incidentscattereg electric field, and
The theoretical analysis of magnetic Raman scattering i®ij iS @ unit vector connecting the sitesindj, at which the
based on the Fleury-Loudon Hamiltoni&t? that describes  spins S;and §j are located. A derivation of Eq2) starting
the interaction of photons with magnetic excitations. Theregfrom the Hubbard Hamiltonian can be found in Ref. 19.
exists at present a certain amount of literature on the theory The Raman cross sectirf! can be expressed as a func-
of Raman scattering from dimerized spin chains, bothtion of the retarded Raman response function as
analytical®**5and numericat® The case of frustrated spin
chains has also been investigatédn relation with the Ra- d?c w3 n, 1
man spectra of CuGeat T>Tgp. The theory of Ref. 17
reproduced well the features of the spectrumTaiTgp.*
The application of Raman scattering to probe the singlet exwhere w; and w, are the frequencies of the incoming and
citations of two leg ladders is more recént.In spin ladder  scattered radiation, respectively, and= w,— w, Ny, and
systems, magnetic peaks in the Raman intensity were oly, are the respective refractive indéxis the volume of the
served at twice the spin gap. From the theoretical point otrystal andc the velocity of light. The retarded linear re-
view, some numerical calculations are availaildut no  sponse functionyg(w) is defined as
analytic expression of the Raman intensity has been deriveoF
so far. In order to fill this gap, we discuss in the present work ot i (e oot 1
the Raman spectrum of an antiferromagnetic spin-1/2 ladder. Xr (@)= gf et Z e AU HR(1),HR(0)]},

After recalling some basic results on the Fleury-Loudon 0 4)
theory of magnetic Raman scattering, we will consider first

the Majorana fermion approach valid for weak coupling andwhereZ=Tre A" andHy is the Loudon-Fleury Hamiltonian
then the bond operator techniq(BOT) valid for the strong  (2).

coupling case. The Majorana fermions approach leads to a By inserting the resolution of identity in E¢4), the Ra-
cusp in the Raman intensity at twice the gap, in disagreememhan intensity can be written as

H:JEi (él,iél,i+1+éz,iéz,i+l)+Jin é1,i'§z,i, 1)

- - =
dQdw, 25,c4y Ny 1—g Aho mMxr(®), @)
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d’c 11 whose explicit expressions are
-z ~ BEq, 2
dewth 7 ;me |<\Pn|HR|\I’m>|

) ) iw,+ vk

X olw—(En—Enlh], ) Gar(k,iwy) =G (—K,jiw,)=—
Where|\lfn(m)> are eigenstates with energigsg, . Such a
formula can be easily interpreted as a Fermi golden rule av-
eraged over the Boltzmann weight. To get information on o oo im,
two-magnons scattering processes we should perform a sym- ru(Kii @) =Glr(K,iwn)" =~ w2t 22+ me
metry analysis of the matrix elements appearing in &g, noos “
and discuss selection rules. Since the spin ladder Ham"\?\/herea stands fort (triplet) or s (singled, and w,=(2n
tonian is invariant under translation along the legs,(BU \trip gied, and wp,
rotation, and mirror along the leg direction, an eigenstate+ 1_)77/3 are th.e fermion Matsubara frequfnctes. In.terms of
should be characterized by (tatticey momentum defined Majorana fermions, the Raman operajd;S, ;- Sy, , with y
modulo 2r/a (wherea is the lattice spacing spin, and its @ constant, is expressed by
parity under leg exchange. The Raman operator defined in
Eq. (2) is rotationally and translationally invariant, and still
invariant under leg exchange. As a result, the selection rules
impose that the statds/,) and|W ) have the same Spin, \here y,=m,y and ys=msy. To arrive at this expression,
momentum, and parity under leg exchange. This implies, ifhe marginal term, already neglected in the derivation of the
particular, that aff =0, transitions will only take place t0 pamiltonian (7), has been discarded. Injecting this expres-
states of total momentum zero, spin zero, and same par_lty &on into the definition of the Raman susceptibilig) and
the ground state. Let us noiv turn_t)o concrete calculat|onsapp|ying Wick’s theorem, the time ordered expectation value
We consider the scattering f&; andEg, parallel to the rung  at finite temperature can be written as
direction, thus we have

(€)

w2 +vik?+m2’

Hr= "&réL+ YsPROL » (10

1 dq
cste S o i I 2 =1 a : ar_ i
HR:TEEszi S1;S,; - (6) Xr(i®p) B VHE’H 'yaf ZW{GRL(wan)GLR[ q,i(wy
In the following, we will evaluate the Raman intensity in the —vn)]=Ggr(A,i 0n) Gl [~ A,i(wq— vy) I}
weak coupling and in the strong coupling limit using the (12)
standard Matsubara technid@eo calculate the correlator

xr(w). - N
To evaluate the time ordered Raman susceptibility for the Explicitly, we have to compute the .followmg integral and

weakly coupled chains, we will employ the Majorana fer- sum over the Matsubara frequencies:

mion representation of the spin-ladder Hamiltoni&nintro-

duced by Shelton, Nersesyan, and Tsvelik in Ref. 23. The . = 1 , [ dd

effective Hamiltonian is expressed in terms of four interactXR(1@n) =3 DY 7QJ 27

ing Majorana fermions. They comprise a degenerate triplet

£(x) (v=Ieft,right) with bare massn,=m=J, and a sin- [ mi—(ivn+vq)[i(wn—vn)+vq]

glet, p,(x) with bare massng= —3m. It has been argued in 2 2 2 )2 2. 21"

Ref. 23 that the effect of interactions was merely to renor- [vat () +m ][ (wn—vp) +(va) +mg]

malize the bare masses, so that interactions could be ne- (12
glected. With this approximation, the spin ladder is described
by the following effective Hamiltonian: In order to evaluate the Matsubara sum in EtR), we
have to determine the residues of the four poles of the ex-
H= > H [&]+H_3.[p], pression(12) and multiply every residue with the value of

a=123 the Fermi functiomg(z) = 1[exp(B2)+1] at the pole. Add-
where ing the four terms together yields

. Us . ] 2 dq

H.[{]= _l?{gRang_gLang}_lﬂngR , (D XR(lwn):_g Yo 3 (q){l_an[Sa(CI)]}
where p stands for the triplet or singlet mass afids the i
. ; i w,t2vq

corresponding triplet or singlet operator. The thermal X20Q| ————— |, (13
Green'’s function for the left and right moving triplet and wa+4e,(0)°

singlet Majorana fermions are defined by
. . where we have introduced the notatiore,(q)
Gu(Kiwn)=(&(—wn K € (wn,K)), ® = \(vg)®+m2. Thus performing the analytic continuation
s ] (lop,—w+i0,), taking the imaginary part and performing
G, (Kiwg)=(p,(—wy,K)p,(wy,K)), the integral ovenr, we finally get
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9 . T r T r T . T The chemical potential term guarantees that the condition
8 (15) is satisfied on average. This Hamiltonian can be solved
7k by Green’s function method. One, first, introduces the four
61 Green’sTfunctionsGi,a(r)= —(T 1i (D1 (0)), Gi o(7)
5 :_<T7ti,a(7-)t0a(0)>v Fi,a(T):_<T7ti,a(7—)t0,a(0)>'
(uli“’uxgm) Al Flo(1)=—(T A ,(Dt{,(0)) and their Fourier transforms.
sl We have
2 - .
. ~ X . |wn+Ak
1t G(kiwy)=—[G(kio)*=——, (17
W, + Wi
0
1 2 3 4 5 6 7 8 9 10
© . o 2A
FIG. 1. Raman intensity in arbitrary units fod, <J at F(kiwy)=F(kiwy)= 02t o
T=0 K obtained from the Majorana fermion approach. The fre- n k
guencyw is measured in units of the gap. where v,=2nm/B and the following notation has been in-
troduced: wZ=AZ—(2A,)2, with Ay=Js%/2cosk and A,
/w2_4mi =J,/4— u+Js?cosk , recovering the dispersion relation

O(lw|—2m,).  predicted by Gopalan, Rice, and SigfisiAs shown in Ref.
25, the parameterg. and s are determined by solving the
(14 self-consistent saddle point equations. Let us now turn to the
calculation of the Raman intensity.

Formula(14) implies the existence of a cusp singularity in - The Raman intensity is proportional to (i w,—
the Raman intensity at twice the spin gap due to the triplet jg), where

excitations and another singularity at six times the spin gap

due to the singlet modes. As a result, the noninteracting Ma- . B 1 T

jorana fermions representation does not reproduce the Ra- XR(""n):aEB fo d7e' (T (t,t.)(7)(ttp)(0)). (18)
man peak experimentally observed.The spectra predicted ’

by (14) is plotted on Fig. 1. The absence of signal for By using the definition(18) and applying Wick’s theorem,
smaller than twice the gap is in qualitative agreement wittthe following expression for the Raman susceptibility is ob-
numerical simulation&® It would be interesting to determine tained:

whether treating properly the interactions between the Majo- dk

rana fermions can reproduce the experimental peak at twice R | i ; O

the spin gap. We now turn to a strong-coupling analysis of Xriwn)=p ;n ZW[G(k’I ) G(K,ivn=iwn)

the Raman susceptibility, using the bond operator , R ,

representatio?f of quantumS=1/2 spins used by Gopalan, +FE(kivy)Fi(kio,—ivy)]. (19
Rice, and _5'9”39fa in their mean field approach to spin lad- performing the usual linear response calculaffong obtain
ders. In this representation, one starts from weakly coupleds 7 final result:

rungs and introduces on each rung a singletand three

tripletstl (a@=x,Yy,z) boson creation operators, that span the Imyg(w)

Hilbert space of a single rung when acting on a vacuum

®
— 2
Imygr(w)=" za, tan?{ 4kBT> Yo wp

state. Since the rung can be in either the singlet or one of the _ coth w/4kgT)[ w/2(3, 14— pn)*~ 117
triplet states, the condition bo\[231(3, 14— ) P—[wl2(3, 14— n) P—1]2
(20)
STSJF%: tata=1 (15 The Raman scattering spectra will show two peaks, one at

energy ow=2w,.=2A4 corresponding to the bottom of the

h isfi he phvsical Th . rri]plet band, and a second one@t 2w, corresponding to
as to be satisfied by the physical states © representatlcf[)he top of the triplet band. Close to the critical frequency,

f th i dS, in t f th inglet and triplet . i .
of the spinsS, and S, In terms of these singlet and triple | ()~ (w—w*) Y2 This behavior can be easily understood

operators, is derived in Refs. 24,25. Substituting this operab density of TH i < ol
tor representation of spins into the original Hamiltonian, one ya ef‘s'ty 0 sta_tes aTgumeF‘t- eresu t|r_lg spectra is plot-
ed in Fig. 2. No signal is obtained far<2A in agreement

ends up with an Hamiltonian quartic in boson fields. Treatingt

. . 8 . .
the singlet operator in a mean field approximation and ne\-’vIth numerics.” Let us note that in recent experiments, a

glecting interactions among the triplets, one obtains the follkéman scattering peak at twice the gap is observed in

lowing Hamiltonian quadratic in triplet operatéts CaVv,0; (Ref. § where the spin-gap zjr11d the exchange con-
stant are estimated to h#&;~400 cm - and J, ~640 K.

2 These results are in qualitative agreement with our theory. In
J—L—M)E ot o+ ‘]_ E (t-T +t ) the case of SyCuw,40,4, the situation is more complicated
4 o e 2 g e e due to the coexistence in the structure of dimerized spin
N chains, having a spin gapn.ii=12 meV (Ref. 26 and of
X(tisrattivie): (16)  spin ladders having a spin ga@n,qqe~32 meV?’ In Ref. 7,

Hume=
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2 . . n r r . . tigation or Raman scattering on single crystaentifies a
18 . peak at 498 cm! as the Raman peak associated with the
16 - gap. The peak at 569 cm is identified with a (0,0) gap.
14k 4 According to the authors of Ref. 9, the other peaks are asso-
12k J ciated with bound states or single magnon light scattering. It
W) 1F i is known that bound states qf magnetic excitations can be
(arb.units) g o | | formed below the gap in a spin ladd&?° In our treatment,
' we have been neglecting them altogether. They should give
06 ) rise to peaks below the threshold 2as has been observed
04 - 7 in experiments. This problem is under investigation. To
02 7 summarize, we have considered Raman scattering in a spin
00 1' 2') ; "1 . . 7' . ladder both in the weak coupling and the strong coupling

w approximation. We have shown that only the strong coupling
treatment gave rise to peaks in the Raman intensity. Future

FIG. 2. Raman intensity in arbitrary units fal, /J=2 at  djrections include the consideration of the effect of bound
T=0 K. The frequencyw is measured in units of the gap. states on the Raman Spectra_
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