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Raman scattering cross section of spin ladders
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The Raman scattering spectra from magnetic excitations in an antiferromagnetic spin-1
2 two leg ladder is

investigated for weak and strong interladder coupling. In the first case, a cusp in the Raman intensity is
obtained at a frequency twice the gap. In the second case, a peak at twice the gap replaces the cusp. We discuss
the relevance of our calculation to recent experiments on CaV2O5 and Sr14Cu24O41.
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Raman scattering is an experimental technique that
provided valuable information about the spin dynamics
quasi-one-dimensional antiferromagnets in the recent ye
Since Raman scattering is sensitive to singlet excitations,
technique is complementary of neutron diffraction which
sensitive to triplet excitations. It has been used to probe s
1/2 chains,1 spin-1 chains,2 spin-Peierls systems,3–6 and spin
ladders.7–9 In particular, Raman scattering has been very u
ful in the analysis of magnetic excitations in the spin-Peie
compound CuGeO3. The bosonized theory of dimerize
spin-1/2 states that is believed to describe the dimerized l
temperature phase of spin-Peierls systems predicts the
pearance of a singlet bound state of two triplet excitation
an energyA3D, whereD is the spin gap.10 Such a singlet
bound state has been successfully observed in Raman
tering experiments on CuGeO3 for T,TSP at an energy
1.79D, close to the theoretical prediction. Moreover, t
peak was not observed in the uniform phase (T.TSP), show-
ing that it is characteristic of the dimerized phase.4,11 For T
.TSP, a broad band of magnetic excitations is observe4

The theoretical analysis of magnetic Raman scattering
based on the Fleury-Loudon Hamiltonian,12,13 that describes
the interaction of photons with magnetic excitations. Th
exists at present a certain amount of literature on the the
of Raman scattering from dimerized spin chains, b
analytical10,14,15and numerical.16 The case of frustrated spi
chains has also been investigated,17 in relation with the Ra-
man spectra of CuGeO3 at T.TSP. The theory of Ref. 17
reproduced well the features of the spectrum atT.TSP.4

The application of Raman scattering to probe the singlet
citations of two leg ladders is more recent.7–9 In spin ladder
systems, magnetic peaks in the Raman intensity were
served at twice the spin gap. From the theoretical poin
view, some numerical calculations are available,18 but no
analytic expression of the Raman intensity has been der
so far. In order to fill this gap, we discuss in the present w
the Raman spectrum of an antiferromagnetic spin-1/2 lad
After recalling some basic results on the Fleury-Loud
theory of magnetic Raman scattering, we will consider fi
the Majorana fermion approach valid for weak coupling a
then the bond operator technique~BOT! valid for the strong
coupling case. The Majorana fermions approach leads
cusp in the Raman intensity at twice the gap, in disagreem
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with experiment. We discuss briefly what could be missi
in the Majorana fermions description. On the other hand,
BOT predicts correctly the presence of peaks in the Ram
intensity at twice the gap.

We consider two coupled antiferromagneticS51/2
Heisenberg chains, whose Hamiltonian is

H5J(
i

~SW 1,iSW 1,i 111SW 2,iSW 2,i 11!1J'(
i

SW 1,i•SW 2,i , ~1!

whereJ.0 andJ'.0 denotes the intrachain and intercha
antiferromagnetic interactions, respectively. The interact
of light with the antiferromagnetic fluctuations is describ
by Loudon-Fleury’s12,13 photon-induced superexchange o
erator

HR5(
i , j

~EI
W
•dW i j !~ES

W
•dW i j !Si

W
•Sj
W , ~2!

whereEW I(EW S) are the incident~scattered! electric field, and
dW i j is a unit vector connecting the sitesi and j, at which the
spinsSW iand SW j are located. A derivation of Eq.~2! starting
from the Hubbard Hamiltonian can be found in Ref. 19.

The Raman cross section20,21 can be expressed as a fun
tion of the retarded Raman response function as

d2s

dVdv2
5

v1v2
3

2pc4V

n2

n1

1

12e2b\v
ImxR~v!, ~3!

wherev1 and v2 are the frequencies of the incoming an
scattered radiation, respectively, andv5v22v1 , n1, and
n2 are the respective refractive index.V is the volume of the
crystal andc the velocity of light. The retarded linear re
sponse functionxR(v) is defined as

xR
ret~v!5

i

\E0

`

ei (v1 i0)tTr$Z21e2bH@HR~ t !,HR~0!#%,

~4!

whereZ5Tre2bH andHR is the Loudon-Fleury Hamiltonian
~2!.

By inserting the resolution of identity in Eq.~4!, the Ra-
man intensity can be written as
8622 ©2000 The American Physical Society
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d2s

dVdv2
}

1

\

1

Z (
n,m

e2bEnu^CnuHRuCm&u2

3d@v2~En2Em!/\#, ~5!

where uCn(m)& are eigenstates with energiesEn(m) . Such a
formula can be easily interpreted as a Fermi golden rule
eraged over the Boltzmann weight. To get information
two-magnons scattering processes we should perform a s
metry analysis of the matrix elements appearing in Eq.~5!,
and discuss selection rules. Since the spin ladder Ha
tonian is invariant under translation along the legs, SU~2!
rotation, and mirror along the leg direction, an eigenst
should be characterized by a~lattice! momentum defined
modulo 2p/a ~wherea is the lattice spacing!, spin, and its
parity under leg exchange. The Raman operator define
Eq. ~2! is rotationally and translationally invariant, and st
invariant under leg exchange. As a result, the selection r
impose that the statesuCn& and uCm& have the same spin
momentum, and parity under leg exchange. This implies
particular, that atT50, transitions will only take place to
states of total momentum zero, spin zero, and same pari
the ground state. Let us now turn to concrete calculatio
We consider the scattering forEI

W andES
W , parallel to the rung

direction, thus we have

HR5
cste

2
EIES(

i
SW 1,iSW 2,i . ~6!

In the following, we will evaluate the Raman intensity in th
weak coupling and in the strong coupling limit using t
standard Matsubara technique22 to calculate the correlato
xR(v).

To evaluate the time ordered Raman susceptibility for
weakly coupled chains, we will employ the Majorana fe
mion representation of the spin-ladder Hamiltonian~1! intro-
duced by Shelton, Nersesyan, and Tsvelik in Ref. 23. T
effective Hamiltonian is expressed in terms of four intera
ing Majorana fermions. They comprise a degenerate tri
jn

a(x) (n5 left,right) with bare massmt5m5J' and a sin-
glet, rn(x) with bare massms523m. It has been argued in
Ref. 23 that the effect of interactions was merely to ren
malize the bare masses, so that interactions could be
glected. With this approximation, the spin ladder is describ
by the following effective Hamiltonian:

H5 (
a51,2,3

Hm@ja#1H23m@r#,

where

Hm@z#5F2 i
vs

2
$zR]xzR2zL]xzL%2 imzLzRG , ~7!

wherem stands for the triplet or singlet mass andz is the
corresponding triplet or singlet operator. The therm
Green’s function for the left and right moving triplet an
singlet Majorana fermions are defined by

Gmn
t ~k,ivn![^jm

a~2vn ,k!jn
a~vn ,k!&, ~8!

Gmn
s ~k,ivn![^rm~2vn ,k!rn~vn ,k!&,
v-
n
m-
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e

in

es

in

as
s.

e

e
-
et

-
e-
d

l

whose explicit expressions are

GRR
a ~k,ivn!5GLL

a ~2k,ivn!52
ivn1vsk

vn
21vs

2k21ma
2

, ~9!

GRL
a ~k,ivn!5GLR

a ~k,ivn!* 52
ima

vn
21vs

2k21ma
2

,

where a stands fort ~triplet! or s ~singlet!, and vn5(2n
11)p/b are the fermion Matsubara frequencies. In terms
Majorana fermions, the Raman operatorg( iSW 1,i•SW 2,i , with g
a constant, is expressed by

HR5g tjR
W jL
W1gsrRrL , ~10!

whereg t5mtg and gs5msg. To arrive at this expression
the marginal term, already neglected in the derivation of
Hamiltonian ~7!, has been discarded. Injecting this expre
sion into the definition of the Raman susceptibility~4! and
applying Wick’s theorem, the time ordered expectation va
at finite temperature can be written as

xR~ ivn!5
1

b (
nn ,a

ga
2E dq

2p
$GRL

a ~q,ivn!GLR
a @2q,i ~vn

2nn!#2GRR
a ~q,ivn!GLL

a @2q,i ~vn2nn!#%.

~11!

Explicitly, we have to compute the following integral an
sum over the Matsubara frequencies:

xR~ ivn!5
1

b (
nn ,a

ga
2E dq

2p

3H ma
22~ inn1vq!@ i ~vn2nn!1vq#

@nn
21~vq!21ma

2 #@~vn2nn!21~vq!21ma
2 #
J .

~12!

In order to evaluate the Matsubara sum in Eq.~12!, we
have to determine the residues of the four poles of the
pression~12! and multiply every residue with the value o
the Fermi functionnF(z)51/@exp(bz)11# at the pole. Add-
ing the four terms together yields

xR~ ivn!52(
a

ga
2E dq

«a~q!
$122nF@«a~q!#%

32vqF ivn12vq

vn
214«a~q!2G , ~13!

where we have introduced the notation«a(q)
5A(vq)21ma

2 . Thus performing the analytic continuatio
( ivn→v1 i01), taking the imaginary part and performin
the integral overq, we finally get
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ImxR~v!5p(
a

tanhS v

4kBTDga
2
Av224ma

2

2vv
Q~ uvu22ma!.

~14!

Formula~14! implies the existence of a cusp singularity
the Raman intensity at twice the spin gap due to the trip
excitations and another singularity at six times the spin
due to the singlet modes. As a result, the noninteracting
jorana fermions representation does not reproduce the
man peak experimentally observed.7–9 The spectra predicted
by ~14! is plotted on Fig. 1. The absence of signal forv
smaller than twice the gap is in qualitative agreement w
numerical simulations.18 It would be interesting to determin
whether treating properly the interactions between the Ma
rana fermions can reproduce the experimental peak at tw
the spin gap. We now turn to a strong-coupling analysis
the Raman susceptibility, using the bond opera
representation24 of quantumS51/2 spins used by Gopalan
Rice, and Sigrist25 in their mean field approach to spin lad
ders. In this representation, one starts from weakly coup
rungs and introduces on each rung a singlets† and three
triplets ta

† (a5x,y,z) boson creation operators, that span t
Hilbert space of a single rung when acting on a vacu
state. Since the rung can be in either the singlet or one of
triplet states, the condition

s†s1(
a

ta
† ta51 ~15!

has to be satisfied by the physical states. The represent
of the spinsS1 and S2 in terms of these singlet and triple
operators, is derived in Refs. 24,25. Substituting this ope
tor representation of spins into the original Hamiltonian, o
ends up with an Hamiltonian quartic in boson fields. Treat
the singlet operator in a mean field approximation and
glecting interactions among the triplets, one obtains the
lowing Hamiltonian quadratic in triplet operators25

HMF5S J'

4
2m D(

i ,a
t i ,a

†
t i ,a1

Js2

2 (
i ,a

~ t i ,a
†

1t i ,a!

3~ t i 11,a
†

1t i 11,a!. ~16!

FIG. 1. Raman intensity in arbitrary units forJ'!J at
T50 K obtained from the Majorana fermion approach. The f
quencyv is measured in units of the gap.
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The chemical potential termm guarantees that the conditio
~15! is satisfied on average. This Hamiltonian can be solv
by Green’s function method. One, first, introduces the fo
Green’s functionsGi ,a(t)52^Ttt i ,a(t)t0,a

† (0)&, G̃i ,a(t)
52^Ttt i ,a

† (t)t0,a(0)&, Fi ,a(t)52^Ttt i ,a(t)t0,a(0)&,
Fi ,a

† (t)52^Ttt i ,a
† (t)t0,a

† (0)& and their Fourier transforms
We have

G~k,ivn!52@G̃~k,ivn!#* 5
ivn1Lk

vn
21vk

2
, ~17!

F~k,ivn!5F†~k,ivn!5
2Dk

vn
21vk

2
,

wherenn52np/b and the following notation has been in
troduced: vk

25Lk
22(2Dk)

2, with Dk5Js2/2 cosk and Lk

5J'/42m1Js2 cosk , recovering the dispersion relatio
predicted by Gopalan, Rice, and Sigrist.25 As shown in Ref.
25, the parametersm and s are determined by solving th
self-consistent saddle point equations. Let us now turn to
calculation of the Raman intensity.

The Raman intensity is proportional to ImxR( ivn→v
1 i0), where

xR~ ivn!5(
a,b

E
0

b

dteivn^Tt~ ta
† ta!~t!~ tb

† tb!~0!&. ~18!

By using the definition~18! and applying Wick’s theorem
the following expression for the Raman susceptibility is o
tained:

xR~ ivn!5b21(
nn

E dk

2p
@G~k,inn!G~k,inn2 ivn!

1F~k,inn!F†~k,ivn2 inn!#. ~19!

Performing the usual linear response calculation,22 we obtain
as a final result:

ImxR~v!

5
coth~v/4kBT!@v/2~J'/42m!221#2

4vA@2Js2/~J'/42m!#22@v/2~J'/42m!#221]2
.

~20!

The Raman scattering spectra will show two peaks, one
energyv52vp52Ds corresponding to the bottom of th
triplet band, and a second one atv52v0, corresponding to
the top of the triplet band. Close to the critical frequencyv* ,
I (v);(v2v* )21/2. This behavior can be easily understoo
by a density of states argument. The resulting spectra is p
ted in Fig. 2. No signal is obtained forv,2Ds in agreement
with numerics.18 Let us note that in recent experiments,
Raman scattering peak at twice the gap is observed
CaV2O5 ~Ref. 8! where the spin-gap and the exchange co
stant are estimated to beDs;400 cm21 and J';640 K.
These results are in qualitative agreement with our theory
the case of Sr14Cu24O41, the situation is more complicate
due to the coexistence in the structure of dimerized s
chains, having a spin gapDchain512 meV ~Ref. 26! and of
spin ladders having a spin gapD ladder.32 meV.27 In Ref. 7,

-
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a peak was obtained at 570 cm21.71 meV in Raman scat
tering experiments on polycrystalline samples. According
our theory, this would lead to a spin gap of.35 meV, in
agreement with neutron scattering data. A more recent in

FIG. 2. Raman intensity in arbitrary units forJ' /J52 at
T50 K. The frequencyv is measured in units of the gap.
ter
o

s-

tigation or Raman scattering on single crystals9 identifies a
peak at 498 cm21 as the Raman peak associated with t
gap. The peak at 569 cm21 is identified with a (0,0) gap.
According to the authors of Ref. 9, the other peaks are a
ciated with bound states or single magnon light scattering
is known that bound states of magnetic excitations can
formed below the gap in a spin ladder.28,29 In our treatment,
we have been neglecting them altogether. They should g
rise to peaks below the threshold 2D, as has been observe
in experiments.9 This problem is under investigation. T
summarize, we have considered Raman scattering in a
ladder both in the weak coupling and the strong coupl
approximation. We have shown that only the strong coupl
treatment gave rise to peaks in the Raman intensity. Fu
directions include the consideration of the effect of bou
states on the Raman spectra.
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