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Effects of spin-elastic interactions in frustrated Heisenberg antiferromagnets
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The Heisenberg antiferromagnet on a compressible triangular lattice in the spin-wave approximation is
considered. It is shown that the interaction between quantum fluctuations and elastic degrees of freedom
stabilize the low symmetrit: phase with a collinear N magnetic ordering. A multivalued dependence of the
on-site magnetization as a function of an uniaxial pressure is found.

There is a long standing interest in properties of frustrated.e., those systems where the coupling between magnetic and
quantum antiferromagnets because they display a large valastic degrees of freedom is taken into account, under the
ety of behavior: e.g., conventional spin ordering, spin liquidaction of uniaxial pressure. We treat the system self-
ground states, or chirality transitiohd.he antiferromagnetic consistently considering the spin subsystem in the linear
Heisenberg model on a triangular lattice is the simplest twospin-wave approximation and using the continuum approach
dimensional frustrated system. Quasi-two-dimensional trianfor the elastic degrees of freedom. We show that as a result
gular lattice antiferromagnets are not rare objects. It was reef this method the behavior of the on-site magnetization as a
cently showR? that the material AM(SQ,), belonging to  function of the pressure differs significantly from the behav-
the Yavapaiite family may be considered as realizations of &r which was obtained in the framework of the spatially
quasi-two-dimensional triangular lattice quantumg., M anisotropic Heisenberg mod&t’ In particular, the on-site-
=Ti with S=1/2) and quasiclassicdk.g., M=Fe with S  magnetization does not vanish in the whole interval of sta-
=5/2) antiferromagnets. The solid oxygen consists ofbility of the collinear phase.
weakly interacting planeftriangular in the case o8—0, We consider the two-dimensional triangular lattice. The
and rectangular in the case af- O, (Ref. 4] whose mag- Hamiltonian of the spin subsystem, interacting with the dis-
netic properties are described by the easy-plane Heisenbepigcements of the magnetic atoms, is
antiferromagnetic model with spis=1.5 An antiferromag-
netic Heisenberg model was also used in Ref. 6 to describe H= l 2 J(|ra*—ri *|)§”' 2. . (1)
the properties of a triangular monolayer of Pb and Sn ada- 2= nontal/=n =nta
toms on the(111) surface of Ge form. ) )

From the theoretical point of view the antiferromagneticHere S;; is the spin operator of the atom located in thth
I—_Ieilsenberg model 0”2 t(;iangular lattice Ta?} attracted pakite of the triangular latticen=n,C;+n,C, (n;,n,=0,
ticular attention since Anderson’s proposal of a resonance- > z 1 :
valence-bond state for this mod’elgroﬁl that time much — -2+ .)wh.erecl—(l,o_), *Cz_a(i’j/ﬁ_/z) are th.e_ basic
work has been done to understand the nature of its groungectors of the triangular lattice;=n-+uy is the position of
state. There is now a more or less consensus based on vari¢he nth atom with u; being the atom displacements from
of method&!! that the ground state has a conventionaltheir equilibrium positions(without magnetic interaction
three-sublattice order but quantum fluctuations arey(|r;—r;|)>0 is the distance-dependent exchange integral,

important-*~* Quite recently the effect of quantum Spin 4n43 is the vector which connects a site with nearest neigh-
fluctuations on the ground-state properties was explored fQf .« \ve consider a small spatially smooth deformation.
the related model of spatially anisotropic Heisenberg antiferrperefore it is convenient to introduce the components of the
romagnet in the linear spin-wave approximatidn’ The . oL L
staggered magnetization and the magnon dispersion Weaéram tensou;; - (Una—Un)i=22;(0u;/dn; +au;/on;) a
calculated as functions of the ratio of the antiferromagnetic:Eiuii%J' ' E"J :le) and by expanding the exchange inte-
exchange between the secoriy)(and first ;) neighbors ~ 9ral J(|a+ugz.a—ug|), we get
J,/J,. As a physical tool which allows to tune the ratio
J, /3, Merino et al}” invoke an uniaxial stress within a layer H— 1 S i1-93 aua |&- @
whereby the relative distances between atoms are changed. 2= 7 o I nta:

In this paper we are motivated by the question whether it
is possible to freely tune the ratio of the exchange integralsvhere J=J(|a|), and 7= —d In J(r])/dr]
J,/J4, by using uniaxial pressure. This is a question of con{attice coupling constant.
siderable importance because the model under consideration The elastic energy of the two-dimensional triangular lat-
is a generic one. We therefore investigate the ground-statiice in the continuum approximation coincides with the elas-

properties of the compressible frustrated antiferromagnetdic energy of the isotropic plane

r=a IS the spin-
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1 , 1 ) 5 correspond to the dilatatiorfcontraction of the lattice
=5 K(Uxxt Uyy) "+ 5 [ (U= Uyy) “+ AU [ (uyx+Uyy)/2] without changing its symmetry. These terms
do not change the qualitative behavior of the system. The
~ PxUxx— PyUyy, equations forﬁ and ¢; have the form
whereK is the compressiofor bulk) modulus andu is the
shear modulus of the systefsee, e.g. Ref. 38and p;(i ij_-: 0, i]-‘=0. (8)
=X,Y) are the component of the uniaxial pressure. aq e

In what follows we restrict ourselves to the case of spa- . _
tially uniform deformationau;; = const. Let us use the trans-  Let us consider first the case zero presgu#e0. In the
formation(see, e.g., Ref. 2190 the local frame of reference classical approximation whesi— the energy of the system

_T SN L Eain(E _7¢ A _ein(@.my X can be represented in the form
SE: S:cos@-n)+Ssin@-n), S:=Stcosgl-n)—Ssin@-n), S P
=S§ in which quantization axis for tle spinﬁsﬁ at each site ﬂ—s{]*-f- K 2, 2 ©
coincide with its classical direction (cgs,0,singn) which is J T 2('51 €2)-

determined by the vectm}. By using the Holstein-Primakoff From E : .
i o — g.(9) we obtain that the set of equatiof® has three
Spln-representatloﬁg= \ S/2(b:'i+ bﬁ), S)é: I\ S/2(b;~— bﬁ), types of Solutions_

Si=S—blb; with b}, (b;) being the creatiordestruction (i) High symmetry H-phase: qy=4m/3(cose,sing),d
Bose operator of the spin excitation on theh site and ap- =0,* #/3. The spin structure corresponding to eaiq:his a
plying the ~ Bogolyubov transformation b;  three-sublattice antiferromaget. Three differgptrepresent

=N‘1’22ge“k”(agcoshaﬁatﬁsinhalg) for these operators three possible antiferromagnetic domains. The lattice struc-
(K is the wave vector belonging to the first Brillouin zone tUre is an undistorted triangular lattice, = e,=0) with the
andN is the number of atoms in the crystahe Hamiltonian ~ 9"OUP SymmetnDep, . R

(1) in the spin-wave approximation can be represented in the (i) Low symmetryL phase:q, =2//3(sin¢,cos¢),¢
form H= NEgr+E,;w|;aEai;, where =0,*+ /3. The spin structure corresponding to eaghis a
two-sublattice antiferromagnet. The lattice structure §or
=0 is determined by the deformation tensess=2S?/ «,

€,=0 while for two otherﬁ,_ the deformation tensors can be
obtained by rotations by 7/3. The lattice is characterized
by the group symmetr{p,;, .

(i) Spiral S phase qs=(qs,27/\3), ;= [COSQs
+c0s@y2)],e,=0 where cos{y2)=(,/9+32«/S?—5)/8.
fE:S(—ZJd‘F Ji—gtIi+q) gEzZS(J,;—Ja) (4  Two more vectors] and deformatiqn tensors, gnd €, can
be obtained from the above equation by rotationstoy/3.

1 )
Eg=Eei— Ek‘, wisink? 05 (3)

is the ground state energy per atom in the spin-wave approx
mation. The coefficients of the Bogolyubov transformation
are given by tanté=(fi—g9?(fi+g9) 2 where

with Jg=33;J(1— nEi,,—aiuijaj)COS@é), and The spin structure is a spiral antiferromagnet. The high- and
L low-symmetry phases called and L phase as the corre-
o= frgi ) sponding points in the Brillouin zon@ee e.g., Refs. 20,21
is the magnon energyE, = S?); is the energy of the spin We consider the stability of obtained solutions for the case
subsystem per atom in the classical approximation. when
The on-site magnetizatioME(ézﬁ)zs—(bgbr;) can be o o
also obtained by using the Bogolyubov transformation. As a €,=0, €,=0, 0=q,< 3 W (10
result we get V3
1 In the subspac€l0) the stability condition reads
M=S—— >, sint?6;. (6)
N K 2

F*F FPFFF | PF
&qxﬁel

>0, >0. (12
Our goal now is to minimize the total ground state energy des ded dg>

of the system One can obtain from Eq49) and (11) that theL phase is

stable wherk/S?< %, bothH andL phases are stable when
(el +€5)— Dfl) (7)  $<klS?<5. Fork/S?*=4 theH andL phases have the same

energy while fork/S?<4 thel phase becomes energetically
with respect to the variational parameters which are the commore favorable, théd phase is stable wher/S?>>5. The
ponents of the deformation tensoe;= 7(Uyx—Uy,)/2, spiral S phase does not correspond to a minimum of the
€2= 17Uy, and the vectoq. Here the magnetoelastic con- ground state energy. In the subsp&b® the spiral phase for
stantx=4u/(J 7?) characterizes the stiffness of the lattice 7 <«/S*<5 corresponds to the saddle point which separates
in terms of the intensity of the spin-lattice interactigm, ~two stable phasesl andL.
=(px—Py)/(7J) is the dimensionless uniaxial pressure. In  The wave vectorgy andq,_ determine also the magnetic
Eq. (7) we omitted the terms of spin-lattice interaction which structure of thed andL phases in the spin-wave approxima-

K
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tion. This is not true, however, for the spiral phase where
guantum fluctuations change the value of the spiral wave

vectorqs.

Evaluating numerically the integrals in the right-hand side
of Eq. (3) for q=q,;, €,=0 one can obtain that the ground
state energy of the symmetric triangular phase in the spin
wave approximation isFy~J[ —$S(S+1)+1.17238]. We
have also found that thél phase is stable fok> ky(S)
where

2.29, for S=1%,

ku(S 1.92, for S=1,
HS) 12

S(S+1) | 1.96, for S=2,

1.99, for S=2.

Considering the low-symmetry. phase which corre-
sponds to the wave vect(irL=27T(0,1/\/§) we obtain from
Egs.(4), (5) that its energy in the spin-wave approximation
is determined by the expression

ke?

2

3" S(S+1)(1+2€)+ +Sl(eq),

elsin2y> E(m),
€1
(13

4 (w2 1
|(€1):(2+€1);f0 dy(1_22+

whereE(m) is the elliptic integral of the second kiffdwith
the parameter

1 21
2+

-2
€1 .
elsmzy) .

m=cosy

One can obtain from Eq5) that in thek—0 limit the mag-
non dispersion in the. phase has the fornwp=2J2

+€1)(5e1— 2)K2+ 3(2+ €1)K2. This means thab? in the

L phase is positive definite function Bfonly fore;>0.4 and
only in this interval we may look for extrema of the function
F. . Comparing the Hamiltonia®2) with the Hamiltonian of
the Heisenberg antiferromagnet on an anisotropic triangul
lattice 151" we see that that the quantity(1+ e;/2)[J(1
—€,)] corresponds to the antiferromagnetic exchange b
tween first(secondl neighbors on an anisotropic triangular
lattice. Therefore the interval=e,;>0.4 corresponds to the
interval 0<J,/J;<1/2 in the spin-wave theory of Heisen-
berg antiferromagnet on an anisotropic triangular lattice.
In Fig. 1 we plot the deformation tensey, which pro-
vides an extremum ofF, , as a function of the coupling
parametelk for three spin valueS=1/2,1,3/2. It is seen that
the equationd#/de;=0 has solutione; only for k<x« .
The critical valuex| (S) which determines the interval of the
existence of thé. phase increases when the sBimcreases,

e.g.,
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FIG. 1. The deformation tensar = 7(u,,— Uy,)/2 for the col-
linearL-phaseg(full curve S=1/2, dashed curv8= 1, dotted-dashed
curve S=3/2) as a function of the renormalized magnetoelastic
constant«/S(S+1). The multivalued character of the dependence
for the caseS=1/2 is shown in the inset.

1.32, for S=1%,
Kk (S) _ 2.24, for S=1, 14
S(S+1) | 2.78, for S=2,

3.15, for S=2

but even forS=4 it is still less thanx, obtained in the
classical approximationk, (4)/«x ~0.95. The reason for
this is the strong contribution to the effective elastic energy
of the system from quantum fluctuatiofike second term on
the right-hand side of Eq13)]. The quantum fluctuations
change both the stiffness of the lattithe second derivative
of the free energy13) with respect to the deformatiog |
and the constant of the spin-elastic interactigre first de-
rivative of the free energy A single-valued monotonic de-
pendence:; (k) is obtained forIS=1. For S=1/2 the depen-
dence becomes multivalued, i.e., there is an intervak of
where two values{" and {?) (e{V<€l?) of the deforma-
tion tensor correspond to each value of the coupling constant
k. Only the solution which corresponds to the deformation
€{?) corresponds to the minimum of the effective elastic en-
ergy (13).

To find the stability region of the collinedr phase we
numerically evaluated integrals on the left-hand side of the
inequality (11) and found that it holds in the intervat
<k (S). Comparing the stability limits foH andL phases
give in Egs.(12) and(14) we find the following interesting
results. ForS=1 we have alwaysy(S) <k (S) similar to
the classical approach where the stability regiondf@andL

a}!Shases overlap. However, f@=1/2 this is not the case

since there is an intervat (1/2)<«<ky(1/2) where nei-
ther theL nor theH phase exist.

The nature of the phase in the interyal (1/2),x4(1/2)]
or in other words fore;<<0.4, cannot be clarified in the
framework of the spin-wave approach. The reason why this
approach fails is the following. As it was mentioned above
the vectorsﬁS obtained in the classical approach are not so-
lutions of the extrema condition®) in the spin-wave ap-
proximation. On the other hand, as it is seen from EGgs.
and (4) the magnon frequencyy is real in the intervalk,
<0.4 only forﬁ obtained in the classical approach. For other

q valueSwE is not positive definite. Thus to check the sta-
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FIG. 2. The effect of the uniaxial pressure on the on-site mag-
netization in theL phase §=1/2,«x=1.315). The inset represents

the magnetization as a function of the raflo/J,=2(1—€,)/(2
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Figure 2 and in particular its inset shows that our results are
qualitatively different from those of a recent spatially aniso-
tropic triangular lattice stud{?’ In the (3;,J,) model the
ratio J,/J, is a free parameter which can take also the value
1/2 for which the on-site magnetization vanishes and quan-
tum fluctuations are supposed to play a particularly impor-
tant role!®” In our model of a compressible triangular lat-
tice the corresponding parametby/J;=2(1—€)/(2+ €;)

is less than 1/2 in the whole interval of the existence ofithe
phase and the on-site magnetization is finite. It is interesting
that there exists an interval where two values of the magne-
tization M correspond to each value of the presspréne
can show, however, that only the state with a larger value of
M is stable.

+¢;) of the effective exchange integrals between the second and We conclude that the Heisenberg antiferromagnet on a

first neighbors in the presence of the uniaxial pressure.

compressible triangular lattice differs qualitatively from the
Heisenberg antiferromagnet on an anisotropic triangular lat-

bility of the corresponding phase one should calculate théice. Self-consistent treatment of the elastic degrees of free-

magnon dispersion beyond the spin-wave approach.

dom shows that the spiral magnetic phase is unstable in the

Let us consider how the phase evolves in the presence classical approximation. This approach shows also that in the

of an uniaxial pressurp. From Eqs.(7) and(8) we get

. 2w dl(e;)
q=—3(0,l), €,=0, p=ke;—2S(S+1)+S—.

\/— dEl

spin-wave approximation the interaction between quantum
fluctuations and elastic degrees of freedom stabilizes the col-
linear L phase.
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