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Effects of spin-elastic interactions in frustrated Heisenberg antiferromagnets
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The Heisenberg antiferromagnet on a compressible triangular lattice in the spin-wave approximation is
considered. It is shown that the interaction between quantum fluctuations and elastic degrees of freedom
stabilize the low symmetricL phase with a collinear Ne´el magnetic ordering. A multivalued dependence of the
on-site magnetization as a function of an uniaxial pressure is found.
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There is a long standing interest in properties of frustra
quantum antiferromagnets because they display a large
ety of behavior: e.g., conventional spin ordering, spin liqu
ground states, or chirality transitions.1 The antiferromagnetic
Heisenberg model on a triangular lattice is the simplest tw
dimensional frustrated system. Quasi-two-dimensional tri
gular lattice antiferromagnets are not rare objects. It was
cently shown2,3 that the materialsAM(SO4)2 belonging to
the Yavapaiite family may be considered as realizations o
quasi-two-dimensional triangular lattice quantum~e.g., M
5Ti with S51/2) and quasiclassical~e.g., M5Fe with S
55/2) antiferromagnets. The solid oxygen consists
weakly interacting planes@triangular in the case ofb2O2
and rectangular in the case ofa2O2 ~Ref. 4!# whose mag-
netic properties are described by the easy-plane Heisen
antiferromagnetic model with spinS51.5 An antiferromag-
netic Heisenberg model was also used in Ref. 6 to desc
the properties of a triangular monolayer of Pb and Sn a
toms on the~111! surface of Ge form.

From the theoretical point of view the antiferromagne
Heisenberg model on a triangular lattice has attracted
ticular attention since Anderson’s proposal of a resonan
valence-bond state for this model.7 From that time much
work has been done to understand the nature of its gro
state. There is now a more or less consensus based on va
of methods8–11 that the ground state has a convention
three-sublattice order but quantum fluctuations
important.12–14 Quite recently the effect of quantum sp
fluctuations on the ground-state properties was explored
the related model of spatially anisotropic Heisenberg anti
romagnet in the linear spin-wave approximation.15–17 The
staggered magnetization and the magnon dispersion w
calculated as functions of the ratio of the antiferromagne
exchange between the second (J2) and first (J1) neighbors
J2 /J1. As a physical tool which allows to tune the rat
J2 /J1 Merino et al.17 invoke an uniaxial stress within a laye
whereby the relative distances between atoms are chang

In this paper we are motivated by the question whethe
is possible to freely tune the ratio of the exchange integ
J2 /J1, by using uniaxial pressure. This is a question of co
siderable importance because the model under consider
is a generic one. We therefore investigate the ground-s
properties of the compressible frustrated antiferromagn
PRB 620163-1829/2000/62~13!/8604~4!/$15.00
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i.e., those systems where the coupling between magnetic
elastic degrees of freedom is taken into account, under
action of uniaxial pressure. We treat the system s
consistently considering the spin subsystem in the lin
spin-wave approximation and using the continuum appro
for the elastic degrees of freedom. We show that as a re
of this method the behavior of the on-site magnetization a
function of the pressure differs significantly from the beha
ior which was obtained in the framework of the spatia
anisotropic Heisenberg model.16,17 In particular, the on-site-
magnetization does not vanish in the whole interval of s
bility of the collinear phase.

We consider the two-dimensional triangular lattice. T
Hamiltonian of the spin subsystem, interacting with the d
placements of the magnetic atoms, is

H5
1

2 (
nW ,aW

J~ urWnW2rWnW 1aW u!SW nW•SW nW 1aW . ~1!

Here SW nW is the spin operator of the atom located in thenW th
site of the triangular lattice:nW 5n1cW11n2cW2 (n1 ,n250,

61,62, . . . ) wherecW15(1,0), cW25( 1
2 ,A3/2) are the basic

vectors of the triangular lattice,rWnW5nW 1uW nW is the position of
the nW th atom with uW nW being the atom displacements fro
their equilibrium positions~without magnetic interaction!,
J(urWnW2rWmW u).0 is the distance-dependent exchange integ
andaW is the vector which connects a site with nearest nei
bors. We consider a small spatially smooth deformati
Therefore it is convenient to introduce the components of
strain tensorui j : (uW nW 1aW2uW nW) i5

1
2 ( j (]ui /]nj1]uj /]ni) aj

[( jui j aj , (i , j 5x,y) and by expanding the exchange int
gral J(uaW 1uW nW 1aW2uW nW u), we get

H5
1

2 (
nW ,aW

JS 12h(
i , j

aiui j aj DSW nW•SW nW 1aW , ~2!

where J[J(uaW u), and h52d ln J(urWu)/durWu urW5aW is the spin-
lattice coupling constant.

The elastic energy of the two-dimensional triangular l
tice in the continuum approximation coincides with the ela
tic energy of the isotropic plane
8604 ©2000 The American Physical Society
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F5
1

2
K~uxx1uyy!

21
1

2
m@~uxx2uyy!

214uxy
2 #

2pxuxx2pyuyy ,

whereK is the compression~or bulk! modulus andm is the
shear modulus of the system~see, e.g., Ref. 18! and pi( i
5x,y) are the component of the uniaxial pressure.

In what follows we restrict ourselves to the case of s
tially uniform deformationsui j 5const. Let us use the trans
formation ~see, e.g., Ref. 19! to the local frame of referenc
SnW

x
5S̃nW

xcos(qW•nW)1S̃nW
zsin(qW•nW), SnW

z
5S̃nW

zcos(qW•nW)2S̃nW
xsin(qW•nW), SnW

y

5S̃nW
y in which quantization axis for the spins at each s

coincide with its classical direction (cosqWnW,0,sinqWnW) which is
determined by the vectorqW . By using the Holstein-Primakof
spin-representationS̃nW

x
5AS/2(bnW

†
1bnW), S̃nW

y
5 iAS/2(bnW

†
2bnW),

S̃nW
z
5S2bnW

†
bnW with bnW

† , (bnW) being the creation~destruction!

Bose operator of the spin excitation on thenW th site and ap-
plying the Bogolyubov transformation bnW

5N21/2(kWe
2 ikWnW(akWcoshukW1a

2kW
† sinhukW) for these operators

(kW is the wave vector belonging to the first Brillouin zon
andN is the number of atoms in the crystal!, the Hamiltonian
~1! in the spin-wave approximation can be represented in
form H5NEgr1(kWvkWakW

†
akW , where

Egr5Ecl2
1

N (
kW

vkWsinh2ukW ~3!

is the ground state energy per atom in the spin-wave appr
mation. The coefficients of the Bogolyubov transformati
are given by tanh2ukW5(fkW2gkW)

2(fkW1gkW)
22, where

f kW
2
5S~22JqW1JkW2qW1JkW1qW !, gkW

2
52S~JkW2JqW ! ~4!

with JkW5
1
2 (aW J(12h( i , jaiui j aj )cos(kW•aW), and

vkW5 f kWgkW ~5!

is the magnon energy.Ecl5S2JqW is the energy of the spin
subsystem per atom in the classical approximation.

The on-site magnetizationM[^S̃nW
z
&5S2^bnW

†
bnW& can be

also obtained by using the Bogolyubov transformation. A
result we get

M5S2
1

N (
kW

sinh2ukW . ~6!

Our goal now is to minimize the total ground state ene
of the system

F5F1Egr[Egr1JS k

2
~e1

21e2
2!2pe1D ~7!

with respect to the variational parameters which are the c
ponents of the deformation tensore15h(uxx2uyy)/2,
e25huxy , and the vectorqW . Here the magnetoelastic con
stantk54m/(J h2) characterizes the stiffness of the latti
in terms of the intensity of the spin-lattice interaction,p
5(px2py)/(hJ) is the dimensionless uniaxial pressure.
Eq. ~7! we omitted the terms of spin-lattice interaction whi
-

e

i-

a

y

-

correspond to the dilatation~contraction! of the lattice
@(uxx1uyy)/2# without changing its symmetry. These term
do not change the qualitative behavior of the system. T
equations forqW ande i have the form

]

]qW
F50,

]

]e i
F50. ~8!

Let us consider first the case zero pressurep50. In the
classical approximation whenS→` the energy of the system
can be represented in the form

Fcl

J
5S2JqW1

k

2
~e1

21e2
2!. ~9!

From Eq.~9! we obtain that the set of equations~8! has three
types of solutions.

~i! High symmetry H-phase: qW H54p/3(cosf,sinf),f
50,6p/3. The spin structure corresponding to eachqW H is a
three-sublattice antiferromaget. Three differentqW H represent
three possible antiferromagnetic domains. The lattice str
ture is an undistorted triangular lattice (e15e250) with the
group symmetryD6h .

~ii ! Low symmetryL phase:qW L52p/A3(sinf,cosf),f
50,6p/3. The spin structure corresponding to eachqW L is a
two-sublattice antiferromagnet. The lattice structure forf
50 is determined by the deformation tensorse152S2/k,
e250 while for two otherqW L the deformation tensors can b
obtained by rotations by6p/3. The lattice is characterize
by the group symmetryD2h .

~iii ! Spiral S phase qW s5(qs,2p/A3), e15k21@cosqs

1cos(qs/2)#,e250 where cos(qs/2)5(A9132k/S225)/8.
Two more vectorsqW and deformation tensorse1 ande2 can
be obtained from the above equation by rotations by6p/3.
The spin structure is a spiral antiferromagnet. The high- a
low-symmetry phases calledH and L phase as the corre
sponding points in the Brillouin zone~see e.g., Refs. 20,21!.
We consider the stability of obtained solutions for the ca
when

e1>0, e250, 0<qx<
2p

3
, qy5

2p

A3
. ~10!

In the subspace~10! the stability condition reads

]2F
]e1

2
.0,

]2F
]e1

2

]2F
]qx

2
2S ]2F

]qx]e1
D 2

.0. ~11!

One can obtain from Eqs.~9! and ~11! that theL phase is
stable whenk/S2, 9

4 , both H andL phases are stable whe
9
4 ,k/S2,5. Fork/S254 theH andL phases have the sam
energy while fork/S2,4 theL phase becomes energetical
more favorable, theH phase is stable whenk/S2.5. The
spiral S phase does not correspond to a minimum of
ground state energy. In the subspace~10! the spiral phase for
9
4 ,k/S2,5 corresponds to the saddle point which separa
two stable phasesH andL.

The wave vectorsqW H andqW L determine also the magneti
structure of theH andL phases in the spin-wave approxim
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tion. This is not true, however, for the spiral phase wh
quantum fluctuations change the value of the spiral w
vectorqs .

Evaluating numerically the integrals in the right-hand s
of Eq. ~3! for qW 5qW H , e150 one can obtain that the groun
state energy of the symmetric triangular phase in the s
wave approximation isFH'J@2 3

2 S(S11)11.1723S#. We
have also found that theH phase is stable fork.kH(S)
where

kH~S!

S~S11!
55

2.29, for S5 1
2 ,

1.92, for S51,

1.96, for S5 3
2 ,

1.99, for S52.

~12!

Considering the low-symmetryL phase which corre-
sponds to the wave vectorqW L52p(0,1/A3) we obtain from
Eqs. ~4!, ~5! that its energy in the spin-wave approximatio
is determined by the expression

FL

J
52S~S11!~112e1!1

ke1
2

2
1SI~e1!,

I ~e1!5~21e1!
4

p2E0

p/2

dyS 122
12e1

21e1
sin2yDE~m!,

~13!

whereE(m) is the elliptic integral of the second kind22 with
the parameter

m5cos2yS 122
12e1

21e1
sin2yD 22

.

One can obtain from Eq.~5! that in thekW→0 limit the mag-
non dispersion in theL phase has the formvkW52JS(2
1e1)A(5e122)kx

213(21e1)ky
2. This means thatvkW

2 in the

L phase is positive definite function ofkW only for e1.0.4 and
only in this interval we may look for extrema of the functio
FL . Comparing the Hamiltonian~2! with the Hamiltonian of
the Heisenberg antiferromagnet on an anisotropic triang
lattice,16,17 we see that that the quantityJ(11e1/2)@J(1
2e1)# corresponds to the antiferromagnetic exchange
tween first~second! neighbors on an anisotropic triangul
lattice. Therefore the interval 1.e1.0.4 corresponds to the
interval 0,J2 /J1,1/2 in the spin-wave theory of Heisen
berg antiferromagnet on an anisotropic triangular lattice.

In Fig. 1 we plot the deformation tensore1 which pro-
vides an extremum ofFL , as a function of the coupling
parameterk for three spin valuesS51/2,1,3/2. It is seen tha
the equationdF/de150 has solutione1 only for k,kL .
The critical valuekL(S) which determines the interval of th
existence of theL phase increases when the spinS increases,
e.g.,
e
e

n-

ar

e-

kL~S!

S~S11!
55

1.32, for S5 1
2 ,

2.24, for S51,

2.78, for S5 3
2 ,

3.15, for S52

~14!

but even forS54 it is still less thankL obtained in the
classical approximation:kL(4)/kL'0.95. The reason for
this is the strong contribution to the effective elastic ene
of the system from quantum fluctuations@the second term on
the right-hand side of Eq.~13!#. The quantum fluctuations
change both the stiffness of the lattice@the second derivative
of the free energy~13! with respect to the deformatione1#
and the constant of the spin-elastic interaction~the first de-
rivative of the free energy!. A single-valued monotonic de
pendencee1(k) is obtained forS>1. ForS51/2 the depen-
dence becomes multivalued, i.e., there is an interval ok
where two valuese1

(1) ande1
(2) (e1

(1),e1
(2)) of the deforma-

tion tensor correspond to each value of the coupling cons
k. Only the solution which corresponds to the deformati
e1

(2) corresponds to the minimum of the effective elastic e
ergy ~13!.

To find the stability region of the collinearL phase we
numerically evaluated integrals on the left-hand side of
inequality ~11! and found that it holds in the intervalk
,kL(S). Comparing the stability limits forH andL phases
give in Eqs.~12! and ~14! we find the following interesting
results. ForS>1 we have alwayskH(S),kL(S) similar to
the classical approach where the stability regions forH andL
phases overlap. However, forS51/2 this is not the case
since there is an intervalkL(1/2),k,kH(1/2) where nei-
ther theL nor theH phase exist.

The nature of the phase in the interval@kL(1/2),kH(1/2)#
or in other words fore1,0.4, cannot be clarified in the
framework of the spin-wave approach. The reason why
approach fails is the following. As it was mentioned abo
the vectorsqW s obtained in the classical approach are not
lutions of the extrema conditions~8! in the spin-wave ap-
proximation. On the other hand, as it is seen from Eqs.~5!
and ~4! the magnon frequencyvkW is real in the intervale1

,0.4 only forqW obtained in the classical approach. For oth
qW valuesvkW

2 is not positive definite. Thus to check the st

FIG. 1. The deformation tensore15h(uxx2uyy)/2 for the col-
linearL-phase~full curveS51/2, dashed curveS51, dotted-dashed
curve S53/2) as a function of the renormalized magnetoelas
constantk/S(S11). The multivalued character of the dependen
for the caseS51/2 is shown in the inset.
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bility of the corresponding phase one should calculate
magnon dispersion beyond the spin-wave approach.

Let us consider how theL phase evolves in the presen
of an uniaxial pressurep. From Eqs.~7! and ~8! we get

qW 5
2p

A3
~0,1!, e250, p5ke122S~S11!1S

dI~e1!

de1
.

In Fig. 2 we show results for the on-site magnetization in
L phase forS5 1

2 as a function of the uniaxial pressurep.

FIG. 2. The effect of the uniaxial pressure on the on-site m
netization in theL phase (S51/2,k51.315). The inset represen
the magnetization as a function of the ratioJ2 /J152(12e1)/(2
1e1) of the effective exchange integrals between the second
first neighbors in the presence of the uniaxial pressure.
e

e

Figure 2 and in particular its inset shows that our results
qualitatively different from those of a recent spatially anis
tropic triangular lattice study.16,17 In the (J1 ,J2) model the
ratio J2 /J1 is a free parameter which can take also the va
1/2 for which the on-site magnetization vanishes and qu
tum fluctuations are supposed to play a particularly imp
tant role.16,17 In our model of a compressible triangular la
tice the corresponding parameterJ2 /J152(12e1)/(21e1)
is less than 1/2 in the whole interval of the existence of thL
phase and the on-site magnetization is finite. It is interes
that there exists an interval where two values of the mag
tization M correspond to each value of the pressurep. One
can show, however, that only the state with a larger value
M is stable.

We conclude that the Heisenberg antiferromagnet o
compressible triangular lattice differs qualitatively from th
Heisenberg antiferromagnet on an anisotropic triangular
tice. Self-consistent treatment of the elastic degrees of f
dom shows that the spiral magnetic phase is unstable in
classical approximation. This approach shows also that in
spin-wave approximation the interaction between quant
fluctuations and elastic degrees of freedom stabilizes the
linear L phase.
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