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Path-integral approach to strongly nonlinear composites

Marc Barthélémy
CEA-Centre d’Etudes de Bruye`res-le-Chaˆtel, Service de Physique de la Matie`re Condense´e, BP12, 91680 Bruye`res-Le-Chaˆtel, France

~Received 17 March 2000!

We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of
a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear
susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case
and has the following features:~i! It reproduces the weak contrast expansion to the second order and~ii ! the
effective medium exponent near the percolation threshold ares51, t511k, wherek is the nonlinearity
exponent. Finally, we give analytical expressions for previously numerically calculated quantities.
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The study of the properties of linear heterogeneous me
~composites, suspensions! has been the subject of an inten
activity for already fifty years~see Refs. 1 and 2!. More
recently there has been a great interest in nonlinear me2

The nonlinear composites are important for technology
also from a fundamental point of view, for which it is im
portant and challenging to understand the interplay betw
nonlinearity and disorder. There are essentially two type
nonlinear media.~a! Weak nonlinearity: the nonlinearity i
small compared to the linear term. This case was studied
many authors and is now relatively well understood.3–11 ~b!
Strong nonlinearity: the nonlinearity is here the domina
term and this can happen in essentially two situations. F
there can be a sharp threshold between two different be
iors and this case can model the phenomena of fractur
dielectric breakdown.12,13Second, the constitutive law can b
a pure power law of the form

j 5xuEukE, ~1!

wherej is the current andE the electric field. This behavio
can be observed in a dielectric illuminated by a laser2 when
the multiphoton processes dominates and the usual li
approximation completely breaks down. Certain cermets
sistors, ZnO based varistors14,15 or disordered alloys16 can
also display this behavior~1!.

In a disordered medium, the nonlinear susceptibilitiesx
can fluctuate from point to point and one is interested in
macroscopic effective behavior of such a medium. If t
nonlinearity exponentk is the same for all phases of th
medium, then the effective nonlinear susceptibility is w
defined and is given byj 05xeuE0ukE0, wherej 0 andE0 are
the macroscopic current and electric field, respectively. I
difficult to evaluatexe and devising a reliable method t
computexe would allow one to study a variety of othe
problems such as fracture or dielectric breakdown.

In this strongly nonlinear case, Blumenfeld and Bergm
obtained the weak contrast expansion to second order.17 This
expansion was recovered by means of a path inte
method.18 The dilute limit was studied in Refs. 19 and 2
Problems arise when one tries to find an effective med
approximation~EMA! for this type of media. A good EMA
should satisfy the two following criteria.~i! It should repro-
duces the weak-contrast expansion~at least up to the secon
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order! and the dilute limit~although this last condition is
probably very difficult to fulfill for strongly nonlinear me
dia!. ~ii ! Close to the percolation thresholdpc , the effective
nonlinear susceptibilityxe is described by two exponents
For a metal/insulator mixture, one has21,22

xe;~p2pc!
t(k), ~2!

wherep is the proportion of the conducting component. F
a superconductor-metal mixture, one expects

xe;~pc2p!2s(k), ~3!

wherep is here the proportion of the superconducting co
ponent. Different values for these exponents were propo
In Ref. 22, the effective medium values aret(k)511k and
s(k)51, and in Refs. 23 and 24, the exponents aret(k)
5s(k)511k/2. In both cases, the crossover exponentf
5s1t is equal to 21k. These two sets of exponents satis
the duality relation ford52:21 t(g)5gs(1/g) whereg51
1k. So far, numerical results25 and series analysis26 suggests
that for d52 the exponentss and t are different, ruling out
s5t511k/2 although further numerical studies are nec
sary to make a definitive statement. An acceptable EM
should predict such kind of values.

We can distinguish two different classes of approache
this problem. A first approach7,24,27–31consists in expressing
the effective nonlinear susceptibility in terms of the averag
electric field in each component. In Refs. 24,27–29, a k
of a ‘‘decoupling approximation’’ is proposed for calculatin
these fields, and one obtains a set of coupled equations w
is solved numerically. Although the agreement with nume
cal simulations is generally fairly good, there are a few dra
backs to this method. In particular, this method relies qu
heavily on numerics and it is difficult to check some analy
cal properties. Moreover, the weak-contrast expansion@con-
dition ~i!# is usually not recovered and the exponents
difficult to estimate. In particular, the mean-field theory pr
posed in Ref. 24 does not reproduce the weak contrast
pansion but instead the lower bound established by Po
Castan˜edaet al.7 In this case,24 the values of the exponent
are s5t5k/211. In another series of papers,30,31 the non-
linear host is linearized up to the second order and the lo
electric fields are computed in a self-consistent way. W
this method, Ponte Castan˜eda and Kailasam30 proposed an
8576 ©2000 The American Physical Society
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effective medium approximation which reproduces the we
contrast expansion, but for which the exponents are diffic
to estimate.

The second approach is in the Bruggeman spirit32 and
consists essentially in considering an impurity in an effect
host. Bruggeman’s theory was reformulated in order to ap
to this problem22 and it was further investigated by differen
authors.25,33–35This approach predicts the effective mediu
valuess51 andt511k and reproduces the weak contra
expansion to second order. However, all the studies so fa
mostly numerical and we propose here the analytical s
tion. The obtained formula is relatively simple and satisfi
conditions~i! and~ii !. We give the analytical expressions fo
numerically estimated quantities.25,33,35 The only drawback
of our result is that the percolation threshold depends ok
~in the same way as in Ref. 35!. In the discussion, we addres
this point and propose a possible way to correct this wro
behavior.

The constitutive relation isj 5x(r )uEukE and the local
energy density associated to it is

w@r ,E~r !#5
x~r !

k12
uEuk12. ~4!

E is the applied field and for a heterogeneous medium
quantityx(r ) at point r is distributed according to a binar
law ~a generalization of our method to other types of dis
der should be without problems!

P@x5x~r !#5pd~x2x1!1qd~x2x2!. ~5!

The total dissipated energy is given byW* 5xeuE0uk12/(k
12), and can be expressed as a constrained minimum

W* 5 K minĒ5E0 ,E52¹fE ddrw@r ,E~r !# L . ~6!

Here, we have assumed thatW* is a self-averaging quantity
in the thermodynamic limit, which allows us to compute t
average over the disorder~the bracketŝ •& denote the aver-
age over disorder or equivalently, the spatial average!. The
minimum in Eq. ~6! can be written with the help of pat
integrals18

W* 5 limb→`2
1

b
lnE D̃Ee2bH, ~7!

where the ‘‘Hamiltonian’’ isH5*ddrw@r ,E(r )# and where
the measure isD̃E5D(E,f)d(Ē2E0)d(E1¹f). The im-
portant quantity to study is thus the ‘‘partition function’’

Z5E D̃Ee2bH. ~8!

In an earlier paper,18 we made a perturbation expansio
up to the second order in disorder and we recovered kn
results.17 We also showed in another paper36 how to recover
Bruggeman’s approximation in the functional framewo
and we recall briefly the idea. We start from the express
~8! and we add and substract a Gaussian ansatzH0
5*ddrw0@E(r )#
k
lt
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re
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n

Z5E D̃Ee2bH 0e2b(H2H0). ~9!

We expand the second exponential and resum it keeping
the contribution at the same point

e2b(H2H0)5 (
k51

` F E ddr $w@r ,E~r !#2w0@E~r !#%Gk

.E ddr (
k51

`

$w@r ,E~r !#2w0@E~r !#%k

.E ddre2b$w[ r ,E(r )] 2w0[E(r )] % ~10!

~here and in the following, we omit unimportant volume fa
tors and cutoffs!. The partition functionZ is thus given by

Z.E ddr E D̃Ee2bH0e2b$w[ r ,E(r )] 2w0[E(r )] %. ~11!

The following physical picture can be associated with t
approximation. The background is described byH0 and at
point r there is an impurity described byw2w0. The ideal
case would be to take a nonlinear background described
an effective nonlinear susceptibility H05@xe /(k
12)#* uEuk12 and a nonlinear impurity, which is so far im
possible to compute. We thus have to resort to a furt
approximation. The averaged value of the electric field
fixed and given byĒ5E0. It is thus reasonable to assum
that the electric field in the background will not fluctuate t
much~at least far from the impurity! and we can expand th
nonlinear background aroundE(r )5E0. We write E(r )
5E01«(r ) and expand up to the second order in«

w0.
xe

k12
E0

k121E0
kE0«~r !

1
1

2
E0

k(
i , j

« i~r !S d i j 1k
E0iE0 j

E0
2 D « j~r ! ~12!

while we keep the exact expression forw5@x/(k
12)#uEuk12. The final picture is then the following: we
compute exactly the perturbation induced by a nonlinear
purity in the nonlinearlinearizedeffective medium. In addi-
tion to allow calculations, this scheme ensures that the we
contrast expansion will be recovered. The numerical study
this problem can be found in Refs. 25,33,35.

The path integral~11! together with the approximation
~12! can be computed and after some calculations, one is
to

Z.e2bxeE0
k12E ddue2bM(u) ~13!

with
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M~u!5
x~r !

k12
uk121xeE0

kuE0

1
xeE0

k

2
~E01u!S 12

1

I
1k

E0^ E0

E0
2 D ~E01u!,

~14!

whereu is ad-dimensional vector. The quantityI is given by

I ~d,k!5
Sd21

Sd
E

0

p

du sind22 u
cos2u

11k cos2u
, ~15!

whereSd52pd/G(d/2) is the surface of thed-dimensional
sphere. In the linear case,I (d,k50)51/d, and ford52,3,
one has17,18

I ~2,k!5
1

k S 12
1

A11k
D , ~16!

I ~3,k!5
1

k S 12
1

Ak
arcsinA k

11k D . ~17!

We are interested in the largeb limit @Eq. ~7!# so we can
apply the saddle-point method to the integral~13!. The
saddle pointu* is parallel toE0 and is given by

u* ~x!5
2E0~k21/I !

121/I 1k2u
*
k /xE0

k
, ~18!

where herex5xe /x. One can note thatu* is the electric
field in the nonlinear impurity embedded in the lineariz
effective homogeneous host. The effective energyW* 5
2(1/b)^ ln Z& is then given byW* 5W01DW where W0

5@xe /(k12)#E0
k12. The natural self-consistent conditio

DW50 can be rewritten for the binary disorder~5! under the
form22,35

p fS xe

x1
D1q fS xe

x2
D50, ~19!

where

f ~x!5
1

x

v
*
k12

k12
2

1

k12
111v* ~x!

2
1

2
@11v* ~x!#2S 12

1

I
1k D , ~20!

wherev* (x)5u* (x)/E0 is given by Eq.~18!. This equation
~19! @together with Eqs.~18! and~20!# is our main result, and
we will now discuss it.

In the linear case (k50), one can easily check that E
~19! reduces to Bruggeman’s32 equation. Moreover, in the
one-dimensional case, one recovers the exact resultxe
5^1/x1/(k11)&k11.

As expected, the weak contrast expansion is recovere
to the second order, namely,

xe.^x&2
k12

2^x&
^dx2&I ~d,k!. ~21!
up

This fact is not surprising since we used as an ansatzH0 the
nonlinear effective medium linearized up to second orde

Our approximation will not reproduce the exact dilu
limit, since the nonlinear host is linearized. Instead, we w
obtain the following expansion to the first order in conce
tration ~exact fork50):

xe.x11q~k12!x1f S x1

x2
D , ~22!

whereq is the fraction of componentx2.
The critical behavior is determined byf (x) for x.0 and

x→`.22,35 One obtains from Eqs.~18!,~20! f (x.0). f (0)
2a(k11)x1/(k11), where

f ~0!52
1

k12
1

1

2
1

1

2I
2

k

2
,

a5
1

k12 S 2
1

I
1k D (k12)/(k11)

. ~23!

For x→`, one hasf (x). f (`)1b/x, where

f ~`!52
1

k12
112

112~21/I 1k!

2~121/I 1k!
, ~24!

b5
1

k12 S 1/I 2k

121/I 1k D k12

. ~25!

For k50, one recovers the known exact expressions22,35 a
5d2, b5@d/(d21)#2, f (0)5d, and f (`)52d/@2(d
21)# @the functionf is defined up to a constant factor, an
there is a global additional factor 1/(k12) in our result#.
These four different coefficients were estimat
numerically.25,33,35

The percolation threshold is given by

pc5
f ~`!

f ~`!2 f ~0!
5

1

k12

2/I 2k

~21/I 1k!2
~26!

FIG. 1. pc versusk for d53. The line is the analytical expres
sion ~26!, the circles and the diamonds represent the numer
results from Refs. 35 and 25,33, respectively.
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and the exponents aret(k)511k and s(k)51. In Fig. 1,
we compare ford53 this exact expression forpc to numeri-
cal results.25,33,35 It thus seems that the variational meth
used in Refs. 25,33 does not lead to the correct values o
electric field around the impurity. The fact that the perco
tion threshold depends onk is the bad feature of this ap
proximation. However, fork not too large, or for a contras
not too high this approximation works well. When one ad
a linear background of effective conductivityse , an addi-
tional dimensionless factorL5se /xeE0

k is introduced in the
equations. Close topc , the effective conductivity behaves a
se;Dp1 and the effective nonlinear susceptibility asxe
al

IP

ev

A

. B

o,
he
-

s

;Dp11k. The factorL is then diverging and the behavior o
f is modified. One then recovers the Bruggeman value for
percolation thresholdpc51/d. It thus seems that in the one
impurity scheme a linear background is necessary to ‘‘re
larize’’ the wrong behavior ofpc . It might be a way to
obtain an EMA satisfying conditions~i! and ~ii !, and which
gives a correct value forpc .
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