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Path-integral approach to strongly nonlinear composites
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We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of
a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear
susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case
and has the following feature§) It reproduces the weak contrast expansion to the second ord€ii ptite
effective medium exponent near the percolation thresholdsarg, t=1+ «, where « is the nonlinearity
exponent. Finally, we give analytical expressions for previously numerically calculated quantities.

The study of the properties of linear heterogeneous mediardey and the dilute limit(although this last condition is
(composites, suspensiorsas been the subject of an intense probably very difficult to fulfill for strongly nonlinear me-
activity for already fifty years(see Refs. 1 and)2More  dia). (ii) Close to the percolation threshaid, the effective
recently there has been a great interest in nonlinear fedianonlinear susceptibilityy, is described by two exponents:
The nonlinear composites are important for technology andror a metal/insulator mixture, one B&é?
also from a fundamental point of view, for which it is im-
portant and challenging to understand the interplay between Xe~ (P—Po)t ™, 2
nonlinearity and disorder. There are essentially two types of . . .
nonlinear media(a) Weak nonlinearity: the nonlinearity is Wherep is the proportion O.f the conducting component. For
small compared to the linear term. This case was studied b@' superconductor-metal mixture, one expects
many authors and is now relatively well understdott. (b) —(pg—p) S 3)
Strong nonlinearity: the nonlinearity is here the dominant Xe™(Pe™P '
term and this can happen in essentially two situations. Firsiwherep is here the proportion of the superconducting com-
there can be a sharp threshold between two different behayponent. Different values for these exponents were proposed.
iors and this case can model the phenomena of fracture an Ref. 22, the effective medium values df&) =1+ « and
dielectric breakdown?**Second, the constitutive law can be s(k)=1, and in Refs. 23 and 24, the exponents Hre)

a pure power law of the form =s(k)=1+«/2. In both cases, the crossover exponent
=s+t is equal to 2+ k. These two sets of exponents satisfy
j=x|E|“E, (1)  the duality relation ford=2:2! t(y) = ys(1/y) where y=1

+ k. So far, numerical resuftsand series analy$f$suggests
wherej is the current and the electric field. This behavior that ford=2 the exponents andt are different, ruling out
can be observed in a dielectric illuminated by a |asenen  s=t=1+ «/2 although further numerical studies are neces-
the multiphoton processes dominates and the usual lineaary to make a definitive statement. An acceptable EMA
approximation completely breaks down. Certain cermets reshould predict such kind of values.
sistors, ZnO based varistofs® or disordered alloy$ can We can distinguish two different classes of approaches to
also display this behavidt). this problem. A first approa¢ii*?’—*!consists in expressing

In a disordered medium, the nonlinear susceptibiliffes the effective nonlinear susceptibility in terms of the averaged
can fluctuate from point to point and one is interested in theelectric field in each component. In Refs. 24,27-29, a kind
macroscopic effective behavior of such a medium. If theof a “decoupling approximation” is proposed for calculating
nonlinearity exponeni is the same for all phases of the these fields, and one obtains a set of coupled equations which
medium, then the effective nonlinear susceptibility is wellis solved numerically. Although the agreement with numeri-
defined and is given bjy= x| Eo| “Eo, Wherej, andEy are  cal simulations is generally fairly good, there are a few draw-
the macroscopic current and electric field, respectively. It idacks to this method. In particular, this method relies quite
difficult to evaluatey., and devising a reliable method to heavily on numerics and it is difficult to check some analyti-
compute y. would allow one to study a variety of other cal properties. Moreover, the weak-contrast expangion-
problems such as fracture or dielectric breakdown. dition (i)] is usually not recovered and the exponents are

In this strongly nonlinear case, Blumenfeld and Bergmardifficult to estimate. In particular, the mean-field theory pro-
obtained the weak contrast expansion to second dfdenis  posed in Ref. 24 does not reproduce the weak contrast ex-
expansion was recovered by means of a path integrglansion but instead the lower bound established by Ponte
method*® The dilute limit was studied in Refs. 19 and 20. Castaedaet al.” In this cas€’ the values of the exponents
Problems arise when one tries to find an effective mediunare s=t=«/2+ 1. In another series of papef®:! the non-
approximation(EMA) for this type of media. A good EMA linear host is linearized up to the second order and the local
should satisfy the two following criteridi) It should repro-  electric fields are computed in a self-consistent way. With
duces the weak-contrast expansiahleast up to the second this method, Ponte CaStama and Kailasaffl proposed an
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effective medium approximation which reproduces the weak -
contrast expansion, but for which the exponents are difficult ZZJ DEe FMoe=AH~Ho), ©)
to estimate. 5
The second approach is in the Bruggeman spidind . : .
consists essentially in considering an impurity in an effectivevr\]/e expa_nbd t_he sec%nd exponeritlal and resum it keeping only
host. Bruggeman'’s theory was reformulated in order to appI)} e contribution at the same point
to this probleni? and it was further investigated by different
authors?®>33-3This approach predicts the effective medium > k
valuess=1 andt=1+« and reproduces the weak contrast e P70 =3 ii dr{w[r,E(r)]—wo[ E(r)]}
expansion to second order. However, all the studies so far are k=1
mostly numerical and we propose here the analytical solu- o
tion. The obtained formula is relatively simple and satisfies zi ddr > {w[r,E(r)]—wo[E(r)]}¥
conditions(i) and(ii). We give the analytical expressions for k=1
numerically estimated quantitiés333® The only drawback
of our result is that the percolation threshold dependscon zi ddre = AWIHEMI=WolE(M]} (10)
(in the same way as in Ref. B3n the discussion, we address
this point and propose a possible way to correct this wrong ) _ o
behavior. (here and in the following, we omit unimportant volume fac-
The constitutive relation i= x(r)|E|“E and the local tors and cutoffs The partition functiorZ is thus given by
energy density associated to it is

(r zzi ddri PEe FHog BWINEM] -WolEOT} (11)

wir ()= X0 e, @

E is the applied field and for a heterogeneous medium thél-he foI_Iowing pi\_%sicsl Fl)(icture ga.n ge a;zogiz;;ed V\gth this
quantity y(r) at pointr is distributed according to a binary approximation. The background is described My and at

law (a generalization of our method to other types of disor—pOintr there is an impurity de_scribed by—wq. The id?al
der should be without problems case would be to take a nonlinear background described by

an effecti\zle nonlinear  susceptibility Ho=[ xo/(x
_ _ _ _ +2)]f|E|“*# and a nonlinear impurity, which is so far im-
PIY=x(N]=pdx = x1) +A%(x~ X2)- ©) possible to compute. We thus have to resort to a further
The total dissipated energy is given W :X8| E0|K+2/(K apprOXimation. The_averaQEd value of the electric field is
+2), and can be expressed as a constrained minimum  fixed and given byE=E,. It is thus reasonable to assume
that the electric field in the background will not fluctuate too
o q much (at least far from the impurilyand we can expand the
W= mmE:Eo'E;Vd)J’ drwlr,E(r)]). (®  nonlinear background aroung(r)=E,. We write E(r)
=Eq+e(r) and expand up to the second orderin
Here, we have assumed that is a self-averaging quantity
in the thermodynamic limit, which allows us to compute the
average over the disordéhe brackets - ) denote the aver- Wo= Xe EX 24+ ESEqe(r)
age over disorder or equivalently, the spatial averagbe K+2
minimum in Eq.(6) can be written with the help of path

integrals?® 1_. EoiEoj
g +§Eoi2j ei(r) 5ij+;<? ei(r) (12
| 1 [~ °
W*=limg_.,— —In | DEe #7, (7)
B while we keep the exact expression fov=[y/(x

K+2 ; ; ; P,

where the “Hamiltonian” isH= [d%w[r,E(r)] and where +2)]|E[*"%. The final picture |s_then the f°”°W'r!9- we
I~ — i compute exactly the perturbation induced by a nonlinear im-

the measure IDE=D(E, $) (E—Eg) 5(E+ V). The im- 1 ity in the nonlineafinearizedeffective medium. In addi-

portant quantity to study is thus the “partition function”  {jon, to allow calculations, this scheme ensures that the weak-
contrast expansion will be recovered. The numerical study of
Zzi DPEe BH. ®) this problem can be found in Refs. 25,33,35.
The path integral11) together with the approximation

(12) can be computed and after some calculations, one is led
In an earlier papef® we made a perturbation expansion to
up to the second order in disorder and we recovered known
results'’ We also showed in another paffehow to recover
Bruggeman’s approximation in the functional framework Z:e*ﬂXeEgﬂi ddue AMW) (13
and we recall briefly the idea. We start from the expression
(8) and we add and substract a Gaussian angagz
= [d9wo[E(r)] with
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x(r) .
M(u)= mUK+2+XeEOU Eo

K

XeEo
2

1 E,®E
P L.

+
|

(Eotu)

)(E0+u),

0
(14
whereu is ad-dimensional vector. The quantityis given by

cos 6

e L+ xcodo’

S,_ ar
d 1f dosint—2¢ (15)
0

Sq

where Sy=279T'(d/2) is the surface of theé-dimensional
sphere. In the linear cask,d,x=0)=1/d, and ford=2,3,
one ha$"18

|(2,K):%(1— _11+K : (16)
1 1 ) K
I(3,K)=;(1—ﬁarcsm\/m . a7

We are interested in the large limit [Eq. (7)] so we can

apply the saddle-point method to the integfaB). The

saddle poinu, is parallel toEy and is given by
—Eo(k—11)

1— 1N+ k—UulIxES’

Uy (X)= (18

where herex= y./x. One can note thati, is the electric
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This fact is not surprising since we used as an ankgtthe
nonlinear effective medium linearized up to second order.

Our approximation will not reproduce the exact dilute
limit, since the nonlinear host is linearized. Instead, we will
obtain the following expansion to the first order in concen-
tration (exact fork=0):

Xe:X1+Q(K+2)X1f(E), (22)
X2
whereq is the fraction of componeng,.

The critical behavior is determined Hyx) for x=0 and
x— 2235 One obtains from Eqg18),(20) f(x=0)=f(0)
—a(k+1)xY«* D) where

((0)= 1 1 «
O=-"Zt3ta 2
1 1 (k+2)/(k+1)
a= P —|—+K) (23)
For x—o0, one hasf(x)=f()+b/x, where
o 1 1+2(— 1 +«) o
S L TE ey 249
1 M-k (TR )
Ck+2 1-1+«k 29

For k=0, one recovers the known exact expressiorisa
—d?, b=[d/(d—1)]2 f(0)=d, and f(=)=—d/[2(d
—1)] [the functionf is defined up to a constant factor, and

field in the nonlinear impurity embedded in the linearizedthere is a global additional factor /¢ 2) in our result.

effective homogeneous host. The effective eneWyfy=
—(1/8){InZ) is then given byW* =W,+AW where W,
Z[Xe/(K+2)]ES+2. The natural self-consistent condition
AW=0 can be rewritten for the binary disord®) under the

form?2:3%
pf(%)Jrqf(%):O, (19
where
1 v:+2
f(x)=;K+2—m+1+v*(x)
1 1
—§[1+u*(x)]2 1-7+x), (20)

wherev . (x) =u, (X)/Eq is given by Eq.(18). This equation
(19) [together with Eqs(18) and(20)] is our main result, and
we will now discuss it.

In the linear case K=0), one can easily check that Eq.
(19) reduces to Bruggemarisequation. Moreover, in the
one-dimensional case, one recovers the exact resylt 1/
— <1/Xl/(l<+ 1)>K+ l.

As expected, the weak contrast expansion is recovered u|

to the second order, namely,

k+2 )
Xﬁ()&‘mwx H(d, k). (21)

These four different coefficients were estimated
numerically?®33-35
The percolation threshold is given by
f() 1 20—«
(26)

PR )= 1(0) k2 (“1N+ )2
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FIG. 1. p. versusk for d=3. The line is the analytical expres-

sion (26), the circles and the diamonds represent the numerical
results from Refs. 35 and 25,33, respectively.
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and the exponents at¢x)=1+« ands(x)=1. In Fig. 1,
we compare fod=3 this exact expression fqr, to numeri-
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~Ap't*, The factorA is then diverging and the behavior of
f is modified. One then recovers the Bruggeman value for the

cal result$>*** |t thus seems that the variational method percolation thresholg.= 1/d. It thus seems that in the one-
used in Refs. 25,33 does not lead to the correct values of thenpurity scheme a linear background is necessary to “regu-
electric field around the impurity. The fact that the percola-|arize” the wrong behavior ofp.. It might be a way to

tion threshold depends oa is the bad feature of this ap-
proximation. However, fok not too large, or for a contrast

obtain an EMA satisfying conditiong§) and (ii), and which
gives a correct value fop,. .

not too high this approximation works well. When one adds

a linear background of effective conductivity,, an addi-
tional dimensionless factok = o/ x.Eg is introduced in the
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