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Electrodynamics of metal-dielectric composites and electromagnetic crystals
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A theory that takes into account effects of retardation is developed for calculating the effective dielectric
constant and magnetic permeability of metal-dielectric composites and photonic crystals containing a metallic
component. The effective parameters depend, in general, on the local microgeometry of composites and
electromagnetic crystals. For example, in metal-wire crystals the effective dielectric constant becomes negative
at frequencies below the cutoff frequency, which, in the case of a strong skin effect, is determined by the
crystal structure only. It is also shown that the effective high-frequency magnetic permeability, which origi-
nates from the eddy currents in metal grains or wires, does not vanish, even in systems with no intrinsic
magnetism. In metal-dielectric composites, it is shown that the effective dielectric constant has a positive
maximum and a negative minimum in the vicinity of the percolation threshold. A new class of photonic
crystals is proposed, where both dielectric permittivity and magnetic permeability are negative in optical
spectral range.
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I. INTRODUCTION

In this paper we consider electromagnetic properties
metal-dielectric composites irradiated by a high-frequen
electromagnetic field under conditions when the skin eff
in metal grains is strong. Two different classes of met
dielectric systems are analyzed, artificial periodic elect
magnetic crystals1,2 and random percolation composites.3–7

The electromagnetic crystals are three-dimensional p
odic structures of metal inclusions in a dielectric host. Th
are similar to the well-known photonic crystals composed
periodic structures of dielectric particles. Since metals h
nonzero losses at the optical frequencies, most studie
photonic crystals are focused on dielectric structures. Ne
theless, metallic 3d structures can find applications in th
microwave range and, under some conditions, in the opt
spectral range as well. Below the interaction of a simp
cubic metal lattice with an electromagnetic field is cons
ered.

Metal-dielectric percolation composites and 3d electro-
magnetic crystals are quite different objects at the fi
glance. In the present paper it is shown, however, that th
objects can be described in common terms of the effec
dielectric constant and magnetic permeability, provided t
the wavelength of an incident wave is much larger than
intrinsic spatial scale of the system.

The wavelength inside a metal component can be v
small. The most interesting effects are expected in the li
of a strong skin effect. Our consideration goes beyond
quasistatic approximation employed in most papers
metal-dielectric composites.3–7 It is important that our ap-
proach for calculating the effective dielectric constant a
magnetic permeability is essentially the same for compos
PRB 620163-1829/2000/62~12!/8531~9!/$15.00
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and electromagnetic crystals. Moreover, results for the ef
tive parameters are also, to large extent, similar. We beli
that the method developed in this paper can be applied
arbitrary metal-dielectric systems, regular and random.

In electromagnetic crystals and composites, the propa
tion of electromagnetic waves with wavelengthl smaller
than a spatial scale of an inhomogeneity~correlation length
j) may be accompanied by strong scattering or diffracti
On the other hand, it seems plausible that the wave prop
tion for l@j can be described by Maxwell’s equations wi
the effective dielectric constant«e and effective magnetic
permeabilityme . Below we calculate and discuss the effe
tive parameters«e andme , in the case where the skin effec
is strong. In order to calculate the effective parameters,
approach suggested in Refs. 8–10 is further developed
applied for both metal-dielectric composites and electrom
netic crystals.

We consider an optically thin sample of a composite
electromagnetic crystal of the sizeL!l/Au«emeu; the system
is homogeneous from the macroscopic point of view, i
L@j. The sample is placed inside a resonator, where e
tromagnetic standing waves are excited. We assume tha
volume of the resonator is much larger than the volume
the sample,v;L 3. Since the system is described in terms
the effective parameters«e and me , the macroscopic Max-
well equations, which are averaged over a spatial scale m
larger than the correlation lengthj, can be written in the
following form:

curlE5 ikmH, curlH52 ik«E, ~1!

wherek5v/c is the wave vector, andE and H are mono-
chromatic fields with the usual exp(2ivt) time dependence
The dielectric constant« and magnetic permeabilitym are
equal to the effective parameters,«5«e andm5me , inside
8531 ©2000 The American Physical Society
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the sample. Outside the metal-dielectric system,«5m51. It
is supposed that the frequencyv equals one of the resonanc
frequencies of the resonator. The fieldsE1 and H1 in the
empty resonator satisfy the Maxwell equations

curlE15 ik1H1 , curlH152 ik1E1 , ~2!

wherek15v1 /c, andv1 is the resonance frequency of th
empty resonator that corresponds to the same mode av.
The shift of the resonance frequencyDv5v12v is small,
uDvu/v!1, since the volume of the resonator is much larg
than the volumev of the composite. We multiply the first o
Eqs.~1! by H1* , and the second one by2E1* . After complex
conjugation of Eq.~2!, we multiply the first of Eqs.~2! by H
and the second by2E. After this, all the equations ar
summed together, resulting in the following:

H1* curl E2E curlH1* 1H curlE1* 2E1* curlH

5 i ~k«2k1!EE1* 1 i ~km2k1!HH1* . ~3!

The left hand side of Eq.~3! can be written as div(@H1*
3E#1@E1* 3H#). Provided that Eq.~3! is integrated over
n
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the volume of the resonator, the integral of the left-hand s
transforms into a surface integral that vanishes since the
gential components of the electric field vanish on the wa
of the resonator.~For simplicity, it is assumed that the reso
nator is made of a perfect conductor.! The integral in the
right-hand side of Eq.~3! can be rearranged as follows:

E @~«21!E•E1* 1~m21!H•H1* #dr

5
Dv

v E ~E•E1* 1H•H1* !dr , ~4!

where the terms on the left of Eq.~4! are nonzero in the
composite only. Therefore, the integral on the left of Eq.~4!
is over the volumev of the composite, where«5«e andm
5me . Since the volumev is much smaller than the volum
of the resonator the main contribution in the right-hand s
of Eq. ~4! comes from distances much larger than the sizeL
of the composite. At these distances the perturbation du
the composite can be neglected so thatE'E1 and H'H1.
Thus the frequency shift according to Eq.~4! is estimated as
Dv

v
5

E
v
@~«e21!E1* ~r0!•E0~r !1~me21!H1* ~r0!•H0~r !#dr

E ~ uE1u21uH1u2!dr
, ~5!
field
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wherer0 defines the coordinates of the composite,E0(r ) and
H0(r ) are the macroscopic fields in the composite, a
E1(r0) and H1(r0) are the fields at the positionr0 in the
empty resonator. BecauseL!l, we neglect in Eq.~5! the
variation of the fieldsE1 andH1 within the volumev. The
field distributionE1(r ) andH1(r ) in the empty resonator ca
be calculated for an arbitrary resonator. The field distrib
tions E0(r ) and H0(r ) in the composite are unambiguous
determined by the effective parameters«e andme and by the
shape of the composite. Thus, by measuring the shiftDv at
different positions of the sample in the resonator one
determine the effective parameters«e andme .

We suppose now that the composite is placed at the m
mum of the electric field in the resonator. The magnetic fi
H1(r0) at the maximum of the electric field is zero,H1(r0)
50; moreover, since the composite is optically thin, i.e.,
size L!l/Au«emeu, the magnetic fieldH0 inside the com-
posite is also nearly zero. Therefore, Eq.~4! takes the form

DvE

v
5

~«e21!E
v
E1* ~r0!•E0~r !dr

2E uE1u2dr
, ~6!

where in the denominator we used the equality* uE1u2dr
5* uH1u2dr that holds for the fields in a resonator~see, e.g.,
Ref. 11, Sec. 90!. Now we assume, for simplicity, that th
d
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composite has a spherical shape. Then the macroscopic
inside the composite,E0, is uniform and equal to~Ref. 11,
Sec. 8!

E05
3

«e12
E1~r0!, ~7!

so that the frequency shift

DvE

vv
5

~«e21!E0•E1* ~r0!

2E uE1u2dr
5

3

2

«e21

«e12

uE1~r0!u2

E uE1u2dr
, ~8!

can be unambiguously related to the effective dielectric c
stant«e . If the composite is placed now at the maximum
the magnetic fieldH1(r0) the corresponding shift in the reso
nance frequency is given by

DvH

vv
5

~me21!H0•H1* ~r0!

2E uH1u2dr
5

3

2

me21

me12

uH1~r0!u2

E uH1u2dr
,

~9!

and it can be related to the effective magnetic permeab
me . Below, it is shown how to obtain the self-consiste
equations for parameters«e , me , and the macroscopic field
E0 andH0 in electromagnetic crystals and percolation co
posites.
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The rest of the paper is organized as follows. In Sec. II
consider the effective parameters of 3d metal-dielectric elec-
tromagnetic crystals. A simple-cubic lattice of spheres a
wires is studied. Explicit formulas are derived for the effe
tive dielectric constant and magnetic permeability. It
shown that the effective dielectric constant of a wire crys
is negative for frequencies smaller than the ‘‘plasma f
quency’’ defined below. Section III considers percolati
metal-dielectric composites. In this section we show that
critical behavior of the dielectric constant near the perco
tion threshold is rather different from the known results
the standard percolation theory. Concluding remarks are
sented in Sec. IV.

II. ELECTROMAGNETIC CRYSTALS

In this section two basic types of electromagnetic crys
are considered: a simple-cubic lattice of unconnected m
spheres and a three-dimensional conducting wire-mesh
figured into a cubic lattice.

A. Simple-cubic lattice of metal spheres

Here, the local electromagnetic fields and effective
rameters are considered for a system of metal sphere
radiusa that are embedded in a dielectric host~a vacuum, for
example! at the sites of the cubic lattice with the periodj
.2a. The wavelengthl of an incident electromagneti
wave is assumed to be much larger than the lattice perioj.
We suppose that a sample of the electromagnetic crystal
the sizej!L!l is placed at the maximum of the electr
field in a resonator, as discussed above. We consider
electric field distribution in a lattice cell of the crystal. It
convenient to assume that the cell is centered at the m
sphere. The electric field outside the sphere can be expa
in the multipole series and for simplicity, the dipole appro
mation can be used~see discussion in Refs. 12 and 13!,
which holds in the limitl@j@a. ~We note, however, tha
after a proper renormalization, the dipole approximation c
also be applied to touching metal spheres, with a h
accuracy.7! In the dipole approximation, the outside fie
Eout has only two components, namely, the constant
dipole fields:

Eout~r !5E11AEa3
“S E1•r

r 3 D , ~10!

whereE1 is some electric field aligned with the electric fie
at the maximum andAE is a coefficient, which is determine
below. Provided that the external fieldEout is specified, the
electric fieldEin inside the metal grain can be found unam
biguously by solving the Maxwell equations together w
the boundary conditionsEin3n5Eout3n and «mEin•n
5«dEout•n imposed at the metal surface (n5r /r is the nor-
mal unit vector directed away from the metal sphere!. Thus
we obtain the following equation~see Ref. 11, Sec. 59, an
Refs. 9 and 10! for the electric field inside the metal grain

Ein~r !5Ein,014pL ~r !, Ein,05
3«d

2«d1 «̃m

E1 , ~11!
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where the uniform fieldEin,0 is determined by the renorma
ized metal permittivity

«̃m5«m

2F~kma!

12F~kma!
, F~x!5

1

x2
2

cot~x!

x
, ~12!

wherekm5kA«mmm is the wave vector inside the metal. Th
skin ~penetration! depthd is equal tod51/Imkm . The local
electric fieldL in Eq. ~11! is determined by the following
equation:

curlL ~r !5
1

4p
curlEin,m~r !5

ik

4p
BE , ~13!

where the circular magnetic induction

BE523iE0

ak«m«d sin~kmr !F~kmr !

~2«d1 «̃m!sin~kma!~F~kma!21!
S y

r
,2

x

r
,0D
~14!

is written in the Cartesian coordinate system with thez axis
directed along the fieldE1. The solenoidal magnetic induc
tion BE is generated in a metal particle by the electric c
rent. Therefore, the ‘‘inside’’ electric field consists of th
uniform curl-free partEin,0 and the rotational partL (r ) that
depends on the position inside the metal sphere.

The prefactorAE in Eq. ~10! can also be found by match
ing the fieldsEin andEout at the surface of the metal grain
this givesAE5(«d2 «̃m)/(2«d1 «̃m). Therefore, the electric
field outside the metal grain coincides with the dipole fie
from a particle with the polarizabilityã5a3AE . The shift in
the resonance frequencyDv of the resonator is due to th
change in the fields when the crystal is placed inside
resonator. In accordance with this, the shift in the resona
frequencyDvE is due to the electric fields scattered by me
particles, i.e., due to the dipole fields. The effective dielec
constant«e is unambiguously related to the frequency sh
DvE by Eqs. ~6! and ~8!. Thus, «e is determined by the
dipoles induced in metal particles by the electrical field a
is given by the well-known Clausius-Mossotti equation for
cubic array of dipoles~which can be obtained using th
Lorentz-Lorenz consideration of the local fields14!:

«e2«d

«e12«d
5p

«d2 «̃m

2«d1 «̃m

, ~15!

wherep5(4p/3)a3j23 is the volume concentration of meta
grains. We would like to stress that this result does not
pend explicitly on the field distribution inside a metal grai
All the retardation effects are reduced to a renormalization
the metal dielectric constant«̃m . In this sense, Eq.~15! is
exact; at least, it becomes exact in the dilute limita/j→0,
when the multipoles higher than the dipole can be neglec
for the outside field@see Eq.~10!#. In the dense limit ofj
→2a, all multipoles, in general, should be taken into a
count and the fieldEout may be written asEout5E1
1AEE(1)1( l 52AlE

( l ), whereE( l ) is the multipole ofl th or-
der. The coefficientsAl completely determine the scattere
field and thus the effective dielectric consta
«e(AE ,A2 , . . . ,Al). The skin~retardation! effect leads to a
renormalization of the coefficientsAl though the functional
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dependence«e(AE ,A2 , . . . ,Al) remains the same. For th
sake of simplicity, we restrict our consideration in this pap
to the standard dipole approximations, i.e., to Eq.~10!. As
mentioned, this approximation can further be improved
needed, by a proper renormalization~which is based on re
placing the real touching spheres by some ‘‘effectiv
spheres, geometrically intersecting each other7!. We also
note that very efficient numerical methods have been
cently developed in Refs. 15–18; these methods can als
used for calculating the local fields in the close-pack
limit.

In the quasistatic case, when the skin effect is negligib
Eq. ~15! coincides with the well-known Maxwell-Garne
formula for the effective parameters.19 It has been shown tha
the Maxwell-Garnett approximation, which emerges fro
the dipole approximation, gives very accurate results for
effective properties of various metal-dielectric periodic co
posites, even at large filling factorsp&0.5.12,13,20

Now we consider constitutive equations for electroma
netic crystals. The average electric field^E& can be found
from Eq. ~11! as

^E&5E014p^L &, ~16!

where

E05F p
3«d

2«d1 «̃m

1~12p!GE1 , ~17!

is the average curl-free local electric field. The average s
noidal part of the local electric field,^L &, can be represente
as the average moment of the eddy magnetic induction,

^L &5
ik

8pj3E r3BEdr5
1

8pj3E @r3curlE#dr , ~18!

with the inductionBE given by Eq.~14!. Recall now that the
moment L is nonzero within the grain volumev0
5(4p/3) a3 only. The average electric displacement is d
fined aŝ D&5j23*«(r )E(r )dr , where the local permittivity
«(r ) takes values«m and «d inside and outside the meta
grain. By substituting in this formula Eqs.~10! and~11!, we
find

^D&5F p
3«d«̃m

2«d1 «̃m

1~12p!«dGE1 , ~19!

where «̃m is defined in Eq.~12!. It follows from Eqs.~15!
and ~17! that Eq.~19! can be rewritten as

^D&5«eE0 . ~20!

Therefore, the average electric displacement is proportio
to the irrotational part of the local field averaged over t
system and the coefficient is exactly equal to the effec
dielectric constant. Equation~20! replaces the usual const
tutive equation̂ D&5«e^E&, which is valid in the quasistatic
case only.

We consider now magnetic properties of electromagn
crystals by following the same procedure as above. Using
r

f
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be
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dipole approximation for the magnetic field distribution
the lattice cell, we obtain the effective magnetic permeabi

me5
~112p!m̃m12~12p!

~12p!m̃m1~p12!
, m̃m5mm

2F~kma!

12F~kma!
,

~21!

where the functionF is defined in Eq.~12!. Note that the
renormalized magnetic permeabilitym̃m is not equal to unity,
even if the metal is nonmagnetic, i.e., even if there is
‘‘seed’’ magnetic permeability,mm51.

The constitutive equation for magnetic properties is sim
lar to its ‘‘electric’’ counterpart given by Eq.~20!:

^B&5^mH&5meH0 , ~22!

whereH0 is the average, curl-free part of the magnetic fie

H05^H&24p^M &, ~23!

and the magnetic moment is defined by

curlM5
1

4p
curlH in,m[2

ik

4p
DH ,

^M &5
1

8pj3E @r3curlH#dr . ~24!

Equation ~22! replaces the usual ‘‘magnetic’’ constitutiv
equation^B&5me^H&, which is valid in the quasistatic cas
only.

We proceed now with a derivation of the equations for t
macroscopic electromagnetism in electromagnetic cryst
In the considerations above an optically thin sample o
crystal was placed at the maximum of either electric or m
netic field. In this way, the effective parameters«e and me
were determined. We consider the propagation of an elec
magnetic wave in bulk crystals. As known, to obtain t
macroscopic equations, the ‘‘microscopic’’ Maxwell equ
tions should be averaged over the scaleL, which is much
larger than the lattice constantj but smaller than the wave
length l, j!L!l. The macroscopic electricE0 and mag-
netic H0 fields are defined by Eqs.~16! and~23!; both fields
are nonzero, in general. The electric fieldE0 excites the av-
erage electric displacement given by Eq.~20!; the magnetic
field H0 also excites the Foucault currents. By summing
electric displacementDH from Eq. ~24! and the average dis
placement from Eq.~20!, we find the full electric displace-
ment,

^D& f5«eE01 i
4p

k
^curlM &. ~25!

Similarly, the average full magnetic induction^B& f is as fol-
lows:

^B& f5meH02 i
4p

k
^curlL &, ~26!

where the vectorL is given by Eq.~13!. Now we average the
Maxwell equations over the macroscopic volumev;L 3

centered at the pointr . Thus we obtain
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^curlE~r !&5 ik^B~r !& f5 ikmeH0~r !14p^curlL ~r !&,
~27!

^curlH~r !&52 ik^D~r !& f52 ik«eE0~r !14p^curlM ~r !&,

~28!
where Eqs.~25! and ~26! were used. The order of the cu
operation and the volume averaging in Eqs.~27! and~28! can
be interchanged~see, e.g., Ref. 21, Chap. 6, Sec. 6.6!. Then,
the Maxwell equations~27! and ~28! become

curlE0~r !5 ikmeH0~r !, ~29!

curlH0~r !52 ik«eE0~r !, ~30!

i.e., they acquire the form typical for the macroscopic el
tromagnetism, describing propagation of electromagn
waves in continuous media. Thus Eqs.~29! and~30! coincide
with Eqs. ~1! conjectured for a metal-dielectric syste
placed into a resonator.
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B. Wire mesh electromagnetic crystal

We consider now electromagnetic properties of ad
metal wire mesh configurated in a simple-cubic lattice w
periodj. The lattice axes coincide with (x,y,z) coordinates.
The average electric field is aligned with thez axis. We
suppose that the radius of the wiresa!j and neglect inter-
action of the electric field with they andz wires. Then, the
local electric field in the cell can be found in the dipo
approximation as follows:

E~r !5E1J0~kmr !, r ,a

E~r !5E1FJ0~kma!2kmaJ1~kma!lnS r

aD G , r .a ~31!

whereE15(0,0,E1) is an electric field, andJn is the Bessel
function of thenth order. It follows from Eqs.~16!, ~18!, and
~20! that the effective dielectric constant« is given by
«e5

4«dS 12
p

3D1«mH 8

3
p1~ak!2«dF62

2

3
p2p12 lnS 2a2

j2 D G J
41kma

J1~kma!

J0~kma!F42p12 lnS 2a2

j2 D G , ~32!
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wherep'3(a/j)2 is the metal concentration.
As seen in Figs. 1 and 2, with the skin effect increas

~i.e., with decreasing the field penetration length! the effec-
tive dielectric constant becomes negative. The electric fi
of an incident wave excites not only a current in metal wi
but also a magnetic inductionBE that ‘‘wraps’’ the wires.
Thus, the energy of an incident wave reversibly converts i
the energy of the circular magnetic field concentrated aro
the wires. This field, in turn, generates an electric fie
which is phase-shifted byp with respect to the external field
When this secondary field is larger than the primary elec
field, the average electric field is opposite to the exter
field, so that the effective dielectric constant is negati
Negative values of the effective dielectric constant in me
dielectric composites formed by conducting sticks were p
dicted in Refs. 10 and 22 and obtained in experiments.23,24

For a strong skin effect (a Im km→1`) and thin cylin-
ders, with the radiusa so small that ln(j/a)@1, Eq. ~32!
simplifies to the expression

«e5«d2
2p

3~ak!2 lnS j

aD [«d2
vp

2

v2
, vp

25
2pc2

3j2 lnS j

aD ,

~33!

where «e is a real quantity. Thus, forv smaller than the
‘‘plasma’’ frequencyvp , an electromagnetic wave expone
tially decays in the crystal, without losses. Equation~33! and
the ‘‘plasma’’ frequencyvp were first suggested by Pend
et al.2
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III. METAL-DIELECTRIC PERCOLATION COMPOSITES

The problem of the effective conductivityse and dielec-
tric constant«e in metal-dielectric composites have attract
much attention in the last three decades.3–7 An example of
such a system is a composite material consisting of a di
dered mixture of metallic and insulating particles. A redu
tion in the volume concentrationp of the metallic~conduct-
ing! component reduces the static conductivity of t
composite so that it vanishes at some critical concentra
pc known as the percolation threshold. That is, the me
dielectric composite undergoes a metal-insulator transitio
the percolation threshold. The inhomogeneity scalej corre-
sponding to the transition is known as the percolation co
lation length.

Electric and transport properties of a composite exhib
number of unusual features near the percolation thresh
pc . In the static limit the effective conductivity vanishes
(p2pc)

t, wheret is a critical exponent; the effective dielec
tric constant«e diverges atpc as«e;up2pcu2s, wheres is
another critical exponent. Here we consider how the eff
tive dielectric constant«e depends on the skin effect in met
grains. As above, it is assumed that a typical sizea of the
composite grains is much smaller than the wavelengtha
!l.

To find the effective dielectric constant«e we suppose
that an optically thin sample of a composite is placed at
maximum of the electric field in the resonator, as discus
in Sec. I. The change in the field when the composite
placed inside the resonator is determined by a superpos
of the fields scattered from individual metal and dielect
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particles that have dielectric constants«m and «d , respec-
tively. The interaction between the particles can be ta
into account in the self-consistent approximation known
the effective medium theory~EMT!.5,25 In this theory, the
interaction of a given metal or dielectric particle with the re
of the system is found by replacing the latter by a homo
neous medium with the effective parameters«e andme . As-
suming that the grains are spherical in shape, the ele
fields outside and inside a metal grain are given by Eqs.~10!
and ~11!, respectively, where the dielectric constant of t
host is replaced with«e . The electric fields outside and in
side a dielectric particle are also given by Eqs.~10! and~11!,
where«d is replaced with«e and «̃m is replaced with«d .
The effective dielectric constant«e is determined by Eq.~20!
that, in the EMT approximation, acquires the followin
form:

p
«e2 «̃m

2«e1 «̃m

1~12p!
«e2«d

2«e1«d
50, ~34!

FIG. 1. Real part of the effective dielectric constant«e8(l) in the
simple-cubic lattice of metal wires. The period of the latticeL
51 cm, the diameter of the wire 2a51 mm.~a!–~c! correspond to
the skin effect of different strengths. The skin depthd is fixed at
wavelengthl51 cm.
n
s

t
-

ric

where the renormalized metal permittivity is given again
Eq. ~12!.

The effective magnetic permeabilityme can be found by
using arguments similar to those above; then Eq.~22! takes
the following form:

p
me2m̃m

2me1m̃m

1~12p!
me21

2me11
50. ~35!

Equations~34! and~35! were first obtained in Refs. 9,10, an
26. They are similar to equations of the standard EM5

Equation~34! predicts the percolation threshold atpc51/3,
which is the same as in the standard EMT. The only diff
ence, a very important one, is that the metal dielectric c
stant«m and magnetic permeabilitymm are replaced with«̃m

and m̃m @see Eqs.~12! and ~21!#. This fact has a substantia
effect on the frequency dependence of the effective par
eters, as shown below.

FIG. 2. Imaginary part of the effective dielectric constant«e9(l)
in the simple-cubic lattice of metal wires. The period of the latti
L51 cm, the diameter of the wire 2a51 mm. ~a!–~c! correspond
to the skin effect of different strenghts. The skin depthd is fixed at
wavelengthl51 cm.
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For example, we consider the limit of low frequenci
when the renormalized dielectric function is large,u«̃mu@1.
Then it follows from Eq.~34! that the effective dielectric
constant

«e;«dup2pcu2s ~s51! ~36!

is independent of the frequency. The dispersion of the ef
tive conductivity becomes important in the vicinity of th

percolation threshold, whereup2pcu<A«d /u«̃mu, as follows
from Eq. ~34!. Therefore, the renormalization of the met
permittivity @see Eq.~12!# results in expansion of the con
centration range with a dispersive behavior of the effect
dielectric constant, as illustrated in Fig. 3.

In Figs. 4 and 5 we show the effective response o
two-component, dielectric-dielectric composite with«1@«2
;1. The effective parameters are obtained from Eqs.~34!
and ~35!, where «m and «d are replaced with«1 and «2,
respectively (mm5md51). The effective dielectric constan
«e(l) and the magnetic permeabilityme(l) have strong
resonances that correspond to the resonant excitation of
tric and magnetic dipoles in the«1 grains.

The effective medium theory is based on the assump
that the fields are the same in all metal~dielectric! particles.
This assumption does not hold when a metal concentratiop
approaches the percolation thresholdpc since the inhomoge
neity scale~percolation correlation lengthj) diverges atpc
as j;aup2pcu2n, where the critical exponent is given b
n'0.88 ford53.

Consider, for example, frequencies in the microwave
radio ranges, where for a typical metal conductivity we e
mate thatsm@v. Then in the critical concentration region
above the percolation threshold (p.pc ,j@a), the effective
conductivity se is determined by the backbone of th

FIG. 3. ~a! Real and~b! imaginary parts of the microwave ef
fective dielectric constant«e(l) in the metal-dielectric composite
The metal conductivitysm51017 ~as in aluminum! and the grain
size a5100 mm; the concentrationp50.33 is below the percola
tion threshold. The solid and dashed lines represent the devel
theory and standard EMT, respectively.
c-

e

a

ec-

n

r
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infinite cluster of the conducting channels. The backbone
be viewed as the Skal–Shklovskii–de Gennes superlat
consisting of nodes that are connected via macrobonds.3 The
characteristic geometrical distance in the Ska
Shklovskii–de Gennes superlattice is given by the corre
tion lengthj. The macrobond connecting two nodes has
complicated, self-similar node-link structure; for a qualit
tive analysis, however, it is possible to suppose that the c

ed

FIG. 4. ~a! Real and~b! imaginary parts of the microwave ef
fective dielectric constant«e(l) in the dielectric-dielectric compos
ite. The grain diametera52 mm; the first component has the d
electric constant«1510010.01i and volume concentrationp1

50.33; for the second component,«251 andp2512p1. The solid
and dashed lines represent the developed theory and standard
respectively.

FIG. 5. ~a! Real and~b! imaginary parts of the microwave mag
netic permeabilityme(l) in the same~as in Fig. 4! dielectric-
dielectric composite. The solid and dashed lines represent the
veloped theory and standard EMT, respectively.
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ductance of the macrobond is determined by the shortest
between the nodes. The lengthLs of the shortest path be
tween two nodes in the superlattice is larger than the g
metrical distancej between them and it is estimated asLs
;jh, where the critical exponenth.1.2.3,27 Since the expo-
nenth is close to unity it is possible, for estimates, to negl
the difference betweenLs andj. Then, the dielectric proper
ties of the composite are similar to the wire mesh elec
magnetic crystal considered in the preceding section.

When the skin effect is negligible the effective dielect
constant is estimated as«e5 i4pse /v; isma2/(vj2)
; i (sm /v)(p2pc)

t, where the critical exponentt52n
.1.8 is close to that predicted by recent numerical res
t'2 ~see Ref. 28 and references therein!. In the opposite
case of a strong skin effect, the effective dielectric const
can be determined from Eq.~33! as follows:

«e. «̃d2
l2

2p2j2 lnS j

aD , ~37!

where«̃d is the renormalized dielectric permittivity.
The dielectric permittivity«̃d is different from the dielec-

tric constant of the dielectric component that appears in
~33!; this is because only a small part of the me
;a2Ls /j3!1 is concentrated in the conducting channe
whereas most of the metal is ‘‘dissolved’’ in the dielectr
host in the form of separate grains and finite clusters. T
presence of these grains and finite clusters leads to a re
malization of the permittivity of the dielectric medium be
tween the conducting channels. Due to scaling argume
the renormalized dielectric permittivity«̃d must be a function
of the percolation correlation lengthj only. Therefore, the
value of «̃d is essentially the same, below and above
percolation threshold. Then it is possible to replace«̃d in Eq.
~37! with the effective medium result given by Eq.~36! and
obtain the following:

«e;
«d

~p2pc!
s
1

l2~p2pc!
2n

2na2p2 ln~p2pc!
, 0,p2pc!1.

~38!

It follows from this equation that the effective dielectric co
stant of percolation metal-dielectric composites vanis
above the percolation threshold at a concentrationp1 esti-
mated as

p1.pc1F4pna2«d ln~l/a!

l2~s12n!
G 1/(s12n)

, ~39!

where it is still assumed that the wavelengthl@a, so that
up12pcu!1. The estimate~39! is obtained with the so-called
‘‘logarithmic accuracy,’’ i.e., it is supposed that ln(l/a)@1.
As follows from Eq.~36!, the effective dielectric constant«e
of the composite atp,pc can be very large and positive
th
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whereas losses are practically zero~since «d;0!. A small
micro-, or even nano-sphere made of such a composite~with
the size that can be much less than the wavelength bec
of the large«e! can act as a resonator supporting the m
netic dipole resonance, so that the magnetic permeabilit
negative at frequencies above the resonance. By combi
these composite microspheres with a periodic metal st
ture, having a negative dielectric constant, one can m
electromagnetic crystals, where both magnetic permeab
and dielectric permittivity are negative in the visible an
near-IR ranges. This opens a fascinating possibility of ma
rials with the negative refrative index in the optical spect
range. These ‘‘left-handed’’ materials have very interest
properties with many applications, e.g., they can be use
perfect lenses~see, e.g., Ref. 30!.

IV. CONCLUSIONS

In this paper, we derived the macroscopic Maxwell equ
tions in metal-dielectric media. In the derivation of the ma
roscopic equations, the Foucault currents induced by
high-frequency magnetic field in metal component are ta
into account as well as the eddy currents of the magn
induction induced by the high-frequency electric field. T
latter has no analogy in the classical electrodynamics, s
an electric field does not generate a magnetic induction
atoms and molecules. The theory results in the equat
describing metal-dielectric media in terms of the effecti
dielectric constant«e and magnetic permeabilityme .

In the case of periodic metal-dielectric structures, kno
as electromagnetic crystals, explicit equations for«e andme
are obtained. When the skin effect is strong, a cubic lattice
thin conducting wires has a negative dielectric constant
negligible losses~see also Ref. 29!. The negative value of the
effective dielectric constant is similar to bulk metals in t
optical and near-infrared spectral ranges, e.g., surface p
mons can be excited at the boundaries and also at de
inside a crystal. Yet, electromagnetic crystals can operat
this way within any frequency band. Another interestin
high-frequency property of electromagnetic crystals is
effective magnetism that can be observed, even in syst
where neither metal nor dielectric possess inherent mag
tism.

Electromagnetic crystals and percolation metal-dielec
composites are two extreme cases of fully ordered and f
disordered systems. It is remarkable that in both cases
skin effect can be completely taken into account by app
priate renormalization of the metal permittivity. The reno
malization depends on the conductivity and shape of
metal inclusions rather than on the system morphology.
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