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A theory that takes into account effects of retardation is developed for calculating the effective dielectric
constant and magnetic permeability of metal-dielectric composites and photonic crystals containing a metallic
component. The effective parameters depend, in general, on the local microgeometry of composites and
electromagnetic crystals. For example, in metal-wire crystals the effective dielectric constant becomes negative
at frequencies below the cutoff frequency, which, in the case of a strong skin effect, is determined by the
crystal structure only. It is also shown that the effective high-frequency magnetic permeability, which origi-
nates from the eddy currents in metal grains or wires, does not vanish, even in systems with no intrinsic
magnetism. In metal-dielectric composites, it is shown that the effective dielectric constant has a positive
maximum and a negative minimum in the vicinity of the percolation threshold. A new class of photonic
crystals is proposed, where both dielectric permittivity and magnetic permeability are negative in optical
spectral range.

[. INTRODUCTION and electromagnetic crystals. Moreover, results for the effec-

tive parameters are also, to large extent, similar. We believe

In this paper we consider electromagnetic properties ofhat the method developed in this paper can be applied to
metal-dielectric composites irradiated by a high-frequencyrbitrary metal-dielectric systems, regular and random.

electromagnetic field under conditions when the skin effect, !N €lectromagnetic crystals and composites, the propaga-

in metal grains is strong. Two different classes of metal-1oN of electromagnetic waves with wavelengthsmaller

dielectric systems are analyzed, artificial periodic electro—than a spatial scale of an inhomogenditprrelation length

i tal< and rand lati i &) may be accompanied by strong scattering or diffraction.
magnetic crystals-and random percoiation COmposItes. . 5y yha other hand, it seems plausible that the wave propaga-
The electromagnetic crystals are three-dimensional periap, tor \ s ¢ can be described by Maxwell's equations with
odic structures of metal inclusions in a dielectric host. Theythe effective dielectric constant, and effective magnetic

€

are similar to the well-known photonic crystals composed Ofpermeability,ue. Below we calculate and discuss the effec-

periodic structures of dieleptric particles.. Since metals.hav%Ve parameters, and u., in the case where the skin effect
nonzero losses at the optical frequencies, most studies q§ strong. In order to calculate the effective parameters, the
photonic crystals are focused on dielectric structures. Neveizpproach suggested in Refs. 8-10 is further developed and
theless, metallic 8 structures can find applications in the applied for both metal-dielectric composites and electromag-
microwave range and, under some conditions, in the opticaetic crystals.
spectral range as well. Below the interaction of a simple- We consider an optically thin sample of a composite or
cubic metal lattice with an electromagnetic field is consid-electromagnetic crystal of the siZe<\/\[eque|; the system
ered. is homogeneous from the macroscopic point of view, i.e.,
Metal-dielectric percolation composites and &lectro- £>¢&. The sample is placed inside a resonator, where elec-
magnetic crystals are quite different objects at the firstromagnetic standing waves are excited. We assume that the
glance. In the present paper it is shown, however, that theselume of the resonator is much larger than the volume of
objects can be described in common terms of the effectivéhe sampley ~ £ 3. Since the system is described in terms of
dielectric constant and magnetic permeability, provided thathe effective parameters, and ., the macroscopic Max-
the wavelength of an incident wave is much larger than arwell equations, which are averaged over a spatial scale much
intrinsic spatial scale of the system. larger than the correlation lengtfy can be written in the
The wavelength inside a metal component can be veryollowing form:
small. The most interesting effects are expected in the limit . .
of a strong skin effect. Our consideration goes beyond the curlE=ikuH, curlH=—ikeE, @)
guasistatic approximation employed in most papers omwherek=w/c is the wave vector, ane andH are mono-
metal-dielectric composites. It is important that our ap- chromatic fields with the usual exp{wt) time dependence.
proach for calculating the effective dielectric constant andThe dielectric constané and magnetic permeability are
magnetic permeability is essentially the same for compositesqual to the effective parametetss e, and u= u, inside
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the sample. Outside the metal-dielectric systemu=1.1t  the volume of the resonator, the integral of the left-hand side
is supposed that the frequeneyequals one of the resonance transforms into a surface integral that vanishes since the tan-
frequencies of the resonator. The fields and H; in the  gential components of the electric field vanish on the walls
empty resonator satisfy the Maxwell equations of the resonator(For simplicity, it is assumed that the reso-
nator is made of a perfect conducjolhe integral in the
curlE;=ikiH;y, curlH;=—ik;Ey, (2)  right-hand side of Eq(3) can be rearranged as follows:

wherek;=w,/c, and w, is the resonance frequency of the

empty resonator that corresponds to the same mode. as J [(e—1)E-EFf +(u—1)H-H¥]dr

The shift of the resonance frequendyw = w;— w is small,

|Aw|/w<1, since the volume of the resonator is much larger Aw

than the volume of the composite. We multiply the first of =—J (E-E +H-HY)dr, (4)
Egs.(1) by HY , and the second one byE} . After complex @

conjugation of Eq(2), we multiply the first of Eqs(2) by H  where the terms on the left of Eq4) are nonzero in the
and the second by-E. After this, all the equations are composite only. Therefore, the integral on the left of E.
summed together, resulting in the following: is over the volume of the composite, where=¢, and u
* . e = ue. Since the volume is much smaller than the volume
Hicurl E—EcurlHy +H curlEy —EjcurlH of the resonator the main contribution in the right-hand side
—i(ke—ky)EE* +i(ku—kq) HHY | 3) of Eq. (4) comes from distanc_es much larger than t_he glze
of the composite. At these distances the perturbation due to
The left hand side of Eq(3) can be written as diyH} the composite can be neglected so tBatE; andH~H;.
X E]+[E} XH]). Provided that Eq(3) is integrated over Thus the frequency shift according to H4) is estimated as

N f[(se—1>Ei<ro>-Eo<r>+(ue—1>HI<ro>~Ho<r>]dr
Ao _Jv ®)
¢ f(|E1|2+|H1|2)dr

wherer , defines the coordinates of the composiig(r) and  composite has a spherical shape. Then the macroscopic field
Ho(r) are the macroscopic fields in the composite, andnside the compositeky, is uniform and equal tdRef. 11,
Eq.(ro) and Hy(ry) are the fields at the position, in the  Sec. 8

empty resonator. Becauge<\, we neglect in Eq(5) the

variation of the field€; andH, within the volumev. The

field distributionE,(r) andH4(r) in the empty resonator can EO:%TzEl(rO)’ @)

be calculated for an arbitrary resonator. The field distribu-

tions Eq(r) andHg(r) in the composite are unambiguously so that the frequency shift

determined by the effective parametegsand n.. and by the

shape of the composite. Thus, by measuring the ghiftat Awg (8e—1)Eg-Ef(ro) 3 ee—1 |Ey(rg)|?
different positions of the sample in the resonator one can v T 2c.+2 )
determine the effective parametersand . ZJ |E4|%dr ¢ f |E,|2dr

We suppose now that the composite is placed at the maxi-
mum of the electric field in the resonator. The magnetic fieldcan be unambiguously related to the effective dielectric con-
Hy(ro) at the maximum of the electric field is zefdy(ro)  stante,. If the composite is placed now at the maximum of
=0; moreover, since the composite is optically thin, i.e., itsthe magnetic fieldH,(r,) the corresponding shift in the reso-

size L<\/\|eeue|, the magnetic fieldH, inside the com- nance frequency is given by
posite is also nearly zero. Therefore, E4). takes the form

Awy  (pe=1Ho HI(ro) 3 ue—1 [Hy(ro)|?
- T2 pet?2 ’
(ee=1) [ E1(ro)-Eotn 2 g “e2 [ o

- , (6) 9
2 f IE, 2dr

AwE

w

and it can be related to the effective magnetic permeability
Me. Below, it is shown how to obtain the self-consistent
where in the denominator we used the equalit§,|*dr equations for parametets, u., and the macroscopic fields
= [|H4|?dr that holds for the fields in a resonat@ee, e.g., E, andH, in electromagnetic crystals and percolation com-
Ref. 11, Sec. 90 Now we assume, for simplicity, that the posites.
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The rest of the paper is organized as follows. In Sec. Il wewhere the uniform field;, o is determined by the renormal-
consider the effective parameters af Bietal-dielectric elec- ized metal permittivity
tromagnetic crystals. A simple-cubic lattice of spheres and
wires is studied. Explicit formulas are derived for the effec- ~ 2F(kna) 1 cot(x)
tive dielectric constant and magnetic permeability. It is szsmT(kma)‘ ~ 2
shown that the effective dielectric constant of a wire crystal
is negative for frequencies smaller than the “plasma fre-wherek,,=ken,unm is the wave vector inside the metal. The
quency” defined below. Section Il considers percolationskin (penetratiop depth$ is equal tos= 1/Imk,,. The local
metal-dielectric composites. In this section we show that thelectric fieldL in Eq. (11) is determined by the following
critical behavior of the dielectric constant near the percolaequation:
tion threshold is rather different from the known results of
the standard percolation theory. Concluding remarks are pre-
sented in Sec. IV.

_X2 o

(12

1 ik
curIL(r)zﬂcurl Ein,m(r)=EBE, (13

where the circular magnetic induction
IIl. ELECTROMAGNETIC CRYSTALS

In this section two basic types of electromagnetic crystals Be=—3iE, akeme g SNk ) F (Knof) (X _X O)
are considered: a simple-cubic lattice of unconnected metal (2e4+2m)sin(kya) (F(kpa)—1)\r" 1’
spheres and a three-dimensional conducting wire-mesh con- (14)

figured into a cubic lattice. is written in the Cartesian coordinate system with ttexis

_ _ _ directed along the field;. The solenoidal magnetic induc-
A. Simple-cubic lattice of metal spheres tion Bg is generated in a metal particle by the electric cur-

Here, the local e|ectr0magnetic fields and effective pafent. Therefore, the “inside” electric field consists of the
rameters are considered for a system of metal spheres gfiform curl-free parE;, o and the rotational pait (r) that
radiusa that are embedded in a dielectric héstvacuum, for ~ depends on the position inside the metal sphere.
example at the sites of the cubic lattice with the perigd The prefactoAg in Eg. (10) can also be found by match-
>2a. The wavelengthn of an incident electromagnetic ing the fieldsE;, andE,, at the surface of the metal grain;
wave is assumed to be much larger than the lattice p&fiod this givesAg=(e4— )/ (2e4+&m). Therefore, the electric
We suppose that a sample of the electromagnetic crystal witfield outside the metal grain coincides with the dipole field

the size§<L<\ is placed at the maximum of the electric from a particle with the polarizabilityy=a3Ac . The shift in
field in a resonator, as discussed above. We consider th@e resonance frequenayw of the resonator is due to the
electric field distribution in a lattice cell of the crystal. It is change in the fields when the crystal is placed inside the
convenient to assume that the cell is centered at the metaésonator. In accordance with this, the shift in the resonance
sphere. The electric field outside the sphere can be expandg@quencyA w is due to the electric fields scattered by metal
in the multipole series and for simplicity, the dipole approxi- particles, i.e., due to the dipole fields. The effective dielectric
mation can be usedsee discussion in Refs. 12 and)13 constante, is unambiguously related to the frequency shift
which holds in the limit\>¢>a. (We note, however, that A «_ by Egs.(6) and (8). Thus, &, is determined by the
after a proper renormalization, the dipole approximation canjipoles induced in metal particles by the electrical field and
also be applied to touching metal spheres, with a highs given by the well-known Clausius-Mossotti equation for a
accuracy.) In the dipole approximation, the outside field ¢y pic array of dipoleswhich can be obtained using the

Eout has only two components, namely, the constant and grentz-Lorenz consideration of the local fietfis
dipole fields:

€e™ & €d™ €m

E -r - p ~
Eout(r):El+AEagv<1_3) ) (10 eet2eq 2eqten

' wherep=(4m/3)a®¢ 2 is the volume concentration of metal
is some electric field aligned with the electric field grains. We would like to stress that this result does not de-

at the maximum and is a coefficient, which is determined pend explicitly on the field distribution inside a metgl grain.
below. Provided that the external fiell is specified, the All the retardation effects are reduced to a renormalization of
: " :

electric fieldE;, inside the metal grain can be found unam-the metal dielectric constant,. In this sense, Eq(15) is
biguously by solving the Maxwell equations together with €xact; at least, it becomes exact in the dilute limig—0,
the boundary conditionsE;,Xxn=E,,xn and e,E,-n  When the multipoles higher than the dipole can be neglected
=g 4Equr- N imposed at the metal surface#r/r is the nor-  for the outside fieldsee EQ.(10)]. In the dense limit of¢
mal unit vector directed away from the metal sphefithus ~ —2a, all multipoles, in general, should be taken into ac-
we obtain the following equatiofsee Ref. 11, Sec. 59, and count and the fieldE,,, may be written askE,,=E;
Refs. 9 and 1pfor the electric field inside the metal grain: +AeEM+2,_,AE", whereE" is the multipole ofith or-
der. The coefficient®\, completely determine the scattered
3ey field and thus the effective dielectric constant
Ein(r)=Ejnot47L(r), Epno=——=E;, (11) ee(Ae,Az, ... A). The skin(retardation effect leads to a
2eqten renormalization of the coefficients, though the functional

(15

whereE;
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dependence (Ag ,A,, ... A remains the same. For the dipole approximation for the magnetic field distribution in
sake of simplicity, we restrict our consideration in this paperthe lattice cell, we obtain the effective magnetic permeability
to the standard dipole approximations, i.e., to Etf). As

mentioned, this approximation can further be improved, if (1+2p)mt2(1—p) - 2F(kn,a)
needed, by a proper renormalizatibmhich is based on re- Me=—7— "~ (ot v Mm™ MAm 1-F(ka)'
placing the real touching spheres by some “effective” (1=P)pmt(p+2) " 1)

spheres, geometrically intersecting each dthewe also
note that very efficient numerical methods have been rewhere the functiorF is defined in Eq(12). Note that the
cently developed in Refs. 15-18; these methods can also henormalized magnetic permeability, is not equal to unity,
used for calculating the local fields in the close-packingeven if the metal is nonmagnetic, i.e., even if there is no
limit. “seed” magnetic permeabilitypu,=1.

In the quasistatic case, when the skin effect is negligible, The constitutive equation for magnetic properties is simi-
Eq. (15 coincides with the well-known Maxwell-Garnett lar to its “electric” counterpart given by E¢(20):
formula for the effective parametet¥lt has been shown that
the Maxwell-Garnett approximation, which emerges from (BY=(uH)=pucHo, (22
the d|pole approximation, gives very accurate res_ults for th%vhereHo is the average, curl-free part of the magnetic field
effective properties of various metal—dleltlazcgggoperlodm com-

osites, even at large filling factop< 0.5 — _

P Now we conside? const?tutive ﬁuations for electromag- Ho=(H)~4m(M), @3
netic crystals. The average electric fi€lH) can be found and the magnetic moment is defined by
from Eqg.(11) as

1 k
(E)=Eo+4m(L), (16) curlM = Z—curlHiy n=— 7—Dy,
where .
M)= f rxcurlH]dr. 24

38d
p——+(1-p) |Ey, 17

Eoz
2eqten

Equation (22) replaces the usual “magnetic” constitutive
equation(B) = u¢(H), which is valid in the quasistatic case
is the average curl-free local electric field. The average solesnly.
noidal part of the local electric fieldL ), can be represented We proceed now with a derivation of the equations for the
as the average moment of the eddy magnetic induction, macroscopic electromagnetism in electromagnetic crystals.
In the considerations above an optically thin sample of a
ik 1 crystal was placed at the maximum of either electric or mag-
(L)= 3f X Bedr= —3f [rXcurlE]dr, (18 netic field. In this way, the effective parametersand .
8m¢ 8m¢ were determined. We consider the propagation of an electro-
magnetic wave in bulk crystals. As known, to obtain the
macroscopic equations, the “microscopic” Maxwell equa-
tions should be averaged over the scélewhich is much
larger than the lattice consta&tbut smaller than the wave-

with the inductionBg given by Eq.(14). Recall now that the
moment L is nonzero within the grain volumey,
=(4w/3)a® only. The average electric displacement is de-
fined as(D)= & 3[&(r)E(r)dr, where the local permittivity : !
e(r) takes values, and ¢4 inside and outside the metal length A, §<L<\. The macroscopic electrig, and mag-

B bstituting in this f la Eq&L0) and (11), neticHofieIds. are defined by Eq$1§) a.nd(23);.both fields
f%rr:?;n y substituting in this formula Eq&L0) and (11), we are nonzero, in general. The electric fiélg excites the av-

erage electric displacement given by ERQ); the magnetic
~ field Hy also excites the Foucault currents. By summing the

(D)=|p 38d8:" +(1-p)eg|E; (19) electric displacemerdy from Eq.(24) and the average dis-
2e4+en ’ placement from Eq(20), we find the full electric displace-
ment,

WhereEm is defined in Eq.12). It follows from Egs.(15)
and(17) that Eq.(19) can be rewritten as (D)= s.Eo+i 47T<curIM) (25)
f—ce-0 .
k

D)=¢e.Ep. 2 . L . .
(D)=2eFo (20 Similarly, the average full magnetic inducti¢B); is as fol-
Therefore, the average electric displacement is proportionAPWS3
to the irrotational part of the local field averaged over the 4
system.and the coeﬁicieqt is exactly equal to the effect_ive (B)+= peHo— i —7T<CUI’|L>, (26)
dielectric constant. Equatiof20) replaces the usual consti- K
tutive equation D) = e(E), which is valid in the quasistatic
case only. where the vectot is given by Eq(13). Now we average the

We consider now magnetic properties of electromagnetidaxwell equations over the macroscopic volurme- £3
crystals by following the same procedure as above. Using theentered at the point Thus we obtain
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(curlE(r))=ik(B(r))s=ikueHo(r) +4m(curlL(r)), B. Wire mesh electromagnetic crystal
(27 We consider now electromagnetic properties of @& 3
(curlH(r))=—ik{(D(r));= —ikecEq(r) +4m(curlM(r)), metal wire mesh configurated in a simple-cubic lattice with

(28) period¢. The lattice axes coincide with(y,z) coordinates.
The average electric field is aligned with tlzeaxis. We
suppose that the radius of the wireas ¢ and neglect inter-
action of the electric field with thg andz wires. Then, the
local electric field in the cell can be found in the dipole
approximation as follows:

where Eqs(25) and (26) were used. The order of the curl
operation and the volume averaging in E@Y) and(28) can
be interchangedsee, e.g., Ref. 21, Chap. 6, Sec.)6en,
the Maxwell equation$27) and(28) become

lE =ikuH 2
curlEq(r) =ik peHo(r), (29 E(r)=E,Jo(K,r), r<a
curlHg(r)= —ikeEq(r), (30 ;
i.e., they acquire the form typical for the macroscopic elec- E(r)= El{‘-]o(kma)_kma‘]l(kma)ln 5”' r>a (31)

tromagnetism, describing propagation of electromagnetic
waves in continuous media. Thus E¢29) and(30) coincide  whereE;=(0,0E,) is an electric field, and,, is the Bessel
with Egs. (1) conjectured for a metal-dielectric system function of thenth order. It follows from Eqs(16), (18), and
placed into a resonator. (20) that the effective dielectric constaatis given by

p 8 ) 2 2a’
4ey 1—§ +éem §p+(ak) £q 6—§p—w+2In ?
Sez r ] (32)
ikl o) 22°
k)| TN
[
Wherep%:a(alg)2 is the metal concentration. Ill. METAL-DIELECTRIC PERCOLATION COMPOSITES

As seen in Figs. 1 and 2, with the skin effect increasing

(i.e., with decreasing the field penetration lengthe effec- . : I-dielectr ites h d
tive dielectric constant becomes negative. The electric field/'C constants, In metal-dielectric composites have atracte

of an incident wave excites not only a current in metal wires"uch attention in the last three decgae7$An.e>_<ample of
but also a magnetic inductioBg that “wraps” the wires. such a s_ystem is a composne .materllal con3|§tlng of a disor-
Thus, the energy of an incident wave reversibly converts intélered mixture of metallic and insulating particles. A reduc-
the energy of the circular magnetic field concentrated aroun#on in the volume concentratiop of the metallic(conduct-
the wires. This field, in turn, generates an electric field,ng) component reduces the static conductivity of the
which is phase-shifted by with respect to the external field. composite so that it vanishes at some critical concentration
When this secondary field is larger than the primary electriq. known as the percolation threshold. That is, the metal-
field, the average electric field is opposite to the externatlielectric composite undergoes a metal-insulator transition at
field, so that the effective dielectric constant is negativethe percolation threshold. The inhomogeneity scatmrre-
Negative values of the effective dielectric constant in metalsponding to the transition is known as the percolation corre-
dielectric composites formed by conducting sticks were pretation length.
dicted in Refs. 10 and 22 and obtained in experiméts. Electric and transport properties of a composite exhibit a

For a strong skin effecta(lm ky,— +<0) and thin cylin-  number of unusual features near the percolation threshold
ders, with the radiusa so small that Infa)>1, Eq. (32)  p_. In the static limit the effective conductivity vanishes as
simplifies to the expression (p—p.)', Wheret is a critical exponent; the effective dielec-

tric constants,, diverges afp. ase.~|p—pc| ~°, wheresiis
2 another critical exponent. Here we consider how the effec-
Ee=EqT T 7 =&dT w§=—§, tive dielectric constant, depends on the skin effect in metal
) 3¢2In| = grains. As above, it is assumed that a typical sizef the
a composite grains is much smaller than the wavelength,
(33 <.

To find the effective dielectric constamt, we suppose
where e, is a real quantity. Thus, fow smaller than the that an optically thin sample of a composite is placed at the
“plasma” frequencyw,, an electromagnetic wave exponen- maximum of the electric field in the resonator, as discussed
tially decays in the crystal, without losses. Equati88) and in Sec. |. The change in the field when the composite is
the “plasma” frequencyw, were first suggested by Pendry placed inside the resonator is determined by a superposition
etal® of the fields scattered from individual metal and dielectric

The problem of the effective conductivity, and dielec-
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FIG. 1. Real part of the effective dielectric constapt)) in the

simple-cubic lattice of metal wires. The period of the lattice FIG. 2. Imaginary part of the effective dielectric constaf\)

=1 cm, the diameter of the wirea2=1 mm. (a)—(c) correspond to  in the simple-cubic lattice of metal wires. The period of the lattice

the skin effect of different strengths. The skin depths fixed at L=1 cm, the diameter of the wirea2=1 mm. (a)—(c) correspond

wavelengthh=1 cm. to the skin effect of different strenghts. The skin deptis fixed at
wavelengthh =1 cm.

particles that have dielectric constantg and ¢4, respec-
tively. The interaction between the particles can be takevhere the renormalized metal permittivity is given again by
into account in the self-consistent approximation known a$d- (12).

the effective medium theory)EMT).>% In this theory, the The effective magnetic permeabilify, can be found by
interaction of a given metal or dielectric particle with the restusing arguments similar to those above; then @3) takes

of the system is found by replacing the latter by a homogethe following form:

neous medium with the effective parametegsand pe. As-

suming that the grains are spherical in shape, the electric ~

fields outside and inside a metal grain are given by E. D He™ Mm +(1-p) Be—1 -0 (35)
and (11), respectively, where the dielectric constant of the 2t :Lm 2uet1
host is replaced witlz.. The electric fields outside and in-
side a dielectric particle are also given by EG€) and(11),
where g is replaced withe, and’z,, is replaced withe.
The effective dielectric constast is determined by Eq20)
that, in the EMT approximation, acquires the following
form:

Equationq34) and(35) were first obtained in Refs. 9,10, and
26. They are similar to equations of the standard EMT.
Equation(34) predicts the percolation threshold gt=1/3,
which is the same as in the standard EMT. The only differ-
ence, a very important one, is that the metal dielectric con-

stante,, and magnetic permeability,, are replaced witfz ,

s —3 £o—eg and i, [see Eqs(12) and(21)]. This fact has a substantial
— +(1-p) —= "% -y, (39 effect on the frequency dependence of the effective param-
28t em 2eeteg eters, as shown below.
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FIG. 3. (a) Real and(b) imaginary parts of the microwave ef- FIG. 4. (a) Real and(b) imaginary parts of the microwave ef-

fective dielectric constant.(\) in the metal-dielectric composite. fective dielectric constant.(\) in the dielectric-dielectric compos-

The metal conductivityr,,=10 (as in aluminum and the grain ite. The grain diametea=2 mm; the first component has the di-

sizea=100 um; the concentratiop=0.33 is below the percola- electric constants;=100+0.01 and volume concentratiom,

tion threshold. The solid and dashed lines represent the developed0.33; for the second componest=1 andp,=1—p;. The solid

theory and standard EMT, respectively. and dashed lines represent the developed theory and standard EMT,
respectively.

For example, we consider the limit of low frequencies
when the renormalized dielectric function is largie,|>1.
Then it follows from Eq.(34) that the effective dielectric
constant

infinite cluster of the conducting channels. The backbone can
be viewed as the Skal-Shklovskii—de Gennes superlattice,
consisting of nodes that are connected via macrobditie
characteristic geometrical distance in the Skal-
_ =S (e Shklovskii—-de Gennes superlattice is given by the correla-
ge~ e P=P° (s=1) (36) tion length £&. The macrobond connecting two nodes has a

is independent of the frequency. The dispersion of the effeccomplicated, self-similar node-link structure; for a qualita-
tive conductivity becomes important in the vicinity of the tive analysis, however, it is possible to suppose that the con-

percolation threshold, whete — p.|< Veq/|z |, as follows '
from Eq. (34). Therefore, the renormalization of the metal H
permittivity [see Eq.(12)] results in expansion of the con- 15}
centration range with a dispersive behavior of the effective
dielectric constant, as illustrated in Fig. 3. 10}
In Figs. 4 and 5 we show the effective response of a
two-component, dielectric-dielectric composite with> e, 5t
~1. The effective parameters are obtained from Eg4) L k\
and (35), where e, and g4 are replaced withe; and 5, o= e A (cm)
respectively u,=ug=1). The effective dielectric constant @ 1 2 3
eo(N\) and the magnetic permeability.(A) have strong
resonances that correspond to the resonant excitation of elec- [,l"
tric and magnetic dipoles in the, grains. 30}
The effective medium theory is based on the assumption
that the fields are the same in all mefdielectrig particles.
This assumption does not hold when a metal concentration 15t
approaches the percolation threshpjdsince the inhomoge-
neity scale(percolation correlation length) diverges atp, J “J
as é~alp—pc ¥, where the critical exponent is given by 0 1l — A (cm)
v~0.88 ford=3. 1 2

Consider, for example, frequencies in the microwave or (b)
radio ranges, where for a typical metal conductivity we esti-  FiG. 5. (a) Real andb) imaginary parts of the microwave mag-
mate thato,,> . Then in the critical concentration region, netic permeabilityue(\) in the same(as in Fig. 4 dielectric-
above the percolation thresholg* p.,é>a), the effective  dielectric composite. The solid and dashed lines represent the de-
conductivity o, is determined by the backbone of the veloped theory and standard EMT, respectively.
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ductance of the macrobond is determined by the shortest pathhereas losses are practically z€since e4~0). A small
between the nodes. The lendth of the shortest path be- micro-, or even nano-sphere made of such a composith
tween two nodes in the superlattice is larger than the gedahe size that can be much less than the wavelength because
metrical distance between them and it is estimated las  of the largee,) can act as a resonator supporting the mag-
~ &7, where the critical exponeni=1.2327 Since the expo- netic dipole resonance, so that the magnetic permeability is
nentz is close to unity it is possible, for estimates, to neglectnegative at frequencies above the resonance. By combining
the difference betweeh, and&. Then, the dielectric proper- these composite microspheres with a periodic metal struc-
ties of the composite are similar to the wire mesh electroture, having a negative dielectric constant, one can make
magnetic crystal considered in the preceding section. electromagnetic crystals, where both magnetic permeability
When the skin effect is negligible the effective dielectric and dielectric permittivity are negative in the visible and
constant is estimated ag.=i4wo./w~ioa(wE?) near-IR ranges. This opens a fascinating possibility of mate-
~i(om/w)(p—pe)!, where the critical exponent=2v rials with the negative refrative index in the optical spectral
=1.8 is close to that predicted by recent numerical resultsange. These “left-handed” materials have very interesting
t~2 (see Ref. 28 and references thejeim the opposite properties with many applications, e.g., they can be used as
case of a strong skin effect, the effective dielectric constanperfect lensesgsee, e.g., Ref. 30
can be determined from E¢33) as follows:
\2 IV. CONCLUSIONS
Ee~€q— —§ (37 In this paper, we derived the macroscopic Maxwell equa-
2m2E? In(—) tions in metal-dielectric media. In the derivation of the mac-
a roscopic equations, the Foucault currents induced by the
wherez 4 is the renormalized dielectric permittivity. high-frequency magnetic field in metal component are taken
. : L~ . into account as well as the eddy currents of the magnetic
. The dielectric permlttwnysd is different from the dlele_c- induction induced by the high-frequency electric field. The
tric f:ons_tan_t of the dielectric component that appears in Eqatter has no analogy in the classical electrodynamics, since
(33)2' th'% 's because only a small part of the metal,, gjocyic field does not generate a magnetic induction in
~a’Ls/¢°<1 is concentrated in the conducting channels s ang molecules. The theory results in the equations

Whereas most of the metal is d.'SSO|Ved n the dielectric describing metal-dielectric media in terms of the effective
host in the form of separate grains and finite clusters. Th%ielectric constant , and magnetic permeability
e e-

presence of these grains and finite clusters leads to a renor- In the case of periodic metal-dielectric structures, known

malization of the permittivity of the dielectric medium be- ; - -

tween the conducting channels. Due to scaling argumentdy, opin PR SRS SO SRR ERRRIAe |
the renormalized dielectric permittivityy must be a function  thin conducting wires has a negative dielectric constant and
of the percolation correlation length only. Therefore, the negligible losse¢see also Ref. 29The negative value of the
value of ¢4 is essentially the same, below and above theeffective dielectric constant is similar to bulk metals in the

percolation threshold. Then it is possible to replagén Eq.  optical and near-infrared spectral ranges, e.g., surface plas-

(37) with the effective medium result given by E@6) and ~ mons can be excited at the boundaries and also at defects
obtain the following: inside a crystal. Yet, electromagnetic crystals can operate in

this way within any frequency band. Another interesting,
eq N(p—po)?” high-frequency property of electromagnetic crystals is the
~ . > 5 , 0<p—p<L1l. effective magnetism that can be observed, even in systems
(P—=pe)® 2vam”In(p—pc) where neither metal nor dielectric possess inherent magne-
(38) tism.
It follows from this equation that the effective dielectric con-  Electromagnetic crystals and percolation metal-dielectric
stant of percolation metal-dielectric composites vanishegomposites are two extreme cases of fully ordered and fully
above the percolation threshold at a concentrapigresti-  disordered systems. It is remarkable that in both cases the
mated as skin effect can be completely taken into account by appro-
priate renormalization of the metal permittivity. The renor-
malization depends on the conductivity and shape of the
' (39 metal inclusions rather than on the system morphology.

€e

4mvaleqIn(n/a) Vis+2)

N2(s+2v)

P1=Pc+

where it is still assumed that the wavelengiia, so that
|p1—pc/<<1. The estimaté39) is obtained with the so-called
“logarithmic accuracy,” i.e., it is supposed that Mg)>1. This work was supported in part by an NSF grébMR-
As follows from Eq.(36), the effective dielectric constant 98101183, a PRF gran{35028-AC5, ARO (DAAG55-98-
of the composite ap<p. can be very large and positive, 1-0425, and the AvH Foundation.
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