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Morphology evolution during the growth of strained-layer superlattices
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We present a linear stability analysis for epitaxial growth of strained-layer superlattices, calculating how a
shape perturbation propagates through the whole multilayer stack. We assume that bulk diffusion is negligible,
so the morphology is controlled by surface diffusion. Unlike the case of a single strained layer, there are
conditions under which the growth of the planar superlattice is stable, i.e., perturbations to the growth surface
decay. For the conditions of unstable film growth~where the amplitude of the perturbation increases from layer
to layer!, we find three different types of resulting film morphology, classified according to the phase of the
perturbation in successive layers, which is a function of materials parameters and growth conditions. We also
determine the growth rate and wave vector of the propagating perturbation corresponding to the fastest growing
instability wave.
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I. INTRODUCTION

Semiconductor superlattices are in widespread use
number of modern optoelectronic applications. Magne
multilayers possessing giant magnetoresistance are pla
an increasing role in magnetic and magneto-optic stor
technologies. The introduction of artificial periodicities, b
repeating a pattern of layers of different materials, modifi
the electronic band structure and electron transport pro
ties, thereby providing an approach to fine-tune mater
properties.

For most applications, the ideal superlattice consists o
periodic array of uniform, distinct layers separated by sha
atomically flat, coherent interfaces. However, misfit stre
causes deviations from this ideal structure, due to pla
~misfit dislocation formation! or elastic relaxation, which
commonly occurs during the growth process. Rec
progress has been made in incorporating misfitting mate
into a superlattice. A very successful approach to cope w
misfit dislocation formation is to grow the multilayer stru
ture with a zero net misfit strain, i.e., with balanced altern
ing layers of tensile and compressive strain. By keeping
thickness of each individual layer in the superstructure be
its critical thickness, the multilayer film grow
dislocation-free.1–3

The origin of elastically driven relaxations in a multilay
film lies in the instability of a film under stress with respe
to the formation of shape perturbations.4–6 As each layer of
material composing the multilayer film is deposited, t
growing surface of the films develops an undulating profi
In the case of single-layer films, there is extensive exp
mental evidence7–9 of this phenomenon. As more layers a
deposited, undulated surfaces become buried under su
quent layers of materials, resulting in wavy interfaces. T
resulting structure becomes modulated morphologically a
possibly, compositionally, as explained below.10–15 If care-
fully controlled, these modulations may be exploited to fo
self-organizing quantum nanostructures,16–19 which are po-
PRB 620163-1829/2000/62~12!/8397~13!/$15.00
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tential candidates for semiconductor lasers due to th
d-function-like density of electronic states.

Eliminating elastically driven relaxations in the film is
challenging task, as this type of structural defect is caused
the presence of misfit stresses in the film, which is indep
dent of the growth conditions. In this paper, we examine
evolution of interface morphology during the growth of p
riodic, multilayer strained films. As shown below, a rich v
riety of interface morphologies may be obtained, depend
on the properties of the materials making up the individ
layers and on the growth conditions. In particular, plan
layers can be stabilized against morphological perturbatio

Modulation of microstructure and composition during e
itaxial growth is by no means a novel subject. Morphologic
instabilities in strained films have been studied in a co
tinuum model4–6,20and in a step-flow model by Tersoff.21 In
alloys, coupled morphological and composition modulatio
can lead to a rich behavior.21–24 In some cases, spinoda
decomposition or compositional stresses can drive a com
sitional instability, which in turn modulates th
morphology.25,26

Morphological modulations in multilayer films may caus
lateral modulation of the vertically averaged compositio
Such ‘‘lateral composition modulations’’10,11,14have gener-
ated considerable interest. It is not clear that actual chan
in local composition play a key role in the phenomeno
however. Rather, they appear to be closely related to
morphological modulations studied here.

In this paper, we present a simple model for the format
of modulated multilayer structures which does not rely
alloy decomposition processes. Instead, modulations occu
the layer thicknesses, which may be viewed as modulati
of the vertically averaged composition, without the need
any change in the composition of the individual layers. W
show that the competition between surface and elastic en
effects can lead to periodic interface modulations. Under c
tain conditions, these interface modulations can produce
overall lateral composition modulation in the growin
8397 ©2000 The American Physical Society
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8398 PRB 62L. E. SHILKROT, D. J. SROLOVITZ, AND J. TERSOFF
multilayer film. Our analysis predicts the materials propert
and growth conditions required to produce such modulati
and both the wavelength and rate of growth of these mo
lations. We also predict the materials properties and gro
conditions necessary to grow multilayer films which a
stable against interface modulations. The existence of co
tions for which films grow stably~i.e., with flat interfaces! is
surprising since misfitting monolithic films are always u
stable against surface modulations.

II. PROBLEM FORMULATION

Interface undulations in multilayer films are closely r
lated to the well-known elastic instability of free surfaces
stressed solids.4–6 Consider a thin film grown heteroepitax
ally on a substrate, such that a misfit stress exists. If
surface is not flat, the stresses within the film are nonu
form. The nonuniform elastic energy along the surfa
causes a variation in chemical potential along the surface
can be relaxed by mass flow along the surface~i.e., surface
diffusion!. In the case of a sinusoidal perturbation,6 these
fluxes will result in the increase of the perturbation amp
tude for any perturbation wavelength. The existence of n
negative surface energy impedes the growth of these pe
bations. The interplay between these two factors determ
whether the perturbation amplitude will grow and, if so, t
rate of growth. Short-wavelength perturbations dec
whereas long-wave modes grow exponentially with time.

If the surface of the film undulates~see Fig. 1!, the atomic
planes in the film are distorted by the nonuniform stress
the surface of the film. The average misfit stress in the film
denoted ass and, for the sake of this argument, the latti
parameter of the film is originally smaller than that of t
substrate~i.e., the misfit is negative and the film is in ten
sion! and s is positive. An elastic solution6 shows that this
film is more stretched in the troughs and more compresse
the crests of the free surface~Fig. 1!. Consider now a situa
tion in which a second film is deposited on the first with
lattice parameter which is greater than that of the substr
In this case, the atoms of the second film will have low
energy if they sit in the troughs compared with sitting on t
crests. As more material is added to the second film,
amplitude of the surface perturbation gets smaller and
eventually reverse such that the second film will ha
troughs above the crests in the first layer and vice versa
additional layers grow, this perturbation may propag
through the entire stack of layers, either increasing or
creasing in amplitude and with the perturbations on adjac
layers either in or out of phase.

FIG. 1. A thin film with an undulating surface subjected to
stresss. For a film in tension, as in this figure, the atomic planes
farther apart from one another in the troughs~the film is more
stretched than average! and closer to one another at the crests.
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We now formulate the problem in terms of continuu
elasticity. Consider the multilayer film geometry presented
Fig. 2, which consists of alternating layers of two materi
~materialsA andB! epitaxially deposited on a substrate~ma-
terial C!. The interfaces between adjoining layers are
sumed to be coherent. Effects due to the interfacial stre
associated with the buried interfaces27 are explicitly ne-
glected in this analysis. If the layers are misfitting with r
spect to the substrate, they may develop a morpholog
perturbation on the growing free surface, as discussed ab
This surface perturbation will become a buried interface
more layers are deposited on top of it. This perturbed in
face bounding misfitting materials will act as a source
stress and modify the stress field throughout the film a
especially, on the new growth surface. Each buried interf
will affect the chemical potential on the surface and, the
fore, will modify the surface diffusion and subsequently t
surface profile.

We adopt the following notation for the remainder of th
paper. All quantities related to layerk will have a subscriptk.
Thus, the thickness of growing layerk is denoted ashk and
that of the fully grown layer is denoted asHk . Hk is equal to
HA for odd-numbered layers andHB for even-numbered
ones. The misfit stress in layerk is denoted asSk and is
equal to SA for odd-numbered layers andSB for even-
numbered ones. Similarly, the amplitude of the perturbat
to the surface of layerk is denoted asDk . The present analy-
sis is performed in the two spatial dimensions containing
substrate and substrate normal.

The thickness of the growing filmh̄ at time t can be
written as

h̄~ t !5 (
j 51

k21

H j1hk~ t !, ~1!

where layers up tok21 are fully grown and have thicknes
H j , respectively, and layerk is currently growing~i.e., it has
not yet grown to thicknessHk). The average layer thicknes
hk , is always measured from the average height of the p
vious layer, such that the film profile is described by

e

FIG. 2. A schematic illustration of the multilayer film geometr
indicating the amplitude of the interface undulationsD and the layer
thicknessesH. The odd-numbered layers correspond to materiaA
and the even-numbered ones to materialB.
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h~x,t !5h̄~ t !1Dk~x,t !, ~2!

whereDk(x,t) is the perturbation to the growing surface
layer k.

In the simple model for film growth adopted in the prese
paper, each layer is deposited with a uniform rater k (r A or
r B for A andB layers, respectively!. The material is allowed
to diffuse only along the growing surface. Without bulk d
fusion, no morphology evolution occurs below the curre
growth surface. Mathematically, we write the evolutio
equation for the growing surface as28

]h

]t
5r k1

DkVkuk

kBT

]2mk
s

]s2 , ~3!

whereDk is the surface diffusivity of the material of layerk,
kB is the Boltzmann constant, andVk anduk are the atomic
volume and surface atomic density, respectively. The che
cal potential of the atoms at the surface of the growing la
mk

s and its second derivative are evaluated along the surf
This expression explicitly assumes that the deposition rate
each point of the surface is constant and unaffected by va
tions in the surface chemical potential.

The linear stability of the multilayer morphology is an
lyzed by considering a sinusoidal perturbation to the pro
of an otherwise flat interface. We Fourier-transform the
ordinate parallel to the substrate and denote the corresp
ing wave vector asj. Since this is done throughout, we wi
write Dk(j) simply asDk . The present analysis is performe
only to first order in perturbation theory, where the sm
parameter is the product of the wave vectorj and the ampli-
tude of the shape perturbation of a layerD. Within this ap-
proximation, the derivative along the surface in Eq.~3! is
replaced by the derivative with respect to thex coordinate.
Equation~3! may, therefore, be rewritten as

]Dk

]t
52j2

DkVkuk

kBT
mk

s~j!. ~4!

Following Refs. 4 and 6, we write the chemical potent
at the surface as

m~x!5m01gkVkk~x!1
Vk

2
sk

s~x!Ssk
s~x!, ~5!

wherem0 is the chemical potential of a flat surface boundi
unstressed material and the other two terms in this exp
sion are the surface energy and elastic contributions, res
tively. k(x) is the curvature of the growing surface andgk is
the surface energy of layerk. sk

s(x) is the stress tensor evalu
ated at the surface andS is the elastic compliance tensor o
layer k. For the sake of simplicity, we also assume that
elastic constants of materialsA andB are identical.

To first order in perturbation theory, the surface tens
term in Eq. ~5! can be written asmg(j)5gkVkk(j)
5gkVkj

2Dk . The leading-order contribution to the elast
term in the chemical potential is associated with the coup
between the uniform misfit stressS and the nonuniform con
tribution to the stress tensorsk

s(x). Since the surface is
nearly flat, the only term that enters the elastic contribut
to the chemical potential is the normal stress parallel to
surfacesxx

s (x), i.e., mel(x)5VkSksxx
s (x)/M , where M is
t
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the elastic modulus in the direction along the surface whi
in the plane strain approximation, isE/(12n2), whereE and
n are Young’s modulus and the Poisson ratio, respectiv
In the following, we derive an equation for the stress at
growing surface and assemble all of the terms in the evo
tion equation@Eq. ~4!#. Next, we nondimensionalize thi
equation and analytically solve for the amplitude of the p
turbation of the growing layerDk(j) as a function of mate-
rial parameters and growth conditions.

III. ELASTIC ANALYSIS

In this section, we determine the tangential componen
the stress at the surface of the growing layerk in the
multilayer structure. This stress is required to evaluate
elastic component of the chemical potential, as descri
above. We analyze this problem within the framework
two-dimensional, isotropic, plane strain elasticity, in whi
materialsA and B have the same elastic constants. Elas
anisotropy does, however, appear to play an important rol
some cases20,29,30and would make an interesting extension
the present work.

A simple analysis shows that there are two contributio
to the stresssxx

s (x) in first order in perturbation theory,

sxx
s ~x!5ssurf~x!1s int~x!. ~6!

The first term is associated with the surface itself and
present because the growing surface is not flat. This stre
the correction to the uniform misfit stressSk ~i.e., the xx
component! that arises from the requirement that the surfa
tractions must be zero, as described by Asaro and Till4

Grinfeld,5 Srolovitz,6 and others. The Fourier transform o
ssurf(x) may be written asssurf(j)522ujuDkSk , whereuju
is the absolute value of the wave vectorj andDk is in Fou-
rier space.

The second contribution to the stress at the surface in
~6! is associated with the presence of buried interfaces an
only present when those interfaces are not flat. Because
terialsA andB have identical elastic constants, each interfa
contributes separately to the terms int . We determines int
using the Eshelby procedure31 for the stress created by
misfitting inclusion. Consider the nonflat interface betwe
layersn andn11, the shape of which is determined by th
amplitude of thenth perturbationDk(x) or, in Fourier space,
Dn(j). If we make an imaginary cut along this interface, t
macroscopic misfit stressesSn andSn11 create surface trac
tions along both sides of the cut. To balance these tracti
we apply equal and opposite corrective tractions along
surfaces of the cut and then ‘‘weld’’ the two pieces ba
together. The stress produced by these corrective tracti
evaluated at the free surface, iss int for then/n11 interface.

The tractions along the interface cut are, to first order
the small parameterDnjn , the sum of the products of th
misfit stressesSn and Sn11 and the outer normals to th
interface. In Fourier space, this tractionT is

Tx52 iDnj~Sn2Sn11! and Ty50, ~7!

i.e., only the tangential component of the tractions is pres
We also make use of the fact thatDmjm is small to replace
the actual curved interface with a flat interface while keep
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8400 PRB 62L. E. SHILKROT, D. J. SROLOVITZ, AND J. TERSOFF
the corrective tractions along that interface (Tc52T) asso-
ciated with the original curved interface. This line traction
parallel to and some distance from the free~growing! surface
in an elastic half-plane. The expression for the stress fi
produced by such a line traction can be easily obtained
deriving the stresses produced by this traction in the wh
elastic plane using the elastic Green’s function32 and apply-
ing a corrective solution to satisfy the boundary conditions
the free surface. The resultant expression is

s int
n/n1152Dnuju~Sn2Sn11!F22

ujuhnk

12n Gexp~2ujuhnk!.

~8!

In order to determine the stress on the surface from all in
faces, this expression must be summed overn. The distance
hnk in this equation is the distance from the interface un
consideration to the growing surface:

hnk5 (
j 5n11

k21

H j1hk . ~9!

Note that this stress is time-dependent, since the thicknes
the growing layerhk increases linearly for a fixed growt
rate r k ashk5r kt.

Equations~4!–~6! provide the necessary framework
write down the equation governing the amplitude of the p
turbation to the growing layerk. Inserting Eqs.~5!–~9! into
Eq. ~4! yields

]Dk

]hk
5

DkVk
2uk

r kkBT
uju3H 2gkujuDk12

Sk
2

M
Dk

2
Sk

M S (
j 51

k21

D j~S j 112S j !F22
ujuhjk

12n Ge2ujuhjkD J ,

~10!

where we have replaced the variable time with the thickn
of the growing layerhk . The amplitude of the perturbation t
the surface of each layer is a function of the amplitude of
perturbations to the interfaces of all underlying layers.

If we remove the terms in Eq.~10! associated with the
buried interfaces, we find that it is identical to that deriv
by Asaro and Tiller4 and Srolovitz6 in the context of the
analysis of the stability of a free surface bounding a stres
body. They found that there exists a wave vector for whic
sinusoidal shape perturbation grows the fastest. We de
this wave vector for materialA asjA5(3SA

2)/(2MgA) and
use it as a length scale throughout the remainder of
analysis. We introduce the ratio of the misfit stress in ma
rial B ~even-numbered layers! to that in materialA ~odd-
numbered layers! b5SB /SA and the ratio of surface ene
gies G5gB /gA . The difference between the misfit stress
in the adjacent layersn and n11 is Sn112Sn
5(21)nSA(12b).

We consider the evolution of odd-numbered layers se
rately from the even-numbered layers. Equation~10! be-
comes
ld
y
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]Dk

]hk*
5FAj* 3F ~22 3

2 j* !Dk2 (
j 51

k21

~21! jD j~12b!

3S 22
j* hjk*

12n De2j* hjk* G ~11a!

for odd-numbered layers and

]Dk

]hk*
5FBj* 3F ~2b223/2Gj* !Dk2 (

j 51

k21

~21! jD jb~12b!

3S 22
j* hjk*

12n De2j* hjk* G ~11b!

for even-numbered layers. Here, the dimensionless w
vectorj* is measured in terms ofjA , j* 5uju/jA , and the
parameters FA and FB are defined as FA

5(DAVA
2uASA

2jA
2)/(r AkBTM) and FB

5(DBVB
2uBSA

2jA
2)/(r BkBTM), respectively. The thick-

nesses of each layer are also made dimensionless, as
lows: HkjA5Hk* , HAjA5HA* , HBjA5HB* , hjkjA5hjk* ,
andhkjA5hk* .

IV. SOLUTION OF THE EVOLUTION EQUATION

In order to determine the temporal evolution of the a
plitude of the perturbation on the surface of the growing fil
we must integrate the evolution equation@Eq. ~11!# over the
entire layer thickness~i.e., from hk50 to hk5Hk), starting
from the initial condition Dk(0)5Dk21(Hk21). Equation
~11! can be simplified by the introduction of new variable

Xj5D j expS j* (
n52

j

Hn* D . ~12!

The evolution equation now becomes

]Xk

]hk*
5FAj* 3F ~22 3

2 j* !Xk

2ej* HA* (
j 51

k21

~21! jXj~12b!S 22
j* hjk*

12n De2j* hk* G
~13a!

for odd-numbered layers and

]Xk

]hk*
5FBj* 3F ~2b223/2Gj* !Xk

2ej* HB* (
j 51

k21

~21! jXjb~12b!S 22
j* hjk*

12n De2j* hk* G
~13b!

for even-numbered layers with the initial condition modifie
accordingly.

Integration of Eq.~13! yields the following linear rela-
tions:
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Xk5Xk21FA2 (
n51

k21

~21!nXn~12b!

3FJA1CAS (
j 5n11

k21

H j* D G ~14a!

for odd-numbered layers and

Xk5Xk21FB2 (
n51

k21

~21!nXnb~12b!

3FJB1CBS (
j 5n11

k21

H j* D G ~14b!

for even-numbered layers, where we have introduced the
lowing composite parameters:

FA5exp~FAdAj* 3HA* !,

FB5exp~FBdBj* 3HB* !,

CA52~FA21!j* /@~12n!dA#,

CB52~FB21!j* /@~12n!dB#,

JA5S 22
1

~12n!FAj* 2dA
D FA21

dA
1

j* HA*

dA~12n!
,

JB5S 22
1

~12n!FBj* 2dB
D FB21

dB
1

j* HB*

dB~12n!
,

dA51/~FAj* 2!1~223/2j* !,

and

dB51/~FBj* 2!1~2b223/2Gj* !.

In order to improve the clarity of the results, we restr
consideration of the solutions to the special case~to be re-
laxed later! where materials A and B are identical in eve
respect, except that the magnitude of the misfit stressS with
respect to the substrate is equal and opposite in the two
terials~i.e., b521). To be specific, both materials have t
same values ofD, u, V, andg, and are grown with the sam
deposition rater and to the same thicknessH. Since the two
materials have the same thickness and equal and opp
misfit, there will be no driving force to form misfit disloca
tions provided that each layer can be grown to a thicknesH
on the pristine substrate without dislocation formation. Eq
tion ~14! can now be rewritten without subscripts and w
b521 andG51:

Xk5Xk21F22(
j 51

k21

~21!k2 j 21Xj@CH* ~k2 j 21!1J#.

~148!

The variables can now be rewritten asj053S2/(2Mg),
j* 5uju/j0 , Hj05H* , F5exp(Fdj*3H* ), F
5(DV2uS2j0

2)/(rkBTM), C52(F21)j* /@(12n)d#, d
51/(Fj* 2)1(223/2j* ), and
l-

t

a-

ite

-

J5S 22
1

~12n!Fj* 2d D F21

d
1

j* H*

d~12n!
,

and Eq.~12! becomes

Xj5D je
j* H* ~ j 21!. ~128!

While the integrated equation for the evolution of the s
face of the topmost layer@cf. Eq. ~148!# is a function of the
amplitude of the perturbations to all buried interfaces, it c
be reduced to a much simpler linear recurrence relation
only involves the amplitude of the perturbations on thr
previous, consecutive interfaces, as shown in detail in
Appendix. Since the recurrence relation is linear and o
depends on the amplitudes of the perturbations to three
secutive interfaces, the solution (k>4) can be rewritten in
the following form:

Dk
15a1l1

k211a2l2
k211a3l3

k21, ~15!

where we normalize the amplitude of the interface pertur
tion for each layerDk by that of the first layerD1 ~i.e., D l

1

5D l /D1). l1 , l2 , andl3 are the eigenvalues of the ma
trix L @Eq. ~A5!#,

L5S e2j* H* ~F2222J! 1 0

e22j* H* ~2F2112CH* 22J! 0 1

e23j* H* F 0 0
D ,

~16!

and the coefficientsa1 , a2 , anda3 are the coefficient of the
expansion of the vectorY1 in the basis of the eigenvectors o
the matrixL ~see the Appendix!. The two elements of the
vector Y1 , which are the amplitudes of the perturbation
the interface above layers 2 and 3,Y15^D3

1 ,D2
1,1&, need to

be computed directly using Eqs.~128! and ~148!.
Because the perturbation amplitude grows as the eig

values ofL to a power equal to the number of layers min
one@see Eq.~15!# in the limit of a large number of layers, th
amplitude of the perturbation on layerk is dominated by the
largest eigenvalue:

Dl
15al1

k21, ~17!

wherel1 is the largest eigenvalue ofL anda1 is the corre-
sponding expansion coefficient. In the case when the m
mal eigenvalues form a complex-conjugate pair, the previ
equation should include the complex-conjugate term as w
(Dk

1 is a real number!,

Dk
15a1l1

k211ā1l̄1
k21. ~178!

Here, the bar over the variable indicates complex conjug
This asymptotic regime is reached fairly quickly becau

the difference between the asymptotic equation@Eq. ~17!#
and the full equation@Eq. ~15!# decays as a power of the rati
of the eigenvalues. Thus, in studying the stability of t
multilayer film, we use Eq.~17! instead of the full equation
@Eq. ~15!# and the perturbation behavior is fully determine
by the dependence ofl21 on the parametersj* ~normalized
wave vector!, H* ~normalized thickness of an individua
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layer!, andF ~see above!. LargeF results from fast diffusion
or slow deposition, as discussed below.

Given a set of parametersH* andF, as well as the mag
nitude of the wave vectorj* , the morphology of the
multilayer structure can be classified according to the va
of l1 . If the absolute value ofl1 is smaller than 1, the
perturbation does not propagate through the multilayer fi
but, rather, decays after a few layers, i.e., the interfaces
come flat and we refer to this structure as stable. In
opposite case, when the absolute value ofl1 is greater than
1, the amplitude of the perturbation to the interfaces gro
with the layer number. We refer to this structure as unsta
We can examine the nature of this instability by consider
l1 in more detail.

The morphology of the structure in the unstable regime
determined by the complex phase ofl1 . If l1 is real and
positive, the perturbation amplitudes~D! grows from inter-
face to interface and the perturbations on consecutive in
faces will be in phase, as indicated schematically in Fig. 3~a!.
If l1 is real and negative, the value ofD grows from inter-
face to interface and perturbations on consecutive interfa
are out of phase, i.e., the amplitude of the perturbati
changes sign at each interface~the layer is accordion-shaped!
as shown in Fig. 3~b!. The resulting structure is modulate
not only morphologically but also compositionally, since
vertical cross section of a multilayer film in the plane pe
pendicular to the plane of Fig. 3~b! will show oscillations in
the fraction of materials A and B. Whenl1 is complex, the
perturbations at consecutive interfaces are out of phas
well ~i.e., peaks in one layer line up with either peaks
troughs in preceding layers!, but the sign change is not regu
lar and will be determined by the complex phase ofl1 . The
in-phase and out-of-phase morphologies show some res
blance to the vertical correlations among stacked islands,
cussed by Shchukinet al.29

We reiterate that the asymptotic equation@Eq. ~17!# is
valid provided that the expansion coefficienta1 , corre-
sponding to the maximal eigenvaluel1 , is not zero, and its
value is not negligible compared to the expansion coe
cients (a2 anda3) corresponding to the other two eigenva
ues (l2 and l3). In the quantitative analysis of the resul
presented in the next section, we checked to insure that
condition is satisfied. We present our results in terms of
stability diagram, which provides a link between the mate
als and growth parameters and the morphology of the in
faces.

FIG. 3. Multilayer film morphology produced by~a! an in-phase
instability and~b! an out-of-phase instability. In the latter case, t
morphology modulation produces a net composition modulation
the direction parallel to the substrate.
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V. STABILITY DIAGRAMS

In this section, we examine the dependence ofD on the
material and growth parameters captured inF and H* for
the special case where adjacent layers are the same e
for the misfit with respect to the substrate~i.e., the misfits are
equal but have opposite sign!. For each point in theF-H*
plane, we determine the dependence of the maximal eig
value l1 on the normalized eigenvectorj* . The rate at
which the perturbations grow depends on the imposed
turbation wavelength. The fastest growing perturbation c
responds tol15lmax, which occurs atj* 5jmax* . The nature
of the evolution of the perturbation amplitude with lay
number is determined by whether the magnitude oflmax is
greater or less than unity and whether it is real or compl
as discussed above. The resultant stability diagram is
sented in Fig. 4. Four distinct fields are found on the stabi
diagram. The region corresponding toulmaxu,1, marked
stable in Fig. 4, indicates that the amplitude of the pertur
tions to the interfaces decreases with an increasing num
of layers for all wavelengths. In the region of unstab
growth (ulmaxu.1), the mode of the instability is determine
by the phase oflmax as discussed in the preceding sectio
For thick layers~largeH* ) and slow diffusion~low F!, the
instability corresponds to in-phase growth, resulting
snakelike layers, as shown in Fig. 3~a!. As F increases
and/or the layers are thin, the interface perturbations g
out of phase, resulting in accordionlike layers, as sho
schematically in Fig. 3~b!. Between the unstable/out-of
phase and stable fields, a region of complexlmax exists. In
this region of the diagram, consecutive interfaces are ei
in or out of phase depending on the interface number. T
pattern of in- and out-of-phase interfaces may be either
riodic or aperiodic as determined by the complex phase
lmax.

A contour plot of the logarithm of the absolute value
lmax is shown in Fig. 5. The contour lines are drawn only
the region where the film growth is unstable, i.e.,ulmaxu.1.
The magnitude oflmax and, consequently, the rate of grow

n

FIG. 4. Stability diagram for a growing multilayer film, indicat
ing the types of morphologies expected classified according to
eigenvaluelmax. In the region labeled stable, the film will exhib
flat interfaces. In the in-phase and out-of-phase regions, the in
face perturbations grow with increasing thickness and are of
form shown in Figs. 3~a! and 3~b!, respectively. The complex re
gion is discussed in the text.
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of the instability increases with increasing distance from
stable growth domain within theF-H* plane. In order to put
the rate of growth of the instability into perspective, we co
pare the degree to which the amplitude of the instabi
changes during the growth of a single layer with that
growing either pure A or pure B on the substrate to
thickness of one layer. The latter can be found by integra
Eq. ~10!, omitting the contributions associated with the bu
ied interfaces. The corresponding value which we define
ls is simply ls5exp(FH* /2). Contours of constant ln(ls)
form straight lines in theF-H* stability map of Fig. 5. The
contours of constant ln(lmax) asymptotically approach th
straight single-layer lines@ ln(ls)# at large film thicknessH* .
This is to be expected since the stress on the surface due
buried interface decreases exponentially with the dista
between the surface and buried layer@see Eq.~8!#.

The magnitude of the wave vector of the most unsta
perturbationjmax* ~corresponding to the eigenvaluelmax) de-
termines the overall film morphology. For a pure mater
~i.e., single-layer film!, the wave vector of the most unstab
wave is equal toj0 ~i.e., j* 51). The contour plot ofjmax*
for the domains of unstable multilayer growth is shown
Fig. 6. The magnitude ofjmax* does not significantly vary
from 1 except for very small film thicknessesH* . This im-
plies that in most situations, the wavelength of the interfa
modulations will be very similar to that for a pure, singl
layer film and will not evolve significantly as the multilaye
film grows.

The overall stability diagram is a result of the interpl
between the three terms in Eq.~10!: the surface energy tha
always favors the smoothing of the surface, the elastic
ergy relaxation associated with a curved surface, which
ways favors the growth of surface perturbations, and the c
tribution from the stress associated with buried interfac
which may either favor the growth or decay of perturbatio
Consider the relatively simple case of the growth of a sin
layer of materialB on the firstA layer. When the second
layer is very thin, the stress on the surface from the bur
A/B interface favors fasterB growth in the troughs and
slowerB growth near the peaks of the surface profile. Th
combined with the surface energy term, opposes the ela
energy relaxation term and leads to a decrease in the am

FIG. 5. Contour plot of the logarithm of the absolute value
lmax. For comparison, dashed lines show the contours of the lo
rithm of ls , as for a single layer, as described in the text.
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tude of the perturbation of the surface of the second laye
the buried layer stress effect dominates the surface en
and the atomic mobility is sufficiently high~or the growth
rate is sufficiently slow!, the second layer will grow from
one with perturbations to a nearly flat surface and then, w
continued growth, to one for which perturbations of the o
posite sign grow. Once perturbations of the opposite s
begin to grow, the elastic energy relaxation term further
celerates their growth. This corresponds to unstable, out
phase growth.

The presence of a buried interface may also lead t
different growth mode. As the second layer~B! grows, it
may reach the thickness at which the sign of the stress on
surface from the buried interface switches sign@see Eq.~8!#.
In this case, the stress from the buried interface favors fa
B growth near the peaks on the surface and slower gro
near the troughs. This leads to an increase in the amplit
of the perturbation and the layer growth is unstable and
phase, hence the presence of an unstable, in-phase regi
the F-H* stability map. The existence of a growing, in
phase surface perturbation will only occur if the atomic m
bility ~F! is sufficiently low that the sign of the surface pe
turbation does not switch prior to the film thickne
achieving the value at which the sign of the stress from
buried interface changes sign. This dependence of the gro
mode on the atomic mobility explains the switch from i
phase to out-of-phase growth at largeH* in the F-H* sta-
bility map of Fig. 4.

The presence of a region in the stability diagram wh
the perturbations decay can be understood as a type of
of-phase growth that did not have sufficient time to be e
pressed. As discussed above, when the second layer is
the stress from the buried layer reinforces the tendency f
the surface energy to grow faster in the troughs and slowe
the peaks in the surface profile. If given sufficient time, th
effect would lead to out-of-phase growth. However, if t
growth of the second layer is terminated and the growth o
third layer has begun before the sign of the perturbat
switches, the interface is left with a perturbation that is of t
same sign butsmaller amplitudethan that of the first inter-
face. This decrease in amplitude of the perturbation up

f
a-

FIG. 6. Contour plot ofjmax* for the domains of unstable
multilayer growth. For comparison, the dashed contour correspo
to jmax* 5

4
3, the critical wave vector below which perturbations of

single layer are unstable.
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growth of an additional layer is the source of the stable
gion in the multilayer film stability diagram~Fig. 4!.

In addition to the in-phase and out-of-phase modes in
unstable regions of theF-H* stability map, there is an un
stable domain where the perturbations increase in abso
value but with a sign that is neither always the same
alternates from layer to layer~i.e., labeled ‘‘complex’’ in
Fig. 4!. This region is between the stable and out-of-ph
unstable domains. The origin of this effect cannot be
plained on the basis of the two-layer picture used to desc
the origin of the other regions of the diagram and is strictl
result of the combined effects of many buried interfaces.

In presenting the stability map~Fig. 4!, we tacitly as-
sumed that the wavelength of modulations corresponds to
most unstable wave vector~i.e., that withj* 5jmax* ) and that
this perturbation wave vector is constant during the en
growth. However, analysis of the growth of a single-lay
film ~either pureA or pureB! showed that perturbations t
the surface profile only grow when the wave vector of tho
perturbations is smaller than a critical value,j, 4

3 j0 .4,6

Therefore, there may not be any perturbations available
grow if jmax* .4

3. If this is indeed the case, then the stab
region of theF-H* stability map will be larger. In order to
account for this effect, we reconstruct the stability diagr
allowing only wave vectors of magnitudejmax* <4

3. The re-
sultant stability map is presented in Fig. 7. This wave-vec
cutoff greatly expands the stable region of the diagram s
that the entire small-F/small-H* quadrant is stable. In addi
tion to expanding the stable region of the map, cutting
jmax* greatly expands the unstable region corresponding
the complex eigenvalues.

An additional caveat associated with the present anal
should be kept in mind. Stability or instability in the maps
Figs. 4 and 7 is determined based on how the system
behave in the limit of a large number of layers. The num
of layers that must be grown until this analysis is valid
determined by the magnitude of the eigenvaluel1 in Eq.
~17!. Fortunately, the instability develops very quickly ov
the entire unstable region of Figs. 4 and 7, with the excep
of the region near the stable-complex unstable boundar

FIG. 7. Stability diagram for a growing multilayer film with
constraint on the wave vectorj* to values where an initial pertur
bation on the first layer would grow~i.e., j* < 4

3 ). This constraint
greatly enlarges the region of stable growth~cf. Fig. 4!.
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Fig. 7. Hence, the stability map presented above prop
expresses the actual situation under nearly all conditions

VI. GENERAL CASE

The asymptotic expression for the amplitude of the ins
bility in the general case is derived in the Appendix:

Dk
15a1L11l1

~k24!/2 and Dk21
1 5a1L12l1

~k24!/2

~18!

for even k, where l1 is the maximal eigenvalue and th
coefficient a1 is assumed not negligible compared to t
other three expansion coefficients. The matrixL is composed
of the eigenvectors of matrixL as defined in the Appendix
@see following Eq.~A10!#. The amplitude of the perturbatio
to the surface on one layer is determined by multiplying
amplitude of the perturbation on the previous layer
L11/L12 or l1L12/L11 depending on whether the top laye
is even or odd. All stability arguments used above to d
scribe the nearly equivalent material case can also be app
to the general case. To be more specific, the eigenvaluel in
the general case corresponds to the square of the same e
value in the nearly equivalent material case and the insta
ity condition ulu.1 applies in the general case as well. T
phase of the variation in perturbation amplitude cannot
easily analyzed in the general case because it is determ
by bothL11/L12 andl1L12/L11 depending on whether th
top layer is even or odd. In the nearly equivalent mate
case, these two numbers are both equal to the maxima
genvalue.

Although the dependence of the mode of the perturba
~in phase, out of phase, or complex! on material parameter
cannot be easily presented, the question of whether the
turbation is stable or unstable can be easily answered f
the analysis of the maximal eigenvaluel1 . As in the nearly
equivalent material case, the overall stability of the struct
is determined by whetherul1u is smaller or larger than unity
Deviation of the materials parameters~misfit stresses, diffu-
sivities, etc.! and the growth conditions from those corr
sponding to the nearly equivalent material case changes
shape of the region where the multilayer film grows sta
~see Fig. 4!.

The physical meaning of the eigenvaluel1 is how much
the amplitude of the instability changes during the growth
a single layer. We can get a sense of howl1 , for the general
case, depends on the material and growth parameters by
sidering how they would affect the amplitude of the pertu
bation on the surface of a growingsingle-layer film of ma-
terial A or B grown to the thickness of theA or B layers in
the multilayer film:

lA5exp~FAHA* /2! or lB5exp~FBHB* b8/2G3!.
~19!

Although the parameters in the expression forlB depend
explicitly on properties of materialA due to the normaliza-
tion employed, the entire expression only depends on
properties of materialB.

In order to determine how the physical and growth para
eters affect the stability of the growing multilayer film, w
construct a series of stability diagrams in which we vary
individual physical or growth parameters. Figure 8~a! shows
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FIG. 8. Stability diagrams for situations where the materialsA andB differ from each other by more than simply the sign of the mis
stress.~a! illustrates the influence of relative film thickness. The region of stable growth is bounded by solid curves forHA5

2
3 HB ~curve 1!

and HA5
3
2 HB ~curve 2!. ~b! illustrates the influence of the relative misfit stress (b5SB /SA) for SB521.1SA and SB520.5SA . ~c!

illustrates the influence of the relative surface energy (G5gB /gA) for gB50.5gA andgB52gA . ~d! shows the influence of relative atomi
mobility at the growth surface for the case in whichFA50.1FB ~curve 1! andFA510FB ~curve 2!. In all figures, the dashed line show
the boundary between stable and unstable growth for the case where materialsA andB are identical except for the sign of the misfit stres
Except where noted, the material parameters and growth conditions in these figures are exactly the same as for Fig. 4.
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the stability diagram for the case where the two types
materials are equivalent in every respect except that
thickness of theB layers is either two-thirds or three-halve
that of theA layers ~and the misfit has opposite sign!. The
region of stability in this diagram is almost identical to th
when the layers have the same thickness~i.e., the nearly
equivalent material case—Fig. 4! except for a slight shift in
the direction of greater (HB5 2

3 HA) or smaller (HB5 3
2 HA)

layer thickness. This can be qualitatively understood by
alizing that a thinnerB-layer thickness results in a smalle
overall bilayer thickness~i.e., HA1HB). In order to achieve
the same bilayer thickness,HA must be increased over tha
whereHA5HB . This results in an overall shift of the stabi
ity in the direction of larger (HB5 2

3 HA) or smaller (HB
5 3

2 HA)HA , since the superlattice period is plotted agai
the thickness of layerA. The vertical shift in Fig. 8~a! is
approximately equal to the logarithm of the ratio of the
layer thickness to that when theA and B layers are equa
thickness. Changes in theHA /HB do not significantly shift
the stable region in theFA direction. There is, however,
slight change in the shape of the stable region.

The effect of relative misfit stress on film stability
f
e

-

t

shown in Fig. 8~b! ~other A and B material and growth pa-
rameters are identical!. For the case where the misfit stress
theB layers is21.1 times that in theA layers, the domain of
stable growth is shifted horizontally~in the 2 ln FA direc-
tion! relative to the case where the misfit stress inB is equal
to and opposite that inA. When the misfit stress in theB
layers is20.5 times that inA, the domain of stable growth is
shifted horizontally, but in the opposite direction~in the
1 ln FA direction! in addition to an overall expansion and th
formation of a new nose at largeHA . The shift along the
ln FA axis may be understood by reference to Eq.~19!, where
we see that the argument in the exponential is proportiona
b8 ~recall thatb5SB /SA). Increasingb creates an overal
increase in the effective value ofF ~i.e., FA1FBb8).
Therefore, the same effective value ofF is achieved at
smallerFA and hence the entire domain of stable growth
shifted toward smallerFA . By the same reasoning, decrea
ing FB leads to a shift in the domain of stable growth
larger values ofFA .

The effect of surface energy on film stability is shown
Fig. 8~c! ~otherA andB materials and growth parameters a
identical, except for misfit which is equal and opposite!. In-
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creasing the surface energy of materialB leads to an overal
expansion of the domain of stable growth, while decreas
the surface energy of materialB leads to a decrease in th
stable domain size. This is opposite to the situation found
the misfit stress, as expected on the basis of Eq.~19!. In this
case too, the large lnF peak found when materialsA andB
are identical~except for the sign of the misfit! breaks into
two peaks when the surface energies of the two materials
unequal.

The effect of surface diffusivity on film stability is show
in Fig. 8~d! ~otherA andB materials and growth paramete
are identical, except for misfit which is equal and opposi!.
Decreasing the surface diffusivity of materialB leads to an
overall expansion of the domain of stable growth and
splitting of the nose in the domain of stable growth. Incre
ing the diffusivity of materialB leads to shrinking of the
stability region in the diagram@Fig. 8~d!#. Interestingly, even
though there is an overall expansion of the domain of sta
growth in the case where the surface diffusivity of materiaB
is smaller than that of materialA, the splitting of the nose
results in a portion of the parameter space that was st
when the surface diffusivity ofA andB was identical and is
unstable when the diffusivity ofB is much smaller than tha
of A. This added complexity makes it difficult to draw ge
eral conclusions about the effects that individual mate
parameters have on multilayer film stability. The change
size of the domain of stable growth can also be underst
on the basis of Eq.~19!, where the parameterFB is directly
proportional to the surface diffusivity.FB is also inversely
proportional to the growth rate, such that increasing
growth rate of materialB should have the same effect on th
stability diagram as decreasing the surface diffusivity.

While we have examined the effects of several mate
and growth parameters on the stability of multilayer film
some of the parameters may be varied more easily than
ers. Since surface diffusivity is typically Arrhenius, larg
variations are possible by changing the temperature wit
given system. While all of the other material parameters w
likely vary with temperature, these variations are typica
small. The largest variations in material parameters will ar
when changing the materials that compose the individ
layers. Again, the largest variations will typically be found
the surface diffusivity, but changes of order hundreds of p
cent may be realized in misfit stresses and surface energi
well. On the other hand, the magnitude of variations achi
able by changing film thickness is limited by the critic
thickness for the formation of misfit dislocations, which
controlled by the magnitude of the misfit. The stability
particularly sensitive to the ratio of misfit stresses and s
face energies, which enter Eq.~19! with relatively high pow-
ers. Therefore, even though these parameters may not va
widely as the diffusivity@which enters the exponent in Eq
~19! to the first power#, their impact is greater.

In many practical cases of multilayer film growth, th
material properties cannot be varied independently. For
ample, it is often desirable to grow a film under stra
balanced conditions, i.e., where the average stress within
multilayer film is zero. This implies thatHASA1HBSB50.
We have examined the effect of varying the misfit stre
subject to this constraint. Figure 9 shows the stability d
gram for five cases with different ratios of misfit stressesb
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5SB /SA in the range21.1<b<20.5, where the ratio of
layer thicknessesHB /HA is varied accordingly to keep th
multilayer film stress-free~i.e., HB /HA521/b). As the ab-
solute value ofb increases~b is negative!, the domain of
stable multilayer growth in the stability diagram shrink
This is consistent with our observations above@Fig. 8~b!#,
which showed the same trend with misfit at fixed layer thic
ness. Increasing the absolute value ofb causes a concomitan
decrease inHB /HA . However, comparing Fig. 9 to Fig. 8~a!
~where we vary layer thickness at fixed misfit stresses! shows
little correspondence. Therefore, we conclude that variati
in layer thickness in order to keep the film stress balan
~zero average stress! are dominated by changes in stre
rather than thickness itself. This is consistent with Eq.~19!,
where we find that stress enters the expression at a m
higher power than does layer thickness.

Applying the linear stability analysis presented in th
study to real experimental systems is a daunting task
rough estimate of whether the system is in the linear reg
during the growth process is determined by the degree
which the eigenvaluel1 differs from unity ~i.e., the linear
theory cannot be reliably applied in cases wherel1@1). The
value of l1 can be deduced from the values oflA and lB
@Eq. ~19!#. Using the data from Ref. 33 on InAs/AlAs supe
lattices grown on an InP substrate, and a number of appr
mations to make up for missing data~such as surface energ
of 1 J/m2!, we computed the values ofFA andFB using the
known values of lattice constants and elastic moduli for
compounds involved as well as the activation energies
surface diffusion.34 Using these real and estimated data,
find that these experiments correspond to the unstable re
of the stability diagram. This is due, in large part, to the ve
fast surface diffusion of indium atoms. While the formatio
of interface modulations is consistent with our predictions
an instability, we suspect that the linear stability analy
may be of limited utility in this case since the large value
ln FA @ln FA'7 and lnHA*'23.4 for experiments reported in
Ref. 33 and, as a consequence, the value oflA exceeds unity
by a few ~seven! orders of magnitude# renders the small-

FIG. 9. Stability diagram for the strain-balance superlattice~i.e.,
superlattices for whichHASA1HBSB50). The dashed curve cor
responds to the case where materialsA andB differ only by the sign
of the misfit stress. The curves labeled 1, 2, and 3 correspon
b5SB /SA equals 21.1, 20.9, and 20.5, respectively~with
HA /HB adjusted to keep the multilayer film strain-balanced!.
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amplitude perturbation assumption of the perturbation the
inapplicable after just a few layers. Determination of the tr
interface morphology after one or two layers requires use
numerical methods capable of handling strongly nonlin
behavior.35

A more tractable system would be GaAs/AlA
superlattices,36 where the surface diffusivity of Ga is muc
lower than that of In. However, this system is almost p
fectly lattice-matched, which leads to low misfit stresses
the layers. This, combined with the low surface diffusiviti
of the cations,34 leads to a prediction that such a film grow
stably, as observed in experiments.36

Another possibility for testing the linear stability analys
is to turn to superlattices composed of semiconductor all
rather than of pure III-V compounds. Unfortunately, t
presence of two or more alloying elements makes the an
sis of surface diffusion complicated and can even introd
new effects.22 There is a qualitative agreement between
theory presented in this paper and experiments reporte
Ref. 12. In that study, multilayer superlattices
InAsyP12y /Ga12xInxP were grown. The morphology of th
films observed in these experiments, observed using tr
mission electron microscopy, shows both morphological a
compositional modulations of the structure which can
classified as out-of-phase unstable growth.

VII. CONCLUSIONS

In the present analysis, we focused primarily on the s
cial case of a multilayer film, where the materials parame
and growth conditions of the two types of layers are iden
cal, with the exception that the misfit stresses are equal
opposite. Our findings are reported in the form of stabil
diagrams in the plane defined by the two key paramet
layer thickness and normalized surface diffusivity. We fou
that, unlike the case of a thin film consisting of a sing
layer, there are conditions under which the film is stable, i
perturbations to the growth surface decay. For the region
unstable film growth~where the amplitude of the perturba
tion grows from layer to layer!, we distinguish three differen
types of resulting film morphology, classified according
the complex phase of the characteristic numberl, which is a
function of materials parameters and growth conditio
Positive l corresponds to the ‘‘in-phase’’ perturbatio
growth mode where perturbations at all interfaces are
phase. Negativel corresponds to the ‘‘out-of-phase’’ growt
mode where the perturbations at consecutive interfaces
phase-shifted by a half-wave with respect to one anot
This leads to a form of lateral composition modulation.
case corresponding tol which possesses a nonzero ima
nary part is characterized by an irregular sign shift betw
perturbations at consecutive layer interfaces, which is de
mined by the complex phase ofl. We also determined the
wave vector of the propagating perturbation correspondin
the fastest growing instability wave and the rate of pertur
tion growth.

We also considered the general case in which the
materials and the film growth conditions can vary. We e
plicitly examined how the surface diffusivity of the two ma
terials, growth rate, surface energy, and film thickness af
the stable domain in the stability diagram. In short, we fou
ry
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that changing the thickness of one layer shifts the sta
growth region in the stability diagram, but primarily becau
it changes the average layer thickness. The boundary of
domain of stable growth is approximately the same, fo
given superlattice period~sum of layer thicknesses!, whether
the individual layers have the same or slightly differe
thicknesses.

Increasing the surface diffusivity or, alternatively, d
creasing the deposition rate of one of the layers shrinks
stable growth region in the stability diagram. Increasing
magnitude of the misfit stress or decreasing the surface
ergy produces a similar overall effect; qualitative details
the influence of each of the materials parameter can be
derstood through consideration of how the parameter m
fies l.
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APPENDIX: SOLUTION OF THE RECURRENCE
RELATIONS

In this appendix, we obtain closed-form solutions to t
evolution equations for the surface of the growing multilay
film. As in the main text, we first consider the special ca
where materialsA and B are identical in every respect, ex
cept that the magnitude of the misfit stressS with respect to
the substrate is equal and opposite in the two materials~i.e.,
b521). In this case, the integration of the evolution equ
tion resulted in two expressions@Eqs.~148! and ~128!#:

Xk5Xk21F22(
j 51

k21

~21!k2 j 21Xj@CH* ~k2 j 21!1J#

~A1!

and

Xj5D je
j* H* ~ j 21! ~A2!

from which the amplitude of the perturbationDk of layer k
can be found using successive iterations. This recurrence
lation can be greatly simplified by rewriting Eq.~A1! as

Xk135Xk12~F2222J!1Xk11~2F2112CH* 22J!

1XkF, ~A3!

which only involves four consecutive terms. Applying E
~A2! to the previous relation produces a recurrence rela
for Dk :

Dk135Dk12e2j* H* ~F2222J!1Dk11e22j* H*

3~2F2112CH* 22J!1Dke
23j* H* F.

~A4!
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As in the text, we normalize the amplitudes of the pertur
tion Dk by D1 : Dk

15Dk /D1 . The perturbation amplitude
Dk

1 can be rewritten in closed form in terms of a power
the 333 matrix L :

L5S e2j* H* ~F2222J! 1 0

e22j* H* ~2F2112CH* 22J! 0 1

e23j* H* F 0 0
D .

~A5!

The perturbation amplitudes for three consecutive layers
be expressed as vectorsYk : Yk5^Dk12

1 ,Dk11
1 ,Dk

1&. The
vectorYk is related to the vectorY1 by the (k21)th power
of matrix L : Yk5^Dk12

1 ,Dk11
1 ,Dk

1&5Y1L k21

5^D3
1 ,D2

1 ,D1
1&L k21. Finding the values ofD2 andD3 us-

ing Eqs.~128!, ~148! and arbitraryD1 determines the vecto
Y1 . Applying the matrixL to this vectork21 times deter-
mines the amplitudeDk

1 .
The power of the matrix grows as fast as the power of

eigenvalues. We denote the three eigenvalues of the matL
as l1 , l2 , andl3 . Assuming thatL is not degenerate, we
express the matrix of eigenvectorsL of matrix L as

L5S l1
2 l1 1

l2
2 l2 1

l3
2 l3 1

D . ~A6!

The expression forDk
1 (k>4) can now be written as

Dk
15a1l1

~k21!1a2l2
k211a3l3

k21, ~A7!

where thea’s are the coefficients of the expansion of vec
Y1 in the basis of the eigenvectors of matrixL :
^a1 ,a2 ,a3&5Y1L215^D3

1 ,D2
1,1&L21. Dk

1 grows asymp-
totically as the power of the maximal eigenvalue of matrixL .
Because of this power law, the asymptotic regime is reac
quickly, provided that the coefficienta i corresponding to
that maximal eigenvalue ofL ~denotedl1) is not much
smaller than the other twoa’s.

We now turn to the general case@Eqs. ~12! and ~14!#,
where materialsA and B may be different. It is possible to
derive a recurrence relation similar to Eq.~A4!, in terms of
two 434 matrices, one each for the odd- and eve
numbered layers. In particular, we find

Xk145Xk13FFB1b~12b!JB1
CB

CA
bG

1Xk12F12b~12b!S JB1CBHA* 2
CB

CA
JAD

2
CB

CA
bFAG2Xk11FFB1

CB

CA
b

1b~12b!S CB

CA
JA2CBHA* D G1XkFCB

CA
bFAG

~A8a!

for evenk and
-

f

n

s

r

d

-

Xk145Xk13FFA2~12b!JA1
CA

CBb G
1Xk12F ~12b!S JA1CAHB* 2

CA

CB
JBD

112FB

CA

CBbG2Xk11F ~12b!S CAHB* 2
CA

CB
JBD

1FA1
CA

CBb G1XkFFB

CA

CBbG ~A8b!

for odd k. We use Eq.~12! to obtain similar relations forDk

or Dk
1 . We define the two 434 matricesLA andLB :

LA5S LA
11 1 0 0

LA
21 0 1 0

LA
31 0 0 1

LA
41 0 0 0

D , LB5S LB
11 1 0 0

LB
21 0 1 0

LB
31 0 0 1

LB
41 0 0 0

D .

~A9!

The matrix coefficientsLA
i1 are simply the product of the

i th bracketed term in Eq.~A8a! ande2j* h i, whereh i is HA* ,
HA* 1HB* , 2HA* 1HB* , and 2(HA* 1HB* ) for i 51, 2, 3, and 4,
respectively. Similarly, the matrix coefficientsLB

i1 are simply
the product of thei th bracketed term in Eq.~A8b! and
e2j* h i, whereh i is HB* , HA* 1HB* , HA* 12HB* , and 2(HA*
1HB* ) for i 51, 2, 3, and 4, respectively.

In the general case, the vectorYk has four components
Yk5^Dk13

1 ,Dk12
1 ,Dk11

1 ,Dk
1&. The amplitude of the vecto

Yk is simply

Yk5Y1~LBLA!~k21!/25^D4
1 ,D3

1 ,D2
1,1&~LBLA!~k21!/2

~A10!

for odd values ofk and LA times this for even values ofk.
Defining the matrixL as a product of matricesLB and LA
and the matrixL as the matrix of the eigenvectors of matr
L corresponding to the eigenvaluesl1 , l2 , l3 , andl4 , we
obtain a closed-form expression forDk

1 . Assuming thatk is
even and is greater than 4, we have

Dk
15(

i 51

4

a iL i1l i
~k-4!/2 and Dk21

1 5(
i 51

4

a iL i2l i
~k24!/2 ,

~A11!

whereL1 andL2 are the components of the first and seco
column of the matrix of the eigenvectors ofL, respectively,
anda is the expansion coefficient of the vector in the ba
of eigenvectors:̂a1 ,a2 ,a3 ,a4&5Y1L21.

As in the case of nearly equivalent materialsA and B,
when the materials in these layers are different we only n
to consider the asymptotic part of Eqs.~A11!, i.e.,

Dk
15a1L11l1

~k24!/2 and Dk21
1 5a1L12l1

~k24!/2 ,
~A12!

wherel1 is the maximal eigenvalue. All of the stability ar
guments used in the nearly equivalent layers case can
applied to the general case. To be more specific, the eig
valuel, in the general case, corresponds to the square o
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same eigenvalue in the nearly equivalent layers case and
instability condition l1.1 applies in the general case
well. The phase of the perturbation cannot be easily analy
because the phase between two successive layers is no
termined by two numbers:L11/L12 if we proceed from an
odd-numbered layer to an even-numbered one
l1L12/L11 if we proceed from an even-numbered layer to
th
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ug
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tt.
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en
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odd-numbered one. In the nearly equivalent layers ca
these two values are equal to each other.

Although the dependence of the mode of the perturba
of the growth conditions and material parameters canno
easily presented for the general case, the question of whe
the perturbation is stable or unstable can be easily answ
from the analysis of the maximal eigenvaluel1 .
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