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We present a linear stability analysis for epitaxial growth of strained-layer superlattices, calculating how a
shape perturbation propagates through the whole multilayer stack. We assume that bulk diffusion is negligible,
so the morphology is controlled by surface diffusion. Unlike the case of a single strained layer, there are
conditions under which the growth of the planar superlattice is stable, i.e., perturbations to the growth surface
decay. For the conditions of unstable film growivhere the amplitude of the perturbation increases from layer
to layen, we find three different types of resulting film morphology, classified according to the phase of the
perturbation in successive layers, which is a function of materials parameters and growth conditions. We also
determine the growth rate and wave vector of the propagating perturbation corresponding to the fastest growing
instability wave.

[. INTRODUCTION tential candidates for semiconductor lasers due to their
Ss-function-like density of electronic states.

Semiconductor superlattices are in widespread use in a Eliminating elastically driven relaxations in the film is a
number of modern optoelectronic applications. Magneticchallenging task, as this type of structural defect is caused by
multilayers possessing giant magnetoresistance are playirtge presence of misfit stresses in the film, which is indepen-
an increasing role in magnetic and magneto-optic storagdent of the growth conditions. In this paper, we examine the
technologies. The introduction of artificial periodicities, by evolution of interface morphology during the growth of pe-
repeating a pattern of layers of different materials, modifiegiodic, multilayer strained films. As shown below, a rich va-
the electronic band structure and electron transport properiety of interface morphologies may be obtained, depending
ties, thereby providing an approach to fine-tune material®n the properties of the materials making up the individual
properties. layers and on the growth conditions. In particular, planar

For most applications, the ideal superlattice consists of dayers can be stabilized against morphological perturbations.
periodic array of uniform, distinct layers separated by sharp, Modulation of microstructure and composition during ep-
atomically flat, coherent interfaces. However, misfit stresstaxial growth is by no means a novel subject. Morphological
causes deviations from this ideal structure, due to plastinstabilities in strained films have been studied in a con-
(misfit dislocation formation or elastic relaxation, which tinuum model=®2°and in a step-flow model by Tersdff.In
commonly occurs during the growth process. Recentlloys, coupled morphological and composition modulations
progress has been made in incorporating misfitting materialsan lead to a rich behaviét-?* In some cases, spinodal
into a superlattice. A very successful approach to cope witldlecomposition or compositional stresses can drive a compo-
misfit dislocation formation is to grow the multilayer struc- sitional instability, which in turn modulates the
ture with a zero net misfit strain, i.e., with balanced alternatmorphology?>2®
ing layers of tensile and compressive strain. By keeping the Morphological modulations in multilayer films may cause
thickness of each individual layer in the superstructure belowateral modulation of the vertically averaged composition.
its critical thickness, the multilayer film grows Such “lateral composition modulations®!''*have gener-
dislocation-freé3 ated considerable interest. It is not clear that actual changes

The origin of elastically driven relaxations in a multilayer in local composition play a key role in the phenomenon,
film lies in the instability of a film under stress with respect however. Rather, they appear to be closely related to the
to the formation of shape perturbatich§.As each layer of morphological modulations studied here.
material composing the multilayer film is deposited, the In this paper, we present a simple model for the formation
growing surface of the films develops an undulating profile.of modulated multilayer structures which does not rely on
In the case of single-layer films, there is extensive experialloy decomposition processes. Instead, modulations occur in
mental evidence® of this phenomenon. As more layers are the layer thicknesses, which may be viewed as modulations
deposited, undulated surfaces become buried under subsa-the vertically averaged composition, without the need for
guent layers of materials, resulting in wavy interfaces. Theany change in the composition of the individual layers. We
resulting structure becomes modulated morphologically andshow that the competition between surface and elastic energy
possibly, compositionally, as explained belW™ If care-  effects can lead to periodic interface modulations. Under cer-
fully controlled, these modulations may be exploited to formtain conditions, these interface modulations can produce an
self-organizing quantum nanostructutést® which are po- overall lateral composition modulation in the growing
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FIG. 1. A thin film with an undulating surface subjected to a ‘ 4 Hy f 4
stresso. For a film in tension, as in this figure, the atomic planes are A3F/
farther apart from one another in the trougftbe film is more 3 H,
stretched than averagand closer to one another at the crests. ~y— $
N o . . P2 Hy T
multilayer film. Our analysis predicts the materials properties A
and growth conditions required to produce such modulations } 1 H,
and both the wavelength and rate of growth of these modu-

lations. We also predict the materials properties and growth

conditions necessary to grow multilayer films which are FIG.2. A schematic illustration of the multilayer film geometry,
stable against interface modulations. The existence of condibdicating the amplitude of the interface undulatidnand the layer
tions for which films grow stablyi.e., with flat interfacesis ~ thicknessesd. The odd-numbered layers correspond to matial
surprising since misfitting monolithic films are always un- @nd the even-numbered ones to mateial

stable against surface modulations. . .
We now formulate the problem in terms of continuum

elasticity. Consider the multilayer film geometry presented in
Il. PROBLEM FORMULATION Fig. 2, which consists of alternating layers of two materials
(materialsA andB) epitaxially deposited on a substrdtea-
terial C). The interfaces between adjoining layers are as-
stressed solid&:® Consider a thin film grown heteroepitaxi- sumed to be coherent. Effects due to the interfacial stresses

ally on a substrate, such that a misfit stress exists. If th@Ssociated with the buried interfaéésare explicitly ne-
surface is not flat, the stresses within the film are nonunidlected in this analysis. If the layers are misfitting with re-

form. The nonuniform elastic energy along the surfaceSPECt 10 the substrate, they may develop a morphological

causes a variation in chemical potential along the surface th&erturbaﬂon on the growing free surface, as (_j|sc1_Jssed above.
can be relaxed by mass flow along the surféae, surface This surface perturbation will become a buried interface as

diffusion). In the case of a sinusoidal perturbatbthese more layers are deposited on top of it. This perturbed inter-

fluxes will result in the increase of the perturbation ampli-face bounding misfitting materials will act as a source of
stress and modify the stress field throughout the film and,

tude for any perturbation wavelength. The existence of non= il h b surf h buried interf
negative surface energy impedes the growth of these pertu?—?pec'a y, on the new growt surface. Each buried interface
ill affect the chemical potential on the surface and, there-

bations. The interplay between these two factors determine o i th : LS v th
whether the perturbation amplitude will grow and, if so, thesirﬁé(‘:"g prrgcf’i?;fyt e surface diffusion and subsequently the

rate of growth. Short-wavelength perturbations decay; . . .
J gn P y We adopt the following notation for the remainder of the

whereas long-wave modes grow exponentially with time. - ; .
J g P y paper. All quantities related to laykmill have a subscripk.

If the surface of the film undulatésee Fig. 1, the atomic . X .
planes in the film are distorted by the nonuniform stress af NUS: the thickness of growing laykris denoted as and

the surface of the film. The average misfit stress in the film idhat of the fully grown layer is denoted && . Hy is equal to
denoted asr and, for the sake of this argument, the lattice Ha for odd-numbered layers anHg for even-numbered
parameter of the film is originally smaller than that of the ©N€s: The misfit stress in layéris denoted ay and is
substrate(i.e., the misfit is negative and the film is in ten- €qual to >, for odd-numbered layers anBlg for even-
sion) and o is positive. An elastic solutiéhshows that this numbered ones. Slmllgrly, the amplitude of the perturbation
film is more stretched in the troughs and more compressed & the surface of layekis denoted ad . The present analy-
the crests of the free surfa¢gig. 1). Consider now a situa- SIS IS performed in the two spatial dimensions containing the
tion in which a second film is deposited on the first with aSuPstrate and substrate normal.

lattice parameter which is greater than that of the substrate. The thickness of the growing filnh at timet can be

In this case, the atoms of the second film will have lowerwritten as
energy if they sit in the troughs compared with sitting on the

crests. As more material is added to the second film, the —
amplitude of the surface perturbation gets smaller and will h(t):;l Hj+hy(1), @
eventually reverse such that the second film will have

troughs above the crests in the first layer and vice versa. Aghere layers up t&—1 are fully grown and have thickness
additional layers grow, this perturbation may propagateH;, respectively, and laydcis currently growing(i.e., it has
through the entire stack of layers, either increasing or denot yet grown to thicknesld,). The average layer thickness,
creasing in amplitude and with the perturbations on adjacertt,, is always measured from the average height of the pre-
layers either in or out of phase. vious layer, such that the film profile is described by

Interface undulations in multilayer films are closely re-
lated to the well-known elastic instability of free surfaces of

k-1



PRB 62 MORPHOLOGY EVOLUTION DURING THE GROWTH ® . .. 8399

h(x,t)=ﬁ(t)+Ak(x,t), 2) f[he elastic modglus in the_ direction alongzthe surface which,
in the plane strain approximation,k(1— »“), whereE and
whereA(x,t) is the perturbation to the growing surface of , are Young’s modulus and the Poisson ratio, respectively.
layer k. In the following, we derive an equation for the stress at the
In the simple model for film growth adopted in the presentgrowing surface and assemble all of the terms in the evolu-
paper, each layer is deposited with a uniform natér, or  tion equation[Eq. (4)]. Next, we nondimensionalize this
rg for A andB layers, respectively The material is allowed equation and analytically solve for the amplitude of the per-
to diffuse only along the growing surface. Without bulk dif- turbation of the growing layei(£) as a function of mate-
fusion, no morphology evolution occurs below the currentrial parameters and growth conditions.
growth surface. Mathematically, we write the evolution
equation for the growing surface®is Il ELASTIC ANALYSIS
dh D Qb i
i keT ~ 9s° '

whereD, is the surface diffusivity of the material of laykr

In this section, we determine the tangential component of
the stress at the surface of the growing layelin the
multilayer structure. This stress is required to evaluate the
. ' elastic component of the chemical potential, as described
kg is the Boltzmann constant, aritl and 6, are the atomic 51,46 We analyze this problem within the framework of
volume and surface atomic density, respectively. The chemig, ,_qimensional, isotropic, plane strain elasticity, in which
cal potential of the atoms at the surface of the growing layef, yteriaisA and B have the same elastic constants. Elastic
g and its second derivative are evaluated along the Surfac‘énisotropy does, however, appear to play an important role in
This expression explicitly assumes that the deposition rate 08ome casé8223%and would make an interesting extension to
each point of the surface is constant and unaffected by varigpe present work.
tions in the surface chemical potential. A simple analysis shows that there are two contributions

The linear stability of the multilayer morphology is ana- (4, the stresss® (x) in first order in perturbation theory,
lyzed by considering a sinusoidal perturbation to the profile

of an otherwise flat interface. We Fourier-transform the co- 03 (X) = Tqurf X) + Tipe(X) . (6)
ordinate parallel to the substrate and denote the correspond- > = "

ing wave vector ag. Since this is done throughout, we will The first term is associated with the surface itself and is
write A, (&) simply asA,. The present analysis is performed present because the growing surface is not flat. This stress is
only to first order in perturbation theory, where the smallthe correction to the uniform misfit stre&s, (i.e., the xx
parameter is the product of the wave vect@nd the ampli- componentthat arises from the requirement that the surface
tude of the shape perturbation of a layerWithin this ap-  tractions must be zero, as described by Asaro and Tiller,
proximation, the derivative along the surface in E8) is  Grinfeld® Srolovitz® and others. The Fourier transform of
replaced by the derivative with respect to theoordinate.  og,{X) may be written asr¢,( &) =—2|&|A 2, where|

)

Equation(3) may, therefore, be rewritten as is the absolute value of the wave vectoand A is in Fou-
rier space.
dAy . Dbk The second contribution to the stress at the surface in Eq.
- ¢ kB—TMk(f)- 4

(6) is associated with the presence of buried interfaces and is
. . _ _~only present when those interfaces are not flat. Because ma-
Following Refs. 4 and 6, we write the chemical potentialterialsA andB have identical elastic constants, each interface

at the surface as contributes separately to the tero,,. We determineo;y
Q using the Eshelby proceddfefor the stress created by a
1(X) = o+ Yk (X) + 5 3 (X)So(X), (5) misfitting inclusion. Consider the nonflat interface between

layersn andn+ 1, the shape of which is determined by the

wherepu, is the chemical potential of a flat surface bounding"’Implm";]jce of thel’(lth pe_rturbgtlomkot() ?r, mtrlj_ou_n(ter ?pacet,h
unstressed material and the other two terms in this expreé“(g)' we ma ?’tart] |mag|narydc2u along i IS mfer a(ie, €
sion are the surface energy and elastic contributions, respegl"’lcrOSCOpIC mistits ressé andX.., create surface rac-
tively. x(x) is the curvature of the growing surface apgis tions along both sides of th_e cut. To balance t_hese tractions,
the surface energy of layér a3(x) is the stress tensor evalu- we apply equal and opposite corrective ractions along the

ated at the surface arfilis the elastic compliance tensor of surfaces of the cut and then “weld” the two pieces back
L P together. The stress produced by these corrective tractions,
layer k. For the sake of simplicity, we also assume that the ; ;
. . . : evaluated at the free surface,asg, for then/n+ 1 interface.
elastic constants of materiadsandB are identical.

. . ; . The tractions along the interface cut are, to first order in
To first order in perturbation theory, the surface tension
. . - the small parameted ,&,,, the sum of the products of the
term in EqQ. (5) can be written asu. (&)= % Qk(&) g
- 2 . Y . misfit stresses, and 3%,,, and the outer normals to the
=y0E°A. The leading-order contribution to the elastic . . . g
. ; s . . .~ interface. In Fourier space, this tractidnis
term in the chemical potential is associated with the coupling
between the uniform misfit stredsand the nonuniform con- -
- . . Ty=—iAE,—2 and T,=0, 7
tribution to the stress tensasf(x). Since the surface is X (20~ 2n+1) y @
nearly flat, the only term that enters the elastic contributiori.e., only the tangential component of the tractions is present.
to the chemical potential is the normal stress parallel to th&Ve also make use of the fact that,£,, is small to replace

surface o3,(X), i.e., ue(X) =0 205, (X)/M, whereM is  the actual curved interface with a flat interface while keeping
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k=1

<2—%§*>Ak—j§l (—1)IAj(1-p)

the corrective tractions along that interface.€ —T) asso- Ay

ciated with the original curved interface. This line traction is WZCDAE*E'
parallel to and some distance from the fgeowing surface K

in an elastic half-plane. The expression for the stress field

produced by such a line traction can be easily obtained by X
deriving the stresses produced by this traction in the whole

elastic plane using the elastic Green’s functfoand apply-
ing a corrective solution to satisfy the boundary conditions ai
the free surface. The resultant expression is

*px .
2— 1—') e‘g*hjk} (119

-V
{or odd-numbered layers and

k—1
<2/32—3/2r§*>Ak—j§l (—1)IA;8(1-B)

I

L, 5*3
ohy B

O'ir:{thrl: _An|§|(2n_2n+1) 2—

|§|hnk
1-v

}exﬂ_|§|hnk)-
(8) X

* h'*k .
*
2—-—— )ef Mk (11b
1-v
In order to determine the stress on the surface from all inter- . .

faces, this expression must be summed oveFhe distance for even-numbered layers. Here, the dimensionless wave

* H * —
h, in this equation is the distance from the interface undeM€ctor&* is measured in terms df,, £* = |_§|/§A’ and the
consideration to the growing surface: parameters ®, and ®g are defined as ®,

= (DAQAOAZRER) (T aksTM) and Dg
1 =(DgN3632£3)/(rgksTM), respectively. The  thick-
No= E H+ hy. 9) ness.es of eich*layer arf also made_ leensmnISss: as fol-
j=n+1 lows: Hyéa=H , Haéa=Hx, Heéa=Hg, hjéa=hjy,

andhéa=hg.
Note that this stress is time-dependent, since the thickness of
the growing layerh, increases linearly for a fixed growth
rater, ashy=rt.
Equations(4)—(6) provide the necessary framework to  In order to determine the temporal evolution of the am-
write down the equation governing the amplitude of the perplitude of the perturbation on the surface of the growing film,
turbation to the growing layek. Inserting Eqs(5)—(9) into ~ we must integrate the evolution equatidfq. (11)] over the

IV. SOLUTION OF THE EVOLUTION EQUATION

Eq. (4) yields entire layer thicknes§.e., fromh,=0 to hy=H,), starting
from the initial conditionA,(0)=A,_1(Hy_41). Equation
A, Dkﬂﬁﬁk , 2& (11) can be simplified by the introduction of new variables:
e TekeT €] 7k|§|Ak+2VAk J.
k-1 X;=A; exp( &> HE (12)
Ek |§|h]k —~|élh; n=2
—V Z A](EJ+1_EJ) Z_Tv e LS
=1 The evolution equation now becomes
(10
. . . . axk * 3 3 &%
where we have replaced the variable time with the thickness a?:(bAg (2—3&%) X
of the growing layeh, . The amplitude of the perturbation to K
the surface of each layer is a function of the amplitude of the k-1 *h*
perturbations to the interfaces of all underlying layers. —ef Ay (- 1)JXJ-(1—,8)( 2— —Jk) e ¢ hﬁ}
If we remove the terms in Eq10) associated with the =1 1-v
buried interfaces, we find that it is identical to that derived (1339
by Asaro and Tillet and Srolovit? in the context of the
analysis of the stability of a free surface bounding a stressefbr odd-numbered layers and
body. They found that there exists a wave vector for which a
sinusoidal shape perturbation grows the fastest. We denote}xk
this wave vector for materiah as £,=(3%3)/(2My,) and W:¢Bg*3 (2B%=3/2T &)X
use it as a length scale throughout the remainder of this K
analysis. We introduce the ratio of the misfit stress in mate- k=1 * x
rial B (even-numbered layerdo that in materialA (odd- —ef'He > (—1)J'X]-,3(1—,B)(2— —Jk> e‘é’*h:}
numbered laye)sg=3g/2 5 and the ratio of surface ener- =1 1-v
giesI'=yg/vys. The difference between the misfit stresses (13b)
in the adjacent layersn and n+1 is X,.,—2,
=(—1)"2A(1-B). for even-numbered layers with the initial condition modified
We consider the evolution of odd-numbered layers sepaaccordingly.
rately from the even-numbered layers. Equatid®) be- Integration of Eq.(13) yields the following linear rela-

comes tions:
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k—1
xk=xk_1FA—n§1 (—1)"X,(1-B)

X|Epat+V¥a

k—1
> Hf
j=n+1 J

for odd-numbered layers and

k—1
xk=xkleB—n21 (—1)"X,B(1—B)

1 Fo1  gH*
1- 10825 5 @ a(1—»)’

E=|2-
and Eq.(12) becomes
ijAjeg*H*(jil). (12’)

While the integrated equation for the evolution of the sur-
face of the topmost laydicf. Eq. (14')] is a function of the
amplitude of the perturbations to all buried interfaces, it can
be reduced to a much simpler linear recurrence relation that
only involves the amplitude of the perturbations on three

k-1
S R (14b) previous, consecutive interfaces, as shown in detail in the
Er S Appendix. Since the recurrence relation is linear and only
depends on the amplitudes of the perturbations to three con-

for even-numbered layers, where we have introduced the fokecytive interfaces, the solutiok=4) can be rewritten in
lowing composite parameters: the following form:

X| Eg+ Vg

Fa=exp®a0aE*°H}), A =a\f e e (15

where we normalize the amplitude of the interface perturba-

tion for each layer\, by that of the first laye\; (i.e., A,

W= —(Fpa—1)E[(1—v)S4], =A//A;). M\, Ny, and\j are the eigenvalues of the ma-
trix L [Eq. (A5)],

FB:eXF(¢B5B§*3H§),

Vg=—(Fg—1)&*/[(1-v) ],

e & (F-2-28) 10
* * -
:A:<2_ L )FA_1+ € Ha L=| e 28" (2F—1+2wH*—258) 0 1],
ol _ * _ ’
(1=v)PaE"0a) a  6all—v) o3 HTE 0 0

(16)

and the coefficients, a,, andag are the coefficient of the
expansion of the vectdr; in the basis of the eigenvectors of
the matrixL (see the Appendix The two elements of the
vector Y, which are the amplitudes of the perturbation of
and the interface above layers 2 and¥3,=(A3 ,A;,1), need to
be computed directly using Eq&l2’) and (14).

= U(Ppg*?) +(28°~3/2A¢"). Because the perturbation amplitude grows as the eigen-
values ofL to a power equal to the number of layers minus
one[see Eq(15)] in the limit of a large number of layers, the
amplitude of the perturbation on laykilis dominated by the
largest eigenvalue:

1 Fg—1 §”‘Héc
B=|2— ¥ + ,
(1-v)Pgé*“op O og(1—v)

I

Sa=U(PpE*?) + (2312,

In order to improve the clarity of the results, we restrict
consideration of the solutions to the special césebe re-
laxed latey where materials A and B are identical in every
respect, except that the magnitude of the misfit sttessth
respect to the substrate is equal and opposite in the two ma- At = ank-1 17)
terials(i.e., 3= —1). To be specific, both materials have the A 1
same values oD, 6, £}, andy, and are grown with the same where), is the largest eigenvalue &f and o, is the corre-
deposition rate and to the same thickness Since the two  sponding expansion coefficient. In the case when the maxi-
materials have the same thickness and equal and opposiiga| eigenvalues form a complex-conjugate pair, the previous

misfit, there will be no driVing force to form misfit disloca- equation should include the Comp|ex_conjugate term as well
tions provided that each layer can be grown to a thickitess (A * s a real number
on the pristine substrate without dislocation formation. Equa-
tllgo:n_(ll4)a(r:$r} iolv\:/ be rewritten without subscripts and with AF=a Nt alﬂ 1 (17
Here, the bar over the variable indicates complex conjugate.
B kej—1 . ) _ This asymptotic regime is reached fairly quickly because
Xk—Xk—lF—Zle (=1 Xj[WH*(k=j—1)+E]. the difference between the asymptotic equafigug. (17)]
(14') and the full equatiofiEq. (15)] decays as a power of the ratio
of the eigenvalues. Thus, in studying the stability of the
The variables can now be rewritten g§=3%%/(2My), multilayer film, we use Eq(17) instead of the full equation
* =&/, Héo=H™, F =exp@38e 3H*), ®  [Eq.(15)] and the perturbation behavior is fully determined
=(D92022§S)/(rkBTM), Y=—(F-1)&/[(1-v)5], § by the dependence af_; on the parameter§* (normalized
=1/(D&*2)+(2—3/2¢*), and wave vector, H* (normalized thickness of an individual

k—1
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FIG. 3. Multilayer film morphology produced k) an in-phase 4
instability and(b) an out-of-phase instability. In the latter case, the
morphology modulation produces a net composition modulation in . L
the direction parallel to the substrate. 2 -l 0

In(®)

layen, and® (see above Large® results from fast diffusion FIG. 4. Stability diagram for a growing multilayer film, indicat-
or slow deposition, as discussed below. ing the types of morphologies expected classified according to the

Given a set of parametek$* and®, as well as the mag- eigenvalue\ .. In the region labeled stable, the film will exhibit
nitude of the wave vector*, the morphology of the flat interfaces. In the in-phase and out-of-phase regions, the inter-
multilayer structure can be classified according to the valuéace perturbations grow with increasing thickness and are of the
of \;. If the absolute value of; is smaller than 1, the form shown in Figs. @) and 3b), respectively. The complex re-

perturbation does not propagate through the multilayer filnPion is discussed in the text.

but, rather, decays after a few layers, i.e., the interfaces be- V. STABILITY DIAGRAMS
come flat and we refer to this structure as stable. In the _ _ _
opposite case, when the absolute valué pis greater than In this section, we examine the dependencelasn the

1, the amplitude of the perturbation to the interfaces growsnaterial and growth parameters capturedbirand H* for

with the layer number. We refer to this structure as unstablethe special case where adjacent layers are the same except
We can examine the nature of this instability by consideringor the misfit with respect to the substrdie., the misfits are

N4 in more detail. equal but have opposite sigrFor each point in theb-H*

The morphology of the structure in the unstable regime iplane, we determine the dependence of the maximal eigen-
determined by the complex phase »of. If A, is real and value \; on the normalized eigenvectaf. The rate at
positive, the perturbation amplitudéa) grows from inter-  which the perturbations grow depends on the imposed per-
face to interface and the perturbations on consecutive inteturbation wavelength. The fastest growing perturbation cor-
faces will be in phase, as indicated schematically in Figl.3 responds to.; =\ sy, Which occurs at* = & ... The nature
If \; is real and negative, the value Afgrows from inter- of the evolution of the perturbation amplitude with layer
face to interface and perturbations on consecutive interfacasumber is determined by whether the magnitude\ @i, is
are out of phase, i.e., the amplitude of the perturbationgreater or less than unity and whether it is real or complex,
changes sign at each interfatiee layer is accordion-shaped as discussed above. The resultant stability diagram is pre-
as shown in Fig. @). The resulting structure is modulated, sented in Fig. 4. Four distinct fields are found on the stability
not only morphologically but also compositionally, since adiagram. The region corresponding & .,,,d<<1, marked
vertical cross section of a multilayer film in the plane per-stable in Fig. 4, indicates that the amplitude of the perturba-
pendicular to the plane of Fig(l® will show oscillations in  tions to the interfaces decreases with an increasing number
the fraction of materials A and B. Whex, is complex, the of layers for all wavelengths. In the region of unstable
perturbations at consecutive interfaces are out of phase a@sowth (|\,.,{>1), the mode of the instability is determined
well (i.e., peaks in one layer line up with either peaks orby the phase of . as discussed in the preceding section.
troughs in preceding layersbut the sign change is not regu- For thick layers(largeH*) and slow diffusion(low @), the
lar and will be determined by the complex phasengf The instability corresponds to in-phase growth, resulting in
in-phase and out-of-phase morphologies show some resersnakelike layers, as shown in Fig(aB As ® increases
blance to the vertical correlations among stacked islands, dignd/or the layers are thin, the interface perturbations grow
cussed by Shchukiat al?® out of phase, resulting in accordionlike layers, as shown

We reiterate that the asymptotic equatideq. (17)] is  schematically in Fig. @®). Between the unstable/out-of-
valid provided that the expansion coefficieat, corre- phase and stable fields, a region of complgx, exists. In
sponding to the maximal eigenvalwe, is not zero, and its this region of the diagram, consecutive interfaces are either
value is not negligible compared to the expansion coeffiin or out of phase depending on the interface number. This
cients (@, and a3) corresponding to the other two eigenval- pattern of in- and out-of-phase interfaces may be either pe-
ues (\», and\3). In the quantitative analysis of the results riodic or aperiodic as determined by the complex phase of
presented in the next section, we checked to insure that this, .
condition is satisfied. We present our results in terms of the A contour plot of the logarithm of the absolute value of
stability diagram, which provides a link between the materi-A 5, is shown in Fig. 5. The contour lines are drawn only in
als and growth parameters and the morphology of the interthe region where the film growth is unstable, iJ@.yq.d>1.
faces. The magnitude ok, and, consequently, the rate of growth
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FIG. 5. Contour plot of the logarithm of the absolute value of FIG. 6. Contour plot of¢y,, for the domains of unstable
Mmax- FOr comparison, dashed lines show the contours of the logamultilayer growth. For comparison, the dashed contour corresponds
rithm of A, as for a single layer, as described in the text. to gfnang, the critical wave vector below which perturbations of a

single layer are unstable.

of the instability increases with increasing distance from the

stable growth domain within th@-H* plane. In order to put  y,de of the perturbation of the surface of the second layer. If
the rate of growth of the instability into perspective, we COmM-the pyried layer stress effect dominates the surface energy
pare the degree to which the amplitude of the instability;nq the atomic mobility is sufficiently higtor the growth
changes during the growth of a single layer with that forgte is sufficiently slow the second layer will grow from
growing either pure A or pure B on the substrate to thegne with perturbations to a nearly flat surface and then, with
thickness of one layer. The latter can be found by integratingyntinued growth, to one for which perturbations of the op-
Eq. _(10), omitting the contributi(_)ns associate_d with the_bur- posite sign grow. Once perturbations of the opposite sign
led interfaces. The corresponding value which we define agegin to grow, the elastic energy relaxation term further ac-
\s is simply As=exp(®H*/2). Contours of constant IN)  celerates their growth. This corresponds to unstable, out-of-
form straight lines in theb-H* stability map of Fig. 5. The  phase growth.
contours of constant Inf,,) asymptotically approach the = The presence of a buried interface may also lead to a
This is to be expected since the stress on the surface due tgygay reach the thickness at which the sign of the stress on the
buried interface decreases gxponentially with the distancgyface from the buried interface switches sigee Eq(8)].
between the surface and buried laysee Eq(8)]. In this case, the stress from the buried interface favors faster

The magnitude of the wave vector of the most unstables growth near the peaks on the surface and slower growth
perturbation¢r,,, (corresponding to the eigenvaldg,,,) de-  near the troughs. This leads to an increase in the amplitude
termines the overall film morphology. For a pure materialof the perturbation and the layer growth is unstable and in
(i.e., single-layer film, the wave vector of the most unstable phase, hence the presence of an unstable, in-phase region in
wave is equal tc, (i.e., £ =1). The contour plot o},  the ®-H* stability map. The existence of a growing, in-
for the domains of unstable multilayer growth is shown inphase surface perturbation will only occur if the atomic mo-
Fig. 6. The magnitude ot} ., does not significantly vary bility (®) is sufficiently low that the sign of the surface per-
from 1 except for very small film thicknesseés®. This im-  turbation does not switch prior to the film thickness
plies that in most situations, the wavelength of the interfaceachieving the value at which the sign of the stress from the
modulations will be very similar to that for a pure, single- buried interface changes sign. This dependence of the growth
layer film and will not evolve significantly as the multilayer mode on the atomic mobility explains the switch from in-
film grows. phase to out-of-phase growth at largé in the ®-H* sta-

The overall stability diagram is a result of the interplay bility map of Fig. 4.
between the three terms in EQ.0): the surface energy that The presence of a region in the stability diagram where
always favors the smoothing of the surface, the elastic enthe perturbations decay can be understood as a type of out-
ergy relaxation associated with a curved surface, which alef-phase growth that did not have sufficient time to be ex-
ways favors the growth of surface perturbations, and the corpressed. As discussed above, when the second layer is thin,
tribution from the stress associated with buried interfacesthe stress from the buried layer reinforces the tendency from
which may either favor the growth or decay of perturbationsthe surface energy to grow faster in the troughs and slower at
Consider the relatively simple case of the growth of a singlehe peaks in the surface profile. If given sufficient time, this
layer of materialB on the firstA layer. When the second effect would lead to out-of-phase growth. However, if the
layer is very thin, the stress on the surface from the buriedyrowth of the second layer is terminated and the growth of a
A/B interface favors fasteB growth in the troughs and third layer has begun before the sign of the perturbation
slower B growth near the peaks of the surface profile. This,switches, the interface is left with a perturbation that is of the
combined with the surface energy term, opposes the elastgame sign busmaller amplitudethan that of the first inter-
energy relaxation term and leads to a decrease in the ampfiace. This decrease in amplitude of the perturbation upon
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) Fig. 7. Hence, the stability map presented above properly
in-phase l

expresses the actual situation under nearly all conditions.

out-of-phase VI. GENERAL CASE

*E The asymptotic expression for the amplitude of the insta-
E |~ bility in the general case is derived in the Appendix:

2 - 1 _ _
stable A =a AN Y2 and A] = a AR

complex (18)

4 for evenk, where \, is the maximal eigenvalue and the
| | coefficient @, is assumed not negligible compared to the
- 3 0 other three expansion coefficients. The matvils composed
In(®) of the eigenvectors of matrik as defined in the Appendix
[see following Eq(A10)]. The amplitude of the perturbation

FIG. 7. Stability diagram for a growing multilayer film with a to the surface on one layer is determined by multiplying the
constraint on the wave vectdt to values where an initial pertur- amplitude of the perturbation on the previous layer by
bation on the first layer would grodi.e., £*<3%). This constraint  A11/A1, or NyA 1,/ A3 depending on whether the top layer
greatly enlarges the region of stable growth Fig. 4). is even or odd. All stability arguments used above to de-

scribe the nearly equivalent material case can also be applied

to the general case. To be more specific, the eigenvaine
growth of an additional layer is the source of the stable rethe general case corresponds to the square of the same eigen-
gion in the multilayer film stability diagranfFig. 4). value in the nearly equivalent material case and the instabil-

In addition to the in-phase and out-of-phase modes in théy condition |[\|>1 applies in the general case as well. The
unstable regions of thé-H* stability map, there is an un- phase of the variation in perturbation amplitude cannot be
stable domain where the perturbations increase in absolutesily analyzed in the general case because it is determined
value but with a sign that is neither always the same noby both A;/A, and\;A15/A 1, depending on whether the
alternates from layer to laydi.e., labeled “complex” in  top layer is even or odd. In the nearly equivalent material
Fig. 4). This region is between the stable and out-of-phasease, these two numbers are both equal to the maximal ei-
unstable domains. The origin of this effect cannot be exgenvalue.
plained on the basis of the two-layer picture used to describe Although the dependence of the mode of the perturbation
the origin of the other regions of the diagram and is strictly a(in phase, out of phase, or compleon material parameters
result of the combined effects of many buried interfaces. cannot be easily presented, the question of whether the per-

In presenting the stability mafFig. 4), we tacitly as- turbation is stable or unstable can be easily answered from
sumed that the wavelength of modulations corresponds to thie analysis of the maximal eigenvalng. As in the nearly
most unstable wave vect@ire., that withé* = £ ) and that  equivalent material case, the overall stability of the structure
this perturbation wave vector is constant during the entirds determined by whethék | is smaller or larger than unity.
growth. However, analysis of the growth of a single-layerDeviation of the materials parametdraisfit stresses, diffu-
film (either pureA or pureB) showed that perturbations to sivities, etc) and the growth conditions from those corre-
the surface profile only grow when the wave vector of thosesponding to the nearly equivalent material case changes the
perturbations is smaller than a critical valug<i&,.*®  shape of the region where the multilayer film grows stably
Therefore, there may not be any perturbations available t¢see Fig. 4.
grow if & >3. If this is indeed the case, then the stable The physical meaning of the eigenvalng is how much
region of thed®-H* stability map will be larger. In order to the amplitude of the instability changes during the growth of
account for this effect, we reconstruct the stability diagrama single layer. We can get a sense of how for the general
allowing only wave vectors of magnitudg,,<3. The re-  case, depends on the material and growth parameters by con-
sultant stability map is presented in Fig. 7. This wave-vectosidering how they would affect the amplitude of the pertur-
cutoff greatly expands the stable region of the diagram sucRation on the surface of a growirginglelayer film of ma-
that the entire smal/smallH* quadrant is stable. In addi- terial A or B grown to the thickness of tha or B layers in
tion to expanding the stable region of the map, cutting offthe multilayer film:

. : ;
tghmgxc?)ﬁglﬂeyx 2(532:\(;{;th§ unstable region corresponding to Az exp®aHE2) of hg=expgHE BE23).

An additional caveat associated with the present analysis (19
should be kept in mind. Stability or instability in the maps of Although the parameters in the expression gy depend
Figs. 4 and 7 is determined based on how the system wikxplicitly on properties of materiagh due to the normaliza-
behave in the limit of a large number of layers. The numbettion employed, the entire expression only depends on the
of layers that must be grown until this analysis is valid isproperties of materiaB.
determined by the magnitude of the eigenvalugin Eq. In order to determine how the physical and growth param-
(17). Fortunately, the instability develops very quickly over eters affect the stability of the growing multilayer film, we
the entire unstable region of Figs. 4 and 7, with the exceptioronstruct a series of stability diagrams in which we vary the
of the region near the stable-complex unstable boundary dghdividual physical or growth parameters. Figurt@8hows
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FIG. 8. Stability diagrams for situations where the materfabndB differ from each other by more than simply the sign of the misfit
stress(a) illustrates the influence of relative film thickness. The region of stable growth is bounded by solid curkﬂsféHB (curve )
andHa=2Hg (curve 2. (b) illustrates the influence of the relative misfit streg@=Sg/3,) for Sg=—1.13, andSg=—0.55,. (¢)
illustrates the influence of the relative surface enefgy: (yg/y,) for yg=0.5y, and yg=2v, . (d) shows the influence of relative atomic
mobility at the growth surface for the case in whiéh=0.1dg (curve ) and®,=10dy (curve 2. In all figures, the dashed line shows
the boundary between stable and unstable growth for the case where matenal8 are identical except for the sign of the misfit stress.
Except where noted, the material parameters and growth conditions in these figures are exactly the same as for Fig. 4.

the stability diagram for the case where the two types ofkhown in Fig. 8b) (other A and B material and growth pa-
materials are equivalent in every respect except that theameters are identicalFor the case where the misfit stress in
thickness of theB layers is either two-thirds or three-halves the B layers is—1.1 times that in thé layers, the domain of
that of theA layers(and the misfit has opposite siginthe  stable growth is shifted horizontall§in the —In d, direc-
region of stability in this diagram is almost identical to that tion) relative to the case where the misfit stres8iis equal
when the layers have the same thicknéss., the nearly to and opposite that il. When the misfit stress in thB
equivalent material case—Fig) éxcept for a slight shift in layers is—0.5 times that im, the domain of stable growth is
the direction of greater{g=35H,) or smaller Hg=3H,) shifted horizontally, but in the opposite directigm the
layer thickness. This can be qualitatively understood by re-+In ®, direction in addition to an overall expansion and the
alizing that a thinneB-layer thickness results in a smaller formation of a new nose at largé,. The shift along the
overall bilayer thicknes§.e.,H,+Hg). In order to achieve In®, axis may be understood by reference to @), where
the same bilayer thickneskl, must be increased over that we see that the argument in the exponential is proportional to
whereH ,=Hg. This results in an overall shift of the stabil- g2 (recall thatB=3g/3,). IncreasingB creates an overall
ity in the direction of larger g=3%H,) or smaller {Hg increase in the effective value ob (i.e., ®p+PB°%).
=3H,)H,, since the superlattice period is plotted againstTherefore, the same effective value ®f is achieved at
the thickness of layeA. The vertical shift in Fig. 8) is  smaller®, and hence the entire domain of stable growth is
approximately equal to the logarithm of the ratio of the bi- shifted toward smalle® . By the same reasoning, decreas-
layer thickness to that when th% and B layers are equal ing ®g leads to a shift in the domain of stable growth to
thickness. Changes in thé,/Hg do not significantly shift larger values ofb, .
the stable region in thé, direction. There is, however, a The effect of surface energy on film stability is shown in
slight change in the shape of the stable region. Fig. 8(c) (otherA andB materials and growth parameters are
The effect of relative misfit stress on film stability is identical, except for misfit which is equal and oppoksite-
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creasing the surface energy of mateBdeads to an overall
expansion of the domain of stable growth, while decreasing
the surface energy of materiBl leads to a decrease in the
stable domain size. This is opposite to the situation found for
the misfit stress, as expected on the basis of(E9). In this

case too, the large kb peak found when materiak andB *:;

are identical(except for the sign of the misfitbreaks into =

two peaks when the surface energies of the two materials are = il
unequal.

The effect of surface diffusivity on film stability is shown
in Fig. 8(d) (otherA andB materials and growth parameters
are identical, except for misfit which is equal and opp9site l I

Decreasing the surface diffusivity of materBlleads to an 2 -1 0
overall expansion of the domain of stable growth and the In(®4)

splitting of the nose in the domain of stable growth. Increas- o . .
ing the diffusivity of materialB leads to shrinking of the FIG. 9. Stability diagram for the strain-balance superlatice,

superlattices for whichd 53 5+ Hg2z=0). The dashed curve cor-
éesponds to the case where materiabndB differ only by the sign

of the misfit stress. The curves labeled 1, 2, and 3 correspond to
B=3g/2, equals —1.1, —0.9, and —0.5, respectively(with
f'éA/HB adjusted to keep the multilayer film strain-balanced

stability region in the diagrarfFig. 8d)]. Interestingly, even
though there is an overall expansion of the domain of stabl
growth in the case where the surface diffusivity of mategial
is smaller than that of materi&, the splitting of the nose
results in a portion of the parameter space that was stab
when the surface diffusivity of and B was identical and is
unstable when the diffusivity d8 is much smaller than that =3/, in the range—1.1<=B8<—0.5, where the ratio of
of A. This added complexity makes it difficult to draw gen- layer thicknessesig/H , is varied accordingly to keep the
eral conclusions about the effects that individual materiamultilayer film stress-fregi.e., Hg/H,=—1/8). As the ab-
parameters have on multilayer film stability. The change insolute value ofg increases8 is negative, the domain of
size of the domain of stable growth can also be understoogtable multilayer growth in the stability diagram shrinks.
on the basis of Eq(19), where the parametaby is directly ~ This is consistent with our observations abd¥ég. 8b)],
proportional to the surface diffusivityby is also inversely ~Which showed the same trend with misfit at fixed layer thick-
proportional to the growth rate, such that increasing theess. Increasing the absolute valuggafauses a concomitant
growth rate of materiaB should have the same effect on the decrease itHg/H, . However, comparing Fig. 9 to Fig(&
stability diagram as decreasing the surface diffusivity. (where we vary layer thickness at fixed misfit stresseews
While we have examined the effects of several materialittle correspondence. Therefore, we conclude that variations
and growth parameters on the stability of multilayer films,in layer thickness in order to keep the film stress balanced
some of the parameters may be varied more easily than ottizero average stressare dominated by changes in stress
ers. Since surface diffusivity is typically Arrhenius, large rather than thickness itself. This is consistent with B),
variations are possible by changing the temperature with where we find that stress enters the expression at a much
given system. While all of the other material parameters willhigher power than does layer thickness.
likely vary with temperature, these variations are typically ~Applying the linear stability analysis presented in this
small. The largest variations in material parameters will aristudy to real experimental systems is a daunting task. A
when changing the materials that compose the individuatough estimate of whether the system is in the linear regime
layers. Again, the largest variations will typically be found in during the growth process is determined by the degree to
the surface diffusivity, but changes of order hundreds of perwhich the eigenvalue., differs from unity (i.e., the linear
cent may be realized in misfit stresses and surface energies #gory cannot be reliably applied in cases wheye-1). The
well. On the other hand, the magnitude of variations achievvalue of\; can be deduced from the valueslof and\g
able by changing film thickness is limited by the critical [Eq. (19)]. Using the data from Ref. 33 on InAs/AlAs super-
thickness for the formation of misfit dislocations, which is lattices grown on an InP substrate, and a number of approxi-
controlled by the magnitude of the misfit. The stability is mations to make up for missing daisuch as surface energy
particularly sensitive to the ratio of misfit stresses and surof 1 Jint), we computed the values df, and®g using the
face energies, which enter Ed.9) with relatively high pow-  known values of lattice constants and elastic moduli for the
ers. Therefore, even though these parameters may not vary @@mpounds involved as well as the activation energies of
widely as the diffusivityfwhich enters the exponent in Eq. surface diffusior?’ Using these real and estimated data, we
(19 to the first powe}, their impact is greater. find that these experiments correspond to the unstable region
In many practical cases of multilayer film growth, the of the stability diagram. This is due, in large part, to the very
material properties cannot be varied independently. For exfast surface diffusion of indium atoms. While the formation
ample, it is often desirable to grow a film under strain-of interface modulations is consistent with our predictions of
balanced conditions, i.e., where the average stress within then instability, we suspect that the linear stability analysis
multilayer film is zero. This implies thatl ,> ,+HgXg=0.  may be of limited utility in this case since the large value of
We have examined the effect of varying the misfit stresdn @, [In ®,~7 and InH;~—3.4 for experiments reported in
subject to this constraint. Figure 9 shows the stability dia-Ref. 33 and, as a consequence, the value,ofxceeds unity
gram for five cases with different ratios of misfit stresges by a few (seven orders of magnituderenders the small-
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amplitude perturbation assumption of the perturbation theoryhat changing the thickness of one layer shifts the stable
inapplicable after just a few layers. Determination of the truegrowth region in the stability diagram, but primarily because
interface morphology after one or two layers requires use oit changes the average layer thickness. The boundary of the
numerical methods capable of handling strongly nonlineadomain of stable growth is approximately the same, for a
behavior®® given superlattice periogsum of layer thicknessgswvhether

A more tractable system would be GaAs/AlAs the individual layers have the same or slightly different
superlattices$® where the surface diffusivity of Ga is much thicknesses.
lower than that of In. However, this system is almost per- Increasing the surface diffusivity or, alternatively, de-
fectly lattice-matched, which leads to low misfit stresses increasing the deposition rate of one of the layers shrinks the
the layers. This, combined with the low surface diffusivities stable growth region in the stability diagram. Increasing the
of the cations?* leads to a prediction that such a film grows magnitude of the misfit stress or decreasing the surface en-
stably, as observed in experimefits. ergy produces a similar overall effect; qualitative details of

Another possibility for testing the linear stability analysis the influence of each of the materials parameter can be un-
is to turn to superlattices composed of semiconductor alloyslerstood through consideration of how the parameter modi-
rather than of pure IlI-V compounds. Unfortunately, thefiesA\.
presence of two or more alloying elements makes the analy-
sis of surface diffusion complicated and can even introduce
new effects? There is a qualitative agreement between the
theory presented in this paper and experiments reported in The authors would like to thank Professor J. R. Barber,
Ref. 12. In that study, multilayer superlattices of Professor R. S. Goldman, and Professor J. Mirecki-
InAs,P, _,/Ga _,In,P were grown. The morphology of the Millunchick for useful discussions. D.F.S. gratefully ac-
films observed in these experiments, observed using tran&nowledges the support of the U.S. Department of Energy,
mission electron microscopy, shows both morphological andsrant No. DE-FG02-99ER45797.
compositional modulations of the structure which can be
classified as out-of-phase unstable growth.
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APPENDIX: SOLUTION OF THE RECURRENCE
RELATIONS

VIl. CONCLUSIONS In this appendix, we obtain closed-form solutions to the
In the present analysis, we focused primarily on the Spe(_-:-volution equations for the surface of the growing multilayer

cial case of a multilayer film, where the materials parameterflM- As in the main text, we first consider the special case
and growth conditions of the two types of layers are identi-Vhere materialsA and B are identical in every respect, ex-
cal, with the exception that the misfit stresses are equal artfPt that the magnitude of the misfit stréssvith respect to
opposite. Our findings are reported in the form of stabilityte substrate is equal and opposite in the two matefiials
diagrams in the plane defined by the two key parameters?z =1). In thls case, the integration o’f the evoI’utlon equa-
layer thickness and normalized surface diffusivity. We foundtion resulted in two expressiofi&qgs. (14') and (12)]:

that, unlike the case of a thin film consisting of a single
layer, there are conditions under which the film is stable, i.e., i1 . ) _
perturbations to the growth surface decay. For the regions of Xk:xk—l':_zz1 (DX PH (k=] -1+ E]
unstable film growthiwhere the amplitude of the perturba- : (A1)
tion grows from layer to layeywe distinguish three different
types of resulting film morphology, classified according tognd
the complex phase of the characteristic numberhich is a
function of materials parameters and growth conditions.
Positive A corresponds to the “in-phase” perturbation
growth mode where perturbations at all interfaces are i
phase. Negativ& corresponds to the “out-of-phase” growth : A : )

) g can be found using successive iterations. This recurrence re-
mode where the perturbations at consecutive interfaces aon can be greatly simplified by rewriting EAL) as
phase-shifted by a half-wave with respect to one another. '
This leads to a form of lateral composition modulation. A _ f am
case corresponding t® which possesses a nonzero imagi- Xicr3= X 2(F=2725) + X1 (2F — 1+ 2WH" —25)
nary part is characterized by an irregular sign shift between +X,F, (A3)
perturbations at consecutive layer interfaces, which is deter-

mined by the complex phase af We also determined the \hich only involves four consecutive terms. Applying Eq.

wave vector of the propagating perturbation corresponding t@a2) to the previous relation produces a recurrence relation
the fastest growing instability wave and the rate of perturbas,, Ay

tion growth.

We also considered the general case in which the two
materials and the film growth conditions can vary. We ex-
plicitly examined how the surface diffusivity of the two ma- B . _om g
terials, growth rate, surface energy, and film thickness affect X(2F—1+2WH™ —22) T A.e F.
the stable domain in the stability diagram. In short, we found (A4)

k=1

Xj:Ajeg*H*(J'*l) (AZ)

"from which the amplitude of the perturbatidyy of layer k

gk — ok gk
A=A 8 T (F-2-28)+ Ay, ,07 21
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As in the text, we normalize the amplitudes of the perturba- W,
Fa—(1-B)Eat 5%

tion A, by A;: Af=A/A;. The perturbation amplitude ~ Xk+4=Xk+3 VB
A, can be rewritten in closed form in terms of a power of
the 3x 3 matrix L: Ya_
+Xi2 (1= B)| EatWaHE - \PB:B)
e HY(F—2-25) 10
—2£*H* *_o=y 0 1 +1-F —\IIA —Xg+1| (=8| ¥ H*—E:
L=| e (2F—1+2¥VH*-2E) By, k+1 ATlB ™ =B
efsg*H*F 0 0
A5 A
(A5) +FA+W 5 +Xd Feg 5 (A8b)

The perturbation amplitudes for three consecutive layers can
be expressed as vectors: Y.=(A[,,. Al 1,A7). The for odd k. We use Eq(12) to obtain similar relations foA,

vectorY, is related to the vector; by the k—1)th power ©' Ay . We define the two 44 matricesl , andLg:
of matrix L: Ye=(AL A0 A=Y, LK L1 1 0 0 L1 1 0 0
=(A3,A5 ,A7)L¥"1, Finding the values of, andA; us- A B
ing Egs.(12'), (14') and arbitraryA; determines the vector LZ* 0 1 0 Lg" 0 1 0
Y,. Applying the matrixL to this vectork—1 times deter- AT 0 0 1 Le= L3 0 0 1
mines the amplitude; . a s

The power of the matrix grows as fast as the power of its La 0 00 L 0 0 0 (A9)

eigenvalues. We denote the three eigenvalues of the ntatrix
as\i, Ny, andA3. Assuming thatl. is not degenerate, we

4 X . The matrix coefficientd ! are simply the product of the
express the matrix of eigenvectoksof matrix L as A i P

ith bracketed term in EqA8a) ande™ ¢ 7, wheres; is Hx,

A2 . 1 Hx+HE, 2HA+HE, and 2Hx +HE) fori=1, 2, 3, and 4,
1 1 - .. . .. i1 .
2 respectively. Similarly, the matrix coefficients, are simply
A= A2 A 1 (AB)  the product of theith bracketed term in Eq(A8b) and
A oA 1 e &7 wherey is HS, HX+H%, HX+2H%, and 2(H%

+HE) fori=1, 2, 3, and 4, respectively.

In the general case, the vectdi has four components
Y =(Ay 3,47, ,,A.,1,A.). The amplitude of the vector
Y is simply

The expression foA, (k=4) can now be written as

Ak —al)\ +a27\2 +a3)\§_1, (A?)

where thea's are the coefficients of the expansion of vector

Y, in the basis of the eigenvectors of matrik:
<al QD C(3> = Y1A71: <A3J‘r !A; 11>A71' AI:r grows asymp-
totically as the power of the maximal eigenvalue of matrix

Yi=Ya(Lgl)® V2=(A) A3 A7 1) (Lgly) 172
(A10)

for odd values ok andL 5 times this for even values &

Because of this power law, the asymptotic regime is reache®efining the matrixL as a product of matricelsg and L 5

quickly, provided that the coefficient; corresponding to
that maximal eigenvalue of (denoted\;) is not much
smaller than the other twa's.

We now turn to the general ca$gqgs. (12) and (14)],
where materialA and B may be different. It is possible to
derive a recurrence relation similar to Eé\4), in terms of

two 4X4 matrices, one each for the odd- and even-

numbered layers. In particular, we find

_ . ¥s
Xkra=Xyr3 Fe+B(1-B)Eg+ \174
A
— * \IIB'—i
+ X2/ 1=B(1=p) :B+‘PBHA_qTA:A
—%m: —Xysa| Fa+ =258
PG RAGE LR
Vg _ . Vg
+B8(1-p8) q,_ﬂ —WgHAZ +XK\P_A:8FA
(A8a)

for evenk and

and the matrixA as the matrix of the eigenvectors of matrix
L corresponding to the eigenvalugesg, \,, A3, and\,, we
obtain a closed-form expression fA{ . Assuming thak is
even and is greater than 4, we have

4
A\ and A:—lzzl aiAip\{K D"

(A11)

whereA; and A, are the components of the first and second
column of the matrix of the eigenvectors Af respectively,
and « is the expansion coefficient of the vector in the basis
of eigenvectors{ay,a,,az,as)=Y A" L.

As in the case of nearly equivalent materidisand B,
when the materials in these layers are different we only need
to consider the asymptotic part of Eda11), i.e.,

4
=> a
i=1

Alj:alAll)\(lk74)/2 and Alr—lzalAlz)\ng74)/21
(A12)

where) ; is the maximal eigenvalue. All of the stability ar-

guments used in the nearly equivalent layers case can be
applied to the general case. To be more specific, the eigen-
value\, in the general case, corresponds to the square of the
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same eigenvalue in the nearly equivalent layers case and tleeld-numbered one. In the nearly equivalent layers case,
instability conditionA;>1 applies in the general case asthese two values are equal to each other.

well. The phase of the perturbation cannot be easily analyzed Although the dependence of the mode of the perturbation

because the phase between two successive layers is now ad-the growth conditions and material parameters cannot be

termined by two numbersA ;1/A 4, if we proceed from an easily presented for the general case, the question of whether
odd-numbered layer to an even-numbered one anthe perturbation is stable or unstable can be easily answered
N1A 15/ A, if we proceed from an even-numbered layer to anfrom the analysis of the maximal eigenvalue.
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