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Nucleation on top of islands in epitaxial growth
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~Received 31 March 2000!

We develop a theory for nucleation on top of islands in epitaxial growth based on the derivation of lifetimes
and rates governing individual microscopic processes. These in particular include the encounter rate ofj atoms
in a state, where in totaln> j atoms are present on top of the island, and for the lifetime of this state. The latter
depends strongly on the additional step edge barrierDES for descending atoms. We present two analytical
approaches complemented by kinetic Monte Carlo simulations. In the first approach, we employ a simplified
stochastic description that allows us to derive the nucleation rate on top of islands explicitly, if the dissociation
times of unstable clusters can be neglected. We find that for small critical nuclei of sizei<2 the nucleation is
governed by fluctuations, during which by chancei 11 atoms are present on the island. For large critical nuclei
i>3 by contrast, the nucleation process can be described in a mean-field type manner, which for largeDES

corresponds to the approach developed by Tersoffet al. @Phys. Rev. Lett.72, 266 ~1994!#. In both the
fluctuation-dominated and the mean-field case, various scaling regimes are identified, where the typical island
size at the onset of nucleation shows a power law in dependence on the adatom diffusion rates, the incoming
atom flux, and the step edge crossing probability exp(2DES/kBT). Although it is possible to extend the
simplified approach to more general situations, its applicability is limited, if dissociation rates of metastable
clusters enter the problem as additional parameters. For such situations the second semianalytical approach
becomes superior. This approach is based on novel rate equations, which can easily be solved numerically.
Both theoretical approaches yield good agreement with Monte Carlo data. Implications for various applications
are pointed out.
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I. INTRODUCTION

A fundamental problem in the theory of thin film growth1

is the question, under which condition flat, two-dimensio
films form on the substrate surface in contrast to mutua
separated, three-dimensional clusters. For films growing
der equilibrium conditions, this question was answered m
years ago: If the interfacial tension between the substrate
adsorbate is larger than the difference of the respective
face free energies, then cluster formation is prefer
~‘‘Volmer-Weber growth’’2!, while a smaller~or equal! in-
terfacial tension leads to the formation of flat films~‘‘Van
der Merwe growth’’!. An intermediate case is the ‘‘Stransk
Krastanov growth’’ mode,3 where cluster formation sets i
after the thickness of an initially smooth film exceeds a cr
cal height. This case may be understood from an interfa
tension that varies with the film thickness. More recently,
influence of strain effects on equilibrium film morphologi
has been investigated by various authors.4

Films developing in the process of molecular beam e
taxy ~MBE! are usually not in thermodynamic equilibrium5

Rapid growth of films is achieved by a high supersaturat
of the vapor, and growth kinetics is governed by evaporat
diffusion and aggregation processes far from equilibriu
Determining the film morphology in this situation is a pro
lem of stochastic dynamics.~For a recent review on both
kinetically and thermodynamically induced instabilities
MBE see Ref. 6.! During the MBE experiment, two-
dimensional islands composed of adsorbate atoms form
the substrate. If these islands coalesce before stable clu
nucleate on top of the islands in the second layer, a
two-dimensional film results. By contrast, if the onset of s
ond layer nucleation precedes island coalescence, then t
PRB 620163-1829/2000/62~12!/8338~22!/$15.00
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dimensional cluster formation is obtained. The term ‘‘seco
layer nucleation’’ should not be taken literally here but rath
should apply to the formation of stable nuclei on top of
lands in general. Nuclei are considered to be stable once
size exceeds a critical number ofi atoms. As for the equilib-
rium structures, it might be possible that cluster formati
sets in above a certain film thickness, when the relevant
rameters governing the nucleation of stable clusters on to
islands~see below! depend sensitively on the film thicknes
However, despite this similarity of the possible growth pr
cesses with the equilibrium growth modes, it should be no
that the dynamic problem is very different. In MBE flat film
can be produced even if the adsorbate does not wet
substrate.5

A theory for second layer nucleation in MBE was set
by Tersoff, Denier van der Gon, and Tromp,7 which will be
referred to as ‘‘TDT approach’’ in the following. Solving th
stationary diffusion equation in the presence of an incom
flux and employing classical nucleation theory,1 these au-
thors succeeded in deriving an explicit expression for the
of nucleationV(R) on top of circular shaped islands of ra
diusR. Assuming all island radii to evolve approximately a
the mean island radiusR(t) at time t ~this situation will be
referred to as the ‘‘single-island model’’ in the following!,
they calculated the fractionf 0(t) of ‘‘covered islands’’~i.e.,
on top of which a stable cluster has nucleated! from V(R). It
turned out thatf 0(t) rises from zero to one in the vicinity o
a ‘‘critical time’’ tc , which allows one to define a critica
island radiusRc[R(tc) for second layer nucleation. A
simple criterion for the occurrence of ‘‘rough multilayer’’ a
opposed to smooth ‘‘layer-by-layer growth’’ is thatRc is
smaller than the mean distancel between islands in the firs
layer.
8338 ©2000 The American Physical Society
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An important factor controlling the film morphology i
the additional step edge barrierDES5ES2E0 ~Ehrlich-
Schwoebel barrier8! that has to be surmounted by an adato
in addition to the bare surface diffusion barrierE0, when an
adatom crosses an island edge.9 For largerDES one expects
adatoms to remain longer on islands and therefore to a
mulate more easily, which would lead to an increased sec
layer nucleation rateV(R) and a smallerRc . In fact, the
theory predicts that, only for sufficiently largeDES, three-
dimensional clusters can occur on the substrate~for an alter-
native possibility see, however, Ref. 10!. Using the TDT
approach,DES was estimated for a variety of differen
systems.11–15

An alternative approach for treating the problem of s
ond layer nucleation within a stochastic description based
scaling arguments was developed recently by us.16 It was
shown that fori 51 the TDT approach is not applicable, b
the detailed treatment of fluctuations with only two atoms
top of the island yields a correct description of the proc
~see also Ref. 17; for an earlier approach focusing on
dimension see Ref. 18!. In this work we will extend our
former study of second layer nucleation by means of b
kinetic Monte Carlo simulations and scaling analysis. In p
ticular, we will show that the mean-field assumptions und
lying the TDT approach are valid for large critical nucleii
>3, while for small critical nucleii 51,2 second layer nucle
ation is dominated by fluctuations. Furthermore, we deve
a novel rate equation approach, which allows one to ca
late the time development of cluster configurations on co
pact two-dimensional islands under quite general conditio

From the outset, one should distinguish between nu
ation on top of islands with compact shape as oppose
nucleation on islands with strongly ramified shape. In
latter situation, diffusion of adatoms on the islands becom
a rather complex phenomenon due to the confined mo
along branches of various lengths.19 We restrict our discus-
sion to nucleation on compact islands here. Moreover
should be noted that even for compact shapes, the is
boundaries may have a fractal or, more precise
self-affine20 structure ~this is the case, e.g., for Ede
clusters21!. Then the microscopic step edge barrier22 can vary
strongly along the island boundary. In any case we will
ways understandDES as an effective barrier~see below and
Ref. 23!.

Parameters governing the second layer nucleation are
incoming atom fluxF, the jump rateD/a2 of adatoms, the
step edge barrierDES, and various dissociation rates of u
stable clusters of sizes< i . If the bond energies of the un
stable clusters~i.e., of clusters of sizes< i ) are negligibly
small, then the nucleation rateV(R) and critical radiusRc
depend only on two dimensionless parameters. These ar
ratio

G[
D

Fa4
~1!

~with a being the lattice spacing in the substrate plane! and
the edge crossing probability

a[expS 2
DES

kBT D . ~2!
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Based on a simplified stochastic description~see also Ref.
16! we will argue that for small critical nucleii 51,2 the
mean number of atoms on top of the island is smaller th
one and the stable nucleus is formed due to fluctuations. T
gives rise to four scaling regimes in ana-G diagram, where
Rc;Ggam with different exponentsg and m. For i>3 by
contrast, nucleation starts out from a situation with ma
atoms present on the island. Under these circumstances,
different scaling regimes can be identified, and two of th
correspond to the ones predicted by the TDT approach.
comparingRc with the mean distancel between islands on
the substrate surface, the transition line separating ro
multilayer from smooth layer-by-layer growth is identified
the a-G diagram. When the bond energies of unstable cl
ters become appreciable, the corresponding dissociation
enter the problem as additional relevant parameters. It t
becomes difficult to separate scaling regimes in practice,
the simplified stochastic description becomes of limit
value. However, by employing the novel rate equation
proach it is still possible to determinef 0(t) and Rc in a
simple manner.

Moreover, we will discuss how to derive the fraction
f (t) of covered islands, when one relaxes the assump
that all island radii evolve as the mean radiusR(t). In the
time regime of almost constant island density~‘‘saturation
regime’’ preceding island coalescence24! we can define an
effective ‘‘capture area’’ for adatoms by the Voronoi cell fo
each island.25 In order to calculatef (t) for the ‘‘multi-island
model’’ from f 0(t), one needs to know the probability dis
tribution of islands with a certain size and capture area, w
the saturation regime is reached.

The paper is organized as follows. In Sec. II we give
short review on basic concepts used in the description
submonolayer growth and discuss in Sec. II A importa
quantities and equations underlying the physical proces
involved. In Sec. II B we summarize the results of the TD
approach. We then continue with a detailed description
the simulation techniques in Sec. III and test the equivale
of the multi-island and single-island models.

In Sec. IV a simplified stochastic description of seco
layer nucleation is first presented in its general methodol
and subsequently employed to small and large critical nuc
It is instructive to observe the different physical conditio
that lead to the nucleation event in the two cases. A
showing that the treatment of metastable clusters is ra
complicated within the simplified description, we discuss
Sec. V a general approach for second layer nucleation on
basis of novel rate equations. Section VI concludes the pa
with a summary and discussion of the most important res
as well as an outlook to further research.

II. BASIC QUANTITIES AND CONCEPTS

A. Atomistic processes in thin film growth

In MBE atoms are deposited on a substrate surface wi
rateFa2 per unit cell. At very high temperatures the adatom
reevaporate but under ordinary conditions this reevapora
can be neglected or effectively taken into account by a
duced deposition rate. Once an adatom is deposited, it s
a thermally activated diffusive motion with jump rateD/a2

}exp(2E0 /kBT). Adatoms come into contact as tim
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progresses, and form islands that are held together by s
bonding energy. While unstable islands of small sizes< i
dissociate, islands with sizes. i are stable~on all relevant
time scales of the experiment!. An island of sizes5 i is
called a critical nucleus.26

Islands of larger size are formed by aggregation of a
toms ~or small mobile islands! to existing immobile islands
and by coalescence. These processes lead to an island
distribution which becomes broader with increasing time.
the submonolayer regime, the most important physical qu
tions are the following.~i! How large is the densityrx(t) of
stable islands on the substrate surface at timet? ~ii ! What is
the form of the distributionYs(s,t) of island sizess at time
t ~with s being the number of atoms forming the island!? ~iii !
What do the stable islands look like? These questions h
been extensively studied in the past, both by experiment
by theory. We will briefly summarize those results, whi
are relevant for the following analysis.

The typical behavior ofrx(t) is depicted in Fig. 1. Also
shown is the adatom densityr1(t). As suggested by Ama
and Family,24 one may distinguish between four differe
time regimes: the low-coverage regimeL where rx(t) in-
creases witht and rx(t),r1(t), the intermediate coverag
regimeI whererx(t) increases witht andrx(t).r1(t), the
saturation regimeS ~called aggregation regimeA in Ref. 24!
where rx(t) stays approximately constant, and the coal
cence regimeC whererx(t) strongly decreases due to co
lescence of stable clusters. At high coveragesu[Fa2t, the
monomer densityr1(t) becomes small~see Fig. 1!, and the
standard rate equations for submonolayer growth1 predictrx
to evolve as

rx~ t !}S D

Fa4D 2 i /( i 12)

~Fa2t !1/(i 12)eEi /( i 12)kBT

5G2 i /( i 12)u1/(i 12)eEi /( i 12)kBT, ~3!

whereEi is the bonding energy of the critical nucleus in
preferred atomic configuration.

It should be noted that Eq.~3! is not valid in the saturation
regimeS, where the densities of islands with subcritical a
critical size are very small~unless there are metastable su
critical nuclei!. In this regime almost all adatoms being d

FIG. 1. Densitiesr1(t) andrx(t) of adatoms and stable island
as obtained in a kinetic Monte Carlo simulation modeling submo
layer growth~for an analogous figure see, e.g., Ref. 24!. The dif-
ferent time regimes of low coverageL, intermediate coverageI,
saturationS, and coalescenceC are indicated.
me
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posited attach to preexisting stable islands, so thatrx(t)
stays constant,rx(t)5rx . Within the standard rate equatio
approach, this effect may be accounted for by a proper
pendence of the ‘‘capture numbers’’ on the adatom den
r1(t) ~for a detailed discussion of this point in relation
experiments see Ref. 27!. The scaling ofrx with G, however,
is still correct in regimeS,

rx}G2 i /( i 12). ~4!

One of the most detailed studies of the island size dis
bution has been performed by Amar and Family24 based on
the scaling ansatz28–30

Ys~s,t !5
1

^s~ t !&
xS s

^s~ t !& D . ~5!

Here Ys(s,t)5rs(t)/r tot(t) is the probability that an island
has sizes; rs(t) is the density of islands with sizes and
r tot(t) is the total island density.̂•••&5*ds•••Ys(s,t) de-
notes an average overs with respect toYs(s,t). From Eq.~5!
follows ^sm&5^s&m*0

`dx xmx(x) ~as long aŝ sm&,`), and
taking m50,1 one obtains*dxx(x)5*dx xx(x)51. The
mean island size ^s(t)& is given by ^s(t)&
5(s51

` srs(t)/r tot(t)5u/r tot(t)a
2. In the saturation regime

S, where the density of islands with subcritical and critic
size is small and thusr tot.rx , it follows from Eq. ~4!

^s~ t !&.
u

rxa
2
}uG i /( i 12). ~6!

The relation^s(t)&.u/rxa
25Ft/rx can also be understoo

more directly, since the increase of^s(t)& with t is given by
the flux times the mean capture arearx

21 of adatoms.
The scaling functionx(x) was suggested to have th

form31

x~x!5Cix
iexp~2 iaix

1/ai ! ~7!

in regimeS. This function has a maximum atx51 and the
two conditions*dxx(x)5*dx xx(x)51 determine the pa-
rametersCi and ai . Equations~5!–~7! have been shown to
give a fairly good approximation of some simulations a
experiments.

The problem of the island shapes is not yet w
understood,5 but one may roughly answer the third questi
posed above concerning the island shape as follows.
strictly irreversible attachment, where local relaxation of
oms due to fast edge diffusion is suppressed, one obt
dendritic or random fractal structures. Dendritic growth
preferred at lowT or small F, and a shape transition from
dendritic to random fractal structures has been found, e
for Ag/Pt~111! upon lowering the deposition flux.32 An ex-
ample for a random fractal structure obtained in a compu
simulation is shown in Fig. 2~a!. At high temperatures, edg
diffusion becomes relevant, and polygonal or ‘‘irregula
compact island morphologies develop~see, e.g., Ref. 33!. An
example for an irregular structure is shown in Fig. 2~b!.

As mentioned in the Introduction, for the study of seco
layer nucleation we will focus on compact island shap
Moreover, second layer nucleation in the intermediate
gime I is unlikely to occur, since the island radii in thi

-
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regime are typically smaller than the critical radiusRc . We
therefore consider the second layer nucleation in the sat
tion regimeS, where Eqs.~4!–~7! apply.

B. TDT approach

In the TDT approach,7 one starts by calculating the ad
tom densityr1

st on a circular island with radiusR in the
stationary state. The stationary diffusion equation with
incoming atom flux acting as a source term reads

DF ]2

]r 2
1

1

r

]

]r Gr1
st1F50, ~8!

and it is supplemented by the boundary conditions@a
5exp(2DES/kBT)#

]r1
st

]r
U

r 50

50, 2
]r1

st

]r
U

r 5R

5
a

a
r1

stU
r 5R

, ~9!

where a/a is commonly referred to as the ‘‘Schwoeb
length.’’34 The boundary conditions express the fact that

FIG. 2. Typical island morphologies as obtained in kine
Monte Carlo simulations~a! for strictly irreversible attachment an
~b! for irreversible attachment with local relaxation, in the absen
of preferred growth directions. For the simulation technique of
local relaxation process see Sec. III and Fig. 3.
ra-

e

e

current density2D]r1
st/]r must vanish at the origin and

that at the edge it is given by the densityr1 times the ‘‘ve-
locity’’ ~rate times lattice spacing! (Da/a2)a to cross the
step edge barrier. The solution of Eqs.~8! and ~9! is

r1
st~r !5r1

st~0!2
Fr 2

4D
, r1

st~0!5
FR2

4D S 11
2a

aRD . ~10!

According to standard rate equation theory1 the local nucle-
ation rate is proportional toDr1

i 11, so we obtain from Eq.
~10! for the total nucleation rateV(R) on top of the island

V~R!5k
D

a2E0

R2prdr

a2
@r1

st~r !a2# i 11

5
4pkG2( i 11)

~ i 12!a2(i 12)

D

a2 S aR

2a D i 12F S 11
aR

2a D i 12

21G

.5 4pkG2( i 11)a2( i 11)
D

a2 S R

2aD i 13

, a!
2a

R

4pkG2( i 11)

i 12

D

a2 S R

2aD 2(i 12)

, a@
2a

R
,

~11!

wherek is a constant.
For a given time evolution of the island radiusR5R(t),

one can calculate the probabilityf 0(t) for a stable nucleus to
have formed on top of the island up to timet as follows: The
increase f 0(t1Dt)2 f 0(t) in a small time intervalDt is
equal to the probability@12 f 0(t)# that up to timet no stable
nucleus has formed times the probabilityV@R(t)#Dt that the
nucleation takes place in the time interval@ t,t1Dt#. Taking
the limit Dt→0 and solving the corresponding differenti
equation with the initial conditionf 0(0)50 yields

f 0~ t !512expF2E
0

t

dt8 V@R~ t8!#G . ~12!

For compact island growth during a MBE experiment, w
haveR(t);^s(t)&1/2 and thus from Eq.~6!

R~ t !

a
5A~Fa2t !1/2G i /2(i 12), ~13!

with A being some constant. Inserting this growth law in
Eqs.~11! and ~12! yields

e
e

f 0~ t !512expF2
2G2 i /( i 12)

A2Fa4 E
0

R(t)

dr rV~r !G.H 12expF2C,G2 i ( i 13)/(i 12)a2( i 11)S R

a D i 15G , a!
2a

R~ t !

12expF2C.G2 i ( i 13)/(i 12)S R

a D 2(i 13)G , a@
2a

R~ t !
,

~14!
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where C.[(222(i 11)pkA22)/@( i 12)(i 13)# and C,

[22 ipkA22. In going from the first to the second line i
~14! we have used that the integral overr is dominated by
the upper integration boundR(t) @for R(t)/a@1]. It follows
that the critical radius scales as

Rc;Ggam, ~15!

where

g5H i ~ i 13!

~ i 12!~ i 15!
, a!G i /[2( i 12)]

i

2~ i 12!
, a@G i /[2( i 12)]

~16!

and

m5H ~ i 11!

~ i 15!
, a!G i /[2( i 12)]

0, a@G i /[2( i 12)].

~17!

Equations~15!–~17! predict that for large step edge barrier
Rc depends strongly onDES, Rc;exp@2(i11)DES/
( i 15)kBT#, while for small barriers,Rc becomes indepen
dent ofDES. For i 51 in particular, one findsRc;G2/9a1/3

for a!G1/6 andRc;G1/6 for a@G1/6.

III. KINETIC MONTE CARLO SIMULATIONS

Kinetic Monte Carlo simulations are a well-establish
technique for modeling MBE experiments.35–38In our inves-
tigation of second layer nucleation, we adopt a simulat
scheme similar to previous, successful models of surf
growth kinetics.37,30 We choose a substrate with fcc~111!
symmetry, since surfaces of that kind are often studied
metal epitaxy, and commonly exhibit highDES. In a full
simulation scheme of the growth kinetics~multi-island
model!, we include all processes of evaporation, diffusio
and aggregation occurring in the MBE experiment. By a
lyzing the set of islands of various sizes on the substrate
determine the fractionf (t) of covered islands at timet. On
the other hand, we consider, as in the TDT approach, o
one island with the mean radiusR(t) evolving deterministi-
cally in time. The fractionf 0(t) of covered islands in this
single-island model is then determined by calculating
probability for second layer nucleation up to timet from a
large set of independent simulations. By examining b
models we are able to quantify the influence of the clus
size distribution under generic growth conditions.

A. Multi-island model

Atoms are randomly deposited with a rateFa2 per unit
cell onto a triangular lattice. After instantaneously relaxi
to a position, where they are supported by three nea
neighbors in the layer below~‘‘downward funneling’’!, the
atoms change their position by performing thermally ac
vated jumps to a vacant nearest neighbor site in the s
layer with a rateD/6a2. Only one atom is allowed to occup
a given lattice site. We first consider a ‘‘noninteracting p
ticle model,’’ where all binding energies of subcritical clu
ters of sizes< i are neglected. This means that (i 11) ada-
,
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toms have to encounter each other on nearest neighbor
in order to form a stable nucleus. Within the single-isla
model we later will also consider finite binding energies
metastable clusters, which cause various dissociation rate
enter the problem as additional parameters.

Once a stable cluster of sizes. i has formed, adatoms ca
attach to it. Compact island morphologies are known
emerge if a fast diffusion process is present along isla
edges. Here we model this process similar as in earlier
proaches~see, e.g., Refs. 24 and 39! by including a local
relaxation mechanism. In this method an atom being in c
tact with at least one nearest neighbor after a jump, is imm
diately transferred to a nearest neighbor site, if it can
crease its coordination number. This procedure is repe
until the atom can no longer increase its local coordinat
~see Fig. 3!.

Interlayer diffusion of atoms deposited onto islands is h
dered by the Ehrlich-Schwoebel barrierDES, which reduces
the jump rateD/6a2 by the edge crossing probabilitya
5exp(2DES/kBT).40 For computational convenience, w
model the crossing by a two-step process in the simulat
First, when an atom passes the boundary, it remains in
same layer but moves to a place, where it is supported
only two atoms underneath. Then the atom immediat
drops down to the layer below and moves to the nea
‘‘stable’’ site according to the local relaxation mechanis
introduced above~for similar simulations includingDES,
see, e.g., Refs. 13 and 41!. We do not distinguish betwee
crossing ofA andB steps and have not attempted to mod
any more realistic scenarios, as e.g. collective rearran
ments of atoms including exchange processes.42–44 This is
well justified as long as one is interested in the influence
an effective Schwoebel barrier.23

In the following, we focus on the casei 51 first. Typical
film morphologies resulting from the simulations have be
shown in Fig. 2~b!. Note that the boundaries of the island
are still rough despite the local relaxation mechanism. T
fraction f (t) of covered islands as a function of the tot
coverageFa2t is shown in Fig. 4 for some representativ
parameters~full symbols!. As expected,f (t) first is close to
zero, then increases strongly in some time interval aroun
‘‘critical time’’ tc , and finally saturates at one. In the inset
Fig. 4 we show the dependence of the mean island ra
R(t)[(^s(t)&/p)1/2a on Fa2t during the evaporation. In
agreement with Eq.~13!, we findR(t)5A(Fa2t)1/2G1/6 with
A>0.78.

FIG. 3. Illustration of the local relaxation process when an a
tom arrives at an island edge.
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To be specific, let us define the critical timetc via the
condition f (tc)51/2, and the corresponding critical islan
radiusRc by Rc5R(tc),

f ~ tc!51/2, Rc[R~ tc!5A~Fa2tc!
1/2G i /2(i 12)a. ~18!

Plots ofRc as a function ofa for various fixedG are shown
in Fig. 5 ~full symbols!. With increasing step edge barrie
i.e. decreasinga, adatoms on average remain longer on
island and nucleation of stable dimers occurs at smaller
land radii. Accordingly,Rc decreases with decreasinga ~see
regime II in the figure!. For very smalla, however, the step
edge barrier is practically never surmounted and thus i
effect infinitely high. Therefore,Rc becomes independent o
a ~regime I in Fig. 5!. The crossover between the two r
gimes is marked by the thick solid line. The full symbols

FIG. 4. Fractionsf (t) ~full symbols! and f 0(t/1.21) ~open sym-
bols! of covered island as a function of the total coverageFa2t for
i 51, a51025, and three differentG5105 ~j, h!, 106 ~d, s!, and
107 ~m, n!. The dashed lines fittingf 0(t/1.21) were calculated
from the theoretical predictions for the second layer nucleation
V@R(t)# @Eq. ~32!#. The solid lines fittingf (t/1.21) were calculated
according to Eq.~21! with Ys(s);s2 ~see text!. The inset
displays the time dependence of the mean island radiusR(t)
[(^s(t)&/p)1/2a @see Eqs.~6! and ~13!#.

FIG. 5. Dependence of the critical island radiusRc on a for i
51 and variousG5105 (j, h), 106 ~d, s!, 107 ~m, n!, and 108

~., ,!. Full symbols refer to the results from the multi-islan
model, while open symbols refer to the results obtained from
single-island model (Rc51.1Rc8). The dashed line marks the ons
of layer-by-layer growth, and the solid line with negative slo
marks the crossover between regimes I and II; the solid lines fit
the data in regime II have slope 1/7.
n
s-

in

Fig. 5 terminate at the dashed linea* (G), which marks the
onset of island coalescence. Fora.a* (G), islands in the
first layer merge before second layer nucleation takes p
and Rc can no longer be determined from the multi-isla
model. It is important to note that the dependence ofRc on a
is much weaker than predicted by the TDT approach: T
solid lines in regime II have slope 1/7 corresponding to
power law Rc;a1/7 rather thanRc;a1/3 as predicted by
Eqs.~15! and~17!. Moreover, regime I does not occur in th
TDT approach.

B. Single-island model

Second layer nucleation can also be addressed in a
pler model, which does not attempt to describe the en
growth dynamics, but focuses on the decisive factors t
determine nucleation in the presence of the step-edge ba
In this model, the complicated nucleation and diffusio
mediated growth of the two-dimensional islands, on wh
the second layer nucleation takes place, is replaced by le
the radius ofonecircular island expand deterministically i
time asR(t)/a5A(Fa2t)1/2G i /2(i 12), whereA is taken from
the full simulation of the multi-island model.

The island is embedded in a substrate area large enoug
accommodate the island at all relevant times. Deposition
diffusion of adatoms take place in the same manner as in
multi-island model. Atoms inside the island boundary c
escape by overcoming the step edge barrier. Those at
that have surmounted the barrier or that have been depo
outside the island boundary are removed from the latt
Thus the single-island model considers the deposition of r
dom walkers within a time-dependent, circular boundary t
is partially reflecting. Due to its greater simplicity, it allow
for more specific analysis with a larger parameter sp
~there is no restriction due to coalescence of distinct islan!.

In the noninteracting particle model, the ‘‘critical event
is to find (i 11) atoms on neighboring lattice sites. Anal
gous to the multi-island model we can define the fract
f 0(t) of covered islands up to timet. The fraction now refers
to a set of islands obtained in independent simulation ru
All islands in these runs grow with the same determinis
growth law. Results forf 0(t) are shown in Fig. 5~open
symbols! for the same parameters as in the multi-isla
model. Good agreement withf (t) is achieved for small times
@corresponding tof (t)&1/2], when the time in the single
island model is rescaled by a constant factor, i.e.,f (t)
. f 0(t8) with t85t/1.21. The factor is a consequence of t
idealized circular island perimeter in the single-island mod
In the multi-island model by contrast, the islands are far fro
being perfectly circular~see Fig. 2!. They have rougher
edges with more boundary sites, which causes adatom
escape the islands more easily and second layer nucleati
occur at later timest>1.21t8.

At larger times@corresponding tof (t)*1/2], however,
f (t) deviates fromf 0(t8) and these deviations become mo
pronounced for largerG. The reason for this discrepancy
the presence of islands with sizes much smaller than^s(t)&
in the multi-island model. Nucleation of stable clusters
top of these islands occurs at a later time, which causesf (t)
to be smaller thanf 0(t8)5 f 0(t/1.21) at larget. In fact, we
will show in Sec. III C that this effect can be accounted f
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by considering the probability distribution of islands with
certain size and capture area. WhenRc approaches the mea
distancel coalescences of larger islands also lead to mod
cations off (t) for t*tc .

The critical radiusRc8 in the single-island model can b
defined as in the many island model byRc85R(tc8), where
f 0(tc8)51/2. Due to the fact thattc51.21tc8 we expectRc

51.211/2Rc851.1Rc8 . Results for 1.1Rc8 as a function ofa are
shown in Fig. 5~open symbols! for the same parameters a
in the multi-island model~full symbols!. As can be seen
from Figs. 5, there is almost perfect agreement between
data sets. Moreover, the data forRc8 can be obtained also
beyond the dashed line marking the onset of layer-by-la
growth. Let us also note that, as long as one is intere
only in Rc8 ~or Rc51.1Rc8), one may obtain it even mor
simply in the single-island model@without calculatingf 0(t)]
by determining the average radius of the island at the tim
the nucleation event,

Rc85R~ tc8!.E
0

`

dt
d f0~ t !

dt
R~ t !. ~19!

Note thatd f0(t)/dt is the probability density of the secon
layer nucleation times and that the average ofR(t) with re-
spect tod f0(t)/dt is approximately equal toR(tc8), since
d f0(t)/dt is sharply peaked aroundtc8 .

C. Equivalence of the single-island and the multi-island model

In order to determinef (t) from f 0(t) we define by
c(s,s,t)ds ds the probability for an island to have a size
the interval @s,s1ds# and a capture area in the interv
@s,s1ds# at time t, where the capture area is given by t
Voronoi cell associated with an island.25

Let us considerf 0(t) to be a functional of the growth law
R(t) only, as it is the case, for example, when one appro
mates the second layer nucleation by a Poisson process
a time dependent nucleation rateV@R(t)#. Then f 0(t)
5G0@R(t)#512exp$2*0

t dt8 V@R(t8)#% @see Eq.~12!#. In the
saturation regime the growth law for an island can be writ
aspR2(t)5s31Fs(t2t3), wheret3 is the time when the
saturation is reached~see Fig. 1! ands3 is the island size a
that time. ~We restrict ourselves to film morphologies f
from coalescence here, so thats can be regarded a
time independent.! With the specified growth law, the
functional G0@R(t)# can be expressed by a functiong0
5g0(t;s3 ,s,t3), and f (t) is calculated via

f ~ t !5E
0

`

ds3E
0

`

ds c~s3 ,s,t3!g0~ t;s3 ,s,t3!. ~20!

A detailed investigation of the probability distributio
c(s,s,t) is certainly of interest but beyond the scope of t
present work. A simple idea would be to neglect correlatio
between the stochastic variabless and s, c(s,s,t)
.Ys(s,t)Ys(s,t), and to use previously derived scalin
forms for the island size distributionYs(s,t) ~see e.g., Refs
35 and 24! and the capture area distributionYs(s,t) ~see,
e.g., Refs. 29 and 45!.

Here we will follow a simpler approach. Since for typic
situations we find boths3 and t3 to be significantly smaller
-

th

r
d

of

i-
ith

n

s

than sc5pRc
2 and tc , respectively, we use the growth la

s(t)5Fst for an island with capture areas in the full simu-
lation. The on-top nucleation probabilitiesg̃0(t;s) for is-
lands exhibiting different capture areas can then be rela
by a rescaling of time, i.e.,g̃0(t;s1)5g̃0(s1t/s2 ;s2).
Moreover, since for film morphologies far from coalescen
@a!a* (G)#, Y(s,t) is approximately independent of time
we have f 0(t)5g̃0(t;s̄), where s̄5*dsYs(s,t)s.rx

21 .
Hence

f ~ t !5E
0

`

dsYs~s!g̃0~ t;s!5E
0

`

dsYs~s! f 0S s̄

s
t D .

~21!

In this simplified Eq.~21! knowledge of the nucleation rat
V(R) is not necessary andf (t) can be directly obtained from
f 0(t) whenYs(s) is known.

Writing Ys(s)5s̄21h(s/s̄), where *dx h(x)
5*dxh(x)x51, the transformation~21! becomes f (t)
5*0

`dxh(x) f 0(xt). For a random distribution of point is
lands, we would haveh(x)5exp(2x). However, since there
is a depletion zone of adatoms near an island, the probab
for other islands to nucleate in an area close to an exis
one is reduced and not exponential. For an isolated isla
dimensional analysis predicts the extensionj of the deple-
tion zone to be of order (D/F)1/4 ~alternatively it was
suggested46 that the linear size of the depletion zone shou
scale as the mean island distancel, i.e. j; l ). By comparing
j with l;rx

21/2;G i /2(i 12) between islands, we expect th
h(x) does not exhibit a largex regime withh(x);exp(2x)
for i 51. We thus are satisfied with a simple power la
ansatzh(x)5Cxf for x<x* , whereC andx* follow from
the two conditions imposed onh(x), andf is a fitting pa-
rameter.

To test this ansatz we takef 0(t) for G5107 from Fig. 4
~open symbols or dotted lines! and comparef (t) as calcu-
lated from Eq.~21! ~solid lines in Fig. 4! with the corre-
spondingf (t) as obtained in the simulation~full symbols in
Fig. 4!. As can be seen from Fig. 4, forG5106 and G
5107 a fairly good account of the differences betweenf 0(t)
and f (t) can be obtained by choosingf52. However, for
G5105 the theoretical curve underestimates the fraction
covered islands at large times@where f (t)*1/2]. Better
agreement between theory and simulation can only be
tained if one would allowf to depend onG. Alternatively,
we have tried an ansatz forh(x) similar to that used by Amar
and Family31 for the scaling function characterizing the i
land size distribution@see Eq.~7!#. This ansatz yields com
parable results, but is also not successful in accounting
the changes withG. We finally have to note, that at the tim
when submitting the paper, a more detailed theoretical
count forc(s,s,t) was published.47 The use of this finding
in Eq.~20! and the comparison of the resultingf (t) with
Monte Carlo data will be presented elsewhere.

Having shown that the single-island and multi-isla
models are essentially equivalent, except for differences
tweenf (t) from f 0(t) for large times that can be attributed
the island size distribution, we will focus on the single-isla
model in the remaining part of the paper.
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IV. SECOND LAYER NUCLEATION IN SIMPLE
SITUATIONS

In this section we develop a stochastic description of
nucleation process based on the scaling approach for se
layer nucleation presented in Ref. 16~see also Ref. 17!. The
procedure focuses on the noninteracting particle model,
though formally it is possible to extend scaling concepts
situations, where the lifetimes of unstable clusters beco
important. This was shown by Kruget al.17 and is discussed
in a more general context in Sec. IV E. The treatment of
noninteracting particle model outlined in Sec. IV A alrea
captures the salient features of the problem in terms of l
times, occupation probabilities, and encounter rates. We
show that there exist two possible mechanisms for the
mation of a stable cluster. In the first case, there is typic
no atom on top of the island and a stable cluster is form
due to fluctuations, in which by chancei 11 atoms are
present on the island. In the second case by contrast, t
are on average more thani 11 atoms on top of the island
during the formation of a stable cluster so that the nuclea
process can be described in a mean-field type manner.

It turns out that the fluctuation-dominated case takes p
for i<2, while the mean-field situation occurs fori>3. The
TDT approach corresponds to the mean-field case with
notable supplement that for very large step-edge barriers
should deal with the time-dependent adatom densityr1(r ,t)
@solution of Eqs.~8! and~9!# to calculate the nucleation rat
V(R) from Eq. ~11!. In the language of critical phenomen
one may regardi 52 as the upper critical size of the critica
nucleus above which mean-field theory becomes applic
for all a. We have to note that the existence of this upp
critical size was not perceived by us in Ref. 16, and acco
ingly, the extension of the scaling arguments for t
fluctuation-dominated situation toi 53 was not allowed.

In the stochastic formulation presented below we will d
velop many of the necessary ingredients for the general tr
ment of second layer nucleation in Sec. V. Moreover, it
discussed under which conditions mean-field type exp
sions}Dr1

i 11 for local nucleation rates can be used.

A. General procedure

In order to determine a second layer nucleation rateV(R)
we start by considering a time intervalDt(R), during which
R(t) does not change significantly. For example, for the
neric growth law~13! we may requireDt(R) to correspond
to a 10% change ofR, which would give Dt(R)
50.21(R/a)2/@A2Fa2G i /( i 12)#, i.e.,

Dt~R!;F21G2 i /( i 12)R2. ~22!

The nucleation rateV(R) is the mean numbernnuc(R) of
nucleation events in timeDt(R) divided byDt(R),

V~R!5
nnuc~R!

Dt~R!
. ~23!

A nucleation event occurs, ifi 11 atoms encounter eac
other on nearest neighboring sites.

For an island with radiusR and infinite step-edge barrie
(a50), and in totaln single atoms on top of it, let us ap
e
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proximate the encounter dynamics by a Poisson proc
wherevn(R) denotes the encounter rate of exactlyi 11 at-
oms. Within the Poisson approximation this rate can be p
cisely defined as the inverse average time fori 11 atoms to
encounter each other for the first time, when initiallyn atoms
are randomly distributed on top of the island. A simple sc
ing argument yields

vn~R!5keF )
k50

i

~n2k!G D

a2 S a2

pR2D i 11
pR2

a2
, ~24!

where ke is a constant. The term (a2/pR2) i 11 is propor-
tional to the probability to findi 11 atoms on nearest neigh
bor sites, and the factor (pR2/a2) takes into account that th
encounter can occur everywhere on the island. The com
natorial factor)k50

i (n2k) is slightly more subtle. At first
sight, one may think that one should include the num
( i 11

n ) of possibilities to choose anyi 11 atoms out of then
atoms, but this is not correct, since the accumulation oi
11 atoms does not happen ‘‘in parallel’’ at a certain insta
of time but in order: First a dimer forms out ofn single
atoms @combinatorial factorn(n21)/2] and then some o
the remainingn2k atoms (k52,3, . . . ,i ) have to attach one
after another to an intermediate cluster of sizek before this
cluster dissociates~the intermediate cluster is assumed to
much less mobile than single adatoms!. The sequential at-
tachment process yields an additional combinatorial fac
)k52

i (n2k). Clearly, the scaling argument gives only
rough approximation forvn(R) and a more refined treatmen
justifying Eq. ~24! is presented in Appendix A.

Determination ofvn(R) for i 51,2 and variousn in our
simulations confirms the behavior predicted by Eq.~24!, see
Fig. 6. For i 51 the scaling law is only valid for largeR
*100a, because at smallerR, two atoms typically encounte
each other before the delta functions characterizing the in
occupancy smear out to a uniform distribution~for larger i
this effect becomes less important!. Moreover, we findk e
>0.087 for i 51 andke>0.53 for i 52, i.e., the coefficient
ke is constant for fixedi, but changes strongly withi. This
dependence is expected, since we neglected the memor
fect that, whenn atoms, 2<n< i , are already close to eac
other, they keep close together for a while so that the

FIG. 6. Scaled ratevn(R)(a2/D)/)k50
i (n2k) of the encounter

of i 11 atoms out ofn atoms on an island with radiusR and infinite
step-edge barrier. The upper curve with slope (22) refers toi 51
andn52 (h), 3 (s), and 4 (n), and the lower curve with slope
(24) refers toi 52 andn53 (,), 4 (L), and 5 (3).
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counter ofi 11 atoms during this intermediate time becom
more likely. This memory effect is not included in the trea
ment in Appendix A, where after each ‘‘dissociation’’ of a
unstable cluster of sizek< i a configuration is assumed t
emerge, where a cluster of sizek21 is left and the remain-
ing n2k atoms are assumed to be randomly distributed.
cordingly,ke should increase with increasingi as is the case

Equation~24! has been derived for an infinite step-ed
barrier. For finite step-edge barriers, we have to take
account that a state corresponding to an island withn atoms
on top of it has a finite lifetimetn(R) only. This lifetime is
defined by the average time required for thefirst of the n
atoms to escape from the island~if any encounter processe
are neglected!. To a good approximation,tn(R) is the nth
fraction of the lifetime t1(R) of a single atom,tn(R)
.t1(R)/n ~this approximation would become exact, if th
escape were a simple Poisson process!. In the limit of large
a, t1(R) is proportional to the characteristic timeR2/D for
an atom to reach the boundary, while for smalla an atom
typically returns many times to the boundary before escap
from the island. Thus, in the latter limit, the characteris
escape rate~inverse lifetimet1

21) is approximately given by
the product of the probability 2pRa/pR2 for the atom to be
at the boundary and the rateaD/6a2 to overcome the step
edge barrier. Combining these results gives

tn~R!5
1

n

R2

D S k1

a

aR
1k2D , ~25!

wherek1 andk2 are constants. Indeed, an exact solution
the corresponding diffusion problem48 allows one to derive
tn(R) exactly in the continuum limit, as we have shown
Appendix B. In particular, when the escape is approxima
by a Poisson process, one findsk1>1 and k251/2 after
proper renormalization and taking into account the latt
corrections~see Appendix B!. Direct determination oft1(R)
in our simulations confirms this result, see Fig. 7.

Knowing tn(R) we can calculate the probabilitypn(R)
5pn@R(t)# to find exactlyn atoms on top of the island a
time t before onset of second layer nucleation. This

FIG. 7. Lifetimet1(R) of a single atom on an island with radiu
R in units of a2/D for various edge crossing probabilitiesa
5exp(2DES/k BT). The solid lines are drawn according to Eq.~25!
with k151 andk251/2.
s
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achieved by considering the time evolution ofpn(R(t)),
which is described by the master equation

dpn

dt
5pFR~ t !2@~12dn,0!pn212pn#

1F pn11

tn11@R~ t !#
2

pn

tn@R~ t !#G , ~26!

with the initial condition pn(0)5dn,0 . Note that we have
formally introducedp21 and that 1/tn}n so that the last
term on the right-hand side of Eq.~26! does not contribute
for n50. As can be expected and is explicitly shown
Appendix B, the solution of Eq.~27! is the Poisson distribu-
tion

pn~R!5
n̄~R!n

n!
exp@2n̄~R!#, ~27!

where the mean numbern̄(R) of atoms on top of the island
beforeonset of nucleation is

n̄~R!5
2p

A2G i /( i 12)
~11ãR!2wE

0

R

dx x3~11ãx!w.

~28!

Here ã[k2a/k1 and w[2A22G2/(i 12)/k2. An explicit so-
lution after evaluating the integral in Eq.~28! is given in Eq.
~B13! of Appendix B. For fixeda and G, three distinctR
regimes can be identified from Eq.~28!: For wãR!1 we can
use (11ãx)w.1 in Eq. ~28!, while for aR!1 but wãR

@1 we can use (11ãx)w.exp(wãx). For ãR@1, we can
set (11ãR).ãR in Eq. ~28!, and, since the integral overx

is dominated by the upper bound, (11ãx).ãx also. We
thus obtain

n̄~R!;H G2 i /( i 12)R4, R/a!G22/(i 12)a21

G21a21R3, G22/(i 12)a21!R/a!a21

G21R4, a21!R/a.
~29!

The two regimes for largeR correspond to a quasistationa
situation @dpn /dt50 in Eq. ~26!#, where pn(R) from Eq.
~27! equals the stationary distribution forR5R(t) with
n̄(R)5pFR2t1(R). In these regimes the same result~29!
can be obtained also by integratingr1

st from Eq.~10! over the
island area. In fact, we used this connection to renorma
the constantsk1 and k2 in Eq. ~25!, see Appendix B. The
small R regime in Eq.~29! corresponds to a nonstationa
situation, wherepn in general depends on the functionR(t8)
at all times 0<t8<t and not only on its valueR(t) at time
t85t. This fact, however, which also concerns the crosso
value R3;G22/(i 12)a21 to the nonstationary regime, is o
minor importance here, since we consider the generic gro
law ~13! throughout the paper. We thus can useR and t
interchangeably. Note that the crossover from the nonstat
ary to the quasistationary situation occurs whent1(R3)
;Dt(R3), that means in the nonstationary smallR regime
the changes in the radius occur on a faster scale than
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escape of an atom from the island,Dt(R)!t1(R), while in
the two quasistationary largeR regimesDt(R)@t1(R).

Let us now return to the different scenarios discussed
the introductory part of this section. Whenn̄(R)* i 11,
nucleation of a stable cluster can take place at any instan
time. The number of nucleations inDt(R) that result from
states with exactlyn atoms on top of the island is propo
tional to vn(R)Dt(R). The total numbern nuc(R) is the
weighted sum ofvn(R)Dt(R) over n, i.e., we findn nuc(R)
5(n5 i 11

` pn(R)vn(R)Dt(R) @we are allowed to extend th
sum up to infinity due to the sharp decrease of the Pois
distribution forn@n̄(R)]. With Eq. ~23! we thus obtain for
the mean-field nucleation rate

Vmf~R!5 (
n5 i 11

`

pn~R!vn~R!5ke

D

a2 S n̄~R!

pR2
a2D i 11S pR2

a2 D .

~30!

Equation ~30! can be interpreted as resulting from a loc
nucleation rate}Dr1

i 115D@ n̄(R)/pR2# i 11 integrated over
the island area~factorpR2). Compared to the TDT approac
the radial variation of the diffusion profiler15r1(r ) is ne-
glected in the stochastic description, so thatV(R) from Eq.
~11! may be preferred over Eq.~30!.49 However, as will be
discussed further in Sec. IV D below, for largea one should
use the nonstationary solution of Eqs.~8! and ~9! for calcu-
lating V(R) from Eq. ~11! corresponding to the smallR
regime ofn̄(R) in Eq. ~29!.

More importantly, Eq.~30! @or ~11!# can be used only if
n̄(Rc)* i 11 in the relevant time intervalDt(Rc) at the onset
of second layer nucleation. The stochastic description allo
us to treat also the fluctuation dominated case, wh
n̄(Rc)! i 11. In this situationi11 adatoms have to be de
posited and have to encounter each other on the island.
can restrict our consideration to the deposition of exac
i11 atoms, since forn̄(Rc)! i 11, fluctuations correspond
ing to more than i 11 atoms on the island occu
with a probability (n5 i 12

` pn(R),exp(1)pi11(R)n̄(R)/(i12)
!pi11(R). If an atom is deposited on the island already co
taining i atoms, we view this as the start of a nucleation tr
The numberntr(R) of nucleation trials in timeDt(R) is
ntr(R)5pFR2Dt(R)pi(R). For a trial to be successful, th
i 11 atoms on the island right after its start have to encou
each other before any of the atoms escapes by passin
step-edge barrier. The probabilitypenc(R) for this to happen
is

penc~R!512exp@2v i 11~R!t i 11~R!#. ~31!

Accordingly, the total numbernnuc(R) of nucleation events
in time Dt(R) is nownnuc(R)5ntr(R)penc(R), and using Eq.
~23! we obtain for the fluctuation-dominated nucleation ra

Vfl~R!5pFR2pi~R!penc~R!

5pFR2
n̄~R! i

i !
e2n̄(R)$12exp@2v i 11~R!t i 11~R!#%.

~32!
in

of

n

l

s
re

e
y

-
.

er
the

We note that in both formulas~30! and~32! the only param-
eter not knowna priori is the coefficientke, which has to be
taken from simple simulations of the encounter process~see
Fig. 6 and the discussion above!. Hence they do not require
more input parameters than the expression~11! resulting
from the TDT approach.

It remains to clarify, whether the mean-field or th
fluctuation-dominated situation occurs, i.e., whenV mf(R) or
Vfl(R) has to be used as the second layer nucleation r
The answer to this question can be found by self-consiste
requirements: Suppose first that the fluctuation domina
case takes place. Then, using Eq.~32!, one can calculate the
critical radiusRc and check if the conditionn̄(Rc)! i 11 is
fulfilled. In addition the condition v i 11(Rc)Dt(Rc)*1
should be fulfilled too, since the encounter ofi 11 atoms in
the characteristic timev i 11(Rc)

21 should happen beforeRc
changes. If these necessary conditions for the fluctuat
dominated case are obeyed, thenVfl(R) can be used. Other
wise Vmf(R) is employed.

We will now show that the fluctuation-dominated ca
occurs fori 51,2. The detailed analysis is a bit technical a
the reader, who is interested in the main findings only, m
skip the discussion of the various regimes I–IV in the fo
lowing subsection and proceed with the summary of the
sults given right after this discussion.

B. Small critical nuclei „ iÄ1,2…

UsingVfl(R) from Eq. ~32! we can determine the critica
radiusRc ~or, more precisely,Rc8) by calculatingf 0(t) as in
the TDT approach@see Eq.~12!#. However, for discussing
the scaling ofRc with G anda, it is easier to obtainRc from
the condition

Vfl~Rc!Dt~Rc!.1, ~33!

which expresses the fact that the probability of seco
layer nucleation inDt(Rc) becomes of the order of one
Since we consider the fluctuation-dominated case for sm
critical nuclei here (i 51,2), we assumen̄(Rc)!1 and thus
set exp@2n̄(Rc)#.1, when insertingVfl(Rc) from Eq. ~32!
into Eq. ~33!.

Four different regimes are then predicted by Eq.~33!.
Regime I: In the limit a→0 we have n̄(R)

;G2 i /( i 12)R4 and t i 11→`. Hence we obtain from
Eqs. ~22!, ~32!, and ~33! FRc

2G2 i 2/( i 12)Rc
4iF21G2 i /( i 12)Rc

2

;Rc
4(i 11)G2 i ( i 11)/(i 12); const, i.e.,

Rc;G i /[4( i 12)]. ~34!

From Eq.~34! follows n̄(Rc);const, which means that th
assumption of a fluctuation-dominated situation is not nec
sarily justified. In fact, Eq.~34! appears here as the result
a rather lengthy calculation, but in the limita→0, the same
scaling behavior~34! can be obtained very simply by calcu
lating the average time needed for the deposition ofi 11
atoms~see Ref. 16!. Hence, despiten̄(Rc). i 11, Eq. ~34!
gives the correct scaling behavior. However, E

~34! predicts v i 11(Rc)Dt(Rc);DRc
22iF21G2 i /( i 12)Rc

2

;G2( i 22 i 24)/[2(i 12)] and sinceG5D/Fa4@1,50 the inequal-
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8348 PRB 62STEFAN HEINRICHS, JO¨ RG ROTTLER, AND PHILIPP MAASS
ity v i 11(R)Dt(Rc)*1 becomes violated fori>3. For i
>3 therefore, the conditionv i 11(Rc)Dt(Rc);1 should be
used for calculatingRc , and because this yieldsn̄(Rc). i
11, one may alternatively useVmf(Rc)Dt(Rc).1 as the
determining relation~see Sec. IV D!.

Regime II: With increasinga, for i<2, either the nonsta
tionarity conditiont1(Rc)@Dt(Rc) @ n̄(Rc);G2 i /( i 12)Rc

4 in
Eq. ~32!# or the conditionv i 11(Rc)t i 11(Rc)@1 @penc.1 in
Eq. ~32!# breaks down first. TakingRc from Eq. ~34!, the
first condition impliesa!G2( i 18)/[4(i 12)], while the second
implies a!G2 i (2i 21)/[4(i 12)]. Since the first condition is
more restrictive fori<2, regime I ceases to be valid whena
becomes larger thanG2( i 18)/[4(i 12)] and the quasistationar
ity situation is reached. In Eq.~32! we now have to take
n̄(Rc)5pFR2t1(R);G21a21R3 @see Eq.~29!# and it fol-
lows Vfl(Rc)Dt(Rc);a2 iG2 i ( i 13)/(i 12)Rc

3i 14;const, i.e.,

Rc;a i /(3i 14)G i ( i 13)/[( i 12)(3i 14)]. ~35!

Since n̄(Rc);(G2( i 18)/4(i 12)a21)4/(3i 14)!1 the condition
for a fluctuation-dominated situation is fulfilled, and sin
Dt(Rc)@t1(Rc).t i 11(Rc) and v i 11(Rc)t i 11(Rc)@1 the
conditionv i 11(Rc)Dt(Rc)*1 is obeyed too.

Regime III: By further increasing a we obtain
v i 11(Rc)t i 11(Rc)!1 for a@G2 i ( i 13)(2i 21)/[2(i 12)(i 21 i 12)].
Hence we now have to usepenc.v i 11(Rc)t i 11(Rc) when
inserting Eq.~32! into Eq. ~33! and find

Rc;a ( i 11)/(i 15)G i ( i 13)/[( i 12)(i 15)]. ~36!

The condition n̄(Rc);G21a21Rc
3!1 requires a i 21

!G2( i 21 i 25)/(i 12) and is fulfilled for i 51. For i 52, it is
valid for a!G21/4;a/Rc . The second requiremen
v i 11(Rc)Dt(Rc)*1 gives

a i 21!G2( i 312i 224i 25)/[( i 11)(i 12)]

and again is obeyed fori 51 and valid fori 52 as long as
a!G21/4;a/Rc .

Regime IV: In this last regimea becomes larger than
a/Rc , meaning Eq.~36! predicts the regime to occur fora
@G2 i /[2( i 12)]. Taking n̄(Rc);G21Rc

4 from Eq. ~29! and
v i 11(Rc)t i 11(Rc);Rc

22(i 21) from Eqs. ~24! and ~25!, we
find

Rc;G i /[2( i 12)]. ~37!

We usedv i 11(Rc)t i 11(Rc)!1 @penc(Rc)!1# to derive Eq.
~37!, which for i 52 is valid and for i 51 is obeyed
when taking into account the prefactors@for i 51,
v i 11(Rc)t i 11(Rc)5kek2, where k2 is the coefficient de-
fined in Eq. ~25!#. Moreover, Eq. ~37! gives n̄(Rc)
;G ( i 22)/(i 12), which is much smaller than one fori 51. For
i 52, a decision on whether the fluctuation-dominated or
mean-field situation occurs would require a closer inspec
of the prefactors~in the present case we find the mean-fie
description to be the adequate one!. However, since fora
@a/Rc one finds the same scaling~37! in the mean-field
situation~see Sec. IV D!, Eq. ~37! is valid in any case. The
second conditionv i 11(Rc)Dt(Rc)*1 is fulfilled for i 51,
and for i 52 the situation again depends on the prefactor
e
n

In summary we have found that the second layer nuc
ation for i 51,2 occurs due to various mechanisms in fo
distinct regimes I–IV: In regime I (a!G2( i 18)/[4(i 12)]), the
nucleation takes place oncei 11 atoms have been deposite
on the island; in regime II (G2( i 18)/[4(i 12)]!a

!G2 i ( i 13)(2i 21)/[2(i 12)(i 21 i 12)]) the loss of atoms become
important and the nucleation takes place once the probab
for finding i 11 atoms on the island at some time instant
Dt(R) becomes of the order of one; in regime I

(G2 i ( i 13)(2i 21)/[2(i 12)(i 21 i 12)]!a!G2 i /[2( i 12)]) the prob-
ability penc for the encounter ofi 11 atoms during a nucle
ation trial has to be taken into account in addition to t
probability for the occurrence ofi 11 atoms, and in regime
IV ( a@G2 i /[2( i 12)]) both the occurrence and encount
probability matter but these probabilities no longer depe
on the step-edge barrier. For convenient reference, we
vide the exponentsg and m defined in Eq.~15! and their
corresponding ranges of validity in Table I. When compari
the scaling in the fluctuation-dominated situation with th
predicted by Eqs.~16! and ~17! of the TDT approach it is
remarkable that the same behavior is found in regimes
and IV. This coincidence occurs if the encounter probabi
in Vfl is small. Hence from a general viewpoint it seems th
local nucleation rates of form}Dr1

i 11 become~effectively!
applicable for small encounter probabilities~see however
Ref. 51!.

Moreover, we have to note that fori 51 the lower and
upper crossoversa2 anda3 specifying regime III~see table
I! both scale asG21/6. This is due to the fact that whe
v i 11(Rc)t i 11(Rc) becomes less than one, we already obt
a@a/Rc , which is the condition for regime IV. Neverthe
less, due to the pronounced smallR corrections to Eq.~24!
for i 51 ~see Fig. 6! both conditionsv i 11(Rc)t i 11(Rc)!1
anda!a/Rc can be fulfilled in a small transient regime II
However, for i 51 this is no longer a true scaling regim
where a simple power law dependence ofRc on G anda can
be identified. In this respect, the smalla regime of the TDT
approach does not occur fori 51, also not at largerg.

C. Comparison with simulations for iÄ1,2

Taking V fl from Eq. ~32! we can calculatef 0(t) accord-
ing to Eq.~12!. Representative results fori 51 are shown in
Fig. 4 ~solid lines!, and the comparison with the Monte Car
data yields a very good agreement. TheRc values derived
from f 0(t) are plotted as a function ofa for G values in the

TABLE I. Exponentsg and m characterizing the scalingRc

;Ggam in the various regimes I–IV fori 51,2.

Regime Rangea g m

I 0<a!a1 i /4(i 12) 0
II a1!a!a2 i ( i 13)/(i 12)(3i 14) i /(3i 14)
III a2!a!a3 i ( i 13)/(i 12)(i 15) (i 11)/(i 15)
IV a3!a<1 i /2(i 12) 0

aThe crossover values scale asak;G2dk where d1[( i 18)/4(i
12), d2[ i ( i 13)(2i 21)/2(i 12)(i 21 i 12), andd3[ i /2(i 12).
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PRB 62 8349NUCLEATION ON TOP OF ISLANDS IN EPITAXIAL GROWTH
range 105–108 in Fig. 8. Note that, compared to the results
the full island model shown in Fig. 5, the data cover the f
a range from zero to one, since the restrictions imposed
island coalescence in the multi-island model are not pre
in the single-island model~see also the discussion in Sec.
above!. Moreover the simpler single-island model allows o
to explore the behavior for largerG values in the rangeG
5109–1012 also. It is possible to fit theRc curves over the
entire range ofa andG values~see Sec. V B! but we focus
on the scaling behavior ofRc in the following in order to
demonstrate the various scaling regimes associated with
different physical mechanisms of second layer nucleation

Indeed, the simulated data in Fig. 8 confirm the theor
cal predictions. For smalla!a1 ~regime I!, Rc is indepen-
dent of a, while for a@a1;G23/4 ~regime II! we find Rc

;G4/21a1/7. Since Rc(a1);a1
21/9 at the crossover, the

boundary line between regimes I and II has slope (21/9).
The correctness of the scaling ofRc with G in regimes I and
II can be deduced from the offset of the curves for variousG
in Fig. 8 ~alternatively, one can collapse the data onto
common master curve by a proper rescaling as was show
Ref. 16!. Regime II is followed by the transient regime II
and the dashed border line separating regime III from reg
II was determined numerically from the conditio
v2(Rc)t2(Rc).1 by using the results forv2(Rc) and
t2(Rc) displayed in Figs. 6 and 7. Fora@G2 i /[2( i 12)] ~re-
gime IV!, we findRc;G i /[2( i 12)] independent ofa, and the
boundary line between regimes III and IV has slope (21).
Figure 9 depicts the various regions characterizing
mechanism of second layer nucleation fori 51 in ana2G
diagram. VaryingG anda within one of the regions result
in the corresponding behavior ofRc according to Eqs.~34!,
~35!, and~37!. The border line between regions I and II h
slope (24/3), between regions III and IV slope (26), and
the dashed line marks the border line between regions II
III. In addition, we have drawn the transition line from roug
multilayer to smooth layer-by-layer growth into the diagra
In our simulations island coalescence occurs in regime

FIG. 8. Critical island sizeRc as a function ofa obtained from
simulation of the single-island model for eight differentG values
starting from 105 ~h! and ending at 1012 (3). Between these val-
ues,G is increased by a factor of 10. The various regimes I–IV
indicated together with the border line with slope (21/9) between
regimes I and II and the border line with slope (21) between
regimes III and IV. The dashed border line separating the trans
regime III from regime II was calculated numerically from the co
dition v2(Rc)t2(Rc).1 ~see text!.
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~see Fig. 5!, where Rc;G4/21a1/7. The criterion Rc. l
;rx

21/2;G1/6 thus yieldsa* (G);G21/6.
Results forRc obtained from simulations for a critica

nucleus of sizei 52 are shown in Fig. 10. Again the resul
confirm the predictions of the theory. In particular, for lar
G, the exponentsm51/5 in regime II andm53/7 in regime
III can be clearly identified. In contrast to the behavior f
i 51 shown in Fig. 8, regime III develops into a full scalin
regime.

D. Large critical nuclei „ iÐ3…

Analogous to the fluctuation-dominated case treated in
previous subsection we can obtain the scaling ofRc with G
and a from the conditionVmf(Rc)Dt(Rc).1 with Vmf(R)
andDt(Rc) from Eqs.~30! and ~22!, respectively. For criti-
cal island radii belonging to the two quasistationary largeR
regimes in Eq.~29! this gives the same behavior@~16! and
~17!# as predicted by the TDT approach. However, for lar

e

nt

FIG. 9. Various regions characterizing the mechanism of sec
layer nucleation fori 51 in ana2G diagram. The thick dashed line
with slope (26) marks the onset of layer-by-layer growth~the
circles refer to the onset of island coalescence obtained in the
simulation, see Fig. 5!.

FIG. 10. Critical island sizeRc for i 52 obtained from the
single-island model for five differentG values between 105 (h)
and 109 ~L!. Between these values,G is increased by a factor of 10
as in Fig. 5. The scaling regimes I–IV are indicated together w
the respective border lines with slope (21/5) between regimes
and II, slope (21/3) between regime II and III and slope (21)
between regimes III and IV.
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step edge barriers corresponding to the nonstation
small a regime in Eq. ~29! we find Vmf(Rc)Dt(Rc)
;D(G2 i /( i 12)Rc

4) i 11Rc
22i F21G2 i /( i 12)Rc

2;Rc
2(i 13)G2( i 21)

;const, i.e.,

Rc;G ( i 21)/[2(i 13)]. ~38!

With increasinga this scaling breaks down whenRc enters
the quasistationary regime in Eq.~29! that means fora
@G22/(i 12)Rc

21;G2( i 215i 110)/[2(i 12)(i 13)].
For i>3 we thus have in total three distinct regimes I–

with different mechanisms for second layer nucleation:
regime I (a!G2( i 215i 110)/[2(i 12)(i 13)]) the nucleation takes
place once the island radiusR has grown large enough s
that the encounter ofi 11 atoms out of typicallyn̄(R)* i
11 atoms happens in a time comparable toDt(R), in regime
II n̄(R) becomes dependent ona, while in regime III, for
large a@a/Rc , t1(R) no longer depends on the step-ed
barrier andn̄(R) becomes independent ofa again. The over-
all behavior characterized by the scaling exponentsg andm
is summarized in Table II. Computer simulations fori 53
are in accordance with these theoretical predictions, see
11. The predicted scalingRc;a1/2 in regime II is not yet
fully developed for theG values in the range 105–108 but it
can be expected to become more clearly visible for largeG.
However, we could not obtain reliable simulation results
largerG values, since the amount of CPU time for determ

TABLE II. Exponentsg and m characterizing the scalingRc

;Ggam in the various regimes I–III fori>3.

Regime Rangea g m

I 0<a!a1 ( i 21)/2(i 13) 0
II a1!a!a2 i ( i 13)/(i 12)(i 15) (i 11)/(i 15)
III a2!a<1 i /2(i 12) 0

aCrossover values scale asak;G2dk, whered1[( i 215i 110)/2(i
12)(i 13) andd2[ i /2(i 12).

FIG. 11. Critical island sizeRc for i 53 obtained from the
single-island model for four differentG values between 105 (h)
and 108 ~,!. The scaling regimes I–III are indicated together w
the respective border lines with slope (25/17) between regimes
and II and slope (21) between regimes II and III.
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ing the onset of second layer nucleation becomes tremen
due to the increasing number of atoms contributing to
nucleation event.

E. Influence of metastable clusters

To demonstrate how the presence of metastable nu
may be included into the general procedure presented in
IV A, we consider, as in Ref. 17, the simplest case of sec
layer nucleation of a trimer (i 52), when a dimer is meta
stable with characteristic dissociation timet dis. For i 52 we
have to deal with the fluctuation-dominated situation. W
note in passing that this can be true even for largeri when
metastable clusters can form, since their presence tend
drive second layer nucleation into the fluctuation-domina
situation.

In contrast to the discussion leading to Eq.~32! for the
noninteracting particle model, the formation of the stable
mer is not necessarily the rate limiting process. It is poss
that the dissociation timet dis becomes so large that th
nucleation happens effectively instantaneously once
dimer has formed. To decide whether the formation of
stable trimer or metastable dimer is rate limiting, we have
comparep1(R)penc

(2)(R) with p2(R)penc
(3)(R), where penc

(j) (R)
denotes the encounter probability ofj atoms@in Sec. IV A no
superscript~j! was introduced, since onlyj 5 i 11 had to be
considered#. Hence we write

Vfl~R!5H pFR2p2~R!penc
(3)~R!, p1penc

(2)@p2penc
(3)

pFR2p1~R!penc
(2)~R!, p1penc

(2)!p2penc
(3) .

~39!

To calculate the occupation probabilitiespn(R), n<3, we
first need to know the modified lifetimestn8(R) of states with
exactly n atoms on top of the island. Clearly,t18(R)
5t1(R) with t1(R) from Eq. ~25!, since the metastable
dimer has no influence on the lifetime of a single atom. T
characteristic timet28(R), however, will be enlarged in com
parison tot2(R) from Eq. ~25! and can be estimated as fo
lows ~we disregard any prefactors!: As in Ref. 17 we con-
sider the first deposited atom as immobile and the sec
deposited atom as diffusing@this simplifying view does not
affect the scaling properties oft28(R)]. Once the second
atom has been deposited it needs a time of order (R2/D
1t dis) to reach the step edge, since one encounter with
first deposited atom typically takes place during one trave
of the island within timet tr[R2/D.17 At the boundary the
second atom is ‘‘reflected’’ a typical numberM;a21 of
times before leaving the island. Between all reflections,
overall elapsed time is of order (MRa/D1mt dis), where
Ra/D is the typical time for a single atom to return to th
edge andm;(MRa/D)/t tr;a/aR is the typical number of
times the second atom encounters the first atom.17 Summing
up all time contributions we obtain~neglecting the prefactors
belonging to the four individual terms!

t28~R!;~t tr1t dis!1
a

aR
~t tr1t dis!. ~40!

Note that fort dis!t tr5R2/D, t28(R) reduces tot2(R) from
Eq. ~25! ~without prefactors!. To estimatet38(R) we note that
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if the dimer state is the prevalent one,t38(R);t1(R),
whereas, if all three atoms are likely to be separated,t38(R)
;t3(R). Sincet3(R);t1(R), we find t38(R);t1(R) in ei-
ther case. In the strong barrier limita!a/R, in particular,
the first two terms on the righthand side of Eq.~40! can be
neglected, and, sincet1;Ra/Da;t tra/aR, we can simply
write t28;t1(11t dis/t tr), which agrees with the result de
rived in Ref. 17. This finding for strong step-edge barrie
implies that fort dis/t tr@1 the two atoms are effectivel
always in the dimer state andt28;t2t dis/t tr , while for
t dis/t tr!1 they are effectively always separated andt28
;t2.

When inserting the modified lifetimes into Eq.~26! and
neglecting states withn. i 1153 (pn.0 for n.3 until on-
set of nucleation in the fluctuation-dominated situation!, we
can calculate the occupation probabilitiespn(t). In the quasi-
stationary limit@dpn /dt50 but R5R(t)], in particular, we
obtain ~for 0<n< i 1153)

pn5

)
j 51

n

qj

(
j 50

i 11

)
k51

j

qk

, qj[pFR2t j8 . ~41!

To calculate the encounter probabilitiesp enc
(n)(R)51

2exp@2vn8(R)tn8(R)#, n52,3, we furthermore need to know
the modified encounter ratesvn8(R). From Eq.~A6! in Ap-
pendix A we find v285w1 @Eq. ~A6! for i 51] and v38
.w1w2 /v28 @Eq. ~A6! for i 52], wherew1;w2;t tr

21 from
Eq. ~A1! and v285t dis

21 @modification of Eq.~A2!#, i.e., v28
;1/t tr andv38;t dis/t tr

2 .
To discuss Eq.~39! we may now distinguish various case

depending on whether we have to consider~i! the nonstation-
ary or quasistationary situation,~ii ! the strong (a!a/R) or
weak barrier (a@a/R) limit, ~iii ! the formation of the meta
stable dimer or stable trimer as rate limiting,~iv! the encoun-
ter processes to be faster or slower than the escape pro
(vn8tn8!1 or not forn52,3), and~v! t28 to be dominated by
the metastable dimer state (t28;t dis in the weak barrier limit
andt28;t1t dis/t tr in the strong barrier limit! or to be domi-
nated by the state of separated atoms (t28;t2). Rather than
treating all these possible cases@and analyzing their possibl
occurrence for the generic growth law~13! by employing
self-consistency requirements# we only remark that the re
sults obtained by Kruget al.17 are entailed in our description
In this work, certain regimes corresponding to the qua
stationary case in the strong barrier limit are considered
both q1;q3!1 andq1q2!1, where we obtainp1.q1 and
p2.q1q2 from Eq. ~41!. Sincev18t185t1 /t tr;a/aR@1 in
the strong barrier limit, we can always setpenc

(2).1 in Eq.
~39!. The following regimes are then discussed in Ref.
with increasingtdis.

~i! For t dis!t tr
2/t1 we havepenc

(3).v38t38;t dist1 /t tr
2 and

t28;t1, i.e.,p2.q1
2 andp1@p2penc

(3) . Accordingly, we obtain
V fl;(pFR2t1)3t dis/t tr

2 corresponding to Eq.~14! ~regime
I! in Ref. 17.

~ii ! For t tr
2/t1!tdis!t tr , we find p enc

(3) .1 and t28;t1,
i.e., p2.q1

2 and p1@p2penc
(3) as in ~i!, and henceV fl
s

ess

i-
r

7

;(pFR2)3t1
2 corresponding to Eq.~15! ~regime II! in Ref.

17. In the following cases, wheretdis becomes even large
~andt1 , t tr do not change!, we still havepenc

(3).1.
~iii ! For t tr!tdis!t tr /pFR2t1 , t28;t1t dis/t tr , i.e.,

p2;q1q2;(pFR2)2t1
2t dis/t tr . The condition tdis

!t tr /pFR2t1 is equivalent top1@p2penc
(3).p2, and we thus

find Vfl.pFR2p2.(pFR2)3t1
2t dis/t tr corresponding to

Eq. ~16! ~regime III! in Ref. 17.
~iv! For t tr /pFR2t1!tdis finally, p1@p2 and the forma-

tion of the stable trimer is no longer the rate limiting proce
From Eq. ~39! we then obtainVfl.pFR2p1;(pFR2)2t1
corresponding to Eq.~17! ~regime IV! in Ref. 17. As ex-
pected, the scaling behavior ofVfl in this limit reduces to the
casei 51 ~see also the discussion in Sec. V C!.

It is clear that the above analysis is difficult to extend
even more complicated situations. Moreover, due to
growing number of characteristic time scales, we found
increasingly difficult to discern pronounced scaling regim
in practice, see e.g. Fig. 18. We therefore prefer to treat
problem of second layer nucleation in the presence of m
stable clusters within a more general framework outlined
Sec. V.

V. SECOND LAYER NUCLEATION IN GENERAL
SITUATIONS

In a more general approach to the problem of second la
nucleation we distinguish between different individual sta
of the island during its growth with respect to the number
atoms that are on top of the island and the way a giv
number of atoms is decomposed into clusters of vari
sizes. Employing a Poisson approximation, the transit
processes between the states exhibit no~intrinsic! memory
and can be characterized by elementary rates. For the no
teracting particle model these elementary transition rates
the deposition ratepFR2, the rate for the attachments of
single atom to an intermediate cluster of sizek, and the loss
rate of adatoms. The latter is given by the inverse lifetim
t1

21 of a single atom@see Eq.~25!#. Dissociation rates ente
the problem as additional parameters, when the lifetimes
intermediate metastable clusters cannot be neglected.
consequences of such dissociation rates will be discusse
Sec. V C. First, however, we will present the general pro
dure in Sec. V A and show in Sec. V B how the results of t
simplified stochastic description in Sec. IV can be recover
In addition to these previously derived results, it is also d
cussed how the general treatment allows one to gain deta
insight into the dominant microscopic pathways that are f
lowed to form a stable nucleus on top of the island.

A. General procedure

Let us introduce a common notation for the element
transition rates:WF for the deposition rate,Wl for the loss
rate, Wa,j

(n) for the attachment rate for a single atom to
intermediate cluster of sizej if in total n atoms are present o
top of the island@see Eq.~A1! in Appendix A; we formally
include the casej 51], andWd,j for the dissociation rate o
an unstable cluster composed ofj < i atoms~again we do not
distinguish between different cluster configurations for t
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same cluster size, see also the remark in Ref. 26!. According
to the results derived in Sec. IV and Appendix A the tran
tion rates are

WF5pFR2, ~42a!

Wl5
D

R2 S k1

a

aR
1k2D 21

, ~42b!

Wa,j
(n)5ka,j

(n)5
n~n21!

2

2D

pR2
, j 51

~n2 j !
D

pR2
, 2< j <n

~42c!

Wd,j5kd,j

D

a2
expS 2

DEj
dis

kBT D , 2< j < i , ~42d!

whereDEj
dis5Ej

dis2E0 is the dissociation energy of asingle
atom from an unstable cluster of sizej < i . The prefactors
ka,j

(n) andkd,j contain the effective sizes of cluster perimete
on one hand~see the discussion in Appendix A!, and various
corrections involved in the overall approximation sche
~Poisson approximation, cutoffn* introduced below, etc.!;
they are considered to be independent ofD, a, and R. In
principle one should also take into account the possibi
that a subcluster composed of more than one atom can
sociate from an unstable cluster. In fact, it has been arg
that such cluster dissociations are sometimes more likel
occur than the dissociation of single atoms, as e.g., for di
dissociation from a tetramer on a~100! surface by a kind of
‘‘shearing mode.’’52 For simplicity we will take into accoun
only the dissociation of single atoms here, although conc
tually the inclusion of cluster dissociation processes into
general treatment poses no difficulty. Also, we do not c
sider the influence of cluster mobilities. If one would allo
for a small jump rateD j /a2 of a cluster of sizej >2, the
relative diffusion of aj cluster and a single atom would b
larger by a factor 11D j /D and accordingly we had to mul
tiply Wa,j

(n) in Eq. ~42c! by this factor forj >2.
The method is best introduced by an example. To t

end, consider Fig. 12 that illustrates the situation for a cr
cal nucleus of sizei 52. Various states of the island ar
shown, which are distinguished according to the total nu
bern of atoms on top of the island, and the possible confi
rations that can be assumed for a givenn. Between the state
the possible transitions are marked by arrows that are lab
by the corresponding rates. Note that the loss from a s
with n single atoms isn times larger than the loss from th
state with one atom. It is clear that Fig. 12 shows only
small part of the possible states and in principle can be
tended by including larger numbersn. However, as will be
pointed out below, these states with largern do not contrib-
ute much to the onset of second layer nucleation. Moreo
we have not included states containing stable clusters of
j . i 11 and transitions between different states containin
stable nucleus of sizei 11. These are irrelevant for the frac
tion f 0(t) of covered islands at timet.
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We denote bypn,n the probability for the island to be in
state (n,n), wheren refers to the number of atoms on top
the island andn to a specific configuration for a givenn. A
complete description of the stochastic process amount
specifying the set$pn,n(t)% of state probabilities at all times
t. The time evolution of the$pn,n(t)% is described by the
master equation

dpn,n

dt
5 (

n8,n8
@W~n8,n8→n,n! pn8,n8

2W~n,n→n8,n8! pn,n#, ~43!

where for the ratesW(n,n→n8,n8) the appropriate expres
sions from Eq.~42! have to be substituted~see Fig. 12!. Note
that transitions are possible only between a limited num
of states. In the situation considered here, where only sin
atoms can leave the island, we haveW(n,n→n8,n8)50 for
un2n8u>2.

To treat the problem of second layer nucleation un
generic growth conditions one has to solve the set of E
~43! for R5R(t) with R(t) from Eq. ~13! subject to the
initial condition pn,n5dn,0 . To this end it is convenient to
solve Eq.~43! usingR as the independent variable. The i
tegration of the differential Eqs.~43! using standard solver
takes very little CPU time on ordinary workstations, so th
results forf 0(t) andRc(a) can be obtained almost immed
ately. Numerical results are discussed in the following.

B. Negligible lifetimes of unstable clusters

In this subsection we consider the caseDEj
dis50 that was

treated extensively in Sec. IV. The fractionf 0(t) of covered
islands within our more general framework is given by

f 0~ t !5 (
n5 i 11

`

pn,nn
~ t !, ~44!

wherenn is the configuration containing a stable nucleus
a given n ~for example,n353 and n454 in Fig. 12!. In
practice, states corresponding to largen contribute a negli-

FIG. 12. Various states and the corresponding transition r
@see Eq.~42!# involved in the second layer nucleation for a critic
nucleus of sizei 52.
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gible amount up to timestc , so that one needs to consider
finite maximum number of atomsn* only (n* 54 in Fig. 12
turned out to be sufficient!.

Figure 13~a! showsf 0(t) and the probabilitiespn,n(t) ~la-
beled according to Fig. 12! as a function of the coverag
Fa2t for a51024, and G5106. Also shown is the mean
total number

N~ t ![ (
n51

n
*

(
nÞnn

pn,n~ t !n ~45!

of atoms that are not in states possessing a stable nucleu
accordance with the predictions of the simplified stocha
description, this number is less than one up to timetc . Ac-
cordingly, the pathway followed by the system to form
stable nucleus is dominated by fluctuations as discusse
Sec. IV. The important role of the fluctuations can even m
clearly be recognized by looking at the state probabilit
pn,n , nÞnn , and the currents

j 3~ t ![Wa,2
(3)p3,2~ t !, j 4~ t ![Wa,2

(4)p4,2~ t ! ~46!

into the states containing a stable nucleus. As can be
from Fig. 13~a!, only the probabilitiespn,1(t) are significant,
while the other state probabilitiespn,2(t) and p4,3(t) cannot
be discerned on the scale used in Fig. 13~a!. On the other
hand, we find that the currentj 3(t) from the state (n53,n
52) @which has a very small probabilityp3,2(t)] contributes
most to the growth off 0(t), see Fig. 13~b!. The fact that
j 4(t) gives only a subdominant contribution to second la
nucleation, indicates that the incorporation of states withn
>5 will not significantly change the behavior off 0(t).

The results forf 0(t) compare well with the data obtaine
from kinetic Monte Carlo simulations, the quality of agre
ment between theory and simulation being as good as in

FIG. 13. Time development of the fraction of covered islan
f 0(t), the mean number of atomsN(t) in states containing no stabl
nucleus, the occupation probabilitiespn,1 , and the currentsj 3 and
j 4 @see Eq.~46!# for i 52, a51024, and G5106. The maximum
number of atoms isn* 54 corresponding to the diagram shown
Fig. 12. The vertical dotted line marks the coverageFa2tc at the
critical time tc .
. In
ic

in
e
s

en

r

ig.

4. The values of the optimal prefactorska,j
(n) and kd,2 are

listed in Ref. 53. To exemplify the good agreement betwe
theory and simulations, we have replotted in Fig. 14 the cr
cal radiusRc as a function ofa for variousG for i 51,2 from
Figs. 8 and 10. The solid lines referring to the numeri
results give an excellent fit to the Monte Carlo data. Foi
51, only the states withn<2 in Fig. 12 had to be included
to achieve this almost perfect agreement. Fori .2 we expect
that a very large numbern* has to be chosen in order t
obtain a correct description of second layer nucleation wit
the rate equation approach. Diagrams corresponding to
shown in Fig. 12 then become very complicated and
easily tractable from the practical point of view. It is thu
helpful to introduce the ‘‘renormalized’’ encounter ratesvn
defined in Eq.~24! and to consider simplified diagrams a
shown in Fig. 15 fori 53. For a given numbern> i 11 of
atoms on top of the island we have only included two sta
n51,2: One of these refers to a state where alln atoms are
separated (n51), and the other to a state, where exactlyi
11 atoms form a stable nucleus, while the remainingn
2( i 11) atoms are not bound to other atoms in the sa
layer (n52).

Plots of f 0(t), pn,1(t), N(t), and j n(t)[pn,1(t)vn@R(t)#
for i 53 analogous to Fig. 13 are shown in Fig. 16. As e
pected from the discussion in Sec. IV, we now had to ta
into account states withn up to n* 550@ i ( i 11)/256 be-
fore reaching the limit, wheref 0(t) as calculated from Eq
~44! did not change much by incorporation of states w
larger n. Near tc , N(t) is significantly larger thani 1154
@at tc we find N(tc)>10], and the dominant currentsj n(t)
initiating second layer nucleation are those forn
.15, . . . ,20@4, see Fig. 16.

In order to see how the preferred paths for second la
nucleation change with the step crossing probabilitya, we
define the integrated currentj n(t) up to tc by

s

FIG. 14. Comparison of critical island sizesRc obtained from
the rate-equation approach~solid lines! with Monte Carlo data for
critical nuclei i 51,2 and different values ofG ~same symbols as in
Figs. 8 and 10!.
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Jn[E
0

tc
dt jn~ t !5E

0

tc
dt pn,1~ t !vn@R~ t !#, n> i 11.

~47!

This quantity equals the fraction of covered islands at timetc
for which the stable nucleus originates from a state poss
ing exactlyn adatoms. Figure 17 showsJn as a function ofn
for fixed G5108 and variousa. We see that for alla states

FIG. 15. States and corresponding transition rates@see Eqs.~42!
and ~24!# involved in the second layer nucleation for a critic
nucleus of sizei 53 when the lifetimes of unstable clusters a
neglected. Only states corresponding ton<5 atoms on top of the
island are shown.

FIG. 16. Time development of the fraction of covered islan
f 0(t), the mean number of atomsN(t) in states containing no stabl
nucleus, the occupation probabilitiespn,1 , and the currentsj n(t)
5vnpn,1 , n> i 11 for i 53, a51023, andG5108. The maximum
number of atoms included in a diagram of the type shown in Fig
is n* 550. The vertical dotted line marks the coverageFa2tc at the
critical time tc . At tc we find N(tc)>10.
s-

with n@4 dominate the onset of the nucleation. The num
of particles npeak in the state whereJn has a maximum
strongly increases with increasinga. For a51023, the sec-
ond layer nucleation is typically initiated bynpeak.18 ada-
toms on top of the island.

C. Influence of metastable clusters

The general procedure outlined in Sec. V A allows us a
to describe situations, where the binding energies of unst
clusters of sizej < i are not small compared tok BT. To
demonstrate this we again consider the casei 52 and the
corresponding diagram in Fig. 12. The dimer in the interm
diate states possessing no stable nucleus is now consider
be metastable, and we introduce the parameter

b[exp~2DEj
dis/kBT! ~48!

as ‘‘dissociation probability’’ @analogous to the step-edg
crossing probabilitya5exp(2DES/kBT)]. For b51 we re-
cover the noninteracting particle model. From the outset i
clear that second layer nucleation will proceed faster
smallerb, since the state probabilitiesp3,2(t) andp4,2(t) in
Fig. 12 and hence the currentsj 3(t) and j 4(t) defined in Eq.
~46! will become strongly enhanced.

Figure 18 showsRc as a function ofa for fixed G5108

and variousb obtained from Monte Carlo simulations~open
symbols!. As expected, the critical radius decreases with
creasingb. In fact, forb51026 one can regard the dimer a
effectively being stable on the relevant time scaletc , so that
the changes withb correspond to a continuous transitio
from i 52 ~b51! to i 51 (b51026). The comparison with
the numerical solution of Eqs.~43! ~solid lines! yields very
good agreement. To achieve this agreement, we used
sameset of prefactorska,j

(n) , kd,2 as in Fig. 14.53 This high-
lights the power of the rate equation approach to treat sec
layer nucleation in general situations.

VI. SUMMARY AND DISCUSSION

In summary, we have presented a detailed theoretica
vestigation of the nucleation on top of islands in epitax
growth. In the noninteracting particle model, where the li
times of unstable clusters can be neglected, it was possib

s

5

FIG. 17. Integrated nucleation currents up to timetc as a func-
tion of the number of particlesn in the state from which the nucle
ation event took place (i 53).
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tackle the problem within a simplified stochastic descript
based on scaling arguments. An important result for the n
interacting case is that the nucleation for critical nuclei
size i<2 is dominated by fluctuations, while for larger crit
cal nuclei it can be treated in a mean-field type manner~note,
however, that the metastability of clusters tends to incre
the fluctuation-dominated regime!. The second layer nucle
ation rate for both the fluctuation-dominated and mean-fi
situation was derived in compact form@see Eqs.~32! and
~30!#. When metastable clusters can form with apprecia
lifetimes, the simplified description can in principle be e
tended~see Sec. IV E!, but becomes of limited value due t
the fact that many elementary processes get mutu
coupled both sequentially and in parallel. In such situation
is better to employ the more general framework outlined
Sec. V that is based on our derivation for the transition ra
of the elementary processes. Results obtained from both
oretical approaches were shown to agree with Monte C
data.

Throughout the paper, we have used the generic gro
law ~13! for the mean island radius, but it is straightforwa
to treat other growth laws also~as, e.g., an exponential be
havior!, which may be realized by special preparati
techniques.11 Neither the general expressions~30! and ~32!
for the second layer nucleation rates in simple situations
the master Eq.~43! depend on the specific form of th
growth law ~the expressions forn̄, pn , etc. in the quasista
tionary case, however, get modified, see the discussio
Sec. IV A!. Moreover, it is straightforward to rewrite all for
mulas for the case of heteroepitaxy by replacing the ju
rate D/a2 of adatoms on top of the islands by a modifi
jump rateD8/a2.

The theoretical understanding of second layer nuclea
is not only of basic importance but has numerous appl
tions. One of these is the determination of the effective st
edge barrierDES for systems, where the more direct an
simpler method via the measurement of adatom lifetimes
field ion microscopy54 cannot be applied. As pointed out i
Ref. 16, the breakdown of the TDT approach in t
fluctuation-dominated situation calls for a reexamination
some experimental data for estimatingDE S. In fact, such

FIG. 18. Comparison of critical island sizesRc obtained from
the rate-equation approach with results from kinetic Monte Ca
simulations of the one-island model fori 52. Dimers are metastabl
and dissociate with a ratebD/a2 @see Eq.~48!#.
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reexamination has been carried out recently by Kruget al.17

with notable results: By reanalyzing the fraction of cover
islands f (t) measured for Ag/Ag~111! ~Ref. 11! they cor-
rected the previously reported estimateDEs'0.12 eV to
DEs'0.32 eV~they also reported another estimate yieldi
DEs'0.20 eV based on a modified data analysis, see
comment in Ref. 55!. Krug et al. moreover studied the influ
ence of step decoration by CO molecules56 on Rc ~and hence
DE S) for Pt/Pt~111!. They found a strong increase ofDE S
with CO partial pressures, when analyzing the data co
sponding to regime II~for i 51) of the fluctuation-dominated
situation. Hence contamination by CO is expected to fa
multilayer growth.

On the other hand, surfactants may promote smooth la
by-layer growth. For example, the presence of only sm
amounts of Sb for growth of Ag on Ag~111! were shown to
convert rough multilayer to layer-by-layer growth.57,58It was
suggested57 that Sb reducesDES, but, since it was observe
that Sb increases the island density in the first layer,57,7 it is
also possible that the induced layer-by-layer growth res
from a decrease of the mean island distance. Even in
absence of surfactants, a change of theeffectivestep-edge
barrier may go along with a shape transition of the islan
with varying temperature~see Refs. 59–61 and 7, and th
comment in Ref. 23!, and this can induce changes in the fil
morphology as well. With respect to the transition from t
fluctuation-dominated to the mean-field type situation w
varying i predicted in this work, it would also be interestin
to conduct proper experiments for metal epitaxy on~100!
surfaces, where a change fromi 51 to i 53 is often observed
with increasing temperature.

A further application pertaining to the design of se
organized nanostructures is the possibility to create pyra
dal mounds on a substrate, which are called ‘‘wedd
cakes.’’62–64 As suggested by Michelyet al.,65 the sizeL top
of the top terrace of the pyramid should be roughly given
V(L top)'F, where V is the second layer nucleation rat
Recently, an expression for the distribution ofL top has been
suggested within a self-consistent analysis of a model for
dynamics of the top terrace.17 In recent developments o
nanostructure formation also larger clusters of atoms are c
sidered as basic building blocks in epitaxial growth. The u
derlying processes seem to be very similar to the case
deposition of single atoms or simple molecules~for a recent
review, see Ref. 66!, so that it could well be that also fo
cluster deposition an effective step-edge barrier has a d
sive influence on the film topography.

In light of the basic importance and the manifold applic
tions, there is certainly need for further improvement of o
understanding of second layer nucleation. Topics worthy
further study are, in particular, the influence of strain effe
and longer-range interactions between the adatoms. The
ter may be attributed to direct forces~e.g., induced dipole-
dipole forces in the case of magnetic adsorbates!, or they can
be mediated by perturbations of the electron structure of
substrate. By extending the approach presented in this w
these issues may be tackled in the near future.
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APPENDIX A

We want to calculate the characteristic ratevn(R) for an
encounter ofi 11 atoms, if initially n> i 11 atoms are ran-
domly placed on top of an island with radiusR and infinite
step-edge barrier (a50). For this purpose let us consider th
encounter as a sequential process as depicted in Fig. 19~for
i 53 andn55): First a dimer forms, then one of the remai
ing atoms attaches to the dimer and a trimer is created,
so on until a stable cluster composed ofi 11 atoms has been
formed. Denoting the rate for the formation of the dimer
w1, and the rate for the attachment of an atom to an alre
existing cluster composed ofk atoms~‘‘ k cluster’’! by wk ,
we may write

w15
n~n21!

2

2D

a2

b1a2

pR2
, ~A1a!

wk5~n2k!
D

a2

bka
2

pR2
, 2<k< i . ~A1b!

The factorsbk can be viewed as the effective number
perimeter sites of ak cluster. Similarly, we may write for the
rate of dissociationvk of a single atom from ak cluster~in
the case of negligible binding energies of unstable cluste!

vk5dk

D

a2
, k>2, ~A2!

where againdk has the meaning of an effective number
perimeter sites.~In principle one may also take into accou
the possibility that a subcluster composed of more than
atom can dissociate from an unstable cluster and other s
with various intermediate unstable clusters of size 2<k< i .!

The idea now is to renormalize the process depicted
Fig. 19 by replacing it by an effective transition rateweff
between the initial state composed ofn isolated atoms and
the final state containing the stable cluster. Clearly, suc
replacement is only approximately valid. After the replac
ment, the encounter ratevn(R) in Eq. ~24! can be identified
with weff . In order to deriveweff , we consider a stationar
situation, where the probabilityp1 of the initial state is kept
fixed and a constant currentJ flows between neighboring
states containing ak- andk11 cluster. We thus write

FIG. 19. Illustration of the encounter of four atoms out ofn
55 adatoms. The four connected atoms are supposed to fo
stable cluster (i 53). First a dimer forms with a ratew1, then a
trimer with a ratew2, and finally the stable quadrumer with a ra
w3. The sequential process only leads to the formation of a st
cluster, if neither the dimer dissociates with the ratev2 nor the
trimer dissociates with the ratev3.
nd

y

e
tes

in

a
-

J5wkpk2vk11pk11 , 1<k< i 21, ~A3!

wherepk denotes the probability of the state containing ak
cluster. Equations~A3! can be readily solved forpi yielding

J5wipi5w1p1)
k52

i
wk

vk
2J(

k52

i

)
j 5k

i
wj

v j
. ~A4!

On the other hand we have

J5weffp1 . ~A5!

Eliminating J from Eqs.~A4! and ~A5!, we obtain

weff5

w1)
k52

i

wk /vk

11 (
k52

i

)
j 5k

i

wj /v j

. ~A6!

For large radiiR@a, it holds wj /v j!1 so that we can ne
glect the sum overk in the denominator on the right-han
side of Eq.~A6!. Hence we find

vn~R!.weff.keF )
k50

i

~n2k!G D

a2 S a2

pR2D i

, ~A7!

whereke5b1)k52
i bk /dk .

APPENDIX B

In this appendix we first derive the lifetimetn(R) of a
state withn atoms on top of an island with radiusR in the
continuum limit based on the diffusion equation supp
mented by the boundary conditions~9!. This is then used to
show that the probabilitypn@R(t)# to find exactlyn atoms on
the island at timet equals a Poisson distribution~when dis-
regarding any possible nucleation events!. The mean number
n̄@R(t)# of atoms on the island characterizing the Poiss
distribution is given explicitly for the generic growth law
R(t) specified in Eq.~13! and the resulting expression
taken to renormalize ‘‘bare coefficients’’ in the formu
found fortn(R). Finally, we discuss the lattice corrections
the renormalized coefficients to obtain the values fork1 and
k2 given in the text@see the discussion right after Eq.~25!#.

The solution of the diffusion problem34

]r

]t
5DDr, ~B1a!

]r

]r U
r 50

50, F]r

]r
1

a

a
rG

r 5R

50, ~B1b!

where the initial conditionr(r ,t50)51/(pR2) has been de-
rived by Harris:48

r~r ,t !5 (
k51

` cklk
2

2pR2
aR

a

J0S lkr

R D
J0~lk!

expS 2lk
2 D

R2
t D . ~B2!

Here Jn( ) is the Bessel function ofnth order, ck

[4(aR/a)2/$lk
2@lk

21(aR/a)2#% and lk is the kth root
(l1,l2,•••) of

a
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S aR

a D J0~l!5lJ1~l!. ~B3!

The solution~B2! with ~B3! describes the probability densit
for a single diffusing atom that at timet50 is randomly
deposited on top of a circular island with a partially refle
ing boundary. The probability that the atom has not esca
from the island up to timet is C(t)52p*0

Rdr r r(r ,t),
which yields48

C~t!5 (
k51

`

ckexpS 2lk
2 D

R2
t D . ~B4!

Note that, sinceC(0)51, it must hold(k51
` ck51.

The probability that none ofn independent atoms has e
caped from the island up to timet is C(t)n. Accordingly,
the probabilityf(t)dt that thefirst atom leaves the island in
the time interval@t,t1dt# is

f~t!52
dC~t!n

dt
52nC~t!n21

dC~t!

dt

5n
D

R2 (
j 1 , . . . ,j n51

`

cj 1
•••cj n

3l j 1

2 expF2~l j 1

2 1•••1l j n

2 !
D

R2
tG , ~B5!

from which for the average timetn(R)[*0
`dtf(t)t fol-

lows:

tn~R!5n
R2

D (
j 1 ,•••, j n51

`

cj 1
•••cj n

l j 1

2

~l j 1

2 1•••1l j n

2 !2
.

~B6!

It is easy to show thatj 1,k,lk, j 0,k , wherej n,k is thekth
zero of Jn( ). Since j n,k;(k1n/221/4)p for k@n, the
terms in the series of Eq.~B6! rapidly decrease with increas
ing j k , k51, . . . ,n ~note thatcj depends onl j ). The lead-
ing term can be obtained by settingcj5d j ,1 in Eq. ~B4!,
which amounts to a Poisson approximation of the esc
process,C(t).exp(2l1Dt/R2). Within this approximation
we obtain

tn~R!5
1

n

R2

D

1

l1
2

, ~B7!

where l1 follows from Eq. ~B3!. In the limit of small
aR/a!1 one findsl1

2.2aR/a, while in the limit of large
aR/a@1, l1

2. j 0,1
2 . Combining these two limits yields th

interpolation formula

tn~R!.
1

n

R2

D S k1

a

aR
1k2D , ~B8!

with k151/2 andk251/j 0,1
2 >0.173.

Knowing tn(R) we can set up the master equation for t
probabilities pn(t) to find exactly n atoms on top of the
island at timet in the presence of an incoming fluxF, see Eq.
~26!. Introducing the generating functionQ(z,t)
[(n50

` pn(t)zn we obtain from Eq.~26!
-
d

e

]Q

]t
5~z21!FpFR2Q2

1

t1~R!

]Q

]z G , ~B9!

where for the momentR5R(t) is a general growth law, tha
is assumed to be a monotonously increasing function ot

(Ṙ[dR/dt.0). Transforming variables fromt to R and de-
fining Q̃(z,R)[Q@z,t(R)# andz(R)[Ṙ@ t(R)#, wheret(R)
is the inverse function ofR(t), Eq. ~B9! gives

]Q̃

]R
1

z21

t1~R!z~R!

]Q̃

]z
5

pFR2~z21!

z~R!
Q̃. ~B10!

This is a semilinear partial differential equation of first ord
that can be solved by the method of characteristics. For
initial condition Q̃(z,R50)51 we obtain

Q̃~z,R!5exp@2~12z!n̄~R!#, ~B11!

which for pn(R)5pn@R(t)#5@]z
nQ̃(z,R)/n! #z50 yields the

Poisson distribution~27! with

n̄~R!5pF expF2E
0

R du

t1~u!z~u!G E0

Rdu u2

z~u!
expF

2E
0

u du8

t1~u8!z~u8!
G . ~B12!

For the generic growth law Eq.~13! in particular, we ob-
tain

n̄~R!5
2p

A2G i /( i 12)
~11ãR!2wE

0

R

dx x3~11ãx!w

5
2p

A2G i /( i 12)ã4
~11ãR!2wF ~11ãR!w1421

w14

23
~11ãR!w1321

w13
13

~11ãR!w1221

w12

2
~11ãR!w1121

w11
G , ~B13!

where ã5k2a/k1 and w52A22G2/(i 12)/k2. In the quasi-
stationary case@] tQ50 in Eq. ~B9!# one obtains

n̄st~R!5pFR2t1~R!5p
FR4

D S k1

a

aR
1k2D , ~B14!

to which Eq.~B13! simplifies for wãR!1 @see the discus-
sion right after Eq.~28!#.

Alternatively, we can determinen̄st(R) by integrating
r1

st(r ) over the island area, which yields

n̄st~R!52pE
0

R

dr r r1
st~r !5p

FR4

D S 1

2

a

aR
1

1

8D .

~B15!

Hence we can improve the Poisson approximation by ren
malizing the bare coefficientk251/j 0,1

2 .0.173 to k251/8
~note thatk151/2 does not change!.

Finally, in order to obtain the constantsk1 andk2 in Eq.
~25!, one has to take into account the ‘‘lattice corrections
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Let us denote byl the position of a lattice site and bydj the
nearest neighbor bond vectors, i.e., for a triangular lat
dj5(cos@2pj/6#,sin@2pj/6#)a, j 50, . . . ,5. The master
equation describing the diffusion of a single adatoms on
island reads

]w~ l,t !

]t
5

D

6a2 (
j 50

5

@w~ l1dj ,t !2w~ l,t !#, ~B16!

wherew( l,t) is the probability to find the atom at lattice si
l. Equation~B16! is valid as long asl is not a boundary site
In the continuum limit we can write( j 50

5 @w( l1dj ,t)
2w( l,t)#5(1/2)( j 50

5 (dj•“)2w( l,t)1O(a4), which yields
Eq. ~B1a! when D is replaced byDcont5D/4 ~see also the
remark in Ref. 34!. As a consequence, one has to substit
D by Dcont in all continuum equations, in particular in Eq
~B15!, which means that in Eq.~25! ~referring to the lattice
simulations! one should take k154(1/2)52 and k2
54(1/8)51/2.

The value ofk1 is still not correct, since we have no
taken into account the lattice correction to the parametea.
To derive this correction we consider a lattice sitel at the
boundary. For example, one may encounter the situa
sketched in Fig. 20, whered0 andd1 lead to sites outside th
island @where w( l1dj ,t)[0] and the remaining neares
neighbor sitesl1dj , j 52, . . . ,5 are on theisland. The equa-
tion corresponding to Eq.~B16! then reads

FIG. 20. Sketch of the island geometry in the neighborhood o
boundary sitel, from which two jumps in the directionsd1 andd2

lead to an escape from the island over the step-edge barrier.
D

d

.

e

e

e

n

]w~ l,t !

]t
5

aD

6a2 (
j 50

1

@w~ l1dj ,t !2w~ l,t !#

1
D

6a2 (
j 52

5

@w~ l1dj ,t !2w~ l,t !#

52
2aD

6a2
w~ l,t !1

D

6a2 (
j 50

5

@w~ l1dj ,t !2w~ l,t !#

2
D

6a2 (
j 50

1

@w~ l1dj ,t !2w~ l,t !#. ~B17!

In a discretization of the second boundary condition in E
~B1b! on a triangular lattice one has to eliminate the ou
boundary pointsl1d0 and l1d1 via the discretized version
of the ‘‘bulk equation’’ ~B1b!. This amounts to a cancella
tion of the term on the lefthand side and the second term
the righthand side of Eq.~B17! in the continuum limit,
and the replacement ( j 50

1 @w( l1dj ,t)2w( l,t)#

5( j 50
1 (dj•“)w( l,t)1O(a2)→A3a]w/]r . Hence Eq.

~B17! corresponds to the second boundary condition in
~B1b!, whena is replaced bya cont52a/A3 in Eq. ~B1b!.

In general,k nearest neighbor sites of a boundary sitel
can lie outside the island (k51, . . . ,4). Theweights, how
often suchl occur, and the way the normal direction is or
ented with respect to the nearest neighbor bond vectors l
ing to the sites outside the island depend sensitively on
shape of the island edge. Hence, the factor 2/A3 is only an
estimate, which gives an impression on the influence of
lattice correction to the coefficientk1. Our comparison with
the simulation results in Fig. 7 yieldsacont>2a, i.e., k1
>4(1/2)251. We note that in general lattice corrections a
ways have to be included in a continuum description a
the effective Schwoebel barrier~for the lattice! has been cal-
culated from the microscopic barriers~see the comment in
Ref. 23!.
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