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Nucleation on top of islands in epitaxial growth
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We develop a theory for nucleation on top of islands in epitaxial growth based on the derivation of lifetimes
and rates governing individual microscopic processes. These in particular include the encountgratimsf
in a state, where in tot@=] atoms are present on top of the island, and for the lifetime of this state. The latter
depends strongly on the additional step edge banieg for descending atoms. We present two analytical
approaches complemented by kinetic Monte Carlo simulations. In the first approach, we employ a simplified
stochastic description that allows us to derive the nucleation rate on top of islands explicitly, if the dissociation
times of unstable clusters can be neglected. We find that for small critical nuclei ofs&éhe nucleation is
governed by fluctuations, during which by chameel atoms are present on the island. For large critical nuclei
i=3 by contrast, the nucleation process can be described in a mean-field type manner, which faElarge
corresponds to the approach developed by Terebfél. [Phys. Rev. Lett.72, 266 (1994)]. In both the
fluctuation-dominated and the mean-field case, various scaling regimes are identified, where the typical island
size at the onset of nucleation shows a power law in dependence on the adatom diffusion rates, the incoming
atom flux, and the step edge crossing probability expEs/kgT). Although it is possible to extend the
simplified approach to more general situations, its applicability is limited, if dissociation rates of metastable
clusters enter the problem as additional parameters. For such situations the second semianalytical approach
becomes superior. This approach is based on novel rate equations, which can easily be solved numerically.
Both theoretical approaches yield good agreement with Monte Carlo data. Implications for various applications
are pointed out.

[. INTRODUCTION dimensional cluster formation is obtained. The term “second
layer nucleation” should not be taken literally here but rather
A fundamental problem in the theory of thin film growth should apply to the formation of stable nuclei on top of is-
is the question, under which condition flat, two-dimensionallands in general. Nuclei are considered to be stable once their
films form on the substrate surface in contrast to mutuallysize exceeds a critical numbericitoms. As for the equilib-
separated, three-dimensional clusters. For films growing undum structures, it might be possible that cluster formation
der equilibrium conditions, this question was answered mangets in above a certain film thickness, when the relevant pa-
years ago: If the interfacial tension between the substrate amameters governing the nucleation of stable clusters on top of
adsorbate is larger than the difference of the respective suislands(see below depend sensitively on the film thickness.
face free energies, then cluster formation is preferredHowever, despite this similarity of the possible growth pro-
(“Volmer-Weber growth?), while a smaller(or equa) in- cesses with the equilibrium growth modes, it should be noted
terfacial tension leads to the formation of flat filrti8/an that the dynamic problem is very different. In MBE flat films
der Merwe growth’). An intermediate case is the “Stranski- can be produced even if the adsorbate does not wet the
Krastanov growth” modé,where cluster formation sets in substraté.
after the thickness of an initially smooth film exceeds a criti- A theory for second layer nucleation in MBE was set up
cal height. This case may be understood from an interfaciadby Tersoff, Denier van der Gon, and Trorhmhich will be
tension that varies with the film thickness. More recently, thegreferred to as “TDT approach” in the following. Solving the
influence of strain effects on equilibrium film morphologies Stationary diffusion equation in the presence of an incoming
has been investigated by various autHors. flux and employing classical nucleation thedrjhese au-
Films developing in the process of molecular beam epithors succeeded in deriving an explicit expression for the rate
taxy (MBE) are usually not in thermodynamic equilibrium. of nucleation{2(R) on top of circular shaped islands of ra-
Rapid growth of films is achieved by a high supersaturatiordius R. Assuming all island radii to evolve approximately as
of the vapor, and growth kinetics is governed by evaporationthe mean island radiug(t) at timet (this situation will be
diffusion and aggregation processes far from equilibriumreferred to as the “single-island model” in the followihg
Determining the film morphology in this situation is a prob- they calculated the fractiofy(t) of “covered islands”(i.e.,
lem of stochastic dynamicgFor a recent review on both on top of which a stable cluster has nucleatedm Q(R). It
kinetically and thermodynamically induced instabilities in turned out thafy(t) rises from zero to one in the vicinity of
MBE see Ref. 6. During the MBE experiment, two- a “critical time” t., which allows one to define a critical
dimensional islands composed of adsorbate atoms form oisland radiusR.=R(t;) for second layer nucleation. A
the substrate. If these islands coalesce before stable clustexisnple criterion for the occurrence of “rough multilayer” as
nucleate on top of the islands in the second layer, a flabpposed to smooth “layer-by-layer growth” is th&. is
two-dimensional film results. By contrast, if the onset of sec-smaller than the mean distancbetween islands in the first
ond layer nucleation precedes island coalescence, then thrdayer.
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An important factor controlling the film morphology is Based on a simplified stochastic descripti@@e also Ref.
the additional step edge barriexEg=Es—E, (Ehrlich-  16) we will argue that for small critical nuclei=1,2 the
Schwoebel barriéy that has to be surmounted by an adatommean number of atoms on top of the island is smaller than
in addition to the bare surface diffusion barreg, when an  one and the stable nucleus is formed due to fluctuations. This
adatom crosses an island edgeor largerAEs one expects gives rise to four scaling regimes in anl” diagram, where
adatoms to remain longer on islands and therefore to acclr.~I""a* with different exponentsy and . Fori=3 by
mulate more easily, which would lead to an increased seconcdontrast, nucleation starts out from a situation with many
layer nucleation rat€)(R) and a smalleR;. In fact, the atoms present on the island. Under these circumstances, three
theory predicts that, only for sufficiently largeEg, three-  different scaling regimes can be identified, and two of them
dimensional clusters can occur on the substffatean alter-  correspond to the ones predicted by the TDT approach. By
native possibility see, however, Ref.)10Jsing the TDT comparingR. with the mean distanckbetween islands on
approach,AEs was estimated for a variety of different the substrate surface, the transition line separating rough
systemg11° multilayer from smooth layer-by-layer growth is identified in

An alternative approach for treating the problem of secthe «a-I" diagram. When the bond energies of unstable clus-
ond layer nucleation within a stochastic description based oters become appreciable, the corresponding dissociation rates
scaling arguments was developed recently by®us.was enter the problem as additional relevant parameters. It then
shown that fori =1 the TDT approach is not applicable, but becomes difficult to separate scaling regimes in practice, and
the detailed treatment of fluctuations with only two atoms onthe simplified stochastic description becomes of limited
top of the island yields a correct description of the procesyalue. However, by employing the novel rate equation ap-
(see also Ref. 17; for an earlier approach focusing on onproach it is still possible to determinfy(t) and R, in a
dimension see Ref. 18In this work we will extend our simple manner.
former study of second layer nucleation by means of both Moreover, we will discuss how to derive the fraction of
kinetic Monte Carlo simulations and scaling analysis. In par-f(t) of covered islands, when one relaxes the assumption
ticular, we will show that the mean-field assumptions underthat all island radii evolve as the mean radRg). In the
lying the TDT approach are valid for large critical nuclei time regime of almost constant island dengjtgaturation
=3, while for small critical nuclei=1,2 second layer nucle- regime” preceding island coalescefbewe can define an
ation is dominated by fluctuations. Furthermore, we develogffective “capture area” for adatoms by the Voronoi cell for
a novel rate equation approach, which allows one to calcueach island® In order to calculaté(t) for the “multi-island
late the time development of cluster configurations on commodel” from fy(t), one needs to know the probability dis-
pact two-dimensional islands under quite general conditiongribution of islands with a certain size and capture area, when

From the outset, one should distinguish between nuclethe saturation regime is reached.
ation on top of islands with compact shape as opposed to The paper is organized as follows. In Sec. Il we give a
nucleation on islands with strongly ramified shape. In theshort review on basic concepts used in the description of
latter situation, diffusion of adatoms on the islands becomesubmonolayer growth and discuss in Sec. Il A important
a rather complex phenomenon due to the confined motioguantities and equations underlying the physical processes
along branches of various lengtiisWe restrict our discus- involved. In Sec. Il B we summarize the results of the TDT
sion to nucleation on compact islands here. Moreover, iapproach. We then continue with a detailed description of
should be noted that even for compact shapes, the islartie simulation techniques in Sec. lll and test the equivalence
boundaries may have a fractal or, more preciselyof the multi-island and single-island models.
self-affiné® structure (this is the case, e.g., for Eden In Sec. IV a simplified stochastic description of second
clusterél). Then the microscopic step edge bafi@an vary  layer nucleation is first presented in its general methodology
strongly along the island boundary. In any case we will al-and subsequently employed to small and large critical nuclei.
ways understand Eg as an effective barrigisee below and It is instructive to observe the different physical conditions
Ref. 23. that lead to the nucleation event in the two cases. After

Parameters governing the second layer nucleation are ttghowing that the treatment of metastable clusters is rather
incoming atom fluxF, the jump rateD/a? of adatoms, the complicated within the simplified description, we discuss in
step edge barrieAEg, and various dissociation rates of un- Sec. V a general approach for second layer nucleation on the
stable clusters of size<i. If the bond energies of the un- basis of novel rate equations. Section VI concludes the paper
stable clustergi.e., of clusters of size<i) are negligibly with a summary and discussion of the most important results
small, then the nucleation rat®(R) and critical radiusR,  as well as an outlook to further research.
depend only on two dimensionless parameters. These are the

ratio II. BASIC QUANTITIES AND CONCEPTS

D A. Atomistic processes in thin film growth

I'= Eat @) In MBE atoms are deposited on a substrate surface with a
rateFa? per unit cell. At very high temperatures the adatoms
(with a being the lattice spacing in the substrate pJeared  reevaporate but under ordinary conditions this reevaporation
the edge crossing probability can be neglected or effectively taken into account by a re-
duced deposition rate. Once an adatom is deposited, it starts
azexr{ 3 AEs)_ @ 2 thermally activated diffusive motion with jump ral¥a®

kgT xexp(—Ey/kgT). Adatoms come into contact as time
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____________ - posited attach to preexisting stable islands, so hét)
"""""""""""" ) stays constanp,(t) = p,. Within the standard rate equation
o px(t) .
Py | 7 approach, this effect may be accounted for by a proper de-
107 ﬁ : pendence of the.“capt.ure ngmbers” on thg a'datom 'density
p1(t) (for a detailed discussion of this point in relation to
experiments see Ref. RThe scaling op, with I', however,

105 L \ ] is still correct in regimes,
, pxocr—i/(iu)_

L I S

P1(D), P(t)

4

1(;-4 1(;-3 1(‘)-2 1(')-1 One of the most detailed studies of the island size distri-
bution has been performed by Amar and Faffilyased on
the scaling ansatz~*°

Ol

Fa’t

FIG. 1. Densitiesp4(t) andp,(t) of adatoms and stable islands
as obtained in a kinetic Monte Carlo simulation modeling submono- Y(s,t)= 1 X( S )
layer growth(for an analogous figure see, e.g., Ref).ZBhe dif- s (s(t)) *\(s(t))/"
ferent time regimes of low coverade intermediate coveragk . . .
saturationS, and coalescenc@ are indicated. Here Y4(s,t) = ps(t)/ pir(t) is the probability that an island

has sizes; pg(t) is the density of islands with size and

progresses, and form islands that are held together by sonmex(t) is the total island density. - - )= fds- - - Y(s,t) de-
bonding energy. While unstable islands of small sizei ~ notes an average ovewith respect toy ¢(s,t). From Eq.(5)
dissociate, islands with size>i are stablgon all relevant follows (s™)=(s)™[Jdx x"x(x) (as long ags™y<), and
time scales of the experimentAn island of sizes=i is  taking m=0,1 one obtainsfdxy(x)=fdx xx(x)=1. The
called a critical nucleus® mean island size (s(t)) is given by (s(t))

Islands of larger size are formed by aggregation of ada==7_;Sps(t)/pwit) = 0/ pt)@®. In the saturation regime
toms (or small mobile islandsto existing immobile islands, S where the density of islands with subcritical and critical
and by coalescence. These processes lead to an island sgige is small and thug,,=py, it follows from Eq.(4)
distribution which becomes broader with increasing time. In

©)

the submonolayer regime, the most important physical ques- 0 it 2)
tions are the following(i) How large is the density,(t) of (s(t))= 2 or : (6)
stable islands on the substrate surface at tith@) What is Px

the form of the distributiorY ((s,t) of island sizes at time  The relation(s(t))= 6/p,a’=Ft/p, can also be understood
t (with s being the number of atoms forming the islafdii)  more directly, since the increase (@f(t)) with t is given by
What do the stable islands look like? These questions have flux times the mean capture arga’ of adatoms.
been extensively studied in the past, both by experiment and The scaling functiony(x) was suggested to have the
by theory. We will briefly summarize those results, which fgym3?
are relevant for the following analysis.

The typical behavior op,(t) is depicted in Fig. 1. Also x(X)=Cix'exp( —ia;x*) (7
shown is the adatom densipy(t). As suggested by Amar , , , ,
and Family?* one may distinguish between four different IN regimeS This function has a maximum at=1 and the
time regimes: the low-coverage regimiewhere p,(t) in- WO conditions[dxy(x)=/dx xx(x)=1 determine the pa-
creases witht and p,(t)<p(t), the intermediate coverage '@metersC; anda; . Equations(5)—(7) have been shown to
regimel wherep,(t) increases with and p,(t)>p,(t), the 9IVe @ fairly good approximation of some simulations and
saturation regimé (called aggregation regimi in Ref. 24 ~ €Xperiments.

where p,(t) stays approximately constant, and the coales- 1h€ Problem of the island shapes is not yet well
cence regimeC wherep,(t) strongly decreases due to coa- understood, but one may roughly answer the third question

lescence of stable clusters. At high coveragesFa’t, the po;ed _above poncerning the island shape as fo_IIows. For
monomer density,(t) becomes smallsee Fig. 1 and the strictly irreversible attachment, where local relaxation of at-

standard rate equations for submonolayer growtedict oms ql.Je to fast edge diffusion is suppresse_d_, one obta_lins
d yer grow Px dendritic or random fractal structures. Dendritic growth is

to evolve as preferred at lowT or smallF, and a shape transition from
—il(i+2) dendritic to random fractal structures has been found, e.g.,
px(t)oc(—4> (Fa?t)V(i+2)gki/(i+2)kgT for Ag/Pt(111) upon lowering the deposition flu%.An ex-
Fa ample for a random fractal structure obtained in a computer
[ i+2) gUGi+2)E /(i + 2)keT 3) simulation is shown in Fig. ). At high temperatures, edge

diffusion becomes relevant, and polygonal or “irregular”
whereE; is the bonding energy of the critical nucleus in its compact island morphologies devel@see, e.g., Ref. 33An
preferred atomic configuration. example for an irregular structure is shown in Fi¢)2
It should be noted that E@3) is not valid in the saturation As mentioned in the Introduction, for the study of second
regimeS, where the densities of islands with subcritical andlayer nucleation we will focus on compact island shapes.
critical size are very smallunless there are metastable sub-Moreover, second layer nucleation in the intermediate re-
critical nucle). In this regime almost all adatoms being de- gime | is unlikely to occur, since the island radii in this
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FIG. 2. Typical island morphologies as obtained in kinetic

Monte Carlo simulationsa) for strictly irreversible attachment and

(b) for irreversible attachment with local relaxation, in the absence
of preferred growth directions. For the simulation technique of the

local relaxation process see Sec. Il and Fig. 3.

regime are typically smaller than the critical radiRs. We
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current density—Ddp;/or must vanish at the origin and
that at the edge it is given by the density times the “ve-
locity” (rate times lattice spacingDa/a?)a to cross the
step edge barrier. The solution of E¢8) and(9) is

Fr? FR? 2a
S| _ s _ st —

o

. (10

According to standard rate equation theloitye local nucle-
ation rate is proportional t@p'l+l, so we obtain from Eq.

(10) for the total nucleation rat€ (R) on top of the island

D (R2rdr :
o= | T psinat
a“Jo a

47TK1"—(i+1) D /aR i+2 aR i+2
== | — +_ —
(i+2)a?0+2) 21 2a ( 2a 1}
. . D[R)\i*3 2a
—(i+1), ,—(+1)__ ( ___ < —
Akl a 2\ 2a , =
- Aokl ~0FD) D [ R\ 20+2) 2a
T iv2  2\2a) ¥R
(11

therefore consider the second layer nucleation in the saturavherex is a constant.

tion regimeS, where Eqs(4)—(7) apply.

B. TDT approach

In the TDT approach,one starts by calculating the ada-
tom densitypit on a circular island with radiu® in the

For a given time evolution of the island radis= R(t),
one can calculate the probability(t) for a stable nucleus to
have formed on top of the island up to tirmas follows: The
increasefqy(t+At) —fo(t) in a small time intervalAt is
equal to the probability1— f,(t)] that up to timet no stable
nucleus has formed times the probabili}y R(t) JAt that the
nucleation takes place in the time interyajt + At]. Taking

stationary state. The stationary diffusion equation with they o |imit At—0 and solving the corresponding differential

incoming atom flux acting as a source term reads

)

and it is supplemented by the boundary conditidns
= eXp(—AES/kBT)]

ap3
o

_ 9pf

, > N , 9

r=R

r=0

:Epl

where a/a is commonly referred to as the “Schwoebel

equation with the initial conditioriy(0)=0 yields

fo(t)zl—exp[—ftdt' Q[R(t’)]} (12)
0

For compact island growth during a MBE experiment, we
haveR(t)~(s(t))Y? and thus from Eq(6)

RO_A

(FaZt)l/ZI"i/Z(iJrZ), (13)

with A being some constant. Inserting this growth law into

length.”®* The boundary conditions express the fact that theEgs.(11) and(12) yields

21"—i/(i +2)J~R(t)

Ao der(r)lz

fo(t)zl—exr{ —

0

1_

1—

i+5

. . . R 2a
_ —i(i+3)/(i+2),,—(i+1) __ c
exp{ c.r o a << R(D
R 2(i+3) 2a (14)
_ —i(i+3)/(i+2)] __ >
exr{ Cc.T a , o« RO
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where C.=(2"20"DrA?)/[(i+2)(i+3)] and C.
=2""wkA 2. In going from the first to the second line in
(14) we have used that the integral overs dominated by
the upper integration bourf@(t) [for R(t)/a>1]. It follows
that the critical radius scales as

R.~T"7a*, (15
where
_ (i +_3) | a<[20+2)] . .
(i+2)(i+5) FIG. 3. lllustration of the local relaxation process when an ada-
Y= i (16) tom arrives at an island edge.
a>T2G+2)]
2(i+2)’
toms have to encounter each other on nearest neighbor sites
and in order to form a stable nucleus. Within the single-island
i1 model we later will also consider finite binding energies of
(f_), a<I2(i+2)] metastable clusters, which cause various dissociation rates to
u=4 (i+5) 17 enter the problem as additional parameters.
0, a>T2(+2)] Once a stable cluster of size>i has formed, adatoms can

attach to it. Compact island morphologies are known to

R d q : AE R 1AE/ *emerge if a fast diffusion process is present along island

(i°+5)ii_?_?l ihﬁér?grggm:“nbar?iérsﬁc bz)(c%mgs ir?depsen— edges. Here we model this process similar as in earlier ap-

dent of AEs. Fori=1 in particular, one findR.~I'*%* proachesisee, e.g., Refs. 24 and 38y including a local

for a<I'Y6 and R.~T"Y6 for a>T'Y6 relaxa_non mechanism. In this mgthod an atom belng in con-
¢ tact with at least one nearest neighbor after a jump, is imme-

diately transferred to a nearest neighbor site, if it can in-

crease its coordination number. This procedure is repeated

Kinetic Monte Carlo simulations are a well-establisheduntil the atom can no longer increase its local coordination
technique for modeling MBE experimerits.28in our inves-  (see Fig. 3.
tigation of second layer nucleation, we adopt a simulation Interlayer diffusion of atoms deposited onto islands is hin-
scheme similar to previous, successful models of surfacdered by the Ehrlich-Schwoebel barrieEg, which reduces
growth kinetics2”*® We choose a substrate with {¢d1)  the jump rateD/6a® by the edge crossing probability
symmetry, since surfaces of that kind are often studied in=exp(~AEs/kgT).*° For computational convenience, we
metal epitaxy, and commonly exhibit highEs. In a full  model the crossing by a two-step process in the simulation:
simulation scheme of the growth kineticgnulti-island  First, when an atom passes the boundary, it remains in the
mOdeD, we inCIUde a." processes of eVaporation, diﬂ:usion,same |ayer but moves to a p|ace' Where it is Supported by
and aggregation occurring in the MBE experiment. By anagnly two atoms underneath. Then the atom immediately
lyzing t_he set of isla_mds of various siz_es on the s_ubstrate, Werops down to the layer below and moves to the nearest
determine the fractiori(t) of covered islands at time On  «gapje” site according to the local relaxation mechanism
the other hand, we consider, as in the TDT approach, only,.oqced abovefor similar simulations includingAEs,

one island with the mean radii(t) evolving deterministi- see, e.g., Refs. 13 and ¥IWe do not distinguish between

cally in time. The fractionfy(t) of covered islands in this :
single-island model is then determined by calculating the  0>°N9 OfA and B steps and have not attempted to model

o . X any more realistic scenarios, as e.g. collective rearrange-
probability for second layer nucleation up to tirhdrom a ents of atoms including exchanae proced2e This is
large set of independent simulations. By examining botH" Il iustified as | g exch tg [t)d' th . f f
models we are able to quantify the influence of the clustelVe"' Justili€d as long as one 1% interested in the influence o

size distribution under generic growth conditions. an effective Sc_hwoebel barriét. . ) .
In the following, we focus on the case=1 first. Typical

film morphologies resulting from the simulations have been
shown in Fig. 2b). Note that the boundaries of the islands
Atoms are randomly deposited with a ra@? per unit ~ are still rough despite the local relaxation mechanism. The
cell onto a triangular lattice. After instantaneously relaxingfraction f(t) of covered islands as a function of the total
to a position, where they are supported by three nearestoverageFa?t is shown in Fig. 4 for some representative
neighbors in the layer below'downward funneling”), the  parametergfull symbols. As expectedf(t) first is close to
atoms change their position by performing thermally acti-zero, then increases strongly in some time interval around a
vated jumps to a vacant nearest neighbor site in the sam&ritical time” t., and finally saturates at one. In the inset of
layer with a rateD/6a°. Only one atom is allowed to occupy Fig. 4 we show the dependence of the mean island radius
a given lattice site. We first consider a “noninteracting par-R(t)=((s(t))/7)%a on Fa?t during the evaporation. In
ticle model,” where all binding energies of subcritical clus- agreement with Eq:13), we find R(t) = A(Fa?t) Y26 with
ters of sizes<i are neglected. This means that-(1) ada- A=0.78.

Equationg(15)—(17) predict that for large step edge barriers

Ill. KINETIC MONTE CARLO SIMULATIONS

A. Multi-island model
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1 T Fig. 5 terminate at the dashed liag (I"), which marks the
10 F7 Lt'l};" E onset of island coalescence. Fer «, (I'), islands in the
08 - * first layer merge before second layer nucleation takes place
Sl R and R, can no longer be determined from the multi-island
S 06 Sl model. It is important to note that the dependencBobn «
=t . L is much weaker than predicted by the TDT approach: The
= 04 7 solid lines in regime Il have slope 1/7 corresponding to a
power law R.~ ' rather thanR.~ «*® as predicted by
0.2 N Eqgs.(15) and(17). Moreover, regime | does not occur in the
N E—— TDT approach.
0.0 0.1 0.5

Fa2t B. Single-island model

Second layer nucleation can also be addressed in a sim-
bols) of covered island as a function of the total cover&gét for pler model, WhICh does not attiempt to de_sc_:rlbe the entire
i=1, #=10°5, and three differer = 10° (M, (), 1¢° (@, O), and growth.dynamlcs,. bu.t focuses on the decisive factors th_at
10’ (A, A). The dashed lines fittindo(t/1.21) were calculated determlne nucleation in theT presence of the step—edge bgmer.
from the theoretical predictions for the second layer nucleation ratd? this model, the complicated nucleation and diffusion-
Q[R(t)] [Eq. (32)]. The solid lines fittingf (t/1.21) were calculated Mediated growth of the two-dimensional islands, on which

according to Eq.(21) with Y, (0)~o? (see text The inset the second layer nucleation takes place, is replaced by letting
displays the time dependence of the mean island ragi(y  the radius ofonecircular island expand deterministically in

=((s(t))/m) "% [see Eqs(6) and (13)]. time asR(t)/a=A(Fa%t)Y"2(+2) whereA is taken from
the full simulation of the multi-island model.

To be specific, let us define the critical tintg via the The island is embedded in a substrate area large enough to
condition f(t,)=1/2, and the corresponding critical island a_ccommodate the island at all rglevant times. Depositior_1 and
radiusR, by R.=R(t), diffusion of adatoms take place in the same manner as in the
multi-island model. Atoms inside the island boundary can
escape by overcoming the step edge barrier. Those atoms
that have surmounted the barrier or that have been deposited
Plots ofR, as a function ofx for various fixedl' are shown outside the island boundary are removed from the lattice.
in Fig. 5 (full symbols. With increasing step edge barrier, Thus the single-island model considers the deposition of ran-
i.e. decreasingy, adatoms on average remain longer on andom walkers within a time-dependent, circular boundary that
island and nucleation of stable dimers occurs at smaller isis partially reflecting. Due to its greater simplicity, it allows
land radii. Accordingly R, decreases with decreasing(see ~ for more specific analysis with a larger parameter space
regime Il in the figure For very smalla, however, the step (there is no restriction due to coalescence of distinct islands
edge barrier is practically never surmounted and thus is in In the noninteracting particle model, the “critical event”
effect infinitely high. ThereforeR, becomes independent of is to find (i+1) atoms on neighboring lattice sites. Analo-

« (regime | in Fig. 5. The crossover between the two re- gous to the multi-island model we can define the fraction

gimes is marked by the thick solid line. The full symbols in fo(t) of covered islands up to timte The fraction now refers
to a set of islands obtained in independent simulation runs.

All islands in these runs grow with the same deterministic
growth law. Results forfy(t) are shown in Fig. 5open
symbolg for the same parameters as in the multi-island
model. Good agreement wift{t) is achieved for small times
[corresponding td (t)=<1/2], when the time in the single-
island model is rescaled by a constant factor, if¢t)
=fo(t") with t"=1/1.21. The factor is a consequence of the
idealized circular island perimeter in the single-island model.
In the multi-island model by contrast, the islands are far from
being perfectly circular(see Fig. 2 They have rougher
edges with more boundary sites, which causes adatoms to
escape the islands more easily and second layer nucleation to
occur at later time$=1.21".

FIG. 5. Dependence of the critical island radRgon « for i At Iar_ger tlmes[colrrespondlng to‘(t_)z_l/Z], however,
=1 and varioud" = 10° (M, 0), 1¢° (®, O), 10 (A, A), and 18 f(t) deviates fromfy(t') and these dewathns _become more
(¥, V). Full symbols refer to the results from the multi-island Pronounced for largef’. The reason for this discrepancy is
model, while open symbols refer to the results obtained from théhe presence of islands with sizes much smaller t=4t))
Sing|e_is|and mode|RC= ]_1R(’:) The dashed line marks the onset in the multi'island mOde|. Nucleation Of Stable Clusters on
of layer-by-layer growth, and the solid line with negative slope top of these islands occurs at a later time, which cafiégs
marks the crossover between regimes | and Il; the solid lines fittingo be smaller tharfy(t")=f(t/1.21) at larget. In fact, we
the data in regime Il have slope 1/7. will show in Sec. Ill C that this effect can be accounted for

FIG. 4. Fractiond(t) (full symbolg andf,(t/1.21) (open sym-

f(t)=1/2, R.=R(ty)=A(Fa’t)"T"(*2)a  (18)
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by considering the probability distribution of islands with a thans,=wRZ andt., respectively, we use the growth law
certain size and capture area. WHnapproaches the mean s(t)=Fot for an island with capture areain the full simu-
dis;ancel coalescences of larger islands also lead to modifiation. The on-top nucleation probabilitig(t; o) for is-
cations off(t) for t=t.. S lands exhibiting different capture areas can then be related
The crltlc_al radiusR; in the smgle-lsla,nd quel can be by a rescaling of time, i.e.go(t;oy)=0o(ort/os; ).
deflrlwed as in the many island model R¥IZ R(tc), where  vioreover, since for film morphologies far from coalescence
fO(tc)lell,Z' Due to the fact that.=1.21t; we expectRs [ y<a, ()], Y(o.t) is approximately independent of time,
=1.21 _Rcf 1.1R; . Results for 1.R; as a function otx are |, o have fo(t) = Go(t: o), where o=[doY ,(ot)o=py*.
shown in Fig. 5(open symbolsfor the same parameters as o ce
in the multi-island modelfull symbolg. As can be seen
from Figs. 5, there is almost perfect agreement between both _
data sets. Moreover, the data fBf can be obtained also * ~ o
beyond the dashed line marking téhe onset of layer-by-layer f(t)= Jo dorY o(a)Qo(ts0) = Jo dUY‘T(U)fO(;t>'
growth. Let us also note that, as long as one is interested (21
only in R, (or R;.=1.1R}), one may obtain it even more
simply in the single-island modéWithout calculatingfo(t)] In this simplified Eq.(21) knowledge of the nucleation rate
by determining the average radius of the island at the time of)(R) is not necessary arfdt) can be directly obtained from
the nucleation event, fo(t) whenY (o) is known.
- dfy() Writing Y(,(o)zzflh(o/a),_ where  [dx h(x)
Ré:R(té)zf dt m R(t). (19 =fgxh(x)x=1, the transformat|or'1(2.1) pecomes f(t)'
= [odxh(x)fo(xt). For a random distribution of point is-
lands, we would have(x) =exp(—x). However, since there
is a depletion zone of adatoms near an island, the probability
for other islands to nucleate in an area close to an existing
one is reduced and not exponential. For an isolated island,
dimensional analysis predicts the extensipwof the deple-
tion zone to be of order i/F)Y* (alternatively it was
C. Equivalence of the single-island and the multi-island model suggeste‘tf that the linear size of the depletion zone should

In order to determinef(t) from fy(t) we define by scale as the mean island distamcee. £~1). By comparing
(s, a,t)ds do the probability for an island to have a size in € with 1~p, Y2~T"/20+2) petween islands, we expect that
the interval[s,s+ds] and a capture area in the interval h(x) does not exhibit a large regime withh(x)~exp(—x)
[o,0+dco] at timet, where the capture area is given by thefor i=1. We thus are satisfied with a simple power law
Voronoi cell associated with an islafd. ansatzh(x)=Cx? for x<x, , whereC andx, follow from

Let us considefy(t) to be a functional of the growth law the two conditions imposed am(x), and ¢ is a fitting pa-
R(t) only, as it is the case, for example, when one approxi+ameter.
mates the second layer nucleation by a Poisson process with To test this ansatz we takg(t) for I'=10" from Fig. 4
a time dependent nucleation ra@[R(t)]. Then fy(t) (open symbols or dotted linesind compare (t) as calcu-
=Go[R(t)]=1—exp{—[idt' Q[R(")]} [see Eq(12)]. In the lated from Eq.(21) (solid lines in Fig. 4 with the corre-
saturation regime the growth law for an island can be writterspondingf(t) as obtained in the simulatioifull symbols in
as mR%(t)=s, + Fo(t—ty), wheret, is the time when the Fig. 4. As can be seen from Fig. 4, fdf=10° and I
saturation is reache@ee Fig. 1ands, is the island size at =10’ a fairly good account of the differences betweg(t)
that time. (We restrict ourselves to film morphologies far and f(t) can be obtained by choosing=2. However, for
from coalescence here, so that can be regarded as I'=10° the theoretical curve underestimates the fraction of
time independent. With the specified growth law, the covered islands at large timesvhere f(t)=1/2]. Better
functional Go[R(t)] can be expressed by a functiap, agreement between theory and simulation can only be ob-
=go(t;sy ,0,ty), andf(t) is calculated via tained if one would allowy to depend od’. Alternatively,

we have tried an ansatz fbofx) similar to that used by Amar
* * and Family® for the scaling function characterizing the is-
f(t)= fo dsy fo do h(Sx,0,t)90(1iSx 1 0,tx). (200 |ang size distributiodsee Eq.(7)]. This ansatz yields com-
parable results, but is also not successful in accounting for
A detailed investigation of the probability distribution the changes witfi'. We finally have to note, that at the time
¥(s,0,t) is certainly of interest but beyond the scope of thewhen submitting the paper, a more detailed theoretical ac-
present work. A simple idea would be to neglect correlationsount for ¢(s,o,t) was published’ The use of this finding
between the stochastic variables and o, i(s,o,t) in Eq(20) and the comparison of the resultirf@t) with
=Y((s,t)Y,(o,t), and to use previously derived scaling Monte Carlo data will be presented elsewhere.

Note thatdfy(t)/dt is the probability density of the second
layer nucleation times and that the averagdR¢f) with re-
spect todfy(t)/dt is approximately equal td&R(t;), since
dfy(t)/dt is sharply peaked arourtd .

forms for the island size distributioxi4(s,t) (see e.g., Refs. Having shown that the single-island and multi-island
35 and 24 and the capture area distributiaf (o,t) (see, models are essentially equivalent, except for differences be-
e.g., Refs. 29 and 45 tweenf (t) from fy(t) for large times that can be attributed to

Here we will follow a simpler approach. Since for typical the island size distribution, we will focus on the single-island
situations we find botls,, andty to be significantly smaller model in the remaining part of the paper.
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IV. SECOND LAYER NUCLEATION IN SIMPLE 102 e e
SITUATIONS 3 3 E
z 0°F E
In this section we develop a stochastic description of the éo 10* 2
nucleation process based on the scaling approach for second E& 107 L 3
layer nucleation presented in Ref. (e also Ref. )7 The a
procedure focuses on the noninteracting particle model, al- ”3 10°° 3 E
though formally it is possible to extend scaling concepts to @ 10”7 L
situations, where the lifetimes of unstable clusters become g s E 3
important. This was shown by Krugt al1” and is discussed 107 F E
in a more general context in Sec. IV E. The treatment of the 10° € . ]
noninteracting particle model outlined in Sec. IV A already 10! 10 10°
captures the salient features of the problem in terms of life- R/a

times, occupation probabilities, and encounter rates. We will ‘

show that there exist two possible mechanisms for the for- FIG. 6. Scaled rate),(R)(a%/D)/II,_o(n—k) of the encounter
mation of a stable cluster. In the first case, there is typicallyf i +1 atoms out oh atoms on an island with radiuand infinite
no atom on top of the island and a stable cluster is forme@tep-edge barrier. The upper curve with slope2( refers toi =1
due to fluctuations, in which by chander1 atoms are andn=2 (1), 3(0), and 4 ), and the lower curve with slope
present on the island. In the second case by contrast, thefg4) refers toi=2 andn=3 (V), 4 (¢), and 5 (x).

are on average more thar-1 atoms on top of the island yroximate the encounter dynamics by a Poisson process,
during the formation of a stable cluster so that the ”UC|eat'0’i}vherewn(R) denotes the encounter rate of exadtlyl at-
process can be described in a mean-field type manner.  oms. Within the Poisson approximation this rate can be pre-
It turns out that the fluctuation-dominated case takes placgjsely defined as the inverse average timeiferl atoms to
fori<2, while the mean-field situation occurs fiee3. The  encounter each other for the first time, when initiallgtoms

TDT approach corresponds to the mean-field case with thgre randomly distributed on top of the island. A simple scal-
notable supplement that for very large step-edge barriers onfig argument yields

should deal with the time-dependent adatom density,t) _
[solution of Eqs(8) and(9)] to calculate the nucleation rate :
Q(R) from Eqg.(11). In the language of critical phenomena, wn(R)= Ke[ kﬂo (n—k) R?
one may regard=2 as the upper critical size of the critical ,
nucleus above which mean-field theory becomes applicabléhere k. is a constant. The termaf/wR?)'** is propor-
for all o. We have to note that the existence of this uppertional to the probability to find+ 1 atoms on nearest neigh-
critical size was not perceived by us in Ref. 16, and accordbor sites, and the factorm(R?/a?) takes into account that the
ingly, the extension of the scaling arguments for theencounter can occur everywhere on the island. The combi-
fluctuation-dominated situation ic=3 was not allowed. natorial factorll,_,(n—k) is slightly more subtle. At first

In the stochastic formulation presented below we will de-sight, one may think that one should include the number
velop many of the necessary ingredients for the general treagf, ;) of possibilities to choose any+ 1 atoms out of then
ment of second layer nucleation in Sec. V. Moreover, it isatoms, but this is not correct, since the accumulation of
discussed under which conditions mean-field type expres+ 1 atoms does not happen “in parallel” at a certain instant

2 i+1 7TR2
— (29
a

a

a2

sionscDp' ! for local nucleation rates can be used. of time but in order: First a dimer forms out of single
atoms[combinatorial factom(n—1)/2] and then some of
A. General procedure the I’emalnlnm—k atoms ((:2,3, B J) have to attaCh one

. . after another to an intermediate cluster of dizkefore this
In order to determine a second layer nucleation £8(&) | ster dissociateéhe intermediate cluster is assumed to be
we start by considering a time intervat(R), during which ., \ch less mobile than single adatomshe sequential at-

R(t) does not change significantly. For example, for the getachment process yields an additional combinatorial factor
neric growth law(13) we may requireAt(R) to correspond i

fo a 10% change ofR which would give At(R) k=2(n—Kk). Clearly, the scaling argument gives only a
=O.21(R/a;2/[A2ngl“”(‘*2’)], ie. 9 rough approximation fow,(R) and a more refined treatment

justifying Eq. (24) is presented in Appendix A.
Determination ofw,(R) for i=1,2 and various in our
simulations confirms the behavior predicted by Ef), see

The nucleation rat€)(R) is the mean numben, (R) of  Fig. 6. Fori=1 the scaling law is only valid for larg&

At(R)~F i~ V(+2)R2, (22)

nucleation events in timAt(R) divided by At(R), =1008, because at small&, two atoms typically encounter
each other before the delta functions characterizing the initial
Nhud R) occupancy smear out to a uniform distributiffor largeri
Q(R)= At(R) (23)  this effect becomes less importankMoreover, we findx ¢

=0.087 fori=1 and«.=0.53 fori=2, i.e., the coefficient
A nucleation event occurs, if+1 atoms encounter each k. is constant for fixed, but changes strongly with This
other on nearest neighboring sites. dependence is expected, since we neglected the memory ef-
For an island with radiu® and infinite step-edge barrier fect that, whem atoms, 2<n<i, are already close to each
(a=0), and in totaln single atoms on top of it, let us ap- other, they keep close together for a while so that the en-
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achieved by considering the time evolution pf(R(t)),
which is described by the master equation

dp,

W = WFR(t)Z[(l_ 5n,0) Pn-1— pn]

Pnri Pn
T+ [R(D]  m[RO])

with the initial conditionp,(0)=4,,. Note that we have
formally introducedp_, and that 1#,n so that the last
term on the right-hand side of ER6) does not contribute
for n=0. As can be expected and is explicitly shown in
Appendix B, the solution of E¢27) is the Poisson distribu-

+

(26)

7,(R)(D/a%)

tion
FIG. 7. Lifetimer(R) of a single atom on an island with radius
R in units of a?/D for various edge crossing probabilities H(R)” _
=exp(—AEg/k gT). The solid lines are drawn according to E25) pn(R)= o exg —n(R)], (27)

with k=1 andx,=1/2.

where the mean numbeaiR) of atoms on top of the island

counter ofi + 1 atoms during this intermediate time becomespeforeonset of nucleation is
more likely. This memory effect is not included in the treat-
ment in Appendix A, where after each “dissociation” of an - 20
unstable cluster of sizk<i a configuration is assumed to n(R)= 2ri72)
emerge, where a cluster of sike-1 is left and the remain- AT
ing n—k atoms are assumed to be randomly distributed. Ac-
cordingly, k. should increase with increasings is the case. ~ Caa- - -

Equation(24) has been derived for an infinite step-edgeHe.re a?tha/Kll ar_1d <p§2A ZFZ/(Il. Z)ékzé 'A.‘n ?Xpl'c.'t SEO'
barrier. For finite step-edge barriers, we have to take intr%lmon arter eva ugtmgt € m_tegra in EP8) is given in £q.
account that a state corresponding to an island widtoms 51_3) of Appen@x B_’ 'For fixeda andT', trlree distinciR
on top of it has a finite lifetimer,(R) only. This lifetime is ~ €gIMES can be identified from E@8): For paR<1 we can
defined by the average time required for fiivst of the n use (I+ax)®=1 in Eq. (28), while for aR<1 but ¢aR
atoms to escape from the islafiflany encounter processes =1 we can use (};{X)wzexp@'&x)_ For aR>1, we can
are neglected To a good approximations,(R) is thenth oy (11 ZR)=%R in Eq. (28), and, since the integral over

fraction of the lifetime 7(R) of a single atom,r,(R) . . ~ oL~
=711(R)/n (this approximation would become exact, if the ![_:,]udso?t;tn;;ed by the upper bound, {krx)=ax also. We

escape were a simple Poisson progelssthe limit of large
a, (R) is proportional to the characteristic tinR#/D for [-ii+2RA  R/g< - 2i+2),-1

an atom to reach the boundary, while for smallan atom . ’ )

typically returns many times to the boundary before escaping n(R)~3{ I' '™ 'R?, 2024 1<R/a<a !
from the island. Thus, in the latter limit, the characteristic 1R, o l<R/a.

escape rat@nverse lifetimer; 1y is approximately given by (29

the product of the probability 2Ra/ 7R? for the atom to be _ o
at the boundary and the rateD/6a2 to overcome the step- 1 he two regimes for larg® correspond to a quasistationary

edge barrier. Combining these results gives situation[dp,/dt=0 in Eq. (26)], wherep,(R) from Eq.

(27) equals the stationary distribution fdR=R(t) with
n(R)=7FR?7,(R). In these regimes the same res(f8)

(25) can be obtained also by integratip§ from Eq.(10) over the
island area. In fact, we used this connection to renormalize
the constantsc; and «, in Eq. (25), see Appendix B. The

wherek,; and «, are constants. Indeed, an exact solution ofsmall R regime in Eq.(29) corresponds to a nonstationary

the corresponding diffusion probléfnallows one to derive situation, wherep, in general depends on the functigft’)

»(R) exactly in the continuum limit, as we have shown in at all times G<t’<t and not only on its valu®(t) at time

Appendix B. In particular, when the escape is approximated’ =t. This fact, however, which also concerns the crossover

by a Poisson process, one finds=1 and k,=1/2 after valueR,~T""?(724"1 to the nonstationary regime, is of

proper renormalization and taking into account the latticeminor importance here, since we consider the generic growth

correctiongsee Appendix B Direct determination of(R) law (13) throughout the paper. We thus can UReand t

in our simulations confirms this result, see Fig. 7. interchangeably. Note that the crossover from the nonstation-

Knowing 7,(R) we can calculate the probability,(R) ary to the quasistationary situation occurs wherfR)
=p,[R(t)] to find exactlyn atoms on top of the island at ~At(Ry), that means in the nonstationary smilregime
time t before onset of second layer nucleation. This isthe changes in the radius occur on a faster scale than the

~ R ~
(1+aR)*¢f dx 3(1+ax)?.
0
(28)

a

1 R?
n K1aR

W(R)= ==

+K2

3
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escape of an atom from the islanit(R) <7,(R), while in  We note that in both formula80) and(32) the only param-
the two quasistationary large regimesAt(R)> 71(R). eter not knowre priori is the coefficientc,, which has to be
Let us now return to the different scenarios discussed itiaken from simple simulations of the encounter prodesg
the introductory part of this section. Whem(R)=i+1, Fig. 6 and the discussion abgvéience they do not require
nucleation of a stable cluster can take place at any instant gRore input parameters than the expressiaf) resulting
time. The number of nucleations it(R) that result from from the TDT approach. .
states with exactlyr atoms on top of the island is propor- It remains to clarify, whether the mean-field or the
tional to w,(R)At(R). The total numbem ,,{R) is the fluctuation-dominated situation occurs, |.e.,wlﬁg1f(R)l or
weighted sum ofv,(R)At(R) overn, i.e., we findn(R)  2a(R) has to be used as the second layer nucleation rate.
=37 1Pa(R)w(R)AL(R) [we are allowed to extend the The answer to this question can be found by self-consistency
sum up to infinity due to the sharp decrease of the Poissofgduirements: Suppose f|r§t that the fluctuation dominated
distribution forn>n(R)]. With Eq. (23) we thus obtain for c§§e take§ place. Then, u5|.ng E80). or!e- can calc.ulate.the
the mean-field nucleation rate critical radiusR. and check if the conditiom(R.)<<i+1 is
fulfilled. In addition the conditionw; (R;)At(R;)=1
should be fulfilled too, since the encounteriefl atoms in
" the characteristic time; , 1(R,) ~* should happen beforg,
a2 changes. If these necessary conditions for the fluctuation-
(30 dominated case are obeyed, tHep(R) can be used. Other-
wise Q,«(R) is employed.
Equation(30) can be interpreted as resulting from a local  we will now show that the fluctuation-dominated case
nucleation ratex Dp'1“= D[n(R)/wR?]'** integrated over occurs fori=1,2. The detailed analysis is a bit technical and
the island are#factor wR?). Compared to the TDT approach the reader, who is interested in the main findings only, may
the radial variation of the diffusion profile;=p;(r) is ne-  skip the discussion of the various regimes -1V in the fol-
glected in the stochastic description, so thiR) from Eq.  lowing subsection and proceed with the summary of the re-
(11) may be preferred over E¢30).*° However, as will be  sults given right after this discussion.
discussed further in Sec. IV D below, for largeone should
use the nonstationary solution of E¢8) and (9) for calcu- B. Small critical nuclei (i=1,2)
lating Q(R) from Eq. (11) corresponding to the smaR

regime ofn(R) in Eq. (29). radiusR, (or, more preciselyR.) by calculatingf(t) as in
More importantly, Eq(30) [or (11)] can be used only if the TD'IE ap;,)roact[s?ee Eq.(lyRZ%. I—)|/owever, fo% %(is)cussing

n(Rc)=i+1inthe relevant time intervalt(R;) at the onset  the scaling oRR; with I' anda, it is easier to obtailR, from
of second layer nucleation. The stochastic description allowghe condition

us to treat also the fluctuation dominated case, where

n(R.)<<i+1. In this situationi+1 adatoms have to be de- Qp(R)AL(Ry) =1, (33
posited and have to encounter each other on the island. We .

can restrict our consideration to the deposition of exactlyvhich expresses the fact that the probability of second

+1 atoms, since fon(Ry) <1 + 1, fluctuations correspond- &Y% TLATEZE Ty () TR T R Y e for smal
ing to more thani+1 atoms on the island occur

with a probability =7_, . ,ps(R)<exp(Lp.s(RN(RY(i+2) critical nuEIe| here |(=1,2)Z we :?lssume(RC)<l and thus
<pi.4(R). If an atom is deposited on the island already con-S€t exp—n(R;)]=1, when inserting)s(R.) from Eq. (32)
tainingi atoms, we view this as the start of a nucleation trial.nt0 EQ. (33. _ _

The numbern,(R) of nucleation trials in timeAt(R) is Four different regimes are then predicted by E2B).
ny(R) = 7FR2At(R)p;(R). For a trial to be successful, the ~ Regime 1 In the limt «—0 we have n(R)
i+1 atoms on the island right after its start have to encounter-T'"/0*?R* ‘and 7,;—%. Hence we obtain from
each other before any of the atoms escapes by passing tEgs. (22), (32), and (33) FRgr—iZ/(i+2)R‘cliF—lp—i/(i+2)R§
step-edge barrier. The probabilibg,{R) for this to happen R+ -i(+1/(1+2)_ congt, ie.,

is

- D mR?
> Pa(RIon(R) = ke
+1 a

n=i

me( R)

H(R) az)Hl

7R2

Using Q4(R) from Eq.(32) we can determine the critical

RCNFi/[4(i+2)]. (34)

Pend R)=1—ex — w;1(R) 7 1 1(R) 1. (3D) _
From Eq.(34) follows n(R.)~const, which means that the
Accordingly, the total numben, (R) of nucleation events assumption of a fluctuation-dominated situation is not neces-
in time At(R) is nown, {R) =ny(R)pend R), @and using Eq. sarily justified. In fact, Eq(34) appears here as the result of
(23) we obtain for the fluctuation-dominated nucleation ratea rather lengthy calculation, but in the limit— 0, the same
scaling behaviof34) can be obtained very simply by calcu-

Q4(R)=7FR?p;(R)Pend R) lating the average time needed for the depositiori -6fl
TR atoms(see Ref. 1§ Hence, despitei(R,)=i+1, Eq. (34)
— 7ER2 e "Al1—exg — w1 (R) 7 1(R)]}. gives the correct scaling behavior. However, Eg.

i! (34 predicts i+ 1(Re)At(R) ~DR; 2F 1T~ 1/(i+2)R2
(32 ~I ("71=9/20+2)] gnd sincd” = D/Fa*>1 % the inequal-



8348 STEFAN HEINRICHS, JRG ROTTLER, AND PHILIPP MAASS PRB 62

ity wj1(R)At(R.)=1 becomes violated for=3. For i
=3 therefore, the conditiow, ;(R;)At(R;)~1 should be
used for calculatindR;, and because this yields(R;)>i
+1, one may alternatively us@ .+ R;)At(R;)=1 as the
determining relatior{see Sec. IV .

Regime I With increasinga, for i<2, either the nonsta-
tionarity conditionr;(R.)>At(R,) [n(R)~T ~/(+2R% in
Eq. (32)] or the conditionw; . 1(R.) 7+ 1(Re)>1 [Penc=1 in
Eqg. (32)] breaks down first. Takindr; from Eq. (34), the
first condition impliesa<<I"~ (0 +8)/14(+2)] "\while the second
implies a<I'~'@-D/M40+2)]  gince the first condition is
more restrictive foi <2, regime | ceases to be valid when
becomes larger thahi~( *8)/[4(+2)] and the quasistationar-
ity situation is reached. In Eq32) we now have to take
n(R.) = mFR?*r1(R)~T o 'R [see Eq.(29)] and it fol-
lows Qq(R)At(Ry)~a T 1+ +2R3I*4_congt, iLe.,

Re~ oG OPi+3)/1(+2)@+4)] (35

Since n(Ry) ~ (I~ (1+8)/40+2)4 148+ 9<1 the condition

TABLE I. Exponentsy and p characterizing the scaling,
~I'?a* in the various regimes |-V for=1,2.

Regime Rang@ y “w

I O=sa<a, i/4(i+2) 0

Il a<a<<a, i(i+3)/(i+2)(3i+4) i/(3i+4)
1] ar<a<<az i(i+3)/(i+2)(i+5) (+1)/(+5)
IV az<a<l i12(i+2) 0

@The crossover values scale ag~1" % where ;= (i+8)/4(
+2), 6,=i(i+3)(2i—1)/2(i+2)(i?+i+2), ands;=i/2(i +2).

In summary we have found that the second layer nucle-
ation fori=1,2 occurs due to various mechanisms in four
distinct regimes I-1V: In regime |g<I"~( #8)/[4(+2)]y the
nucleation takes place once 1 atoms have been deposited
on the island; in regime I I (+8/4(+2l<y
<[ +3)@-D/2+2)(*+1+2)]) the |oss of atoms becomes
important and the nucleation takes place once the probability

for a fluctuation-dominated situation is fulfilled, and sincefor findingi+1 atoms on the island at some time instant in

At(Re)>71(Re) =71 1(Re) and ;4 1(Re) 7i+1(Rc)>1 the
condition w;; 1(R.)At(R;)=1 is obeyed too.

Regime Il By further increasing « we obtain
i+ 1(Ro) 71+ 1(Re) <1 for a>r—i(i+3)(2i—1)/[2(i+2)(i2+i+2)]_
Hence we now have to use,,= w;.1(R.) 7+ 1(R:) when
inserting Eq.(32) into Eq. (33) and find

R~ i+ DI(+8) il +3)/1(+2)i+5)], (36)

The conditon n(R)~T 'a 'R3<1 requires o' ~?
<~ (*+1-9)0+2) and s fulfilled fori=1. Fori=2, it is
valid for a<I'"Y~a/R,. The second requirement
o+ 1(R)AL(R)=1 gives

o —1<1~—(i3+2i2—4i—5)/[(i +1)(i+2)]

and again is obeyed far=1 and valid fori=2 as long as
a<IY4~alR,.

Regime IV In this last regimea becomes larger than
a/R., meaning Eq(36) predicts the regime to occur far
>~ 20+21 Taking n(R,)~T "*R? from Eq. (29) and
wi+1(Re) 7i+1(R)~R: 207 from Eqgs.(24) and (25), we
find

R~ [1/12(+2)], (37)

We usedw; ; 1(R:) i+ 1(R) €1 [ pend Re) €1] to derive Eq.
(37), which for i=2 is valid and fori=1 is obeyed
when taking into account the prefactordor i=1,
i+ 1(Re) i +1(R.) = kek2, Where k5, is the coefficient de-
fined in Eq. (25]. Moreover, Eg. (37) gives n(R.)
~T=2/0+2) ‘\which is much smaller than one fo= 1. For

At(R) becomes of the order of one; in regime Il
(F—i(i+3)(2i—1)/[2(i+2)(i2+i+2)]<a<l-—i/[2(i+2)]) the prob-
ability penc for the encounter of+1 atoms during a nucle-
ation trial has to be taken into account in addition to the
probability for the occurrence af+1 atoms, and in regime
IV (a>T""20+2)l) poth the occurrence and encounter
probability matter but these probabilities no longer depend
on the step-edge barrier. For convenient reference, we pro-
vide the exponenty and u defined in Eq.(15) and their
corresponding ranges of validity in Table I. When comparing
the scaling in the fluctuation-dominated situation with that
predicted by Eqs(16) and (17) of the TDT approach it is
remarkable that the same behavior is found in regimes Il
and IV. This coincidence occurs if the encounter probability
in Q4 is small. Hence from a general viewpoint it seems that
local nucleation rates of formDp' ™! become(effectively)
applicable for small encounter probabiliti€ésee however
Ref. 5J.

Moreover, we have to note that for=1 the lower and
upper crossovera, and a specifying regime lll(see table
I) both scale ad”~ %6, This is due to the fact that when
wi+1(Re) 7i +1(R;) becomes less than one, we already obtain
a>alR., which is the condition for regime IV. Neverthe-
less, due to the pronounced smRlcorrections to Eq(24)
for i=1 (see Fig. 6 both conditionsw; , 1(R.) 7+ 1(R¢) <1
and e<<a/R. can be fulfilled in a small transient regime IIl.
However, fori=1 this is no longer a true scaling regime,
where a simple power law dependencdigfonT” anda can
be identified. In this respect, the smallregime of the TDT
approach does not occur for 1, also not at largey.

i =2, a decision on whether the fluctuation-dominated or the

mean-field situation occurs would require a closer inspection
of the prefactorgin the present case we find the mean-field

description to be the adequate @nkElowever, since forx
>al/R. one finds the same scalin@7) in the mean-field
situation(see Sec. IV I, Eq. (37) is valid in any case. The
second conditionw; , 1(R.)At(R.)=1 is fulfilled for i=1,

C. Comparison with simulations for i=1,2

Taking Q 4 from Eq.(32) we can calculaté(t) accord-
ing to Eq.(12). Representative results for=1 are shown in
Fig. 4 (solid lineg, and the comparison with the Monte Carlo
data yields a very good agreement. TRRg values derived

and fori =2 the situation again depends on the prefactors. from fy(t) are plotted as a function af for I' values in the
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FIG. 8. Critical island sizér, as a function ofx obtained from

simulation of the single-island model for eight differentvalues FIG. 9. Various regions characterizing the mechanism of second
starting from 16 (D)) and ending at 16 (x). Between these val- |ayer nucleation for=1 in ana—I" diagram. The thick dashed line
ues,I' is increased by a factor of 10. The various regimes I-IV are;ip slope (—6) marks the onset of layer-by-layer growtthe

indicated together with the border line with slope 1/9) between  circles refer to the onset of island coalescence obtained in the full
regimes | and Il and the border line with slope-1) between  gimylation, see Fig.)5

regimes Il and IV. The dashed border line separating the transient
regime Il from regime Il was calculated numerically from the con- (see Fig. 5 where RC~F4’21011’7. The criterion R.=|

dition w,(R;) 2(R.) =1 (see text N P; 1/2__ F1/6 thus yi6|dSa* (F) ~T~ 1/6.

range 1610 in Fig. 8. Note that, compared to the results of Results forR. obtained from simulations for a critical
the full island model shown in Fig. 5, the data cover the fullnucleus of sizé =2 are shown in Fig. 10. Again the results
o range from zero to one, since the restrictions imposed by©nfirm the predictions of the theory. In particular, for large
island coalescence in the multi-island model are not presert: the exponentg=1/5 in regime Il andu=3/7 in regime

in the single-island modekee also the discussion in Sec. 111 Il can be clearly identified. In contrast to the behavior for
above. Moreover the simpler single-island model allows one! =1 shown in Fig. 8, regime Il develops into a full scaling

to explore the behavior for largdt values in the rangd  '€gime.

=10°-10 also. It is possible to fit th&®, curves over the N o

entire range ofr andT" values(see Sec. V Bbut we focus D. Large critical nuclei (i=3)

on the scaling behavior d®; in the following in order to Analogous to the fluctuation-dominated case treated in the

demonstrate the various scaling regimes associated with ”}ﬂevious subsection we can obtain the scalindRpfwvith T
different physical mechanisms_of second Iayer nucleation._anda from the conditionQ,((R)At(R.)=1 with Q«(R)
Indee-d,.the simulated data in F|g. 8 conﬂrm f[he theoretiyng At(R,) from Egs.(30) and(22), respectively. For criti-
cal predictions. For smalk<a; (regime ), R; is indepen-  c¢g| island radii belonging to the two quasistationary laRye
dent of a, while for a>a;~T'"3* (regime I) we findR.  regimes in Eq(29) this gives the same behavifiL6) and
~T42M7Since Ry(a;)~a;° at the crossover, the (17)]as predicted by the TDT approach. However, for large
boundary line between regimes | and Il has slop€l(9).
The correctness of the scaling Rf with T" in regimes | and S B BN BRI SR
[l can be deduced from the offset of the curves for varibus 100 o’
in Fig. 8 (alternatively, one can collapse the data onto a
common master curve by a proper rescaling as was shown in
Ref. 16. Regime Il is followed by the transient regime I,

B>
>
4
34
-4
1 |;||||||

and the dashed border line separating regime Ill from regime io | 0 °°°]

I was determined numerically from the condition R Lgoot
w2(R;) 72(R;)=1 by using the results forw,(R.) and 10 = v v ™= .
m(R.) displayed in Figs. 6 and 7. Fars>T ~"2(+2)] (re- Fose et PN > i
gime 1V), we find R,~T""[2(+2)l independent ofr, and the o LRSS CLE i=2 1
boundary line between regimes Il and IV has slopel(). Cl vl el il il
Figure 9 depicts the various regions characterizing the 1077 107° 10* 107 102 10! 10°
mechanism of second layer nucleation ferl in ana—1TI" oi=exp[-AE /kyT]

diagram. Varyingl" and « within one of the regions results $B

in the corresponding behavior & according to Eqs(34), FIG. 10. Critical island sizeR, for i=2 obtained from the

(35), and(37). The border line between regions | and Il has gingle-island model for five differerif values between £0(01)

slope (—4/3), between regions Ill and IV slope-@), and  and 16 (¢). Between these value, is increased by a factor of 10
the dashed line marks the border line between regions Il angs in Fig. 5. The scaling regimes I-IV are indicated together with

[1l. In addition, we have drawn the transition line from rough the respective border lines with slope-{/5) between regimes |
multilayer to smooth layer-by-layer growth into the diagram.and Il, slope ¢1/3) between regime Il and Ill and slope-()
In our simulations island coalescence occurs in regime Ibetween regimes Ill and IV.
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TABLE Il. Exponentsy and u characterizing the scaling; ing the onset of second layer nucleation becomes tremendous
~I""a* in the various regimes |-l for=3. due to the increasing number of atoms contributing to the
nucleation event.

Regime Rang@ % n

| O<a<a; (i—1)/2(i +3) 0 E. Influence of metastable clusters

I am<a<ap i(i+3)/(i+2)(i+5) (i+1)/(i+5) To demonstrate how the presence of metastable nuclei
i a<as<l i12(i+2) 0 may be included into the general procedure presented in Sec.

IV A, we consider, as in Ref. 17, the simplest case of second
layer nucleation of a trimeri&2), when a dimer is meta-
stable with characteristic dissociation timgs. Fori=2 we
have to deal with the fluctuation-dominated situation. We
step edge barriers corresponding to the nonstationaryote in passing that this can be true even for laigehen
small @ regime in Eq. (29 we find Q. (R)At(R;) metastable clusters can form, since their presence tends to
~D(I+2ARYIHIR-Z E-1p - +2RZ_R2I+3)P=(-1)  grive second layer nucleation into the fluctuation-dominated
~const, i.e., situation.

In contrast to the discussion leading to Eg§2) for the
noninteracting particle model, the formation of the stable tri-
mer is not necessarily the rate limiting process. It is possible
that the dissociation timer 4 becomes so large that the
With increasinga this scaling breaks down wheR, enters  nucleation happens effectively instantaneously once the
the quasistationary regime in E@9) that means fora dimer has formed. To decide whether the formation of the
>1—~72/(i+2)Rcfl~1-7(i2+5i+10)/[2(i+2)(i+3)]' stable trimer or n;etastable dimer issrate limiting, we have to

Fori=3 we thus have in total three distinct regimes 1111 €0mpareps(R) PER) with DZ(R)_pfen)c(R)’ ‘where pOdR)
with different mechanisms for second layer nucleation: Indenotes the encounter probabilityjaftoms{in Sec. IV A no
regime | (a<1“‘(i2+5‘+1°)’[2(i+2)(‘+3)]) the nucleation takes supe'rjcnpt(J)Hwas mtrodug{ed, since only=i+1 had to be
place once the island radi® has grown large enough so consideredl Hence we write
that the encounter <_jf+ 1 atoms out of typicall_yn(R)_zi 7FRZp,(RIPA(R),  pip@sp,pl.
+1 atoms happens in a time comparabl@tgR), in regime Q4(R)= 5 @ @) 3)

Il n(R) becomes dependent an while in regime Ill, for TERTP1(R)PeidR). - P1Penc<P2Penc:

large a>al/R;, 7(R) no longer depends on the step-edge

barrier andh(R) becomes independent afagain. The over- To calculate the occupation probabilitipg(R), n<3, we

all behavior characterized by the scaling exponentdu  first need to know the modified lifetimes(R) of states with

is ngmarized in Table Il. Compute_r Simula.tio_ns for3 .exacﬂy n atoms on top of the island. C|ear|yz-i(R)

are in accordance with these theoretical predictions, see Fig. 7, (R) with ,(R) from Eg. (25), since the metastable
11. The predicted scaling®.~«"? in regime Il is not yet  gimer has no influence on the lifetime of a single atom. The
fully developed for the values in the range 261C° butit  characteristic time5(R), however, will be enlarged in com-
can be expected to become more clearl_y V|S|b_le for lafger parison tor,(R) from Eq. (25) and can be estimated as fol-
However, we coqld not obtain reliable S|mglat|on results forlows (we disregard any prefactorsAs in Ref. 17 we con-
larger!” values, since the amount of CPU time for determin-giger the first deposited atom as immobile and the second
deposited atom as diffusinighis simplifying view does not

4Crossover values scale ag~1I"~%, where §;=(i?+ 5i + 10)/2(i
+2)(i+3) ands,=i/2(i +2).

R~ (i~ D/26+3)] (39)

affect the scaling properties of;(R)]. Once the second
I Jvv 7T atom has been deposited it needs a time of ordRy/)
100 oo Laa 8 a + 749 to reach the step edge, since one encounter with the
r ~a m first deposited atom typically takes place during one traversal
= C / N VPR RS of the island within timer ,=R?/D.}" At the boundary the
2 i AN | G oo second atom is “reflected” a typical numbéi~ a1 of
DEOEE : Laax_ 0% e’ 1 times before leaving the island. Between all reflections, the
10 booodoosacoo™N_5" J overall elapsed time is of ordeMRa/D+mrgg), Where
fooooooooonoolf 3 Ra/D is the typical time for a single atom to return to the
r i=3 edge andn~(MRa/D)/r,~alaR is the typical number of
sl vl v cevd el times the second atom encounters the first dtbBumming
10°° 107 10* 102 1072 107! 10° up all time contributions we obtaimeglecting the prefactors
o=exp[-AE/kpT] belonging to the four individual terms
FIG. 11. Critical island sizeR, for i=3 obtained from the / a
single-island model for four diffe?erﬁ values between £0(0) 72(R) = (7 7aig) ﬁ(ﬁﬁ 7 di)- (40
and 1§ (V). The scaling regimes I-lIl are indicated together with

the respective border lines with slope 6/17) between regimes | Note that forr ys< 7, =R?/D, 75(R) reduces tar,(R) from
and Il and slope € 1) between regimes Il and IlI. Eqg. (25) (without prefactors To estimater;(R) we note that
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if the dimer state is the prevalent oney(R)~ 7 (R),
whereas, if all three atoms are likely to be separatg(iR)
~713(R). Sincer;3(R)~ 7,(R), we find 73(R) ~ 7(R) in ei-
ther case. In the strong barrier limit<a/R, in particular,
the first two terms on the righthand side of E40) can be
neglected, and, since ~Ra/Da~ r,a/aR, we can simply

write 75~ 7, (1+ 74/ Ty), Which agrees with the result de-

NUCLEATION ON TOP OF ISLANDS IN EPITAXIAL GROWTH
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~(7mFR?)%77 corresponding to Eq(15) (regime 1)) in Ref.
17. In the following cases, where;s becomes even larger
(and 7, 7, do not changg we still havepé,?gzl.

(i) For 7,<7qs<7y/mFR?7y, 7y~ T17gisl Ty, 1.€.,
Po~010,~ (7FR?)273574s/ 7.  The  condition 7
<74/ 7FR?r, is equivalent tq;> p,pd=p,, and we thus
find Qq=7FR?p,=(7FR?)3757 4/ 7, corresponding to

rived in Ref. 17. This finding for strong step-edge barriersgq. (16) (regime Ill) in Ref. 17.

implies that for74s/7,>1 the two atoms are effectively
always in the dimer state and,~ 7,7 gs/ 7y, While for
T4is/ Te<<1 they are effectively always separated angd
~To.

When inserting the modified lifetimes into E(R6) and
neglecting states with>i+1=3 (p,=0 for n>3 until on-
set of nucleation in the fluctuation-dominated situakjome
can calculate the occupation probabilitiggt). In the quasi-
stationary limit[dp,/dt=0 butR=R(t)], in particular, we
obtain (for Osn<i+1=3)

(41)

To calculate the encounter probabilitigs{"(R)=1
—exg —w\(R7(R)], n=2,3, we furthermore need to know
the modified encounter rates,(R). From Eq.(A6) in Ap-
pendix A we find w,=w, [Eq. (A6) for i=1] and w;
=w;W, /v [Eq. (AB) for i=2], wherew;~w,~ 7, * from
Eq. (A1) andv,= 74 [modification of Eq.(A2)], i.e., w}
~ 1z, and wz~ 7 gis/ 75, -

(iv) For o/ mFR?7, < 74 finally, p;>p, and the forma-
tion of the stable trimer is no longer the rate limiting process.
From Eqg.(39) we then obtainQq=7FR?p,~(7wFR?)?7,
corresponding to Eq(l7) (regime IV) in Ref. 17. As ex-
pected, the scaling behavior 8f; in this limit reduces to the
casei =1 (see also the discussion in Sec. . C

It is clear that the above analysis is difficult to extend to
even more complicated situations. Moreover, due to the
growing number of characteristic time scales, we found it
increasingly difficult to discern pronounced scaling regimes
in practice, see e.g. Fig. 18. We therefore prefer to treat the
problem of second layer nucleation in the presence of meta-
stable clusters within a more general framework outlined in
Sec. V.

V. SECOND LAYER NUCLEATION IN GENERAL
SITUATIONS

In a more general approach to the problem of second layer
nucleation we distinguish between different individual states
of the island during its growth with respect to the number of
atoms that are on top of the island and the way a given
number of atoms is decomposed into clusters of various
sizes. Employing a Poisson approximation, the transition

To discuss Eq(39) we may now distinguish various cases processes between the states exhibit(intrinsic) memory

depending on whether we have to consi@gthe nonstation-
ary or quasistationary situatiofij) the strong ¢<<a/R) or

weak barrier ¢=a/R) limit, (iii) the formation of the meta-
stable dimer or stable trimer as rate limitirity;,) the encoun-

and can be characterized by elementary rates. For the nonin-
teracting particle model these elementary transition rates are
the deposition raterFR?, the rate for the attachments of a
single atom to an intermediate cluster of skzend the loss

ter processes to be faster or slower than the escape procdgée of adatoms. The latter is given by the inverse lifetime

(w,77<1 or not forn=2,3), and(v) 7, to be dominated by
the metastable dimer states(- 7 4 in the weak barrier limit
and 75~ 717 gis/ T in the strong barrier limjtor to be domi-
nated by the state of separated atoms~(7,). Rather than
treating all these possible cagesid analyzing their possible
occurrence for the generic growth la&3) by employing
self-consistency requiremeiitae only remark that the re-
sults obtained by Krugt al” are entailed in our description.

In this work, certain regimes corresponding to the quasi
stationary case in the strong barrier limit are considered fo

both g;~q3;<1 andq;g,<1, where we obtaip;=q; and
p,=0:.0, from Eq. (41). Sincew;7;=7,/1y~alaR>1 in
the strong barrier limit, we can always ,fgzl in Eq.

T[l of a single atonjsee Eq(25)]. Dissociation rates enter
the problem as additional parameters, when the lifetimes of
intermediate metastable clusters cannot be neglected. The
consequences of such dissociation rates will be discussed in
Sec. V C. First, however, we will present the general proce-
dure in Sec. V A and show in Sec. V B how the results of the
simplified stochastic description in Sec. IV can be recovered.
In addition to these previously derived results, it is also dis-
cussed how the general treatment allows one to gain detailed
|nsight into the dominant microscopic pathways that are fol-
owed to form a stable nucleus on top of the island.

A. General procedure

(39). The following regimes are then discussed in Ref. 17 | ot s introduce a common notation for the elementary

with increasingry;s.

(i) For 7 ge<72/m, We havepe(r?g: w4y~ T gisT1/ T2 and
Th~11, i.e.,p,=q7 andp;>p,p 3. Accordingly, we obtain
Q 4~ (wFR?7,)%r 4o/ 72 corresponding to Eq(14) (regime
I) in Ref. 17.

(i) For 72/m<tgs<ty, we find p&=1 and 75~ 7,
i.e., p,=q: and p;>p,pld as in (i), and hence(

transition ratesWe for the deposition rateW, for the loss
rate,Wg‘j) for the attachment rate for a single atom to an
intermediate cluster of siZaf in total n atoms are present on
top of the islandsee Eq(Al) in Appendix A; we formally
include the cas¢=1], andWy; for the dissociation rate of
an unstable cluster composedjefi atoms(again we do not
distinguish between different cluster configurations for the
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same cluster size, see also the remark in Ref. 2écording w4
to the results derived in Sec. IV and Appendix A the transi- /\
tion rates are o w4 w2
34| 00000000 " 00 00 add
We=mFR?, (423 o WF’ 4wl‘ wo ‘WF 2W1j o stable
£33 eee - eee Y: &b
D a -1 g WF’ 3Wll - ‘WF \Wl stable
Wi=—| ky—+ k5| (42b £, 00 — 'g@
R?\ “aR g Wa,2
5 WF’ ‘2W1
=]
=1
n(n—1) 2D 2 =
s A
2 IR? I
WY =kl (429 .
' ' . D : 1 2 3 4
(n— J)_z’ 2<j=n
7R configuration v

5 AETS FIG. 12. Various states and the corresponding transition rates
_. = _ i <i<i [see Eq(42)] involved in the second layer nucleation for a critical
Wa, = K 2 ex;{ KgT ) 2SS (420 nucleus of sizé=2.

whereAE = E{—E, is the dissociation energy ofsingle We denote byp, , the probability for the island to be in

atom from an unstable cluster of sizesi. The prefactors Staté 6,»), wheren refers to the number of atoms on top of

«{" and x4 contain the effective sizes of cluster perimeterstN® island and’ to a specific configuration for a givem A

on one handsee the discussion in Appendix,Aand various comple.te description of the stochastic process amqunts to

corrections involved in the overall approximation schemeSPeCifying the sefp,, (1)} of state probabilities at all times

(Poisson approximation, cutoff, introduced below, et & 1he time evolution of the{p,,(t)} is described by the

they are considered to be independentofe, andR. In  Master equation

principle one should also take into account the possibility d

that a subcluster composed of more than one atom can dis- Pn.v _ > [W(N', v —n,v) pyr o

sociate from an unstable cluster. In fact, it has been argued dt n' v ' ’ "

that such cluster dissociations are sometimes more likely to .,

occur than the dissociation of single atoms, as e.g., for dimer ~W(n,v—=n"v") ], (43

dissociation from a tetramer on(&00) surface by a kind of  \here for the rate®V(n,»—n’,»’) the appropriate expres-

“shearing mode.** For simplicity we will take into account  sjons from Eq(42) have to be substitute@ee Fig. 12 Note

only the dissociation of single atoms here, although concepat transitions are possible only between a limited number

tually the inclusion of cluster dissociation processes into thgs states. In the situation considered here, where only single

general treatment poses no difficulty. Also, we do not conytoms can leave the island, we hatén,v—n’,»')=0 for

sider the influence of cluster mobilities. If one would allow |y —p/|=2.

for a small jump rateD;/a* of a cluster of siz§=2, the To treat the problem of second layer nucleation under

relative diffusion of & cluster and a single atom would be generic growth conditions one has to solve the set of Egs.

larger by a factor + D; /D and accordingly we had to mul- (43) for R=R(t) with R(t) from Eq. (13) subject to the

tiply WL} in Eq. (420 by this factor forj=2. initial condition p, ,= &,0. To this end it is convenient to
The method is best introduced by an example. To thissplve Eq.(43) usingR as the independent variable. The in-

end, consider Fig. 12 that illustrates the situation for a Criti-tegration of the differential Eq$43) using standard solvers

cal nucleus of size =2. Various states of the island are takes very little CPU time on ordinary workstations, so that

shown, which are distinguished according to the total numregylts forf,(t) andR(«) can be obtained almost immedi-

bern of atoms on top of the island, and the possible configuately. Numerical results are discussed in the following.
rations that can be assumed for a giveBetween the states

the possible transitions are marked by arrows that are labeled
by the corresponding rates. Note that the loss from a state _
with n single atoms is1 times larger than the loss from the I this subsection we consider the casg{'*=0 that was
state with one atom. It is clear that Fig. 12 shows only atreated extensively in Sec. IV. The fractibg(t) of covered
small part of the possible states and in principle can be exslands within our more general framework is given by
tended by including larger numbens However, as will be

pointed out below, these states with largetlo not contrib- -

ute much to the onset of second layer nucleation. Moreover, fo(t):n:EHl pn,vn(t)’ (44)

we have not included states containing stable clusters of size

j>i+1 and transitions between different states containing avherev,, is the configuration containing a stable nucleus for
stable nucleus of siziet 1. These are irrelevant for the frac- a givenn (for example,v3=3 and v,=4 in Fig. 12. In
tion fy(t) of covered islands at time practice, states corresponding to lamyeontribute a negli-

B. Negligible lifetimes of unstable clusters
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FIG. 13. Time development of the fraction of covered islands -6 -5 4 -3 ) _1 0
fo(t), the mean number of aton(t) in states containing no stable 10 10 10 10 10 10 10
nucleus, the occupation probabilitieg ;, and the currentg; and o=exp[-AE/kgT]
ja [see Eq.46)] for i=2, @=10"%, andT'=10P. The maximum . o . .
number of atoms is, =4 corresponding to the diagram shown in  FIG. 14. Comparison of critical island siz&g obtained from

Fig. 12. The vertical dotted line marks the coverdg#t, at the  the rate-equation approa¢bolid lines with Monte Carlo data for
critical time t,.. critical nucleii =1,2 and different values df (same symbols as in

Figs. 8 and 1p

gible amount up to timek;, so that one needs to consider a

. n.)
finite maximum number of atoms, only (n, =4 in Fig. 12 4. The values of the optimal prefactoyéﬂj and kg are

listed in Ref. 53. To exemplify the good agreement between

turned out to be sufficient : . 2 == -
. _ theory and simulations, we have replotted in Fig. 14 the criti-
Figure 13a) showsfo(t) and the probabilitiep,, ,(t) (la- cal radiusR, as a function ofx for variousI” for i=1,2 from

be'fd accord|ng4to Fig. 32as a function of the coverage Figs g and 10. The solid lines referring to the numerical
Fa’t for a=10"%, andI'=10°. Also shown is the mean regyjts give an excellent fit to the Monte Carlo data. For
total number =1, only the states with=<2 in Fig. 12 had to be included
to achieve this almost perfect agreement. FoR we expect
that a very large numban, has to be chosen in order to
N(t)Ezfl V;V Pn(ON (49 optain a correct description of second layer nucleation within
" the rate equation approach. Diagrams corresponding to that
of atoms that are not in states possessing a stable nucleus.ghown in Fig. 12 then become very complicated and not
accordance with the predictions of the simplified stochasti¢asily tractable from the practical point of view. It is thus
description, this number is less than one up to timeAc-  helpful to introduce the “renormalized” encounter raieg
cordingly, the pathway followed by the system to form adefined in Eq.(24) and to consider simplified diagrams as
stable nucleus is dominated by fluctuations as discussed #0Wn in Fig. 15 fori=3. For a given numben=i+1 of
Sec. IV. The important role of the fluctuations can even moréitoms on top of the island we have only included two states
clearly be recognized by looking at the state probabilities? = 1,2: One of these refers to a state wherenaditoms are

Ny

p v# v . and the currents separated ¥=1), and the other to a state, where exaétly
o n +1 atoms form a stable nucleus, while the remaining
3()=W3pzAt), ja(t)=W3paAt) (469  —(i+1) atoms are not bound to other atoms in the same
e e layer (v=2).

into the states containing a stable nucleus. As can be seen Plots of fo(t), p,1(t), N(t), andj,(t)=pp 1(t) @[ R(t)]
from Fig. 13a), only the probabilitieg,, ;(t) are significant, for i=3 analogous to Fig. 13 are shown in Fig. 16. As ex-
while the other state probabilitigs, ,(t) andp, 3(t) cannot  pected from the discussion in Sec. IV, we now had to take
be discerned on the scale used in Fig(al30n the other into account states with up ton, =50>i(i+1)/2=6 be-
hand, we find that the currefg(t) from the state 1=3,»  fore reaching the limit, wheréy(t) as calculated from Eg.
=2) [which has a very small probability; 5(t)] contributes  (44) did not change much by incorporation of states with
most to the growth offy(t), see Fig. 1®). The fact that largern. Neart., N(t) is significantly larger than+1=4
ja(t) gives only a subdominant contribution to second layefat t. we find N(t.)=10], and the dominant currenjg(t)
nucleation, indicates that the incorporation of states with initiating second layer nucleation are those far
=5 will not significantly change the behavior &f(t). =15,...,26>4, see Fig. 16.

The results forf o(t) compare well with the data obtained  In order to see how the preferred paths for second layer
from kinetic Monte Carlo simulations, the quality of agree- nucleation change with the step crossing probabiitywe
ment between theory and simulation being as good as in Figlefine the integrated currepf(t) up tot. by



8354 STEFAN HEINRICHS, JRG ROTTLER, AND PHILIPP MAASS PRB 62
A s 0.16 . . T
5 %/\'7*
We| |5W oy 0.12 q
4| 90000 N o
W [4W ~  0.08 1
g
S§ 3| e0®
N 0.04 | -
B Wl |3W, ;
°® ! |
25 o ©0®
E o 0=
25 Wi 2w :
i=3
1| & n
WF] jwl FIG. 17. Integrated nucleation currents up to titp&s a func-
0 tion of the number of particles in the state from which the nucle-
- ation event took placei €3).
1 2
configuration with n>4 dominate the onset of the nucleation. The number

of particles nyeq in the state wherel, has a maximum
FIG. 15. States and corresponding transition redes Eqs(42) strongly increases with increasing For «=10"3, the sec-
and (24)] involved in the second layer nucleation for a critical ond layer nucleation is typically initiated 0Ypea=18 ada-
nucleus of sizei =3 when the lifetimes of unstable clusters are toms on top of the island.
neglected. Only states correspondingnte 5 atoms on top of the
island are shown. C. Influence of metastable clusters
te te _ The general procedure outlined in Sec. V A allows us also
JnEf dtj(t)= f dtp, (o [R(1)], n=i+1. to describe situations, where the binding energies of unstable
0 0 clusters of sizej<i are not small compared tkgT. To

(47) demonstrate this we again consider the ci&s® and the
This quantity equals the fraction of covered islands at tigme corresponding diagram in Fig. 12. The dimer in the interme-
for which the stable nucleus originates from a state possesgijate states possessing no stable nucleus is now considered to
ing exactlyn adatoms. Figure 17 showls as a function oh ~ Pe metastable, and we introduce the parameter
for fixed I'=10° and variouse. We see that for alk states

B=exp(— AE"/KgT) (48)

1 A ] as “dissociation probability”[analogous to the step-edge
0.8H ! - crossing probabilityy=exp(—AEg/kgT)]. For 8=1 we re-

- ,:' 1 cover the noninteracting particle model. From the outset it is
0.6}~ /pO,l 7 clear that second layer nucleation will proceed faster for
0.4'_;' P, ] smaller 8, since the state probabilitigs; ,(t) andp, (t) in

H < . Fig. 12 and hence the currerjtgt) andj,(t) defined in Eq.

0.2 - (46) will become strongly enhanced.
0 ] Figure 18 showsR. as a function ofa for fixed I'=10°
LN B — — T ] and variousB obtained from Monte Carlo simulatioriepen
0 4~ I" ) i symbols. As expected, the critical radius decreases with de-
1 I' 0 i3 . creasinggB. In fact, for 3=10° one can regard the dimer as
03F- /""‘ = n effectively being stable on the relevant time sdaleso that

i /l' " r=10® the changes with3 correspond to a continuous transition
0'2__ i /l"""“ NN a=10" fromi=2 (B=1) toi=1 (B= 10°9). The comparison with
0.11j 6\ /I,' 'b"" \\}\\ - the numerical solution of I_Eq$43) .(sol|d lines yields very

- \4 ,{l’l&![&!&'f'f,.@:.‘. S ] good agreement. To achieve this agreement, we used the

001 02 03 04 05 sameset of prefactorsc{), 4, as in Fig. 142 This high-
Fazt lights the power of the rate equation approach to treat second

layer nucleation in general situations.

FIG. 16. Time development of the fraction of covered islands
fo(t), the mean number of atont) in states containing no stable
nucleus, the occupation probabilitigs ;, and the currentg,(t)
=wnPp1, N=i+1 fori=3, =103, andl'=1C%. The maximum In summary, we have presented a detailed theoretical in-
number of atoms included in a diagram of the type shown in Fig. 15/€stigation of the nucleation on top of islands in epitaxial
is n, =50. The vertical dotted line marks the coverdggt, at the  growth. In the noninteracting particle model, where the life-
critical time't.. At t. we find N(t;)=10. times of unstable clusters can be neglected, it was possible to

VI. SUMMARY AND DISCUSSION
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100 ——rrrm—rr e reexamination has been carried out recently by Ketigl’
r e B=l I with notable results: By reanalyzing the fraction of covered
- B=10_1 ] islands f(t) measured for Ag/AL1D (Ref. 11 they cor-
L. B=10_2 rected the previously reported estimaid~0.12 eV to
L. [3:10—3 AE,~0.32 eV (they also reported another estimate yielding
s | e [3=10—4 AE¢~0.20 eV based on a modified data analysis, see the
I~ B=10_6 comment in Ref. 5p Krug et al. moreover studied the influ-
| ence of step decoration by CO molecdfesn R, (and hence
AE o) for Pt/P{111). They found a strong increase AfE g
1“:108 with CO partial pressures, when analyzing the data corre-
10 _ sponding to regime Ifor i =1) of the fluctuation-dominated
Covvvnd vvwvnnd v vl vl v vl v situation. Hence contamination by CO is expected to favor
10—6 10—5 10—4 10—3 10—2 10—1 100 multilayer growth.

On the other hand, surfactants may promote smooth layer-
by-layer growth. For example, the presence of only small

amounts of Sb for growth of Ag on Ag§11) were shown to

FIG. 18. Comparison of critical island siz&g obtained from ; hy 58
the rate-equation approach with results from kinetic Monte Carloconvert rough multilayer to layer-by-layer growEtH It was

simulations of the one-island model fior: 2. Dimers are metastable f’#gtggsteﬁ that Sbtrhedg(I:eAdEg, bu: S.m?r? |tf_wzisi§)§,%§erved
and dissociate with a ra{@D/a? [see Eq(48)]. a increases the island density in the firs it is

also possible that the induced layer-by-layer growth results

tackle the problem within a simplified stochastic descriptionffom a decrease of the mean island distance. Even in the
based on scaling arguments. An important result for the nor@bsence of surfactants, a change of éfiectivestep-edge
interacting case is that the nucleation for critical nuclei ofbarrier may go along with a shape transition of the islands
sizei =<2 is dominated by fluctuations, while for larger criti- With varying temperaturésee Refs. 59-61 and 7, and the
cal nuclei it can be treated in a mean-field type marinete, ~comment in Ref. 2B anq this can induce chang_e.s in the film
however, that the metastability of clusters tends to increasBorphology as well. With respect to the transition from the
the fluctuation-dominated regimeThe second layer nucle- fluctuation-dominated to the mean-field type situation with
ation rate for both the fluctuation-dominated and mean-fiel¢aryingi predicted in this work, it would also be interesting
situation was derived in compact forfsee Eqs(32) and 0 conduct proper experiments for metal epitaxy @00
(30)]. When metastable clusters can form with appreciabléurfaces, where a change from1 toi=3 is often observed
lifetimes, the simplified description can in principle be ex- With increasing temperature.
tended(see Sec. IV E but becomes of limited value due to A further application pertaining to the design of self-
the fact that many elementary processes get mutua||9rganized nanostructures is the pqssibility to create pyra_lmi-
coupled both sequentially and in parallel. In such situations iffal mounds on a substrate, which are called “wedding
is better to employ the more general framework outlined incakes.”®>"**As suggested by Michelgt al.* the sizeL
Sec. V that is based on our derivation for the transition rate§f the top terrace of the pyramid should be roughly given by
of the elementary processes. Results obtained from both th&(Lwp)~F, where() is the second layer nucleation rate.
oretical approaches were shown to agree with Monte CarlRecently, an expression for the distributionlof,, has been
data. suggested within a self-consistent analysis of a model for the
Throughout the paper, we have used the generic growtdynamics of the top terracé.In recent developments of
law (13) for the mean island radius, but it is straightforward nanostructure formation also larger clusters of atoms are con-
to treat other growth laws als@s, e.g., an exponential be- sidered as basic building blocks in epitaxial growth. The un-
havion, which may be realized by special preparationderlying processes seem to be very similar to the case of
techniques? Neither the general expressiof@0) and (32)  deposition of single atoms or simple moleculés a recent
for the second layer nucleation rates in simple situations nofeview, see Ref. 66 so that it could well be that also for
the master Eq(43) depend on the specific form of the cluster deposition an effective step-edge barrier has a deci-
growth law (the expressions fom, p,, etc. in the quasista- SIV€ influence on the film topography. _ _
tionary case, however, get modified, see the discussion in In light of_the bas_lc importance and th_e manifold applica-
Sec. IV A). Moreover, it is straightforward to rewrite all for- tions, there_|s certainly need for further. |mprov§ment of our
mulas for the case of heteroepitaxy by replacing the jumﬁmderstandmg of second layer nucleation. Topics worthy of

rate D/a? of adatoms on top of the islands by a modified further study are, in parthular, the influence of strain effects
jump rateD’/a?. and longer-range interactions between the adatoms. The lat-

The theoretical understanding of second layer nucleatiOtT&e_r Ta%/ be a'_ctritbhuted to dfirect forgée.g., indut;gt(:] dipole-
is not only of basic importance but has numerous applica: ipole forces in the case of magnetic adsorba ey can

tions. One of these is the determination of the effective Steppebmted;ateéj by Fer(t:igrbelttrl]ons of the ﬁ lectron ftéu.cui:f of thE
edge barrierAEg for systems, where the more direct and substrate. By extending the approach presented in this work,

simpler method via the measurement of adatom lifetimes b>t)hese issues may be tackled in the near future.
field ion microscopy* cannot be applied. As pointed out in
Ref. 16, the breakdown of the TDT approach in the
fluctuation-dominated situation calls for a reexamination of
some experimental data for estimatidde 5. In fact, such

o=exp[-AE/kpT]
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W, Ws Ws J=WiPk— vk 1Pk+1,  Isksi—1, (A3)
N TN TN wherep, denotes the probability of the state containing a
00000 000 o0 “ ] * cluster. Equation$A3) can be readily solved fap; yielding
\_/ stable ! W i ! W,
v, Vs J:Wipizwlplkﬂz v——JZ II —. (A4)
=2 Uk k=2 j=k Uj

FIG. 19. lllustration of the encounter of four atoms out rof On the other hand we have
=5 adatoms. The four connected atoms are supposed to form a
stable clusteri(=3). First a dimer forms with a rate/,, then a J=WeiiP1 - (A5)
trimer with a ratew,, and finally the stable quadrumer with arate _. . . .
ws. The sequential process only leads to the formation of a stablgI'mmatmg‘J from Egs.(A4) and (AS), we obtain
cluster, if neither the dimer dissociates with the ratenor the i

trimer dissociates with the rats;. W1H Wy vy
B k=2
sche Forschungsgemeinschaft for financial supgSfB Weit= ! ’ (A6)
513, Ma 1636/2 1+k22 1L wylv;
=5 j=
APPENDIX A For large radiiR>a, it holdsw;/vj<1 so that we can ne-

glect the sum ovek in the denominator on the right-hand

We want to calculate the characteristic ratg(R) for an side of Eq.(A6). Hence we find

encounter of +1 atoms, if initiallyn=i+1 atoms are ran- _
domly placed on top of an island with radi&sand infinite : D
step-edge barriero=0). For this purpose let us consider the wp(R)=Wep= Ke[ IT (n— k)}—z(
encounter as a sequential process as depicted in Figod9 k=0 a
i=3 andn=5): First a dimer forms, then one of the remain- where k= b T}, _ ,b, /dy.

ing atoms attaches to the dimer and a trimer is created, and

so on until a stable cluster composed &fl atoms has been APPENDIX B
formed. Denoting the rate for the formation of the dimer by

w4, and the rate for the attachment of an atom to an already In this appendix we first derive the lifetime,(R) of a

2

) . (A7)

a
7R?

existing cluster composed é&fatoms(“ k cluster”) by w,, state withn atoms on top of an island with radid&in the
we may write continuum limit based on the diffusion equation supple-
) mented by the boundary conditiof®. This is then used to
W= n(n—1) 2D bja (Ala) show that the probabilitp,[ R(t)] to find exactlyn atoms on

the island at timg equals a Poisson distributigwhen dis-
regarding any possible nucleation evenf$e mean number

D bya® : n[R(t)] of atoms on the island characterizing the Poisson
wie=(n—k 22 -R?’ 2=k=i. (Alb) di[str(ib)l}tion is given explicitly for the genericggrowth law
R(t) specified in Eq.(13) and the resulting expression is
The factorsb, can be viewed as the effective number of taken to renormalize “bare coefficients” in the formula
perimeter sites of & cluster. Similarly, we may write for the - found for r,,(R). Finally, we discuss the lattice corrections to
rate of dissociation of a single atom from & cluster(in  the renormalized coefficients to obtain the valuessfprand
The solution of the diffusion proble

2 a? wR?’

D
v=dk—, k=2, (A2) P
a £ =DAp, (Bla)
where againd, has the meaning of an effective number of
perimeter sites(In principle one may also take into account ap dp «
the possibility that a subcluster composed of more than one ar 0=0, or TaP R= 0, (B1b)
- r=

atom can dissociate from an unstable cluster and other states
with various intermediate unstable clusters of sizek&i.)  where the initial conditiop(r,t=0)=1/(7R?) has been de-

The idea now is to renormalize the process depicted imived by Harris*®
Fig. 19 by replacing it by an effective transition ratg N
between the initial state composed isolated atoms and J <_kr)

. - o 2 Jo

the final state containing the stable cluster. Clearly, such a =S CiM i R ox —)\ZEt 82)
replacement is only approximately valid. After the replace- Pt & ,aR Jo(Ng) k2o |

ment, the encounter rate,(R) in Eqg. (24) can be identified

with weg. In order to derivew.;, we consider a stationary

situation, where the probability, of the initial state is kept Here J, () is the Bessel function ofvth order, cy
fixed and a constant curredt flows between neighboring E4(aR/a)2/{)\E[7\§+(aR/a)Z]} and N\, is the kth root
states containing k& andk+ 1 cluster. We thus write (N <Ao<---) of
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Q
gt

9Q
m(R) 9z
The solution(B2) with (B3) describes the probability density where for the momeriR=R(t) is a general growth law, that
for a single diffusing atom that at time=0 is randomly is assumed to be a monotonously increasing functiom of
deposited on top of a circular island with a partially reflect-(R=dR/dt>0). Transforming variables fromto R and de-
ing boundgry. The probgbility _that the atom Frgas not escapeﬁning B(z,R)=Q[zt(R)] andZ(R)=R[t(R)], wheret(R)
from the island up to timer is W(7)=2m[ydrr p(r,t), is the inverse function oR(t), Eq. (B9) gives
which yield$® ~ "
. 5 aQ+ z—1 (?Q_WFRZ(Z—l),Q
V()= ckexp(—xﬁﬁf). (B4) R (RIL(R) 9z (R '

(z—1)| "FR?Q -

aR
(?)Jo()\):)\%(?\)- (B3) (B9)

(B10)
1 This is a semilinear partial differential equation of first order
Note that, sincel (0)=1, it must hold=,_,c,=1. that can be solved by the method of characteristics. For the
The probability that none afl independent atoms has es- initial condition Q(z,R=0)=1 we obtain
caped from the island up to timeis ¥ (7)". Accordingly,

the probability¢(7)d~ that thefirst atom leaves the island in QzR)=ex{ —(1-2)n(R)], (B11
the time interval 7,7+d7] is which for p,(R)=p.[R(t)]=[Q(z,R)/n!],—, yields the
dv ()" dW¥(7) Poisson distributiori27) with
¢(1)=— =—n¥ ()"t ——r
dr dr . fR du RAU L2
n(R)=mnF exg — ex
b (R)=a ’{ 0 (W | Jo Z(0)
= n— ) C] e CJ
R2 IR in=1 ! n

. (B12)

J'u du’

D 0 ry(u")g(u’)

X)\-Zlexp{ —()\-21+ e +)\,-2 )|, (BY '
"R For the generic growth law E@13) in particular, we ob-

from which for the average time,(R)=/[,d7¢(7)7 fol- tain
lows: — 2 ~ R 2 ~
n(R)=+(1+aR)*¢f dx x°(1+ ax)?
R2 % )\121 A2[i(i+2) 0
m(R)=n— Ci - C —————. ~
(RN, & o DO N2 ™ - Jararerio
(B6) _Azri/(i+2)’&4(1+a’R) o+d
It is easy to show that; <\ <jox, wherej,  is thekth (1+aR)**3—1 (1+aR)¢*2—1
zero of J,(). Since j,~(k+v/2—1/4)7 for k>v, the 3 3 +3 n
¢ ¢

terms in the series of E@B6) rapidly decrease with increas-
ing jx, k=1,...n (note thatc; depends on\;). The lead- (1+aR)¢*1-1
ing term can be obtained by setting=4; ; in Eq. (B4), s ——
which amounts to a Poisson approximation of the escape
process¥ (7)=exp(—\;D7/R%). Within this approximation

: (B13)

e+1

where a= kyalk; and ¢=2A"2T'?1+2)/, In the quasi-

we obtain stationary casg@d,Q=0 in Eq.(B9)] one obtains
1R? 1 _ ) FR* a
Tn(R):ﬁB)\_%y (B7) n*(R)=nFR Tl(R)=7TT K1t Kz, (B14)

where \; follows from Eq. (B3). In the limit of small to which Eq.(B13) simplifies for paR<1 [see the discus-
aR/a<1 one findskszaR/a, while in the limit of large  sion right after Eq(28)].

aR/a>1, \{=j5 . Combining these two limits yields the  Alternatively, we can determin@(R) by integrating

interpolation formula pS{(r) over the island area, which yields
1 R? a — R FR*/1 a 1
o~ — — _— S = S = —_— | = — —
(R) D KlaR+K2 , (B8) n(R) ZWfodrrplt(l’) ™5 201R+8)'

with xy=1/2 andx,=1/j2,=0.173. (B19
Knowing 7,(R) we can set up the master equation for theHence we can improve the Poisson approximation by renor-

probabilities p,,(t) to find exactlyn atoms on top of the malizing the bare coefficienk,=1/j 3’120.173 tox,=1/8

island at timet in the presence of an incoming fli see Eq.  (note thatk; = 1/2 does not change

(26). Introducing the generating functionQ(z,t) Finally, in order to obtain the constants and «, in Eq.

=37_,pn(t)z" we obtain from Eq(26) (25), one has to take into account the “lattice corrections.”
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& aw(lt) aD &

. — =— w(l+ & ,t)—w(l,
_ .- normal direction Jt 6a2 jzo [w( 51 t) (1,t)]

81 D 5

+— 2 [w(l+8,t)—w(l,t)]
island island boundary 6a” =2
2aD D
FIG. 20. Sketch of the island geometry in the neighborhood of a __ w(lt)+— wil+ 6 ) —wi(l.t

boundary sitd, from which two jumps in the directioné, and &, 6a2 (LY 6a2 ,Zo [w(l+ 4,0 =w(l.D)]
lead to an escape from the island over the step-edge barrier. L
Let us denote by the position of a lattice site and by the a2 IZO [w(l+ 5,0 —w(l,t)]. (B17)

nearest neighbor bond vectors, i.e., for a triangular lattice
6;=(cog27j/6],sin27j/6])a, j=0,...,5. The master

equation describing the diffusion of a single adatoms on th In a discretization of the second boundary condition in Eq.

?Blb) on a triangular lattice one has to eliminate the outer

island reads boundary pointd+ &, and|+ &, via the discretized version
ow(lty D & of the “bulk equation” (B1b). This amounts to a cancella-
- :F 20 [w(l+6,t)—w(l,t)], (B16) tion of the term on the lefthand side and the second term on
acj=

the righthand side of Eq(B17) in the continuum limit,

wherew(1,t) is the probability to find the atom at lattice site ad ~ the  replacement  Si_o[w(l+ &),t) —w(l,t)]

|. Equation(B16) is valid as long a$ is not a boundary site. =Ej1:0(5]~.V)w(l,t)+O(a2)H\/§aaw/ar. Hence Eq.

In the continuum limit we can writeEf:O[w(Hﬁ- 1) (B17) corresponds to the second boundary condition in Eqg.

—W(I,t)]=(1/2)2f:0(5j-V)zw(l,t)+(9(a4), which yields  (B1b), whena is replaced by con=2a/+/3 in Eq.(B1b).

Eq. (B1a whenD is replaced byD.,,~=D/4 (see also the In general,k nearest neighbor sites of a boundary site

remark in Ref. 3% As a consequence, one has to substitutecan lie outside the islandk& 1, . . . ,4). Theweights, how

D by Doy in all continuum equations, in particular in Eq. often suchl occur, and the way the normal direction is ori-

(B15), which means that in Eq25) (referring to the lattice ented with respect to the nearest neighbor bond vectors lead-

simulation$ one should takexk;=4(1/2)=2 and «, ing to the sites outside the island depend sensitively on the

=4(1/8)=1/2. shape of the island edge. Hence, the factaf32is only an
The value ofky is still not correct, since we have not estimate, which gives an impression on the influence of the

taken into account the lattice correction to the parameter lattice correction to the coefficient;. Our comparison with

To derive this correction we consider a lattice ditat the the simulation results in Fig. 7 yielda.,,=2«, i.e., «;

boundary. For example, one may encounter the situatios=4(1/2)?=1. We note that in general lattice corrections al-

sketched in Fig. 20, wher& and o, lead to sites outside the ways have to be included in a continuum description after

island [where w(l+ & ,t)=0] and the remaining nearest the effective Schwoebel barriéior the lattice has been cal-

neighbor site$+ ;, j=2, ... ,5 are on thesland. The equa- culated from the microscopic barrie(see the comment in

tion corresponding to EqB16) then reads Ref. 23.
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