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Transport in strongly driven heterostructures and bound-state-induced dynamic resonances

Wenjun Li and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 2 March 2000; revised manuscript received 26 May 2000!

We consider driven heterostructures involving both homogeneous potential modulation and dipole-type
modulation regions, which can properly model experimental devices. Numerical results agree with photon-
assisted-tunneling experiments. We observe the experimentally detectable bound-state-induced dynamic trans-
mission resonances. Applications in quantum measurements and quantum switching devices are discussed.
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I. INTRODUCTION

The study of transport in intensely driven mesoscopic s
tems is a growing field1–13 due to the development of a ne
class of nanostructure devices, such as terahertz h
frequency detectors,14 quantum electron pumps,15 and quan-
tum resonant tunneling diodes and triodes for use in quan
communication and quantum computation.16 Newly devel-
oped techniques, such as the free-electron laser~FEL!,1 make
experimental studies possible. The quantum photon-assis
tunneling ~PAT! effect has been observed in quantu
superlattices,1 resonant tunneling diodes,3 and split gate de-
fined quantum dots.4 It is believed that in the near future,
reliable and accurate theoretical procedure must be de
oped for experimental data analysis, as well as applica
device design. For strong oscillating fields, Floquet theor17

has had some success in treating the dynamics of such
tems. When considering transport through a system with s
tially homogeneous potential oscillations@with V(x,t)
5V1 cosvt#, Floquet theory is straightforward, and has be
well studied during the past decade. The more pract
dipole-type oscillations that occur in most of the experime
tal setups@with V(x,t)5eF1x cosvt#, have also been treate
with time-dependent perturbation theory6 and using Floquet
theory~for example, Refs. 8–11!. However, a common sim
plification in these models is to assume that a uniform os
lating field exists for all space, neglecting the fact that
type of the oscillation~but not the frequency! actually
changes at the boundaries. As sketched in Fig. 1, when
semiconductor device is coupled to an optical radiation~with
the electric polarization direction parallel to the multilay
growth direction3!, or subjected to an ac voltage, we crea
both homogeneous potential modulation and dipole-type
tential modulation in different regions~see shadowed area
in Fig. 1!. There then arises the question of how to deal w
the boundary conditions as will be discussed later in t
paper.

Our numerical results are in qualitative agreement w
the PAT experiments.3 The PAT effect originates from the
interaction of traveling electrons with the oscillating fiel
By absorbing or emitting photons, the incident electrons
able to transit to new energy channels. If those chann
happen to correspond to resonant tunneling, enhanceme
the transmission current can be observed, appearing as
tional peaks in theI-V curve, as shown in many PAT
measurements.1–4 In this paper, we show that when the inc
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dent electrons transit to system bound states, a new typ
transmission resonance can occur with very different f
tures. Instead of showing a transmission peak as is the
for PAT, the transition to bound state generally is accom
nied by a sharp transmission dip~or a peak-dip pair!. This
can be observed according to the transmission coeffic
pattern as well as in theI-V curve. This effect has not bee
reported in experiments yet.

II. FLOQUET SCATTERING

Let us consider a sequence of semiconductor barr
~wells! along thex direction ~see Fig. 1, which is similar to
the experimental setups in Refs. 1, 2, and 3!. Current flows
into and out of the device through Ohmic contacts.18 The
Schrödinger equation can be written as

i\
]

]t
C~r ,t !52

\2

2m
¹2C~r ,t !1V~x,t !C~r ,t !, ~1!

where r5(x,y,z). Since the potential varies just in thex
direction, Eq.~1! is separable. We can decomposeC(r ,t)
into the longitudinal~x! and transverse (y andz) parts:

FIG. 1. Semiconductor heterosturcture and the band diagr
Shadowed regions represent the potential modulations due to
oscillating field. The left emitter region is chosen as the poten
reference. In the collector region the homogeneous oscillation
plitude represents the coupling strength to the external radiation~or
ac voltage!. The potentials in the middle barrier/well regions a
modulated linearly.
8269 ©2000 The American Physical Society
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C~r ,t !5c~x,t !f~y,z,t !. ~2!

Then the motion along thex direction is governed by a one
dimensional~1D! Schrödinger equation:

i\
]

]t
c~x,t !52

\2

2m

]2

]x2
c~x,t !1V~x,t !c~x,t !. ~3!

Due to the external oscillating field, the potential in ea
barrier~well! can be modulated periodically. Let us write th
potential in thei th region in a general form,

Vi~x,t !5V0
i 1eF0

i x1V1
i cos~vt !1eF1

i x cos~vt !, ~4!

whereV0
i is the height of the barrier~or depth of the well!,

F0
i is the dc bias field,V1

i is a homogeneous potential mod
lation, andF1

i is a uniform oscillating electric field. Equatio
~4! includes both the homogeneous and dipole-type osc
tions for convenience. For a given region, eitherV1 or F1
will be zero. We use asingle-electronmodel and therefore
neglect the charging effect as well as imperfections. We s
see that even with this approximation we can obtain qua
tive agreement with experiments.

The Floquet theorem asserts that the Schro¨dinger equation
~3! with a time-periodic potentialV(x,t)5V(x,t1T)(T
52p/v is the oscillating period! has solutions of the form:17

cF~x,t !5e2 iEFt/\f~x,t !, ~5!

whereEF is the Floquet eigenenergy andf(x,t) is a periodic
function: f(x,t)5f(x,t1T). Taking the Fourier expansio
of f(x,t), Eq. ~5! becomes:

cF~x,t !5e2 iEFt/\ (
n52`

`

fn~x!e2 invt, ~6!

with the Fourier component

fn~x!5
1

2pE0

2p

f~x,t !einvtd~vt !. ~7!

Equation~6! can also be written as

cF~x,t !5 (
n52`

`

fn~x!e2 iEnt/\, ~8!

where En5EF1n\v is the nth Floquet sideband energy
These general statements can be used for our model.

Let us consider a specific region with the potential as
Eq. ~4!. It is known that the solution of the Schro¨dinger
equation with an oscillating dipole term is the so-call
Volkov state19 used in laser physics. Based on the metho
in Ref. 19, an analytic solution for the potential in Eq.~4!
can be derived~see the Appendix!. For simplicity, in the
following equation the indexi has been dropped:
-

ll
-

n

s

c~x,t !5e2 i (E01e2F1
2/4mv2)t/\ (

l 52`

`

@al Gi(1)~x,t !

1bl Gi(2)~x,t !#

3expS 2 i l vt2
ieF1x sin~vt !

\v
1

ie2F1
2 sin~2vt !

8\mv3

2
ie2F0F1 sin~vt !

\mv3
2

iV1 sin~vt !

\v D , ~9!

whereE0 is an energy constant, Gi(6)(x,t) denotes

Gi6~x,t !5Gi(6)F S 2meF0

\2 D 1/3

3S x2
eF1 cos~vt !

mv2
2

E02V0

eF0
D G . ~10!

Gi(6) are any two linearly independent combinations of t
Airy functions Ai and Bi. We will use Gi(6)5Ap(Ai
6 i Bi) so that they correspond to right and left propagati
modes, respectively.

Equation~9! can be written in Floquet format. The sum
mation in Eq.~9! corresponds to the time-periodic functio
f(x,t) in Eq. ~5!, and the Floquet energy is given by

EF5E01
e2F1

2

4mv2
. ~11!

Equation~11! involvesF1 ~the dipole oscillation magnitude!
but not V1 ~the homogeneous oscillation magnitude!. This
feature creates extra problems when solving systems
multiple oscillation types. However, we can use the fact t
the Floquet energies must be the same in every region
gardless of the type of oscillation; therefore a single Floq
eigenstate characterizes the whole space. This gives
means to match the states at the boundaries. For an
system with an incident wave of energyEin , the Floquet
energy is determined by this incident energy (EF5Ein), as
shown in Fig. 1.

Once the Floquet energy is determined, we can match
boundary conditions for each Floquet channel by requir
that eachfn in Eq. ~8! and its first derivative be continuou
at the interfaces. To show a concrete expression forfn , let
us consider the simple caseF050. The wave function in Eq.
~9! is now simplified to

c~x,t !5e(2 i /\)EFt (
l 52`

`

@ale
iql [x2eF1 cos(vt)/mv2]

1ble
2 iql [x2eF1 cos(vt)/mv2] #

3expS 2 i l vt2
ieF1x sin~vt !

\v
1

ie2F1
2 sin~2vt !

8\mv3

2
iV1 sin~vt !

\v D , ~12!

where
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\2ql
2

2m
5S EF2

e2F1
2

4mv2D 1 l\v2V0 . ~13!

Using the identities exp@2izsin(vt)#5(mJm(z) exp(2imvt)
and exp@2izcos(vt)#5(m(2i)mJm(z) exp(2imvt), where
Jm(z) is the Bessel function of the first kind, Eq.~12! can be
written as

c~x,t !5 (
n52`

`

(
l 52`

`

(
a52`

`

(
b52`

`

@alAa
1~x!1blAa

2~x!#

3JbS e2F1
2

8\mv3D Jn2 l 2a12bS eF1x

\v
1

V1

\v D
3expF2

i

\
Ent G , ~14!

with

Aa
6~x!5exp~6 iqlx!F ~2 i !aJaS 6

eF1

mv2D G . ~15!

Equation~14! is now in the Floquet format, as can be eas
seen by comparing it to Eq.~8!. If we expressfn(x) as

fn~x!5 (
l 52`

`

fnl
1~x!al1fnl

2~x!bl , ~16!

we have

fnl
6~x!5 (

a52`

`

(
b52`

`

Aa
6~x!JbS e2F1

2

8\mv3D
3Jn2 l 2a12bS eF1x

\v
1

V1

\v D . ~17!

Similarly whenF0Þ0 we can derivefnl as well asfn , with
Aa

6(x) in Eq. ~15! replaced by theath Fourier coefficient of
Gi(x,t) in Eq. ~10!. We obtainAa

6(x) numerically for this
case.

Now we have the wave function for each regioni:

c ( i )~x,t !5 (
n52`

`

(
l 52`

`

@fnl
1( i )~x!al

( i )

1fnl
2( i )~x!bl

( i )#e(2 i /\)Ent. ~18!

The first derivative of this wave function can be obtained
taking the derivative offnl(x) in Eq. ~17! with respect tox
to getfnl81(x).

To determine the coefficientsal
( i ) andbl

( i ) , we adapt the
commonly used transfer matrix technique,10 and then con-
struct the FloquetS matrix,13 as will be briefly discussed
below. Consider an interfacexi with wave functionc ( i )(x,t)
on the left side andc ( i 11)(x,t) on the right. The transfe
matrix M (xi) gives the following transformation of wav
coefficients:

S a( i 11)

b( i 11)D 5M ~xi !S a( i )

b( i )D . ~19!
y

The matrixM (xi) in Eq. ~19! is obtained from the condition
that the wave function and its first derivative be continuo
at the interfacexi . This gives

M ~xi !5@m~xi !# ( i 11)
21 @m~xi !# ( i ) , ~20!

with

[ ~m~xi !# (region i)
5S fnl

1~xi ! fnl
2~xi !

fnl81~xi ! fnl82~xi !
D

(region i)

. ~21!

In Eq. ~20! the subscripts~i! and (i 11) denote the side o
the interfacexi where the evaluation is performed.

The total transfer matrix is the product ofM (xi) from
each interface:

M trans f er5)
i

M ~xi !. ~22!

The matrix M trans f er connects the Floquet coefficients b
tween the leftmost region and the rightmost region. Furth
more,M trans f er can be used to construct the matrixS, which
connects the incoming and outgoing waves directly:13

S a(out)

b(out)D 5FS a( in)

b( in)D , ~23!

wherea( in),b( in) and a(out),b(out) are the incoming and out
going amplitude vectors~including the associated evanesce
Floquet sidebands13!, respectively. If we keep only the pa
of matrix F that connects incomingpropagatingmodes and
outgoingpropagatingmodes, we can obtain the scatteringS
matrix, as discussed in detail in Ref. 13:

S̄5S r̄ t̄ 8

t̄ r̄ 8
D , ~24!

where r̄ , t̄ , t̄ 8, and r̄ 8 are the matrixes whose elementsr nm
and tnm are the reflection and transmission amplitudes,
spectively, forpropagatingmodes incident from the left;r nm8
andtnm8 are similar quantities forpropagatingmodes incident
from the right.@Note theS̄ in Eq. ~2! connects amplitudes o
incoming to outgoing. The usualSmatrix,S, which connects
incoming current to outgoing current is given byS
5N21S̄N, whereN is a diagonal normalization matrix. Fo
the case of Fig. 1, it has a matrix elementNnn51/Akn,
wherekn is the wave vector of thenth Floquet channel.#

From the transmission amplitudes we can calculate
transmission coefficientT. For example, considering a sing
electron beam with a fixed energyEI incident from one side,
say the left, we have

T5(
l

g l
(out)

g I
( in)

ut lI u2, ~25!

wheret lI is the transmission amplitude andg l
(out)/g I

( in) is a
ratio between the incident and thel th transmitted modes
For the simple static scattering case with plane waves in b
the incoming and outgoing regions,g l

(out)/g I
( in) is the famil-

iar k(out)/k( in), the ratio between the incoming and outgoin
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8272 PRB 62WENJUN LI AND L. E. REICHL
wave vectors. When the outgoing region undergoes homo
neous oscillation as in Fig. 1, as will be derived later in E
~30!,

g l
(out)

g I
( in)

5 (
n52`

` kl
(out)

kI
( in)

Jn2 l
2 S V1

\v D . ~26!

From T we can calculate the transmission current. Co
sider first the contribution to the current due to the incid
electrons with wave vectork( in) ~denoting thex component
by kI

( in)), with a corresponding electron densityn. The cur-
rent density can be written

j ~r ,t !5neF i\

2m
@C~r ,t !¹C* ~r ,t !2C* ~r ,t !¹C~r ,t !#G ,

~27!

and we neglect the reverse current, namely the current f
the collector to the emitter, since it is normally muc
smaller.

What we measure in the experiment is thex component of
the current. From Eqs.~2! and~27!, this can be deduced from
the 1D wave function@with the transverse partf(y,z,t) in
Eq. ~2! normalized#:

j x~x,t !5ne
i\

2m S c~x,t !
]

]x
c* ~x,t !2c* ~x,t !

]

]x
c~x,t ! D .

~28!

In the collector region, under the homogeneous oscillat
with a modulation strengthV1 ~see Fig. 1!, the wave function
is simply13

c~x,t !5 (
l 52`

`

(
n52`

`

t lI e
ikl

(out)xJn2 l S V1

\v De(2 i /\)Ent.

~29!

Substituting this wave function into Eq.~28!, the average
current over one oscillation period is

j x5ne
\

m (
l 52`

`

(
n52`

`

kl
(out)Jn2 l

2 S V1

\v D ut lI u2

5ne
\kI

( in)

m (
l 52`

` F (
n52`

` kl
(out)

kI
( in)

Jn2 l
2 S V1

\v D G ut lI u2

5ne
\kI

( in)

m (
l

Fg l
(out)

g I
( in) G ut lI u25ne

\kI
( in)

m
T, ~30!

where we use the definitions ofT andg l
(out)/g I

( in) as in Eqs.
~25! and ~26!.

Equation~30! gives the transmission current due to t
incident electrons with a single wave vector. The total c
rent involves the contribution from all the incident electron

Jx5eE E E
0

`

dkD~k!
\kx

m
T~kx!. ~31!

D(k)5D(kx ,ky ,kz) is the incident electron density of stat
which is a function ofkx , ky , andkz , so in general in the
integration above the transversal motion should be taken
account.
e-
.

-
t

m

n

-
:

to

In this paper, we will calculate theI -V curve for two
special cases, namely a double barrier resonant tunne
structure~DBRTS! as well as a triple-barrier case, where w
follow a very simple yet qualitatively effective techniqu
discussed in Ref. 20.~Some general treatments for evalua
ing the current have been discussed in the literature, see
example Refs. 2, 6, and 7.! For this type of configuration, by
applying the dc bias, electrons accumulate at the emit
barrier interface and form a two-dimensional electron g
~2DEG!. They are free to move in the transverse plane
the spatial confinement quantizes the energy associated
the motion in thex direction. The lowest energy level i
mostly populated20 and we denote it asEB . The correspond-
ing x component of the wave vector iskB5A2mEB/\. So
without doing the integration in Eq.~31!, the current is sim-
ply

J5e
\kB

m
T~EB!F E

0

`E
0

`

dkydkzD~kB ,ky ,kz!G
5Ne

\kB

m
T~EB!5NeA2EB

m
T~EB!, ~32!

whereN is the density of electrons in the 2DEG, andT is the
transmission coefficient corresponding to energyEB , which
is obtained using theFang-Howardmodel21 for the potential
variation through the device.20 We’ll give a comparison of
our numerical results with the experiments in the followi
section.

III. COMPARISON WITH
PHOTON-ASSISTED-TUNNELING EXPERIMENTS

In Fig. 2, theI -V curve @currentI is given by the current
densityJ in Eq. ~32! andV is the potential drop between th
emitter and collector regions# shows clearly the photon
assisted-tunneling in a driven resonant tunneling dio
~RTD!, as observed in the experiment.3 The semiconductor
structure considered here, as reported in Ref. 3, consists
Al0.3Ga0.7As triple barrier ~with widths 35 Å, 60 Å, and
35 Å) separated by a GaAs double well~180 Å and 100 Å).
When coupled to a terahertz radiation through a bowtie

FIG. 2. I -V traces~with vertical offsets! of a triple-barrier–
double-well structure with terahertz radiations~using 0.2 eV as the
barrier height and 0.02 mV/Å as the oscillating field strength!. Sat-
ellite peaks show the photon-assisted tunnelings. Both single-
double-photon processes~as indicated by arrows! are visible.
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tenna, the frequency-dependent satellite current peaks
pear, surrounding the original resonant tunneling peak.
results agree well with the experiments. TheI -V analysis for
the same experiment was also obtained in Ref. 7 usin
sequential current model including the charging effe
where the oscillation type is considered to be homogene
in each region, with the oscillation strength taken to be
average strength in that region.

In the remainder of this paper, we will focus on a differe
resonant transport mechanism, where in general we ne
heterostructure, which in the absence of an oscillating fi
has true bound states.

IV. BOUND-STATE-INDUCED DYNAMIC TRANSMISSION
RESONANCE

Figure 3~a! shows the transmission probability for
driven DBRTS, with a quantum well involved~made of
semiconductor material like InxGa12xAs). We notice that an
asymmetric ‘‘Fano’’ type transmission resonance~involving
a transmission peak as well as a dip! appears approximatel
at E518.7 meV. This resonance results from the transit
and interference of electrons among Floquet channels du
the interaction of the electrons with the oscillating field.
the absence of the field, this DBRTS has a bound stat
Eb5211.3 meV. When the incident energy is one phot
energy higher than the bound-state energy,

E2Eb5\v, ~33!

FIG. 3. ~a! Bound-state-induced transmission resonance o
DBRTS. The parameters are boundariesxi5$0,15,85,100% Å, F0

5$0,20.1,20.1,20.1,0% mV/Å, V05$0,40,230,40,210% meV,
\v530 meV, F15$0,0.02,0.02,0.02,0% mV/Å, and V1

5$0,0,0,0,2% meV. ~b! The dynamic resonance appears in t
current-voltage characteristic.
p-
ur

a
t,
us
e

t
a

ld

n
to

at

the electrons are able to transit to and accumulate in
relatively long-lived bound state by means of photon em
sion, and also to transfer back from the bound state to
propagating channels by photon absorption, forming the F
quet asymmetric transmission resonance. From this exam
we see that according to Eq.~33!, the bound-state energy ca
be detected by locating the Floquet transmission resona
Thus, Floquet resonances can be used to ‘‘probe’’ the se
conductor energy spectrum, and measure material struc
parameters such as thickness and band gaps. In addition
sharp peak-dip resonance pattern~sometimes only a dip ap
pears, and generally much narrower than the static trans
sion resonance peak and PAT resonance peak! also allows
sensitive control of the current and may be useful for desi
ing fast response switching devices in quantum computat
Figure 3~b! shows how this dynamic resonance can be
tected from theI -V measurement.

Equation ~33! also holds when there is more than o
bound state, as shown in Fig. 4~a!. The three Floquet reso
nances atE52.074, 3.747, 6.307 meV correspond to t
three bound states atEb525.927, 24.255, 21.694 meV,
respectively. Figure 4~b! also shows that at each resonanc
the scattering electrons undergo delays as measured b
Wigner delay time,13 implying the trapping of electrons by
the driven quantum well. Another quantity, of the same or
of magnitude as the Wigner delay time, is the lifetime c
culated from the Floquet quasibound states. Quasibo
states appear asS-matrix poles in the complex energy plan
as shown in Fig. 4~d!. The lifetime is determined by the
imaginary part of the quasienergy. The three transmiss
resonances in Fig. 4~a! have three corresponding transmi
sion poles~with a transmission amplitude zero associat
with each of them!. Figure 4~d! also shows one static pole
which is the farthest one from the real energy axis, cor
sponding to the broad static transmission resonance cen
around 1.3 meV in Fig. 4~a!.

Figure 5 compares the transmission patterns of two ty
of oscillations. The parameters are chosen in such a way
inside the well, the homogeneous oscillation strength in F
5~b! is equal to the average dipole oscillation strength of F
5~a!: V1

b5Vav
a 5eF1L/2, whereL is the width of the quantum

well. The resonance widths for the dipole oscillations in F
5~a! are generally broader than those for the homogene

a

nsi-

el
FIG. 4. Transmission resonances~a! due to
three bound states and~b! the Wigner delay time.
~c! sketches the bound states and electron tra
tion processes. The parameters are\v58 meV,
xi5$0,800% Å, V05$0,26.5,0% meV, F1

5$0,0.002,0% mV/Å. ~d! shows the transmission
poles in the complex energy plane (t21,0 is the
transmission amplitude from the incident chann
to the nearest lower Floquet channel!.
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oscillation in Fig. 5~b!. This is most obvious for the reso
nances atE52.2 meV andE55.2 meV, which shows tha
the dipole oscillation enhances the interband transition
makes the system more unstable. A more accurate quan
tive comparison~not shown! can be obtained from the
Wigner delay times as well as the lifetimes of the qua
bound states.

A small yet finite change of the quasibound state ene
when varying the oscillating field strength is also observ
Figure 6 shows this ac Stark quasibound energy sh
DEquasibound @the quasibound state considered here co
sponds to the fourth Floquet resonance in Fig. 5~a!#. Both the
real and imaginary parts of its energy vary quadratically w
F1,

DEquasibound} F1
2 . ~34!

This shift will consequently change the dynamic resona
location, as governed by Eq.~33!. In the meantime, the regu
lar resonant tunneling, such as the central resonance in
2, is determined by the quasibound energy inside the qu
tum well,20 so should also follow this change. An oscillatio
strength-dependent resonance shift is clearly seen in the
perimentalI -V curves of Ref. 3. However, other factors, lik
heating and charging effects, contribute also to the resona
shift, as been discussed in Refs. 3 and 7.

V. CONCLUSION

In conclusion, we presented above a generic Floquet s
tering approach that allows us to obtain the Floquet eig
states and theS matrix for systems with many scatterin
regions and with multiple oscillation types involved. Our r
sults agree with the photon-assisted-tunneling experime
We have discussed the behaviors of several different dr

FIG. 5. Comparison of the transmission resonances due to
types of oscillations. The dipole oscillation in~a! has the average
strength as the homogeneous oscillation in~b! but gives broader
resonances. Parameters of the quantum well arexi5$0,1500% Å
and V05$0,28,0% meV. \v510 meV; the oscillation strength
are ~a! F15$0,0.002,0% mV/Å; ~b! V15$0,1.5,0% meV.
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heterostructures, and we propose experiments that ca
done to observe bound-state-induced dynamic transmis
resonances.
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APPENDIX: SOLUTION OF THE SCHRÖ DINGER
EQUATION

Although the solution of the Schro¨dinger equation with a
dipole oscillation term is discussed in Ref. 19, to make t
paper self-contained, in this Appendix we give a brief de
vation of the wave function, Eq.~9!.

Let us write the potential@see Eq.~4!, we drop thei in this
Appendix# V(x,t)5g(x,t)1x f(t), with g(x,t)5V01eF0x
1V1 cos(vt) and f (t)5eF1 cos(vt); we also definep(t)
5* tdt8 f (t8). From Ref. 19, the wave function can be d
composed intoc(x,t)5F(j,t)x(x,t), where

j5x1
1

mE
t

dt8p~ t8!5x2
eF1

mv2
cos~vt !, ~A1!

x~x,t !5expS 2
i

\ FEt1xp~ t !1E t

dt8
p2~ t8!

2m G D
5expS 2

i

\
Et2

ieF1x sin~vt !

\v
1

ie2F1
2 sin~2vt !

8\mv3 D .

~A2!

After substitutingc(x,t) into the Schro¨dinger equation~3!,
we obtain the following equation forF(j,t):

i\
]

]t
F~j,t !52

\2

2m

]2

]j2
F~j,t !

1FV02E1eF0j

1S V11
e2F0F1

mv2 D cos~vt !GF~j,t !.

~A3!

o

nd

of
FIG. 6. ac Stark energy shifts.~a! shows that
the energy changes slightly when a static bou
state ~when F150) is driven into quasibound
state by the oscillating field.~b! shows that the
changing amount is proportional to the square
F1. This relation holds for both the real (d) and
imaginary (s) parts.
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Equation ~A3! involves only a homogeneous modulatio
term so it can be easily solved. Let

F~j,t !5w~j!expF2
i

\v S V11
e2F0F1

mv2 D sin~vt !G .

~A4!
w(j) is the solution of the time-independent Schro¨dinger
equation:

Ew~j!52
\2

2m

]2

]j2
w~j!1~V01eF0j!w~j!. ~A5!

We know whenF050,w(j) corresponds to the spatial pa
of a plane wave, while in general whenF0Þ0 the solution
consists of Airy functions.
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