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Transport in strongly driven heterostructures and bound-state-induced dynamic resonances
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We consider driven heterostructures involving both homogeneous potential modulation and dipole-type
modulation regions, which can properly model experimental devices. Numerical results agree with photon-
assisted-tunneling experiments. We observe the experimentally detectable bound-state-induced dynamic trans-
mission resonances. Applications in quantum measurements and quantum switching devices are discussed.

[. INTRODUCTION dent electrons transit to system bound states, a new type of
transmission resonance can occur with very different fea-
The study of transport in intensely driven mesoscopic systures. Instead of showing a transmission peak as is the case
tems is a growing fieftr*® due to the development of a new for PAT, the transition to bound state generally is accompa-
class of nanostructure devices, such as terahertz higtiied by a sharp transmission dipr a peak-dip pajr This
frequency detector@,quantum electron pumﬁg,and quan- can be observed according to the transmission coefficient
tum resonant tunneling diodes and triodes for use in quanturpattern as well as in theV curve. This effect has not been
communication and quantum computatiSniNewly devel- reported in experiments yet.
oped techniques, such as the free-electron I@&er),! make
experimental studies possible. The quantum photon-assisted- Il. FLOQUET SCATTERING
tunneling (PAT) effect has been observed in quantum
superlattice$, resonant tunneling diodésand split gate de-

fined quantum dot&.t is believed that in the near future, a s i
d cihe experimental setups in Refs. 1, 2, and@urrent flows

reliable and accurate theoretical procedure must be deve] d f the devi h h Ohmi 8 Th
oped for experimental data analysis, as well as applicatioff!!® and out of the device through Ohmic contacts.he

device design. For strong oscillating fields, Floquet th&ory Schradinger equation can be written as

has had some success in treating the dynamics of such sys- ; 42

tems. When considering transport through a system with spa- .

tially homogeneous potential oscillationpnith V(x,t) |hﬁ\lf(r,t): B EVZ\I’(r,tHV(x,t)\P(r,t), @)
=V, coswt], Floquet theory is straightforward, and has been . . o .
well studied during the past decade. The more practica\{v_here_r:(x,y,z)._Slnce the potential varies just in the
dipole-type oscillations that occur in most of the experimen-direction, Eq.(1) is separable. We can decompoggr,t)
tal setupgwith V(x,t) =eF,x cosat], have also been treated MO the longitudinal(x) and transversey(andz) parts:

with time-dependent perturbation theband using Floquet — _ ——

Let us consider a sequence of semiconductor barriers
(wells) along thex direction (see Fig. 1, which is similar to

theory (for example, Refs. 8—11However, a common sim- & —  Fac — g
plification in these models is to assume that a uniform oscil-$g . e B el & g
lating field exists for all space, neglecting the fact that the 8 —">---E§-------------E"—"—’-9 -------- BT g 8
type of the oscillation(but not the frequengyactually 8 En | Er Fac #0 Er| _Er g
changes at the boundaries. As sketched in Fig. 1, when oug T O e i e s i (| BT §
semiconductor device is coupled to an optical radiatieith H §
the electric polarization direction parallel to the multilayer g §‘
growth directior), or subjected to an ac voltage, we create & ] . s _ms
both homogeneous potential modulation and dipole-type po-g %§ §-§ 8
tential modulation in different regionsee shadowed areas !;_ fs‘?; §§ s
in Fig. 1). There then arises the question of how to deal with 3 & £° ]
the boundary conditions as will be discussed later in this

paper.

Our numerical results are in qualitative agreement with
the PAT experiment3.The PAT effect originates from the
interaction of traveling electrons with the oscillating field. £ 1. semiconductor heterosturcture and the band diagram.
By absorbing or emitting photons, the incident electrons arenagowed regions represent the potential modulations due to the
able to transit to new energy channels. If those channelgscilating field. The left emitter region is chosen as the potential
happen to correspond to resonant tunneling, enhancement gference. In the collector region the homogeneous oscillation am-
the transmission current can be observed, appearing as adgiitude represents the coupling strength to the external radiétion
tional peaks in thel-V curve, as shown in many PAT ac voltage. The potentials in the middle barrier/well regions are
measurements.* In this paper, we show that when the inci- modulated linearly.
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W(r,t)=i(X,t) ,Z,1). (2 ) 2 =
( i( Py d(x,t)=e I(E e F /o Wﬁ|—2 | [a Gi{P(x,t)

Then the motion along the direction is governed by a one-

dimensional(1D) Schralinger equation: +by GI)(x,1)]
. y p( | ieFuxsin(ot) ie2F2 sin(2awt)
P J exp —Howt—
B S = = 5 S P VYD fe 8fipw?
X
iezFoFl Sln(wt) IVl S|n((1)t) (9)
Due to the external oscillating field, the potential in each huw® fiw '
barrier(well) can be modulated periodically. Let us write the 0 .
potential in theith region in a general form, whereE® is an energy constant, GP(x,t) denotes
2ueF s
: o - Gi*(x,t)=Gi(®) 2
V!(x,t)=Vy+eFyx+V; cofwt) +eFxcogwt), (4) (x.t)
whereVy, is the height of the barriefor depth of the well | x— eF; cogwt) _EO—Vo (10
Fp is the dc bias fieldy} is a homogeneous potential modu- no? eFy

lation, andFil is a uniform oscillating electric field. Equation Gi(™ are anv two linearly independent combinations of the
(4) includes both the homogeneous and dipole-type osciIIaA.I ¢ Any WA' ! d é.' Wp i Gl)_l\/— N
tions for convenience. For a given region, eith&ror Fq Iry functions Al an .. We will use GF’=y(Ai

will be zero. We use a&ingle-electronmodel and therefore i Bi) so that they correspond to right and left propagating

neglect the charging effect as well as imperfections. We shall"0des: respectively.

see that even with this approximation we can obtain qualita- Equa_ﬂon(9) can be written in Floqget form.at._The sum-
tive agreement with experiments mation in Eq.(9) corresponds to the time-periodic function

The Floguet theorem asserts that the Sdimger equation #(*:t) in Eq. (5), and the Floquet energy is given by
(3) with a time-periodic potentialV(x,t)=V(x,t+T)(T

22
=27/ w is the oscillating periodhas solutions of the forrh: E.=E%+ eFy _ (11)
4puw?
— o IEgt/h
Pe(x,)=e EF g (x1), (®)  Equation(11) involvesF, (the dipole oscillation magnituge

but notV; (the homogeneous oscillation magnitid&his
whereEg is the Floquet eigenenergy agqx,t) is a periodic  feature creates extra problems when solving systems with
function: ¢(x,t) = ¢(x,t+T). Taking the Fourier expansion multiple oscillation types. However, we can use the fact that
of ¢(x,t), Eq. (5) becomes: the Floquet energies must be the same in every region, re-
gardless of the type of oscillation; therefore a single Floquet
* eigenstate characterizes the whole space. This gives us a
Pe(x,t)=e EFUR g (x)eTinet (6) means to match the states at the boundaries. For an open
n=-= system with an incident wave of enerdy,,, the Floquet
, ) energy is determined by this incident enerdtEE;,), as
with the Fourier component shown in Fig. 1.
Once the Floquet energy is determined, we can match the
1 (2r ot boundary conditions for each Floquet channel by requiring
Pn(X)= ﬂfo d(x, e d(wt). (7)  that eachs, in Eq. (8) and its first derivative be continuous
at the interfaces. To show a concrete expressionsfpr let
us consider the simple cabg=0. The wave function in Eq.

Equation(6) can also be written as (9) is now simplified to

[

lpp(x,t): 2 (ﬁn(x)e*iEnt/ﬁ’ (8) l/l(xyt)ze(*i/ﬁ)E,:t z [aleiq|[xfeF1COS(a)t)//LwZ]
n=—oo |=—c

. . —i - wt)/ pw?
where E,=Er+n%w is the nth Floquet sideband energy. +hyje 1Al eR costhineT)

These general statements can be used for our model. , . L oo
. ieF;xsin(wt) ie“F{sin(2wt)
Xexp —ilwt— +

hw 8huw’

Let us consider a specific region with the potential as in
Eqg. (4). It is known that the solution of the Schiimger
equation with an oscillating dipole term is the so-called
Volkov staté® used in laser physics. Based on the methods iVq sin(wt))

in Ref. 19, an analytic solution for the potential in E¢) ho
can be derivedsee the Appendix For simplicity, in the
following equation the index has been dropped: where

(12
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T

2u

22
eF1

duw

Using the identities eXp-izsin(wt)]==Jm(2) exp(=imwt)
and exp—izcost)]=Z(—i)"I(2) exp(~imwt), where
Jm(2) is the Bessel function of the first kind, EG.2) can be
written as

pixh= 2 X X

=—w g=—o

2[R0 +bA, ()]

e’F? V,
ho

X J J (eF1X+
B 8ﬁ,uw3 n—l—a+2p ho

i
Xexp{ - %Ent},

A (x)=exp =iqx)

(14

with

i i_F)] a5
nw
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The matrixM (x;) in Eq. (19) is obtained from the condition
that the wave function and its first derivative be continuous
at the interfaces; . This gives

M (%) =[m(x) 15 1)l mOX) gy » (20)
with
_ ¢:|(Xi) & (%)
(MO egiony = 00 B0 oy (21)

In Eqg. (20) the subscriptgi) and (+1) denote the side of
the interfacex; where the evaluation is performed.

The total transfer matrix is the product &(x;) from
each interface:

Mtransferzl_i[ M(X;). (22)

The matrix Myansfer CONNects the Floquet coefficients be-
tween the leftmost region and the rightmost region. Further-
more,M;,ansfer AN be used to construct the mat@xwhich
connects the incoming and outgoing waves diretily:

Equation(14) is now in the Floquet format, as can be easily

seen by comparing it to Eq8). If we expressp,(x) as

0= 2 dala+ ¢u(by,

(16)
we have
+ - - + ezFi
n(X)= A (x)Jd
0= 2, 2, A B(Bh,uws)
eFix Vi
Xdn-t-ar2p| 7t 7] (17

Similarly whenFy# 0 we can deriveb,, as well asp,,, with
A7 (x) in Eq. (15) replaced by therth Fourier coefficient of
Gi(x,t) in Eq. (10). We obtainA, (x) numerically for this
case.

Now we have the wave function for each region

pOxD= 2 X [ea0a”

P P

+ ¢V (x)bfV]el TP, (18)

a(out) a(in)
b(out)) :f( )
wherea™ b(™ anda®'9 bUY gre the incoming and out-
going amplitude vector@ncluding the associated evanescent
Floquet sideband$), respectively. If we keep only the part
of matrix F that connects incomingropagatingmodes and

outgoingpropagatingmodes, we can obtain the scatteriig
matrix, as discussed in detail in Ref. 13:

_(r vt
S: — — |
t or’

wherer, t, t’, andr’ are the matrixes whose elements,
andt,, are the reflection and transmission amplitudes, re-
spectively, forpropagatingmodes incident from the left;,
andt/, are similar quantities fopropagatingmodes incident
from the right.[Note theSin Eqg. (2) connects amplitudes of
incoming to outgoing. The usu8matrix, S, which connects
incoming current to outgoing current is given b$
=N"1SN, whereN is a diagonal normalization matrix. For
the case of Fig. 1, it has a matrix eleme¥t,=1/Vk,,
wherek,, is the wave vector of thath Floquet channg].

: (23

(24)

The first derivative of this wave function can be obtained by From the transmission amplitudes we can calculate the

taking the derivative ofp,,(x) in Eq. (17) with respect tax
to getdp ().

To determine the coefficients andb{), we adapt the
commonly used transfer matrix technigtfeand then con-
struct the Floque matrix!® as will be briefly discussed
below. Consider an interface with wave functiony()(x,t)
on the left side and){*Y(x,t) on the right. The transfer
matrix M(x;) gives the following transformation of wave
coefficients:

aM
b(i))-

g+

pi+1) =M(x)

19

transmission coefficient. For example, considering a single
electron beam with a fixed ener@y incident from one side,
say the left, we have

(out)

TZE Y

——Itul?, (25)
T ,yl(ln)

wheret, is the transmission amplitude and®"?/y{(" is a
ratio between the incident and theth transmitted modes.
For the simple static scattering case with plane waves in both
the incoming and outgoing regiong{°“%/{"" is the famil-

iar k©'9/k(N) | the ratio between the incoming and outgoing
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wave vectors. When the outgoing region undergoes homoge-
neous oscillation as in Fig. 1, as will be derived later in Eq.
(30),

yl(out) - ® kl(out) ) ( Vl)

(i T k(i "N\ %o

(26)

From T we can calculate the transmission current. Con-
sider first the contribution to the current due to the incident
electrons with wave vectd(" (denoting thex component
by k{'™), with a corresponding electron density The cur-

td it b itt. 0.15 0.17 0.19 0.21
rent density can be written Voltage (V)
j(r,t)=ne ﬂ[‘l’(r,t)V\If*(r,t)—‘If*(r,t)V\If(r,t)] , FIG. 2. |-V traces(with vertical offs_et_$ of a triple-barrier—
2u double-well structure with terahertz radiationsing 0.2 eV as the

(27)  parrier height and 0.02 mV/A as the oscillating field strengSat-
and we neglect the reverse current, namely the current frorfllite peaks show the photon-assisted tunnelings. Both single- and
the collector to the emitter, since it is normally much double-photon processéss indicated by arrowsare visible.
smaller.

What we measure in the experiment is #x@mponent of
the current. From Eq$2) and(27), this can be deduced from
the 1D wave functioriwith the transverse paib(y,z,t) in
Eq. (2) normalized:

In this paper, we will calculate thé-V curve for two
special cases, namely a double barrier resonant tunneling
structure(DBRTS) as well as a triple-barrier case, where we
follow a very simple yet qualitatively effective technique
discussed in Ref. 20Some general treatments for evaluat-

9 ing the current have been discussed in the literature, see, for

Ix(x,t)= ne lﬁ(X t)—lﬂ*(x = (x )~ lﬂ(X,t))- example Refs. 2, 6, and)7or this type of configuration, by

(29) applying the dc bias, electrons accumulate at the emitter-

barrier interface and form a two-dimensional electron gas

In the collector region, under the homogeneous oscillation2DEG). They are free to move in the transverse plane but
with a modulation strength(, (see Fig. 1, the wave function  the spatial confinement quantizes the energy associated with

is simply*® the motion in thex direction. The lowest energy level is
- - mostly populatet® and we denote it aBg. The correspond-
sxh= S S t“eik§°”0x\]nl(ﬁ) a(—i/m)Eqt ing x component of the wave vector kg=v2uEg/fi. So
I=—w n=—ow ho without doing the integration in Eq31), the current is sim-
(29 ply
Substituting this wave function into Eq28), the average fikg © o
current over one oscillation period is J=e7T(EB){ fo J;) dkydeD(kB,ky,kz)}

=ne— (out) 32 2 hk 2E
e 2“2@" I ( )'t“' =Ne—=T(Eg) =Ne/—=T(Eq), (32

Ak{m = ook vy , whereN is the density of electrons in the 2DEG, afis the
-ne Boo1E e n;x WJnI(%) [t transmission coefficient corresponding to enelegy, which
' is obtained using theang-Howardmodef* for the potential
ﬁkl(m) ,yl(out) hkl(in) variation through the deyic@ We'll g!ve a cqmparison of
=ne E —|t,|2=ne T, (30) our numerical results with the experiments in the following
Bl i section.

where we use the definitions @fand y{°“%/y{" as in Egs.
(25) and(26). Ill. COMPARISON WITH

Equation(30) gives the transmission current due to the PHOTON-ASSISTED-TUNNELING EXPERIMENTS

incident electrons with a single wave vector. The total cur-

rent involves the contribution from all the incident electrons: !N Fig. 2, thel-V curve[currentl is given by the current
densityJ in Eq. (32) andV is the potential drop between the

o fiky emitter and collector regiofisshows clearly the photon-
J —eJ J j x)- (3D assisted-tunneling in a driven resonant tunneling diode
(RTD), as observed in the experime°’nthe semiconductor
D(k)=D(ky,ky k) is the incident electron density of state, structure considered here, as reported in Ref. 3, consists of a
which is a function ok,, k,, andk,, so in general in the Al Ga 7As triple barrier (with widths 35 A, 60 A, and
integration above the transversal motion should be taken int85 A) separated by a GaAs double weBO A and 100 A).
account. When coupled to a terahertz radiation through a bowtie an-
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®) the electrons are able to transit to and accumulate in the
relatively long-lived bound state by means of photon emis-
sion, and also to transfer back from the bound state to the
propagating channels by photon absorption, forming the Flo-
gquet asymmetric transmission resonance. From this example,
"0 5 10 15 20 25 30 9 92 94 96 98 10 we see that according to E@®3), the bound-state energy can
E (meV) Voltage (meV) be detected by locating the Floquet transmission resonance.
_ o Thus, Floguet resonances can be used to “probe” the semi-
FIG. 3. (a) Bound-state-induced transmission resonance of &qonduyctor energy spectrum, and measure material structure
DBRTS. The parameters are boundangs {0,15,85,10p A, Fo parameters such as thickness and band gaps. In addition, this
={0-01-0.1-0.1,00 mV/A,  V(={0,40,- ?&0'40'7 10k meV,  gharp peak-dip resonance pattésometimes only a dip ap-
fiwozg’% rgev, VF1b:{E)r,r(]).Oi,O.OZ,(_).OZ}OmV/ ;o and -V, 1he PE@rs, and generally much narrower than the static transmis-
=10, t ' ’E’ me h () ; .et. yhamic resonance appears in the q;,n resonance peak and PAT resonance pekdo allows
current-voltage charactenstc. sensitive control of the current and may be useful for design-

tenna, the frequency-dependent satellite current peaks a'g_g fast response switching devices in quantum computation.

pear, surrounding the original resonant tunneling peak. Outelgtuerg f?:r)nst?\(;lw\s} ;Og;stmzn%g?mlc resonance can be de-
results agree well with the experiments. TR¥ analysis for Equation (33) also holds Wheh there is more than one
the same experiment was also obtained in Ref. 7 using 8 qd tat h i Fi The th F i i
sequential current model including the charging effect, ound state, as shown in Fig(at The three Floguet reso
where the oscillation type is considered to be homogeneo ances alE=2.074, 3.747, 6.307 meV correspond 1o the

in each region, with the oscillation strength taken to be the' "' c€ bound states #,=—5.927, —4.255, —1.694 meV,
average strength in that region. respectively. Figure ) also shows that at each resonance,

In the remainder of this paper, we will focus on adifferentthe scattering electrons undergo delays as measured by the

resonant transport mechanism, where in general we need\%('gner delay time:? implying the trapping of electrons by

heterostructure, which in the absence of an oscillating fieldn® dnve.n quantum weII_. Another quantity, of the.sa'.””e order
has true bound states. of magnitude as the Wigner delay time, is the lifetime cal-

culated from the Floquet quasibound states. Quasibound
states appear &matrix poles in the complex energy plane,
as shown in Fig. @&l). The lifetime is determined by the
imaginary part of the quasienergy. The three transmission

Figure 3a) shows the transmission probability for a resonances in Fig.(d) have three corresponding transmis-
driven DBRTS, with a quantum well involveémade of sion poles(with a transmission amplitude zero associated
semiconductor material like §Ga,_,As). We notice that an  With each of them Figure 4d) also shows one static pole,
asymmetric “Fano” type transmission resonar{@®/olving WhICh.IS the farthest one from the.regl energy axis, corre-
a transmission peak as well as a)dippears approximately Sponding to the broad static transmission resonance centered
at E=18.7 meV. This resonance results from the transitioraround 1.3 meV in Fig. @. o
and interference of electrons among Floquet channels due to Figure 5 compares the transmission patterns of two types
the interaction of the electrons with the oscillating field. In Of oscillations. The parameters are chosen in such a way that
the absence of the field, this DBRTS has a bound state &#side the well, the homogeneous oscillation strength in Fig.
E,=—11.3 meV. When the incident energy is one photon2(D) is equal to the average dipole oscillation strength of Fig.

Current (arb. units )

IV. BOUND-STATE-INDUCED DYNAMIC TRANSMISSION
RESONANCE

) S\/b ; ;
energy h|gher than the bound-state energy, S(a) V1=ng = eFlL/2, wherel is the width of the quantum
well. The resonance widths for the dipole oscillations in Fig.
E-Ey=to, (33)  5(a) are generally broader than those for the homogeneous
10 \_J — ho| |ho
. ] ¥
L I N B o o
L e e R 1 I FIG. 4. Transmission resonancés due to
02 . © three bound states arid) the Wigner delay time.
’ @ (c) sketches the bound states and electron transi-

0 5 ) 5 8 tion processes. The parameters fite=8 meV,
x;i={0,800 A, V,={0,-6.5,0 meV, F,
={0,0.002,0 mV/A. (d) shows the transmission
poles in the complex energy plane_¢ is the
transmission amplitude from the incident channel
to the nearest lower Floquet channel

—
o

() (@

—
o

o
o

Ty (107 sec)
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- heterostructures, and we propose experiments that can be
0.6 done to observe bound-state-induced dynamic transmission
0.2 4 @ resonances.
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APPENDIX: SOLUTION OF THE SCHRO DINGER
oscillation in Fig. %b). This is most obvious for the reso- EQUATION
nances aE=2.2 meV andeE=5.2 meV, which shows that

tive comparison(not shown can be obtained from the.vation of the wave function, Eq9).

Wigner delay times as well as the lifetimes of the quasi- Let us write the potentidsee Eq(4), we drop the in this

bound states. ) i

- . Appendix V(x,t)=g(x,t)+xf(t), with g(x,t)=Vy+eFyx

A small_yet finite chan_ge o_f the qua5|bo_und state energy+vl cos@t) and f(t)=eF, coset); we also definep(t)

when varying the oscillating field strength is also observed.:ftdt,f(t,) From Ref. 19. the wave function can be de-
Figure 6 shows this ac Stark quasibound energy shiftCom osed iﬁtop(x t)=<i)(§ ,t) (x.t), where

AEguasibound [the quasibound state considered here corre- P ’ XA

sponds to the fourth Floquet resonance in Fig) b Both the 1 rt eF,
real and imaginary parts of its energy vary quadratically with E=x+ ;f dt’p(t") =x— ——cogwt), (A1)
Fi, Mo

2 | t 2 t!

AEquasiboundDc Fl- (34) X(x,t)=exp( — % Et+xp(t)+ f dt'%)b

This shift will consequently change the dynamic resonance H
location, as governed by E(83). In the meantime, the regu- i ieFyxsin(wt)  ie2F2sin(2wt)
lar resonant tunneling, such as the central resonance in Fig. —exp — t— 7 + 3
2, is determined by the quasibound energy inside the quan- @ 8huw

tum well 2° so should also follow this change. An oscillation- (A2)
strength-dependent resonance shift is clearly seen in the ex- . . . .

perimentall -V curves of Ref. 3. However, other factors, like %‘zegbstgg]siﬁ?;]o%'g\(,;#) gltcL)Jattri]gnSfc(:}grdlr;g.er equatior(3),
heating and charging effects, contribute also to the resonanc® g€q (&1):

shift, as been discussed in Refs. 3 and 7. P 2 52
ih—P(&t)=———D(ét
A PED=" 5, ZPED
V. CONCLUSION
In conclusion, we presented above a generic Floquet scat- | VomE+eFot
tering approach that allows us to obtain the Floquet eigen-
states and thé& matrix for systems with many scattering e’FoF;
regions and with multiple oscillation types involved. Our re- +| Vit 5~ | codwt) [ D(&1).
sults agree with the photon-assisted-tunneling experiments. Hw
We have discussed the behaviors of several different driven (A3)
0 @ - 0 o 0.020
S o 14810 % . FIG. 6. ac Stark energy shiftéa) shows that
“E’ . ° 4815 E . * the energy changes slightly when a static bound
~-0.02 . -0.02 . 0.010 state (when F;=0) is driven into quasibound
w . -4.820 "'é . state by the oscillating fieldb) shows that the
- r.e .° ;Ere changing amount is proportional to the square of
004, , 0" E = Aiges 0.04/,° - . F. This relation holds for both the rea®() and
0 2 6 0 mo M imaginary ) parts.

4
Fo (uv/A) F2 (u/A)
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Equation (A3) involves only a homogeneous modulation ¢(£) is the solution of the time-independent Sdftirger

term so it can be easily solved. Let equation:
2 02
E =——— +(VoteF . (A5
| e e (&) 2 &gch(@ (VoteFod) (). (AD)
D& = gp(g)ex;{ “he V+ %) sin(wt)l. We know whenF0=Q,go(§) corresponds to the spatial_ part
M of a plane wave, while in general whéry#0 the solution

(A4)  consists of Airy functions.
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