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The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice syitineetry
random hopping problem with chiral symmetris considered. Transport at the band center is anomalous
relative to the standard problem of Anderson localization in both the diffusive and localized regimes. In the
diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluc-
tuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of
transmission channels, in which case the localization length does not depend on whether time-reversal and
spin-rotation symmetry are present or not. For an odd number of channels the conductance decays algebra-
ically. Upon moving away from the band center transport characteristics undergo a crossover to those of the
standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.
Numerical simulations agree qualitatively with the theory.

[. INTRODUCTION The electronic localization problem was soon generalized
to lattice models with randomness in the hopping amplitudes
Since the introduction of the scaling approach to the prob{off-diagonal disorder® (This type of randomness was pre-
lem of Anderson localizatioh? it has been known that trans- viously known from the description of phondfi$! and
port characteristics of a disordered metal are universal, praaarrow-gap semiconductot$. The localization problem
vided the disorder is sufficiently weak, the temperaturewith off-diagonal disorder has received comparatively much
sufficiently low so that quantum coherence is maintainedess attention, although it has been known since the work of
over large distances, and the interaction between electrorysont that random systems with off-diagonal disorder, but
can be neglected. An example is the phenomenon of weakithout diagonal disorder, can behave in a way dramatically
localization®* a small deviation from Ohm'’s law for the different from systems with diagonal disorder only, or with
conductance of a weakly disordered metal, which is supboth types of disordel®*~*8For instance, the average den-
pressed by the application of a time-reversal symmetnsity of states(DOS) for a one-dimensional chain with ran-
breaking magnetic field. Though small, the weak-localizatiordom nearest-neighbor hopping was found to be singular at
correction is universal in the sense that it does not depend ahe center of the band,=0.13%5According to the Thou-
the shape of the sample, nor on any other microscopic dess formula® such a singular DOS implies that at 0 the
macroscopic property other than its dimensionality and theonductance distribution is anomalous as Wef Gade and
presence or absence of time-reversal symmetry and spiWegner in Ref. 21(see also Refs. 16 and 2252found a
rotation invariance. Another example is the phenomenon ofwo-dimensional counterpart to the singular behavior of the
universal conductance fluctuation$The sample-to-sample average DOS within their analysis of a nonlineamodel
fluctuations of the conductance of a disordered metal owith a sublattice symmetry. Interest in the effect of off-
semiconductor are of ordes?/h with a prefactor that de- diagonal disorder has revived in the 1990s on two fronts.
pends only on dimensionality and symmetry. Both the weakMotivated by quenched approximations to interacting theo-
localization correction and the universal conductance flucfies such as the quantum Hall effect at half filling or gauge
tuations are precursors of the true Anderson localizationapproaches to highz superconductivity, the random flux
where as a result of destructive interference of multiple scatproblem (a special case of off-diagonal disorder in which
tered quantum mechanical waves the dirty metal turns intthopping amplitudes have a random phase pifigs been
an insulator for sufficiently strong disorder, or, in one or two extensively studied, although very little consensus on its lo-
dimensions, for a sufficiently large sample size. calization properties has emerg®dA second thrust of ac-
The original paper by Anderséhand most of the effort tivity has been motivated by the close resemblance between
devoted to the problem of Anderson localization since thenthe anomalies at zero energy induced by pure off-diagonal
consider the case of a particle on a lattice with a randondisorder in two dimensions and the nature of the plateau
on-site potentia(diagonal disordgrand nonrandom hopping transitions in the integer quantum Hall effettboth models
amplitudes. In that case, one distinguishes three universalityjight share the property that all eigenstates are localized
classes, corresponding to the presence or absence of timexcept at one special enertfy.
reversal and spin-rotation symmetry. These three classes are The reason why the localization properties of the random
called orthogonal, unitary, and symplectic. Here, we will re-hopping problem can depart from those of the standard prob-
fer to these as the three “standard” universality classes. lem of Anderson localization is the existence of an additional
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sublattice symmetry in systems with off-diagonal but withoutthe sensitivity of the low-energy sector of a single antiferro-
diagonal disordet®1"?82°|n that case, the lattice can be magnetic spifN/2 chain to the parity ofN,** on the
divided into two sublattices, such that the Hamiltonianone hand, or to the sensitivity of the low-energy sectoNof
changes sign under a transformation where the wave fungoupled antiferromagnetic spin-1/2 chains to the parity
tion changes sign on one sublattice but not on the other. As @f N,*® on the other hand. In the special case of the chiral
result, the spectrum is symmetric with respect to a reflectiodokker-Planck equation without time-reversal invariance

aboute =0 (i.e., eigenvalues appear in paitss). The fact (random phase quantum wijrat was possible to calculate
that the band centes=0 is a very special energy in the exactly the crossover from the diffusive to the localized re-

presence of sublattice symmetry explains why anomalies i§ime for all moments of the conductance and to verify

the DOS and the localization properties occur at precisel); e validity of the assumption of universality against a nu-

this value of the energy. When the energy moves away fro er!cal s_lmulat_|on of the rar_1dom flux PFOP"?%-The nu-
zero, the effect of the sublattice symmetry on the spectru erical simulations also confirmed that, sufficiently far away
: tdpm the center of the band, transport is governed by the

and the wave functions decreases and a crossover to the s " ndard uni litv cl

dard behavior takes place. The sublattice symmetry is brokem a; I'ar't l:_n'ver]?ﬁ]' yC assesh Vi the Fokker-Planck

by the presence of on-site disorder, long-range hopfimg, imitation ot thé approach relying on the Fokker-ianc
equations for the transmission eigenvalues is that it cannot

(in some caseperiodic boundary conditior.Counterparts ibe how th duct distributi f
to this sublattice symmetry in other disordered systems or ir(ijescrl € how the conductance distribution Crosses over from
he chiral to the standard universality class eass tuned

guenched approximations to interacting problems are numef. L
ous. They occur in, e.g., the QCD Hamiltonr#2 random away from zero. In renormalization group language, each

XY spin chaing? diffusion in random environmené, su- Fokker-Planck equation describes a fixed point correspond-

persymmetric quantum mechanisjon-Hermitian quantum ing to a case of pure symmetry and the fixed points by them-

mechanics® and two-dimensional disordered models in theselves cannot be used to infer .hF’.W the scalling flows tgke
continuum such as Dirac fermions with random vectorPlace between them. One possibility to obtain information

potentials’’ Following previous work in this field, which ab(_)ut the Crossover energy and '9”9”‘ scales b(akbwve)
adopted the nomenclature of QGBwe will refer to the which the physics is that of the chiredtandarg universality

sublattice symmetry ashiral symmetry and will restrict our classes IS to_study the DOS of a chlral guantum Widow-

attention to random hopping problems with this symmetry. ever, unlike in the case of a one-dimensional wire, where the

One-dimensional disordered systems with chiral symme:rhou_IeSS fo_rmula_ connects c_onductance_ and .DOS' for a
uasi-one-dimensional wire it is not possible to infer trans-

try have been well studied with all kinds of approaches and! ; fies f the DOS. In thi it
in various contextgfor references, see the previous para-por properties from the - IN IS paper, we use an after-

graph, and despite a continuing confusion about semanticgaﬁve approach, developed by one of us for the study of

their localization properties can be considered well underiransmission through a random waveguide with absorfion.

stood. For two-dimensional systems the situation is differenf OCUSINg on weak-localization corrections and universal

(see Refs. 26 and 38 and references therételiable ana- conductance fluctuations, we compute how, in the diffusive
lytical and numerical results are notoriously hard to obtain,/€9'M€, the conductance distribution of a quantum wire with

and no consensus has been reached to date, not even on sorlfh%dom hopping crosses over from the chiral to the standard

most elementary issues. In view of this controversy, it isunlversahty classes as the energy is tuned away from zero.

particularly instructive to study the natural intermediate be- Ve are not able to compute the crossover in the localized

tween one and two dimensions, the thidr “quasi-one- regime. Instead, for the localized regime, we consider the
dimensional’) disordered wire. On the one hand, it Sharesconductance distributions in the pure symmetry classes and

the existence of both a localized and a diffusive regime ofompare them to numerical simulations to establish the

quantum transport with two-dimensional disordered Systemé:’rossover scale and to verify the validity of our predictions.

while, on the other hand, it allows for a controllable analytic The' paper 1S orgadnllzed gsdfOI.IOW‘QEhm Sec. ”j{ we d?f't?]e
treatment, just like the truly one-dimensional system. More2Ur MICroscopic: model and derive the symmetries ot the
over, quasi-one-dimensional systems appear as a logical i cattering matrix in th_e presence of_the chiral symmetry. We
termediate step in the finite-size scaling approach for nutnen explaln the s_cahng approach in sec. lll. The localized
merical simulations in two and three dimensid®s. regime is studied in Sec. IV. Our main results are presented

Localization properties at the band center of a quasi-onei-n Sec. V, where we consider the crossover from the chiral to

dimensional quantum wire with off-diagonal disorder Werethe standard universality classes in the diffusive regime. In

investigated in several previous publications by the authorssec' VI we compare our theoretical predictions to a numeri-

together with Simons and Altlarfd:341in those works we ¢al simulation of a random hopping model on a square lat-

derived a chiral counterpart to the so-called Dorokhov-tice- We conclude in Sec. VII.

Mello-Pereyra-Kumar (DMPK) equatiorf;>=** a Fokker-

Planck equation that governs the distribution of the transmis-!- MICROSCOPIC MODEL AND SCATTERING MATRIX
sion eigenvalues of a quantum wire without chiral symmetry.
Solution of the chiral DMPK equation for lengths beyond the o )
localization length of the standard DMPK equation showed In @ general form, the Schdm_ger equation for an
that there is no exponential localization if the numbeof ~ N-chain system with random hopping between two sublat-
propagating channels is odihcluding the one-dimensional tices and without on-site randomness reads

case, while the conductance decays exponentially with "

length if N is even. This parity effect is strikingly similar to —e¥(m)=T,¥(m+1)+T, ,¥(m=-1). (2.1

A. Microscopic lattice model with chiral symmetry
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FIG. 1. (a) Random hopping model as described by Ejl), (2.3
for N=3. A disordered section of the wir@f length M=4) is here
attached to ideal leads. Different chains are coupled only in theV
disordered region; there is no coupling between the chains in the 2(1—7)
perfect leads(b) The nearest-neighbor random hopping model on a y=pBN+2—-B— ———, (2.9
“square” lattice is a special case of the model considered utajer N

andl is the mean free patliwhy | can be identified as the
For a spinless particlel’ (m) is theN-component wave func- mean free path is explained belgwiere, the symbol 1 de-
tion where the indexm labels the position along the chain. notes the operation of complex conjugation f@=1,2,
For a particle with spin 1/2¥ (m) is theN-component wave whereas it _denotes the ?gperatlon of Hermitian ponjugatlon
function made of spinors. In that case, tNe<N hopping Or quaternions for3=4." We assume weak disordet,
matrix T, consists of quaterniorf. The system and the al- >a. The parameter governs the relative randomness of the

lowed hopping matrix elements are depicted in Fi¢g).1 det?rminant oflT,. (See Ref. 41 for the reason for its intro-
Note that the case of a square lattice with nearest-neighb(ﬂJJC ion)

random hopping is included in the general form(24l) [see . V\Ile have qhosep }hellstatlst]:cal d|str|but|@13)| fqr tecr;- h
Fig. 1(b)]. nical convenience; it allows for an exact solution of the

| der t del t ¢ id disordered transport problem. As a justification for this choice, we recall
_ /N order to model fransport, we consider a diSordered ey, 1 1q transport properties do not depend on details of the
gion of finite lengthL = Ma, a being the lattice constant, and

. . . i [ las | i i , h
attach ideal leads with hopping mati,= 1y on both ends microscopic model as long as disorder is weaka, and the

. . length L of the system is much larger than the mean free
[see _F|g. 1a)]_. Followmg Re_fs._40 and 41’ we draw _the path. All properties of the microscopic model are summa-
hopping matricesT,, with m inside the disordered region

f distribui tered d the<N unit matri rized in the two parametetsand #. [The proper value of the
rom a distribution centered aroun unit- matrix, parameter; depends on the details of the microscopic model

under consideration. For instance, for the random flux
modef® (which is a special case of a random hopping
mode), =0, while >0 in generic random hopping
models*'] To emphasize this universality, we compare our
hlgnal results to numerical simulations for nearest-neighbor
nr]rgmdom hopping on a square lattice; cf. Figb)1

In the leads on the lefiL) and right(R), the Schrodinger

Tn=exp(6T). (2.2

We distinguish three symmetry classes depending on t
presence or absence of time-reversal and spin-rotation sy

metry. For a spinless particler for a spin-1/2 particle in the equation(2.1) at energys is solved by a sum of plane waves
presence of spin-rotation symmefnthe hopping matrix moving toward the disordered regi¢étenoted by a subscript

8T, is real (compley if time-reversal symmetry is present . .
(absent These two cases are commonly referred to as th _and away from the samplelenoted by a subscript dsee

orthogonal and unitary symmetry classes and are labeled ))g. 2,

the symmetry index3=1 and 2, respectively. The case of PL(m)=yllelkmat yolg=ikma

broken spin-rotation symmetry with time-reversal symmetry © © ¢ ’

is denotedB=4 and is referred to as the symplectic class. q,gR(m)zwLRefikma_'_ lpgReikma_ 2.5

When B=4, the elements of thBlX N matrix 6T, are real A A

quaternioné? The situation when both time-reversal symme-Here Osk</a, s=—2 coska, and !~ and " (4°- and

try and spin-rotation symmetry are broken reduces to the;bgR) are N-component vectors containing the amplitudes of
unitary class g=2) and will not be considered separately in the incoming(outgoing plane waves in the left and right
this paper. We further assume th#k,, has a Gaussian dis- leads, respectively. The amplitudes of the ingoing and out-
tribution, with zero mean and with variance given by going waves are connected through the Sdimger equation
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(2.1) in the disordered region. This relation is formulated in The transmission and reflection matrices determine the trans-

terms of the A X 2N scattering matrixs, , port properties of the quantum wire. They are related to the
_ conductance of the wire through the Landauer formula,
sz) ( w';)
=S| ir|- (2.6 2e? 2e?
R € R
lﬂg ‘ﬁ's G:TtrtTtE Tg, (213

Current conservation implies
and to the shot noise powér
S's=1,y. 2.7
o . 4e3v 4e3v
(Here and below we suppress the index only scattering P= trtTt(1—tTt)]= h p, (2.149

matrices at the same energy are involydebr the cases® h
=1,4, i.e., if ime-reversal symmetry is present, the complex; peing the applied voltagéSee Ref. 42 for more applica-
conjugate of any eigenfunction is itself an eigenfunction withtjons to guantum transportA further decomposition ofs

the same energy(For =4, complex conjugation is meant fo|lows from the polar decomposition of the matrices’
in the quaternion sendd. Since outgoing and incoming andt t’

plane waves are interchanged under complex conjugation,
we infer that time-reversal invariance is represented by the (V’ O)( tanhX (Coshx)l) ( v 0 )
S: ]

additional constraint
0 U/\(coshX)™t —tanhX /|0 U’

. . . whereld, U', V, andV' areNX N unitary matrices an& is
The Schrdinger equatiorf2.1) has an additional symme- an NxN diagonal matrix with real numbersx(j

try: the Hamiltonian changes sign under the transformation:1 N) on the diagonal. In the presence of time-reversal
¥(m)—(—)™¥(m). Correspondingly, for any realization of mmetr one has 9 ’ P

the disorder, the spectrum of energy eigenvalues is symme%—y Y

ric about the band center=0. This symmetry, which origi- WU =V =1y (2.16

nates from the fact that the disorder preserves the bipartite

structure of the lattice, is referred to as chiral symmetry. Thechiral symmetry implies a relationship between the unitary

chiral symmetry is a special attribute of random hoppingmatricest/, ¢’, V, and)’ at opposite energies,
between different sublattices; it is broken by, e.g., on-site

randomness or next-nearest-neighbor hopping. It is the chiral U=ut_, v.=v" 6 X=x_. (2.17
symmetry that is responsible for the anomalous transport

properties at the special energy-0 of a quantum wire with  In terms of the eigenvalues, Eqs.(2.13 and(2.14 for the
random hoppindg®2°4°To find the effect of the chiral sym- conductance and the shot noise power read

metry on the scattering matrix, we note that the transforma-

tion ¥'(m)— (—)™¥(m) changes incoming waves at energy _ % 1 _ % tant? X;
€ into outgoing waves at energye, and vice versa. Applied g_j:1 coskt X;’ p—j:1 cosht X; (2.18
to Eq.(2.6), this gives
lﬂ"‘ ¢0L ¢0L B. Continuum model with chiral symmetry
—& _ —& _ -1 —&
( PR ) _Sa( l/,gR) =(S-¢) ( PR ) (2.9 For weak disordefmean free path much larger than the

lattice spacinga), we may replace the lattice mod@.1) by
[The second equality follows from E@.6) at energy—e.]  a continuum model. We linearize the spectrum of the kinetic
Taken together with flux conservati¢®.7), we thus find that  energy of the Schidinger equatiori2.1) in the close vicinity
the presence of the chiral symmetry results in the constrairngéf the band centes=0. Choosing a representation with left

. and right movers, we arrive at the continuum Sclimger
S:=(S-¢) (2.10  equation

for the scattering matriXS. Unlike the constraints of flux

conservation and time-reversal symmetry, E8.10 in- —e(y)=lios@lndy+ os@v(y) T o2@W(Y) Ji(Y).

volves scattering matrices at different energies. The excep- (2.19
tion is the band center=0, where we find thaSis Hermit-  Here ¢ is a 2N-component vectofelements ofys occur in
ian, pairs that correspond to left and right movers andw are
‘ NXN Hermitian matrices, and the, (u=1,2,3) are the
SH=Sp- (21D pauli matrices. In the presence of time-reversal symmetry

) o ) w(v) is (anthsymmetric. The continuum limit has been taken
The scattering matrix is decomposed into fOUXN sub-  ajong the chains only; discreteness is maintained in the trans-
blocksr,r" andt,t’, the reflection and transmission matrices, yerse direction through thid components ofy. The Fermi
, velocity has been set to 1. The randomness in the hopping
[T t amplitudes has been translated to the matricesxdw, by
S= . (2.12 ; o
means of the identifications
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(a) 5L that gives the reflection matrix of two scatterers 1 and 2 in
—_— series, in terms of the reflection matrix of the right scatterer
(2) and all reflection and transmission matrices of the left
scatterer(1) [see Fig. 8)].
If applied to a quantum wire, the only input in this ap-
proach is the statistical distribution of the transmission and
L reflection matriced,, t;, ry, andr; of the thin slice. The
width 6L of the slice is taken much smaller than the mean
(b) free pathl, so that the change ofis small as well, although
oL must remain large compared to the lattice spacirfgr
the continuum limit to be a good approximation. Then, the
Sy , S , scattering matrixs; of the thin slice can be calculated in the
e =T Ty & =Ty second-order Born approximation from the Salinger
equation(2.19. The result is

1+~ -t th +— —

FIG. 3. (a) A thin slice of lengthsL with a<SL<I<L is added
to the left of the disordered region of lendth(b) Two disordered

i
regions 1 and 2 with scattering matricésandsS,, respectively, in rp=—W+ E[V'W]' (3.29
a quantum wire.
— i 1 2 1 2 5
i(6Tp— 6T ) +H.c.—uv(y), ti=1+iV—3 V2= SWi+iedl, (3.2b
—(8Tm= 6T, ) +H.c.—w(y). 2.2 i
(8Tm= 8T hs1) (y) (2.20 = v (3.2
With the choice(2.3), the disorder irv is statistically inde-
pendent from the disorder . Bothv andw are Gaussian 1 1
distributed with zero mean and with variances t;=1- iv—zvz— §W2+i£5L, (3.20
. Bo(y—=y’) 2-p where
<Uij(Y)[Uk|(y )]T>:T Sik Sy — T5i|5jk
SL oL
2(B—1)(1—1) V=f dyv(y), W=f dyw(y).
N %% (213 0 0
Here we neglected terms that are of ordét)?. [We also
BS(y—y') 2-8 ignored they ordering of the integrals in Eq3.2) as it does
(wij(y)[wm(y’)]T):—l(5ik6]-|+75”5jk not affect the statistical distribution d8; in view of the
Y S-function correlation of the random potentialsand w.]
2(1-7) Using Eq.(2.2)) for the distribution of the random potentials

- B—N5ij 5k|>- (2.210  y andw, we find that the matrice¥ and W are Gaussian
distributed with zero average and with variance proportional

. . . to the widthSL of the thin slice,
The symmetries(flux conservation, time-reversal, and

chiral symmetry of the scattering matrix in the continuum BoL 2-8
model are the same as for the lattice moddbte that in the (Vij(vkl)’f):—( Sk 8j1 ——— 6 Ojk
continuum model, the chiral transformation is represented by ol B
y— 1. The chiral symmetry then follows from the fact 2(8—1)(1—7)
that oy anticommutes with the Hamiltonign. - ,B—Né” 5,(,), (3.39
Il. SCALING APPROACH BoL 2-p 2(1— 1)
. 1 . . <Wij(WkI)T>:_( 5ik5j| +—5i|5jk _—5ij 5k|)-
The ided® behind the scaling approach to the theory of vl B BN

localization in a quantum wire is to calculate how the scat- (3.3b
tering matrixS of the quantum wire changes if a thin slice is
added to the disordered regipsee Fig. 8a)]. Here we are
mostly interested in the eigenvalues of the matrix produc
t't=1-rr, i.e., in the parameters; of the decomposition
(2.15. Hence, it is sufficient to consider the reflection matrix
r, and calculate how it is changed upon the addition of a thi
slice. This change follows from the composition law

Equations(3.1)—(3.3) define the scaling approach. They are
exact for the continuum modé2.19 with the statistical dis-
Eribution (2.27) of the random potentials, which in turn was
derived from the random hopping lattice mod2I1),(2.3) in

the limit of weak disorder. A different choice for the distri-
"bution of the hopping matrices in E(®.3) would have led to
different statistical properties of the scattering matrix for a
thin slice. However, as we will verify in Sec. VI by numeri-
r=rytty(I—rory) oty (3.)  cal simulations, such differences are irrelevant in the sense of
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the renormalization group, i.e., they disappear for sufficientlyat the band centes=0. In the language of the Fokker-
long wires(longer than the mean free pdth Planck equatiori3.6), » controls the relative strength of the
Note that the reflection probabilith ~*trrir, of a thin  giffusion of the center of mass= (X, + - - - +xy)/N com-

slice has average pared to that of the relative coordinabqs—z

N~Ytrrir)= 6L/, (3.4) Th(_a most important d_ifference betwgen the Fokker—P.Ianck
equationg3.6) and(3.7) is the symmetries of the Jacobians
which justifies our choice thatis the mean free path. J. In Eq.(3.6), i.e., at the band center=0, J is invariant

In terms of the matrice¥ and W, upon addition of the  ynder a simultaneous translation—x;+ &x and under a
thin slice, the reflection matrik changes according to simultaneous reflectios;— —x; for all j. [The translation

r—r+or, (3.59 invariance decouples the motion of the “center of mass”
=(X1+---+xy)/N from the relative coordinateg —x, and

with hence calls for the presence of the parameter Eq. (3.6).]
8t =2ie 8L — W+ rWr—i(Vr—rV)+rWrWwr In the standard DMPK equatid8.7), i.e., for energies far
away from the band cented,is invariant under a reflection
—L(W2r+rW2+V?r+rVv2)+VrV. (3.50  x;— —Xx; for eachj separately; there is no longer translation

invariance. It is the absence of this “local” reflection sym-
metry ate=0 that is responsible for anomalies in transport
&roperties ate=0. In the remainder of this paper, we de-
Scribe these in more detail, focusing on the distribution of the
conductance in the localized regirhe>NI and on the quan-
tum interference corrections to the conductance in the diffu-
sive regimel <L <NI. For the localized regime, we use the
Fokker-Planck equation$3.6) and (3.7) to compare the
transport properties foe=0 ande far away from 0.(A
comparison for the case of broken time-reversal symmetry
only has already been given in Ref. BOn the diffusive
regime we start from the evolution equati(815) directly, in
order to include the dependence of the transport properties.
Knowledge of the crossover as a functionsoill allow us

to specify what is meant by &' sufficiently far away from
0,” and hence when the standard DMPK equat{8tv) re-

We have not included terms of ord¥W as their contribu-
tions vanish upon disorder averaging.

Several observations can be made already on the level
the evolution equatiof3.5), in combination with the Gauss-
ian distribution (3.3) of the matricesV and W. First, the
distribution of r is symmetric under a change of sign,
— —r. This implies that the average of any odd functiomnr of
must be zero, for all values of the energy

Second, at the band cente 0, the chiral symmetry im-
plies thatr is Hermitian, cf. Eq.(2.11). The Hermiticity is
broken by the first term in Eq3.5b), which is proportional
to the energy.

Third, the distribution ofr is invariant under transforma-
tionsr—UrU™, whereU is an orthogonalunitary) Nx N
matrix for =1 (2). Forzero energy, whereis Hermitian,
this implies that the distribution af depends on its eigen- . .
values tanlx; only [cf. Eq.(2.15]. As was shown in Refs. 40 plc?r(r:]erslothe_nspe;:(;aé)lleFmokker-Planck equatiBrg) in the ran-
and 41, in this case, the scaling flow can be represented ﬁ% ppIng p '
terms of a Fokker-Planck equation for the distribution

P(Xq, ... XN L),
(1 nib) IV. LOCALIZED REGIME

B

P

—== i( 5 — 1=7 JiJ—lp Differences between the conductance distribution at the
oL 1 IX; g ’

1
Y= N IX; band centee =0 and away front =0 are most pronounced
in the localized regimé>NI. Away from the band center,
J_H Isinh(x;— x| 3.6 the conductance decreases exponentially with length, as is
Tk =0 (36 the case in the standard orthogonal, symplectic, and unitary
classes. At the band center, however, the exponential de-
Away from the center of the band,is no longer Hermitian, crease of the conductance is only observed if the number of
and its distribution depends on both eigenvalues and eigerthannels is even, while for an odd number of channels the
vectors. However, foe sufficiently far away from O(this conductance decreases only algebraic‘glly_
notion will be made precise belgwthe chiral symmetry has  Exact calculations for the moments of the conductance in
no effect on the scattering matrix, arf(x,, ... Xy;L)  the standard symmetry classes have been obtained for all
obeys the Fokker-Planck equation for the standard orthogog 2-5¢ while for the chiral symmetry classes governed by
nal, symplectic, or unitary symmetry classes, the so-callethe Fokker-Planck equatiof8.6) only exact results for3
Dorokhov-Mello-Pereyra-Kumar equatié;* =2 andy=1 are knowrt® While we do not know of a way
to extend our exact analysis of Ref. 30 to the cases of or-
ﬁ_ 1 2 iJ_J—lp thogonal and symplectic symmetries, it is still possible to
dL  2(BN+2—p)l =1 9%, 9x; ’ extract the conductance distribution deep inside the localized
regimeL>NI using the approximation scheme of Refs. 43,
] ) ) 57, and 58. This is done here. We are thus able to compare
J= 1;[ |sinh 2| I[l |sini?x,—sint x, [f. (3.7 the average and variance of the conductance and the average
= and variance of its logarithm at and away from the band
There is no parametey in the DMPK equation; the presence centere =0 for the orthogonal, symplectic, and unitary sym-
of the parametew, is special for the case of chiral symmetry metry classes for all values of.
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Our starting point is the Fokker-Planck equatit6),
which we rewrite in the form

H

AL

with the “potential”

P a0
BP—) 4.1

aL 0% X X;

N N
—kg :E In|sinh(x,—x,)|.

Equation(4.1) has the interpretation that asincreases fic-
titious particles with the coordinates perform a Brownian
motion subject to the repulsive two-body potential Since
) has a hard core, we may assume that x,<<- - - <xy for

4.2

all L. In fact, as a result of their repulsive interaction, the

distances between the’s will grow with increasing length,
until eventually for sufficiently largé

X KXy -+ - KX - 4.3
Then we may approximate
Q) )
——=~N+1-2j, (4.4

5Xj

and find that Eq(4.1) is solved by a Gaussian distribution
for thex;,

N
vl L
|12:1 4L<Xi_ gl)

SR

i

P(Xq, ... Xy;L)e exp{

(4.9
Here, theNX N matrix Ey has the entriesHy);;=1, and the
channel-dependent “localization length¥;| reads
I 46
ST BNT1-2))" 49

For comparison, in the standard orthogonal and unitary sym-

metry classes, the probability distributid?(x,, ... Xy;L)
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The presence of the eigenvalyg, 1y, with zero average is
responsible for the absence of exponential localization in this
case.

The average and variance of the conductance and the av-
erage and variance of its logarithm follow from the probabil-
ity distribution (4.5). For evenN the results are, with an
accuracyO(L%£9) for the logarithms displayed,

In(g}——é<l—¥ 1Q%—%In z) (4.99
Invarg=1In{g), (4.9p
and
(In g}———+2\/—(l 2—)% (4.99
varlng=i 1+ 1- E)(1 ZEHE (4.90
B @ 3

The last result shows that, in the localized regime, the con-
ductance distribution is well approximated by a log-normal
distribution; unlike the average conductargéself, which
has fluctuations that are much bigger than the average, its
logarithm Ing provides a good characteristic of the en-
semble.

For oddN, there is no exponential localization. The con-
ductance has a broad distribution, which is characterized by
neither the(average of theconductance nor its logarithm,

exp{— (yl/4L)[1—(1— n/N)] tarccoshg™ 1’2}

gVl-g

P(g)=

(4.10

With this distribution and up to corrections of orde?/&°,
the average conductance decays algebraically,

in the localized regime is also given by a Gaussian of thdather tharl,

type (4.5), but with »=1, y=2(BN+2-), and¢;=
+2=pB)l(1+Bj—B).*

In the localized regimé& > NI only thex; that are closest
to 0 contribute to the conductanpef. Eq. (2.18]. For even
N, they arexy,, and X+ 1, both of which are an average
distance

(BN

L vl
(Xn) = —(X(ni2)+ 1) = i &=

E;

away from zero. The length scafeserves as the localization

(4.7

length for everN. For oddN, the conductance is determined

by only one eigenvaluexy; 1y2, Which has zero average,

(X(n+1)22=0. (4.8

B 1/2 1 7 -1/2 g 1/2

<9>=(;) (1——N ) (E , (4.113
o 2
(9%)=3(9), (4.110
while the average of its logarithm grows proportional {4
| a2 ( - 7’) - (4.110
(Ing)= B P .
8 1-7n\L

varIng—E 1—; 1—T E (4.11(:)

Away from the band center=0, the conductance distri-
bution follows from the standard DMPK equati¢®.7). It is
close to log-normal, wittf:52:5456

_L 3 (L)
2¢q 2\ &g

In(g),

In(g)= (4.129

Invarg= (4.12b
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2L below, the presence or absence of chiral symmetry. The role
(Ing)=-— . (4120  of quantum mechanics, and hence the role of the symmetries
st of the microscopic Hamiltonian in this regime, are confined
aL to small corrections to the average conductance and to its
varlng=—, (4.129  sample-to-sample fluctuations. In spite of their smallness,
Est these corrections are of prime importance, as they are a uni-
versal signature of quantum phase coherence, their size being
determined by the fundamental symmetries of the system
only. They do not depend on microscopic properties of the
E=(BN+2—-p)I. (4.13  Quantum wire, nor on its macroscopic characteristics, such as
mean free path, width, or length.

The most striking difference in the conductance distribu- The two corrections are referred to as “weak localiza-
tion appears for oddN, where the absence of exponential tion” and “universal conductance fluctuations.” The former
localization ats =0 is contrasted with the exponential decay is & small correctionsg(Jp) to the ensemble averagedi-
of the conductance fot# 0. However, for an even number mensionlessconductancgg) (shot noise(p)) that is sup-
of channels also, there is an important differencesAt0,  pressed if time-reversal symmetry is broken by a magnetic
the localization lengtié~N| is B independent for larg&  field. For a standard quantum wire, it reads
[cf. Egs. (2.4 and (4.7)] while the localization lengthég,
~ BNI away from the band center is proportional gofor PN 5
e#0 [cf. Eq. (4.13]. Hence, upon moving away from the 8g= F-2 (5p= 'B_) (5.1
band center, the localization length increases by a fg8tor 3B 458
[The mean free path does not dependsgsee Eq(3.4).]

The absence of & dependence for the localization length since it signals the first departure from Ohm's law, the
at the band center may be related to the anomaly in the DOR e -|ocalization correction to the conductance is precursor
for random hopping models at that energy. In Ref. 47, it wag, the exponential suppression of the conductance in the lo-
shown that in the absence of time-reversal symmetry thesjized regime. The universal conductance fluctuations refer

DOS p(#) near zero energy has a pseudoge(®)<s|inel, 15 the sample-to-sample fluctuations of the conductance,
while in the presence of time-reversal symmetryhas a  \yhich have variance

logarithmic divergenceg(e)=|In &|. We conclude that, upon
breaking time-reversal symmetry, the decrease in the DOS
available for transport cancels the suppression of destructive 2
interference responsible for the increase of the localization varg= @ (5.2
length in the standard case.

The average and variance of the conductance in the local-
ized regime are dominated by rare events, where the smalle§he breaking of time-reversabpin-rotation symmetry re-
X; is close to zerdcorresponding to a transmission coeffi- duces the conductance fluctuations by a universal factor of
cient close to unity For wires without chiral symmetry, ap- v2 (2).
proximation of P(xq, ... Xy;L) by a Gaussian similar to In this section we calculate those quantum corrections for
Eq.(4.5) fails for x; close to zero because it does not accounthe case of a quantum wire with random hopping. Our cal-
for the repulsion betweer; and its mirror image—x; [cf.  culations are inspired by the approach of Mello and Stdne,
Eg. (3.7)]. While it does not affect the leading(L) behav- who have derived and solved scaling equations for the mo-
ior of In{g) and In varg, this failure shows up in the sublead- ments of the conductance in the standard universality classes
ing logarithmic terms in Eq94.123 and(4.120, which are  from the DMPK equation in the limit of larg&l. We con-
different from what one would have obtained from a Gausssider the quantum corrections for both the pure symmetry
ian distribution for thex;. [The results quoted in Egs. classes, corresponding to the Fokker-Planck equati®its
(4.123 and (4.12b above follow from an exact solution of and(3.7) ate=0 ande far away from O, respectively, and
the DMPK equatiori2®*®§ In the presence of the chiral for the intermediate regime, where the crossover between the
symmetry, there is no repulsion betwegrand —x; , so that ~ two symmetry classes takes place. Since in the latter case no
the approximatiori4.5) remains valid forx; close to zero. In  Fokker-Planck equation for the transmission eigenvalyes
this respect, we remark that the logarithmic terms in Eqis available, a modification of the approach of Ref. 59 is
(4.9), which were obtained with the help of E@.5), indeed needed, which is based on the more fundamental scaling

agree with the exact solution of Ref. 30 for the cgke?2. equation for the reflection matrix Eq. (3.5), rather than on
a Fokker-Planck equation for the transmission eigenvalues

x; . Such a method was proposed by one of the authars
the context of the transmission through a random waveguide
In the diffusive regimd <L <NI, the effects of quantum with absorption. Below, we adapt this method to the present
interference do not take such a dramatic form as in the loease(Sec. V A), and present solutions for the chiral symme-
calized regime. The typical conductance of any sample isry classes at the band center=0 (Sec. VB and for the
given by the classical Ohm’s lag=NI/L, and is not af- crossover from the chiral symmetry classes to the standard
fected by quantum mechanical phase coherence, the presengaversality classes as moves away from the band center
or absence of time-reversal symmetry, or, as we shall see=0 (Sec. VQ.

up to an accuracy o®(L%&%). Here the localization length
for the standard symmetry classes is given by

V. DIFFUSIVE REGIME
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A. Scaling equations

Although we are primarily interested in the statistics of
the transmission matritx and in particular in thédimension-
les§ conductanceg=trt't and shot noise powerp oo EI oo (b)
=trt"t(1—t"t)], we find it more convenient to formulate
our scaling equations in terms of the reflection matrix ,
Once we knowr, unitarity of the scattering matrix allows us o |° o °| o (b)
to find the transmission properties without much effort.

Before we write down the most general scaling equation
for a trace of an arbitrary product of the reflection matrix
and its Hermitian conjugate, we would like to focus on the
scaling equation for tr'r in order to demonstrate the method
and the approximations involved. Addition of a thin disor-
dered slice to a disordered wire causes a small change
—r+6r to the reflection matrix; see Eq.(3.5b. Hence, olefo|e| o (e
upon addition of this slice, the tracerfir changes to trr(
+6r)T(r+ 6r). Using Eq.(3.5b for &r, we thus find, up to
O(4SL) [recall that the variance o#V is of order 5L, so +-

: 2
keeping terms up t®(SL) means up tO(W?)], FIG. 4. Diagrammatic representation of H§.13. Each circle
; i p ;
fo_ ot tenet corresponds to a reflection matnixor r'. To calculate the incre-
otrrir=—tr[r(1-—r'r)W+W(1-r'rr ment of (R; ...; ) (single box containingn open circles one

0oo0oo0o0o0 |— ooEoo (c)

—(1—rr T)W(l— rTr)W+ r(1— rTr)WrW chooses a pair dfilled) circles. As indicated irlb) the same circle
can be chosen twice. Overlapping or nested boxes represent multi-
+Wrtw(i—rTr)rt]. (5.3 plication of traces. Thus, (Rj i iii.) (Ri.Ri.iiciiisjis"
1121314)5 3 31415111213

All terms that involve the disorder potentislin Eq. (3.5b (Riigi R gigisiz): <R13Rj5j}>' (RiigRigizj,) and (R R jgj,), are
canceled due to the cyclicity of the trace. Next we perform gepresented by, (b), (1), (c), (d), and(e), respectively.
disorder average oval/ and over the reflection matrix of

the wire of lengthL. We thus find work for the case of the standard DMPK equatidmnd its

consistency can be verified from the scaling equations for
Yl 8¢trrr) 5 traces and products of traces that we derive in this section.
ET=([tr(1—rTr)] Y=(trrtrr(1—r'r)) Let us now see how the scaling equation ftrr 'r) de-
couples in this larg®&¥ decoupling scheme. Recalling that
2-p is of orderN [cf. Eq.(2.4)], we thus find that the RHS of Eq.
—(trrTtrrf(1—rrh))+ T(”(l—”r) (5.4) is of orderN?, i.e.,

_ 1
X(1—rTr—r2—r12))— Z(Z_N”) Lo (trrTry=N—2(trr'r)+ N(trr*r)2+O(N°). (5.5
x(tr(1—rrhy(1—rtr—r2—rt2)), (5.4) Here we have used the fact that the average of the trace of an
odd product of s andr s is zero; see our discussion below
Fina”y, we take the limitsL<I, and replace the finite dif- Eq (35) The initial condition atL=0 Corresponds to per-

ferences on the left-hand sideHS) of Eq. (5.4) by differ-  fect transmission, i.e{trrfr)=0. The solution is easily
entials. found,

It is apparent that the scaling equation obeyec{tby*r)
is not closed: On the RHS traces and products of traces of up Ns
to four reflection matrices appear. Closure requires an infi- <trr*r)=m+O(N°), (5.6)
nite family of scaling equations, and cannot be achieved on
the level of scaling equations for the moments, but only withwheres=L/l. This solution corresponds to Ohm’s law for
the help of the Fokker-Planck equation for the transmissionthe conductancg=N—trrr,
eigenvalues; in the cases of pure symmetry. However, for

lengthsL <Nl it is possible to decouple this infinite set, and N 0

to find a solution order by order ib/(NI). Formally, this (@)= s+1 +O(ND). (5.7
decoupling scheme proceeds along the lines of a Iarge-

expansion: In addition to the explicit factoksin Eq. (5.4), To this order inN, the result is entirely classical. The

each trace contributes a factdr Further, we assume that, to average(trrr) (and hence(g)) does not depend on the
leading order in\, the average of a product of traces equalsenergys nor on the presence or absence of time-reversal
the product of the averages. As we will see below, correcsymmetry. The dependence on time-reversal symmetry
tions correspond to &co)variance of traces, and are of order shows up through the term proportional to{3)/8 on the

NC. Similarly, if we have a product of traces, we can ex- RHS of Eq.(5.4), which is of orderN. It is this term in the
pand in cumulants, where arth cumulant will turn out to be  scaling equation that gives rise to the weak-localization cor-
of relative sizeN?~". Such a decoupling scheme is known to rection to the conductance. The scaling equation(forr)
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does not contain an explicit energy dependence. Instead, ti@ne verifies that for:—0, the averagédtrr?) equals the
energy dependence shows up through the appearance of theeragg(trr'r) that we computed above, since for zero en-
traces like tr2 or trr Tr3in Eq.(5.4) in the weak-localization ergy one has=rT. One also verifies that farl>1 the av-
correction. Such traces that contain different numbensof erage(trr?) approaches zero, as is the case in the standard
andr s strongly depend on energy, as can be seen from theymmetry classes.

scaling equation of, e.g(frr?), We are now ready to discuss the scaling equations for the
| trace of the product of an arbitrary number of reflection ma-
v 2\ _ TN 2 trices and for the product of such traces. Hereto we write
3 altrroy=([tr(1—r9)]5)—=2{trrtrr(1—r?)) fo=r andr,=r, and define
digyl ) 2-B 2(1-7m)
5 ﬂrf>+(—?;‘—'—2§r— Rj..j =trrjrj (5.1
X(tr (1—r2)(1—-3r?)). :

_ { r(. rH(L=3r%) . 3 where the indice§, can take the values 0 or 1. We define
With the same decoupling scheme as before, we find a closatle symbolR without indices afk=N. We also define prod-
scaling equation foftrr2) up to O(N), ucts of traces through the symbols

2\ ; 2 1 2\2 0
9 {trrey=N—-2(1—2iel){(trr*)+ N(trr Y+ O(NY), Qn,..n = Ri(ll)~~~if111)' . .Ri(lm)mi%m), (5.12
(5.9 ;
which has the solution wheren; denotes thertuplei{”, ... 0.

. . i .
trr2y=NI{1—2iel+2Vel(i+ehcol 2zl (i+ehst L Proceeding along the same lines as above, we then find
(rrs)=N{ © Vel (i el)eof2yel(i+el)s]) that the scaling equation for a single trace is given(sse

+O(NO). (5.10  Fig. 4

> (—1)k

2ieyl —nvy
Yl k=1
E&_(le...j > B <le"'jn>
2-B 2(1-7)
+ R iR iy it T3 Rk i e i T T BN Rk i dnige
1<k=l<n k | | nl1 k :B k k 1)n | BN k 11 nl1 k
2-p
B \ R iR dnie e 7 Rk it i i
L2A1-w)
BN (SRR [ ) IR Ry I RSy P
2-p 2(1—7)
- Riv iRy a3 Rik st e iier™ T gN Riedimadier ini1 ]
1<) <n ko hi—1 eIl i B ko h-dke e i BN TSR T VI R FoY R 13
2—pB 2(1-7)
— Rj ---jRj--~jj---j +_Rj B T B S -l AVTNPPURE 1 SR I B .
1=l <n PSR TR TR PV E RS IS | B k1 k=1 Jadn o) BN T Il k-1
(5.13
Here, it is understood thatj,.;=j1, jo=jn. Moreover, for n=l=k+1>1, R; .. =triy=N,
Ry ik g = Ry dnin e @A Ry iy e = Rigeoiny iy TESPeEctively, whereas

whenk=1 andl=n, R, =trly=N, R

By i d =R e, =R Te-
) Jea ol k- Nerrdi—dk-a o ddn e T ke hi—adier o dnle k- J27 " In-1
spectively. Note that there is a one-to-one correspondence between contributions involving a product of two traces, say,

Rjk‘“i|Ri|“'in11'"jkEtr(rjk. ’ -rjl)tr(rj|~ RSP PA 'rjk)'

and contributions arising in the presence of time-reversal symmetry,

2— 2—
_'BR_ E_'Btr[(r].k...rjl)(rjk...rjlr

B Jk”'jljk'”jljn”'jl B
or due to the randomness in the determinant of the hopping matrices,

2_
. .rjl)]:_ﬁtr[(rjk. . .rjl)(rjl. . 'rjnrjl. . .rjk)t],

B

In’
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For products of traces, we find

]kJ|J|JnJ1Jk
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Etr[(rjk. .

nj_lnj+l4»-nmaLan> +
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.rjl)(rl.l. . .r].nrjl. .

'rjk)]-

>

1<sk<l=m

o Fon) (5143

<Q”1"‘nk—1”k+1"'n|—1n|+1“'

where (yI/B8)d R n, is given by the RHS of Eq5.13 with omission of the angular brackets for the disorder averaging, and

whereF ,, ==L 12, 1k, with

2-p
fk'IZRik'“imil'“ikjl'"jnjl“'jl+ TRik”'imil iy dgdn ol
2-pB
+Rik+l"'imil "ik—lj|+1"'jnj1"'j|—1+ B Rik+1"'imi1
_2d=m R ‘R
BN S R T R PR L PR R P ERRRS [N IR DA
2(1-1n)
+ BN i iz iR i i1 Riga i
2(1-
BN S ALY\ R S R TR T R 1|
Here we denoteth=i,, ... i, andn=jq, ... ,j,-

Below, we are interested in averages &ogjvariances of

2(1_77)R R

AN iy R i
Sy [ Y Py [N

2-p
maidier e T g Riy iy i1 dadn i
2-p
L N E R T T R R IR PR [
(5.14b

dimerization along the chain direction. With weak dimeriza-

tion, Eq.(5.13, say, is modified by the addition on the RHS

traces of an even number of reflection matrices up to ordeof the contributionAS}_ 1Ry, i — R,

NO. In both cases, the terms proportional to(%) do not

n ok lk+1"'jn"'jk—1>'
We see that the scaling equauons now couple traces over an

play a role. For the average of a single trace, this is immegyen and odd number of reflection matrices, as is expected

diately clear from Eq(5.13). To see this for théco)variance
of two traces, some further inspection of E¢p.14 is
needed. Firsty appears explicitly in the quantity ,, mul-
tiplying a product of two tracepsee Eq.(5.14B]. A priori,

since the probability distribution diV is no longer symmet-
ric aboutW=0 [cf. Eq. (3.5D].

Equations(5.13 and (5.14) are the central results of this
section. These equations are more general than the Fokker-

the leading contribution, which is obtained by replacement ofjanck equation$3.6) and (3.7) in the sense that they are

those traces by their averages, is of the same diO¢éN) ]
as the other terms in E@5.14h. However, agn andn are
even, each of the two traces multiplying{1;) contains an

valid both at the center of the bard-0 and in its proximity.
Their limitation is that they can be solved only in the diffu-
sive regimeL<<NI. In particular, they cannot be used to

odd number of reflection matrices, so that their averages vargrope the localized regimén contrast to their counterparts

ish. Hence, to leading order N, the contribution from the
term proportional to (*+ #) vanishes. Secondy appears
implicitly through the derivative {/I/ﬂ)&Lan in Eq. (5.143.
Again, to leading order i, its contribution vanishes, and
one is left with a term of relative sizd~2.

It should be mentioned that Eq%.13 and(5.14) can be

in the problem of a waveguide with absorption; see Ref. 48
The next two subsections are devoted to a solution in the
diffusive regime. The case of pure chiral symmetsy=0) is
considered in Sec. V B; the energy dependence of the solu-
tion is discussed in Sec. V C.

extended to the case in which a weak staggering of the hop-

ping amplitude is present in the microscopic mod#! Egs.

(2.1)—(2.4)]. [How to generalize the Fokker-Planck equation

B. Diffusive regime in the chiral limit

(3.6) to include dimerization was shown in Ref. 40; see also The general scaling equatiofs.13 and(5.14 simplify
Ref. 47] Weak staggering of the hopping amplitude is considerably at the band center0. At the band center, the

implemented by requiring that the disorder potenthahas
the Gaussian distribution with variand8.3b and mean

scattering matrix is Hermitian, and hencer'. Restricting
our attention to single traces and products of two traces, we

(W)= (B5LIy1)A 5. HereA measures the strength of the find the scaling equations
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¥l ny nAn leads to a doubling of conductance fluctuations was found

o (trrMy=— —H(trr"+ = > (trr" ki lgrrktly previously for the random flux modetorresponding to our

B B 2 (=0 caseB=2) from numerical simulatiof§ and from an exact
n-1 solution of the Fokker-Planck equati¢8.6).3° The factor of

n n—k—1s k-1 n—K ¢ ok 2 decrease in the fluctuations as the chiral symmetry is bro-
* 2 k; (s trrt ) = 2(trr ) ken is reminiscent of the factor of 2 decreaseyof the 3éonduc-
tance fluctuations upon breaking time-reversal symrfieary
+E(2__:3_ 2(1-7) upon breaking a spatial symmefty®?
2\ B BN According to Eq.(5.173, application of a magnetic field
N2 . has an effect on the average conductance, but this effect
H=)(trr" ) —2(n=1){trr], (519 yanishes in the diffusive limit<L<NI, i.e.,s>1. In other
words, there is no weak-localization correction to the con-
ductance in the diffusive regime. It is instructive to note a
coincidence between thg dependence of the average con-
ductanc€ g) and theg dependence of the localization length
2mn ; ; : : :
+ T trrmtn2(1-r2)2) &, which was con5|de_red in the previous section. In the_ case
of the random hopping model at zero energy, there is no
weak-localization correction, and the localization length
(trrm=1(1—r?) does not depend on the presence or absence of time-reversal
BN symmetry. On the other hand, without chiral symmefor
><trr“*1(1—r2)). (5.16 large energigs the negative correction to the average con-
ductance forB=1 foreshadows the localization transition,
Here (yI/B)d, trr" is the RHS of Eq(5.15 with the omis-  which occurs on a length scalg; that is proportional tgs,
sion of the disorder averaging brackef. n=1, the last i.e., localization takes place twice as fast without as with a
term in Eq.(5.15 should be omitted.[Alternatively, one time-reversal symmetry breaking magnetic field. The ab-
could have used the Fokker-Planck equatidr) to derive  sence of weak-localization correction to the conductance had
these scaling equations. Both methods agree, as we habeen pointed out in Ref. 63 for the single-chain random hop-
verified explicitly.] ping problem and by Gade and Wegner in their study of a
The average and variance of the conductageeN (two-dimensional nonlineare model implementing chiral
—trr? can be computed by straightforward solution of Eqs.Symmetry?1 (See also Ref. 2b.
(5.15 and(5.16) using the decoupling scheme of Sec. V A.  Finally, notice that there is no precursor in E¢s.17) of

)[(n+ 1)(trr"*2)

%a,_(trrmtrr“>=%l[<tr(a,_ trr™r™+{trrM(a trr™)]

B 2mn(1—7n)

The result is, up to corrections of ordiir 2, the even-odd effect seen in the localized regime. This agrees
with the exact solution foB=2, where it was found that the
N 2-8 ¢ even-odd effect is nonperturbative in the expansion param-
O=1" 5 ars (5178 eterL/NI 2
To orderN, the average conductance is the same as in the
4 65+ 1 case of a wire without chiral symmetry. Differences show up
vargzﬁ( _W) (5.17h only to orderN°®, where we find that there are no weak-
localization corrections for the chiral case. This is not a co-

where as befors=L/l. For the derivation of these results incidence that is limited to the average of the conductance

we needed the following intermediate results: g=trtTt. It extends to the averages of traces of arbitrary
powers ofr or t. To see this and in order to allow for a more
4 NS*(3s”+8s+6) detailed comparison to the case where chiral symmetry is
(trr®)= 3(1+9)” , absent, we rephrase the scaling equat®ib in terms of
the transmission matrix In the limit of largeN, one thus
o NS(15s*+8253+ 1776+ 1805+ 75) obtains
(= 151+s)’ - g
_ N+ ——[1g {tr (tT)"
up to corrections of ordeX® and B ) Lt (D™
<trrtrr>=i 1—; =—né (tr (tT)" Myt (tTH)™)
3B (s+1)°) m=1
-1
(trrtrrd)= 2 /4—553+1562+24S+4 +n”2 (tr (tTH)" ™ (tr (tTH)™)
158\ (s+1)° m=1
up to corrections of ordeX . 2=B, et
In the diffusive regimel<L<NI we observe that the —n(2n+1) B ('™
variance of the conductance &t 0 is twice the value taken )
in the standard case, faer far away from O[cf. Eq. (5.2)]. 4 on2 B(tr(t*t)“>+O(N°). (5.18

The result that the presence of the extra chiral symmetry B
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For a quantum wire without the chiral symmetry, the leadingAppendix—it is a quite cumbersome task, and many expres-
O(N) contribution to(tr (t't)") is precisely the same as the sions get quite lengthy.The expressiori5.10 for (trr?) is

first two terms on the RHS of Eq(5.18. The weak- the only example whose solution can be represented by a
localization correction proportional to (28)/8 differs in  one-line equation.To simplify our presentation and to save
the standard case from the remaining terms on the RHS dhe reader from those lengthy expressions, we focus on the

Eq. (5.18 as it read® regimel <I,<NI, where the crossover takes place inside the
28 25 regime of diffusive dynamics.
247 ten _ B Fovn+1 The length scale for the crossover can be identified from
n 3 (tr (t")")+n(n—1) 3 (tr ("o, Eq. (5.10 as
Hence, whereas the solution of E§.18) is the same as for |

an ordinary quantum wire to leading orderih l,= \/Z (5.22
(tr (tTH)")y = ﬁB(n,llZ), (5.19 _(Here we have _neglectead with respect tg’ in \i+el. This
2s is consistent with our focus on the regirhe>I.) We note

thate is none but the Thouless energy for a diffusive process
with diffusion constantl (having momentarily reinstated
the Fermi velocityv) in a system of linear sizk, . Using

the hierarchy of length scalds<l, we then find that the
solution of the scaling equations takes a relatively simple
form. For the average and variance of the conductanee

find up toO(N°)

whereB(x,y)=T'(x)I'(y)/T'(x+y) is the beta functiofi*:5®
the combination (8+1)(tr (t't)"*1)—2n(tr (t"t)") in Eq.
(5.18 conspires with the coefficie®(n,1/2) to ensure the
disappearance of a weak-localization correction for all aver
ages(tr(t*t)”} in the presence of chiral symmetry. As a
corollary, we find that the average density of the transmis
sion eigenvalueg;

N NI 2—/3/ 1 zcothz* o)+ z* coth(zo)
p(x)=<2 5(x—xj)> (5.20 <g>_0|€ B |3 Ao ’
=1 (5.23
also has no weak-localization correction.
With these results, it is little work to compute the average var _ 2  2[3zocothzo)—2
shot noise power(p)={(trt't(1—t't)) and its weak- 951557 3 160
localization correction,
i
N/ 1 1 2—- B/ s? 7s? +—————+c.c. (5.29
P=3ls51 o+ T B |3+ 301+9°) 80° sintt(z* o)

(5.21) Here we defined=1+i ando=L/l,. For the average of

Just as in the case of the conductance, there is no Weaﬁje shot noise power we find up @(N°)
localization correction in the diffusive regime£ L <NI.
g NI 2—,8[ 1 +((3z—22*02)cotk(z<r)

(p)= -
C. Crossover between the chiral and standard 3ol, B {45 2403
universality classes )

(5.29

For any nonzero energy, the chiral symmetry of Eq. t N +tcc
(2.11) is broken. Hence one expects that for a sufficiently 4% sintf(z* o)
long lengthL of the quantum wire, its transmission proper- For the derivation of these results, we needed the following
ties will flow to those of the standard symmetry class. Thisjyiermediate results, all up to corrections of ordiér
flow is governed by a crossover length schleso that for
L<I, the transmission properties are still like those in the NI 23
chiral symmetry class, while far>1, they resemble those (tr(r'n)®=N- T 155
of the standard symmetry class. We distinguish three pos- ©

sible regimes where this crossover can take pléteThe NI

crossover takes place in the ballistic regirheg!. (2) The (trr2)=N— I—z* coth(z* o),
crossover takes place in the diffusive regirh&] ,<NI. (3) &

The crossover takes place in the localized regime;NI.

NI

(402+i)z* coth(z* o)

4¢°

This regime cannot be treated with the methods used in the (trrfrdy=N-
paper. For the casd=1 of a single-channel quantum wire,
this regime has been studied in Refs. 13, 15, 18, 66, and 20.

The full set of scaling equation$.13 and(5.14) can be 1
used to describe the first two regim@sd the intermediate - m '
region between themAlthough the solution of the scaling
equations is straightforward—within the larfedecoupling NI
scheme, the scaling equations are linear ordinary differential (trrf2r2y=N— —
equations that can be solved one by ofigee the s

€

40— z* coth(zo) — z coth(z* 0))

202
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(160*z* + 8022+ 7* )coth z* &) V\{her_e ¥mj is the wave fun_ctic_m at the lattice siten(j). A
165° site is labeled by the chain indgx=1,... N and by the

column indexm. We impose open boundary conditions in

) the transverse directioty, o., =t ., =0. The system con-

(tr(r'r2)2)=N— N

I,

2_ * H
zcoth(zo) 8o —2z0 coth(z” o) +5i sists of a disordered region {0m<L), coupled to the left

40° 803 sink(z* o) and right to perfect leads(<1 andm>L). In the leads, the
longitudinal and transverse hopping amplitudes 8&fg;
=1 andt,,;., =t, where 0<t<1. With this choice, there is
NI [ (960*z* +40za%+ 32* )coth( z* o) mlt

a window of energies-1+t<e<<1-—t around the band cen-

960 ter, where the number of transmission channels does not de-
pend on energyand equals the number of chaiNg. In the
disordered region, the hopping amplitudes are taken from a

(528 jistribution centered around the valugs;, ;=1 andtp,;.,

=t for the leads. We consider two types of randomness,

- . which we refer to as the real random hopping and random
In the limit 0—0, corresponding td_<l,, the weak- flux models.

localization corrections to the conduc_tance and the shot' noise (1) In the real random hoppingRRH) model, the hopping
power and th_e conductance fluctuations approach their Va!implitudestm .. andty,;, are chosen uniformly and inde-
ues for the chiral symmetry clapsf. Eqs-(5:17) and(5.2)]. pendently in']t’he inter\/gla;(l— 0)<tmi. <t(1+6) and 1
Foro>1, corregpondmg tb>1_, one verifies that the val- <t <1+ 3, respectively, whergé measures the dis-
ues corresponding to the standard symmetry class are recoNrder sijfength. A uniform magnetic field with a fluf,

ered. . e
In this subsection, we have described the effect of a finit%]i;ﬁuggggﬁg %ﬁgggﬁf;j(jnj%deled by multiplicatiort,gf;

engr%)]/ byha tcros_sover Iengm S(I:.Me?t FO; tlhe condgctancltla (2) In the random fluxRF) model, the longitudinal hop-
an e Sd(; ?ﬁ'sﬁ ptowdeirl e imits 0” arge andin@a ping amplituded,, ;.;=1, while the transverse hopping am-
correspond fo the imits di farge or small compared 1Q . plitudest, ;., are complex numben$nj¢=te'9m,i. Here the
However, upon inspection of Eq5.10 or (5.26) one ob- 0 he h that the fl S g

that traces like i that contain different numbers of omj 8'€ chosen such that the fluxeg, ;= b, — fm-1; are
SErves independently and uniformly distributed in the interval

r's andr™s do not approach their large-energy lintt r2 -
=0 asL—».%" The gﬁgin of this diffegrence igyth;? the>re- t;gﬁ;g?géf P, wherep is a measure for the strength of

flection matrix is dominated byinterference of paths that In the random flux model, the parameter-0 (see Ref
;ehnter onli/ a dls.tanceh'clJf me ord%r Oft a meandfrtehe p?]mto . 41); in the real random hopping model the precise value of

€ qua(ljn um (\j/wre, w I? € ctonf ue anctehan h etstho nofl% not known. However, nonzerg (of orderN° by assump-
POWET depend ofl quantum INtererence throughout the en Ir'[(?on) will give rise to corrections of relative order only
wire. Hence, as long ds>1, the finite energy cannot alter 1/N(1/N2 for the average conductancavhich can be ne-
Fhe interference of most paths th_at contribute télence, to lected for largeN. Since the statistics of the conductance in
judge yvhether_the finite energy is relevant _for the traces o he RF model in a quasi-one-dimensional geometry has been
refl\(/avctlon matrlces,(;)n(;: hg\sf_to Corﬁpta?reol ms:ead gOffl}.' studied extensively in Ref. 30 at and away from the band

€ are now ready 10 define what is meant by Suffi- centere =0, we restrict our attention here to the crossover as

ciently large” in the crossover from the chiral symmetry a function of energy

class to the stand_ard symmetry clas.s..As far as quantum in- The wave functions that solve the Sctliger equation
terference corrections to the transmission properties are CO'Z'G 1) at energye can be written as

cerned, the results of this subsection show that suffi-
ciently large” corresponds to the inequality of length scales Ny
= i > 2 i . ) . .
L>1_, or, quU|vaIentIy,s>I/L . _How_eve_r fo_r reflection Y= T[eukymSIn(qvj)%L(V)
traces like tr<, a much more strict criterion is needdd, v=1 SINK,
<l, ore<l. In the next section, these criteria, as well as the im oL
functional forms(5.23 and (5.24) for the crossover, will be +e " Msin(d1-,)) ¢, (V)] (6.2
compared to numerical simulations.

(tr(r’'r)2r2y=N— —

I

400 — 6z0 coth(z* o) + 3i
4803 sink(z* o)

in the left lead and as

N

VI. NUMERICAL SIMULATIONS —ikm R
o S Y= 2 g€ "M sin(ay DY)
In this section we report on numerical simulations of the v=1 v
conductance of a quantum wire with random hopping only, i . .
N ppng ony +e"msin(q,j) ()] 6.3

and compare them with the theory of Secs. 1I-V. The simu-
lations are for the random hopping model on a square lattic&y, the right lead, where the wave numbey>0 is deter-

described by the Schainger equation mined from e = —2 cosk,—2t cosq, with ¢,=7v/(N+1).
With this parametrization, the definition of the scattering ma-
eUmi="tmj—10 ¥mj-1~thnj ¥mj+1— tme1j) ¥m-1j trix S, and its symmetries are the same as in Sec. Il

. For each realization of the disorder, the dimensionless
U ¥me 1 (6.7) conductanceg is computed from the Landauer formula



PRB 62 CROSSOVER FROM THE CHIRAL TO THE STANDARD. . .. 8263

10 T .
10°
AN
\Y
10™ 3
_— ¢pl=0, N=20
'''' ¢pl=0, N=21
-—= $,=8"10", N=20 o
—-—- =810, N=21 NG
107 ' : —
0 5000 10000 15000
L
(b) e ¢pl=0, N=20
""" ¢pl=0,N=21
—== 0,=8"10", N=20
0.2 —-=- 6,=8"107", N=21 1
00 \
5
>
01 T It
0 1 L e ——
0 5000 10000 15000
L

FIG. 5. Mean(a) and varianceb) of the conductance foN
=20 and 21 at the band center=0 with and without magnetic
field in the RRH model. Averaging over>10* realizations of
disorder is performed.

(2.13. The recursive Green’s functioh®®®°method is used
to calculateS, . (Application of the method to the random
hopping or random flux models is discussed in Ref) 8ur
numerical simulations use the parametet®.6, 5=0.2, and
p=0.3, for the RRH and RF models.

A. Localized regime in the RRH model

In the localized regime, the even-odd effect manifests it- 0.6 |
self most dramatically. Taking an average ovet " real- ]
izations of the disorder, we have computed the mean and 05 < I
variance ofg at the band centes=0 for the RRH model il T
with N=20 and 21, and with and without a time-reversal 04 1
breaking magnetic fiel¢see Fig. 5. The magnetic field cor- o 03 b
responds to a fluxp,=8X 10~ 4 per plaquette, or~1 flux e
guantum per 50 lattice spacings along the chain, so that time- o2 | z o = 0* 9

0 =410

reversal symmetry is broken for all but the shortest wire

lengths shown in Fig. 5. For odd(=21) both(g) and varg

decrease algebraically whereas they decay exponentially for

evenN(=20). We observe that, for od@vern N and fixed
L, (g) and vag are larger(smalley in the presence of a
magnetic field 8= 2, than without,8=1, in agreement with
Egs. (4.9 and(4.11). Note that for smalL varg is L inde-
pendent for the chiral unitary class, while pdecreases
linearly with L for small L in the chiral orthogonal class.

2500 v —

2000 }
up
1500 |
1000 il bl bttt s
107 10° 10° 107 10° 10° 10™ 10° 102

€

FIG. 6. Localization length¢ as function of energy for ¢
=0, 2x107% 4x 1074 and 6<10™* in the RRH model withN
=20 chains. Averaging over 500 realizations of disorder is per-
formed.

Similar L dependencies for small have been obtained for
the standard symmetry classes; see Ref. 54.

Results for the crossover from the chiral universality
classes to the standard ones as a function of energy are
shown in Figs. 6 and 7. Figure 6 shows the energy depen-
dence of the localization length= —2lim__,..L/{Ing) [cf.

Eq. (4.99] for N=20; Fig. 7 shows numerical data for the
ratio C=—lim__ _.(Ing)/varing. Here, the averages were
taken over 500—1000 realizations of the disorder and mag-
netic fields corresponding to fluxes,=(2,4,6)x 104 per
plaguette, respectively, have been used.

In the absence of a magnetic fiek{c) shows nonmono-
tonic behavior with a maximum arourd~5x 10", while,
within 10%, the localization length is the same in the chiral
orthogonal class{=0) and in the standard orthogonal class
(¢=10* for the choice of parameters in the simulatipris
agreement with Sec. IV. As we discussed in Sec. IV, the fact
that £(e=0)=§&(e>0) in the absence of a magnetic field
could be interpreted as the result of a cancellation of two
effects: the presence of an extra symmetry at the band center
(the chiral symmetry which tends to maké& shorter than
away from the band center, and the enhancement of the DOS

01 r

-2

0.0 5 =

107 10° 10° 107 10° 10° 10" 107 10

€
FIG. 7. RatioC=—lim__ _.(Ing)/varing versuse for ¢,=0

and 4x10 4 in the RRH model withN=20 chains and.=4
X 10°. The disorder average is taken over 500 realizations.
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at the band center, which tends to makéarger?’ Appar- 0.25 -
ently, these two competing effects are not balanced in the (a)
crossover region, thereby giving rise to the nonmonotonic 020 | 1

o—e c=0
o—o0 e=0.005

energy dependence  displayed in Fig. 6. Such a non-
monotonicity of £(¢) is reminiscent of the nonmonotonic
voltage dependence of differential conductance found in a 0.15
normal-metal/superconductor microbrid@e. )
In the presence of a magnetic fiefdincreases by a factor
~ 1.8 in the crossover from the chiral-unitary to the standard
unitary symmetry class, which is slightly less than the factor
2 predicted in Eq(4.13. Note that the increase in localiza- 0.05
tion length is most rapid around the same energy seale
~5x10% for which ¢ reaches its maximund, in the ab- 0.00
sence of a magnetic field. Moreovey, is related tcé,. by the 0
Thouless relatiort,~ /e, where the mean free pathis ¢
obtained by dividing the localization leng#ffe =109 by
N=20 in Fig. 6. ' '
A plot of the ratioC= —lim__..(Ing)/varIng is shown in
Fig. 7. In the standard symmetry class€gakes the univer-
sal valueC=1/2, while in the chiral classes one fas

var g

0.10 f .

o
(o]

&)
-
o

BN/2 8

e NTA-2m(N-2+27)  4—dIn

+O(1/N).
(6.9

var g

The data shown in Fig. 7 confirm th@t= 0.5 in the standard

symmetry classegorresponding te=10"* for the param- 0.05 r 1
eters of our simulation However, for the chiral symmetry
i i i 0.00 L L
classe.s, a 20% dlsgrepa_ncy W'Ith K§.4) is found'. . S 000 0.002 0.004 0.006
While the numerical simulations for the localized regime e

qualitatively confirm the theory of Sec. IV, quantitative
agreement is only up te-20%. As a possible source of this  FIG. 8. Variance ofj for the RRH model versus the total flux
discrepancy, we point to the fact that the simulations arghrough the disordered wiré) and versus energy (b). In (a),
done for an appreciable disorder strength 0.2, while the  varg is shown for two values of the energy=0 ande=0.005,
theory is derived for weak disorder, correspondingste 0. corresponding to the presence and absence of chiral symmetry; in
Hence, the system cannot be considered tfglyasijone- (D), varg is shown for two values of the flu=0 and ¢=8,
dimensional, and corrections from two-dimensional dynam-corresponding to the presence and absence of time-reversal symme-
ics on shorter length scales need to be taken into accourlfy- The dashed line irib) is the theoretical curvés.24), with o
Another cause of the observed discrepancies could be the(1-5% 10)z. The simulations are performed fdi=45, L
uncertainty of the precise value of for the RRH model. =800, and an averaging over “@ealizations of the disorder is
While we believe thaty should not affect the conductance performed.
distribution significantly for largeN, it remains difficult to ) . -
make a quantitative assessment of fimitecorrections as 10% With the theoretical predictions vgu=4/15 (2/15) for
long as is unknown. At this moment, we are not aware of $=0 and vag=2/15 (1/15) for¢>1 for e=0 (¢>0).
a direct way to obtainy from the numerical simulations. The crossover between the orthogonal and unitary classes
happens for¢p~1, both with chiral symmetry {=0) and
o . without (¢ =0.005). Thes dependence of vay is shown in
B. Diffusive regime in the RRH and RF models Fig. 8b), together with the theoretical resu.24), where
We next consider the crossover from the chiral symmetrywe fitted the crossover energy scale that enters into the defi-
classes to the standard symmetry classes in the diffusive reition of o=L/I, [cf. Eq.(5.22]. Again we find quantitative
gimel<L<&. In Figs. 8 and 9 we show numerical simula- agreement well within 10%(The fact that the numerical
tions of the average and variance of the conductance asdata for¢p=0 are below the theoretical curve can probably
function of the energye and the magnetic fluxp=L(N be attributed to the suppression of gaas L approaches
— 1) ¢y through the disordered part of the wire. The simula-the localization lengtl¥; see the remark in the discussion of
tions are performed witiN=45 andL=800, in order to Fig. 5)

ensure that the conditiomsL < ¢ for diffusive transport and Numerical results for the average conductance are shown
N<L for quasi-one-dimensionality are both met. The en-in Fig. 9. All data shown are for the same lengjiti 800 and
semble average is taken over*lsamples. for the same number of channéls=45. For weak disorder

Numerical results for the variance of the conductance irone can ignore theé ande dependence of the mean free path
the RRH model versug and e are shown in Fig. 8. The [, and hence of the Drude term in the conductance. The only
numerical data of vay versus¢ [Fig. 8@)] agree within  effect of a variation ot or ¢ is thus to change the symmetry
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3.2 T VII. CONCLUSIONS

In the vicinity of the band center, the physics of localiza-
tion in a quantum wire with chiral symmetry exhibits differ-
ences with respect to the case of a quantum wire in one of
the standard symmetry classes. The most prominent differ-
ences are observed in the localized regime. For wires with
chiral symmetry(as is the case with off-diagonal disoriieat
o 50 the band center, the statistics of the conductance depends
59 0 0e-0.005 | sensitively on the parity in the number of transmission chan-
nelsN. For oddN, the band center represents a critical point
that is characterized by the absence of exponential localiza-

o8 . tion. The logarithm of the conductance is not self-averaging
0 5 10 and the mean conductance or its variance decays algebra-
0 ically with the lengthL of the wire. For everN, exponential

localization takes place with a self-averaging localization
length ¢ that does not depend on the presence or absence of
time-reversal and spin-rotation symmetry. As the energy is
tuned away from the band center, the system crosses over to
the standard universality classes: The parity effect disappears
and the localization length acquires a dependence on the
presence or absence of time-reversal and spin-rotation sym-
metry. In the presence of time-reversal symmetry, the local-
ization length¢ for evenN is the same with and without
chiral symmetry. Our numerical simulations indicate that the
crossover is nonmonotonic: in the crossover between the chi-
ral and standard symmetry classégliffers from the values
in the pure symmetry classes. A complete theoretical de-
X X scription of this crossover is still lacking.
0 0.002 e 0-004 0.008 In the diffusive regime, the differences between the chiral
and standard universality classes are less pronounced. They
FIG. 9. Mean conductance as a function of the total fuxa) show up in quantum interference corrections to the classical
and of the energye. In (a), data are shown foe=0 and e (Drude conductance, which is the same in both cases. We
=0.005. In(b), (g) is shown for¢=0 and ¢=8 for the RRH  have found that, in the chiral classes, weak-localization cor-
model (circles and for the RF model ap=0.3 (triangle. All  rections to the mean conductar{gg and, more generally, to
simulations were done foN=45 andL=800. The average was the density of transmission eigenvalues vanish at the band
performed over 1‘bl’ea|izati0ns of the disorder. The dashed line in center. This is the quasi_one_dimensiona' Counterpart of a
(b) is taken from Eq(5.23 with =1 ando?=(1.5x10%e. similar observation made in Ref. 63 in the context of the
single-chain random hopping problem and by Gade and
of the quantum wire, which affects the weak-localizationwegner in their study of two-dimensional disordered sys-
correction to the conductance. According to E8.23, we  tems with chiral symmetry* The conductance fluctuations
expect a nonzero weak-localization correctiigin the stan-  are twice as large at the band center relative to the standard
dard orthogonal symmetry class, i.e., fg=0 ande#0, universality classes, a fact compatible with the presence of
while 6g=0 if time-reversal symmetry is brokemp&1) or  an extra symmetry in the system. We have calculated these
if chiral symmetry is presents(=0). This behavior is con- quantum interference corrections as a function of energy, for
firmed in Fig. 9. However, quantitatively, the numerical re-the entire crossover from the chiral universality class at the
sults differ by ~30% from Eq.(5.23. In addition, Fig. 9 band center:=0 to the standard unitary classes forfar
shows a smalk dependence ofg) at large magnetic fields away from 0. The theoretical predictions for this crossover
that cannot be accounted for within the theory of Sec. V. Inagree qualitatively with numerical simulations though there
particular, note the cusplike structure at smalin the ¢ remain sizable deviations between theory and numerics of
=8 data in Fig. ®b). This effect seems to be too large to be the order of 10-30%.
explained by a spurious dependence of the mean free path ~ While the chiral symmetry classes have received an enor-
[. Since the feature at smallis suppressed at larger lengths mous amount of theoretical attenti¢gee the Introduction of
L, a possible cause might be a contact resistance effedhis paper for a brief summarythere are several hurdles to
(Contact resistance is known to play a role for disorderedake before a chiral quantum wire can be realized in practice.
normal-metal—-superconductor junctions, when the particleBesides the effect of electron-electron interactions, which is
hole degeneracy is destroyed by a finite voltage or by a magiot taken into account here, the main obstacle is the fact that
netic field™") As we discussed in the previous subsection the chiral symmetry is very fragile, since it is easily broken
other causes for the discrepancy between theory and numetdy, e.g., on-site random energies, next-nearest-neighbor hop-
cal simulations may be the fact that the disorder is not smallping, or a small shift of the chemical potential, which will
or that the parametey is not known. drive the system away from the chiral symmetric band cen-

2.8
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ter. Our calculation of the quantum interference corrections
in the crossover from the chiral symmetry classes to the stan-
dard ones can be seen as a first and necessary step to tackl
the latter obstacle. The methods derived for this purpose, as
described in Sec. V, can, in principle, be extended to the case
where the crossover is driven by on-site disorder or next-
nearest-neighbor hopping, instead of a shift of the Fermi en-
ergy. For those cases, one can estimate that the crossover

aLvar R=

eB

AKIRA FURUSAKI PRB 62

4((R)— N)varR+(Rgo+ R+ 2R— 2R1000

— 2RTg00— 4Rz + Rigo106t Rino106T 2R3)

-8B
+ T( Root R0+ 2R—2R1000~ 2R1000

takes place at the length scale-\iT, (L~ Il ), where — 4Ry + Rigo100+ Rioo100t 2Rs)- (A3)
o (I, is the mean free path for scattering from the on-site . .
disorder (or next-nearest-neighbor hoppjngThe precise Equations needed up to corrections of ortleare
form of the quantum interference corrections to the conduc- ¥
tance in those cases is different from the case reported here, _aL<ROO> <Roo>+ N(N— 2Ry +(Ro0)%,
when the crossover is driven by energy, and requires a sepa-
rate calculation. (A4)
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L< Rno&

APPENDIX: SCALING EQUATIONS

In this Appendix, we present the scaling equations needed
to calculate the crossover for the weak-localization correc-!
tions of the conductance, shot noise, and universal conducg
tance fluctuations of the conductance as done in Sec. VC.
The notation was defined in E¢.11) and we use the short-

hand ¥l
Eé’L(RlOlOOa
R=Ri0, R2=Rio10, R3=Rio1010
Equations needed up to corrections of orb@rare
vl B , 2-PB .
EMR)— N(N—2R)+(R)2+ T<N— Roo— 2R—R%,
+ R1o00t Rioogt R2), (A1) N
o p B d{R100100 =
E&L<R2>:4<R_ R2)(N—(R)) + T(RooﬁL 4R+R3,

—8Ry— 4R 1000~ 4RIg0o+ 4R3+ 2R101000

+ 2R%01006" R10o100t R00100 » (A2)

- < Root 2R—2R1009(Roo) ~(R—2R1000(R),
(A5)

N({Roo+ 2R+ R§y— 4R1100

—(2R—Ry300(Roo) —(2R50~ 2R1100(R)

+(R1100(Ro0)» (A6)

9L(R3)=3(2N(R,— R3) +(R— 4R, + 2R3)(R) +(Ry)?),

(A7)

die 7|
———(R101000 T {R1000+ 2R2){R1000)

+ 2N<2Rlooo+ R,—3R101000

+ 2(R—Ry005~ R+ R101000(Roo))

+(R—=6R1006— 2R2+ 4R101000 s (A8)

4|sy|

(R100100 + 2N(2R10001 R1100

- 3R10010() + (Roo— 4R10001 2R100100{ Roo)
+2(R—2R1900~ 2R1100t 2R100100(R)

+2(R1000*+(Ri100°. (A9)
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