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Crossover from the chiral to the standard universality classes in the conductance of a quantum
wire with random hopping only
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2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 4 April 2000!

The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice symmetry~the
random hopping problem with chiral symmetry! is considered. Transport at the band center is anomalous
relative to the standard problem of Anderson localization in both the diffusive and localized regimes. In the
diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluc-
tuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of
transmission channels, in which case the localization length does not depend on whether time-reversal and
spin-rotation symmetry are present or not. For an odd number of channels the conductance decays algebra-
ically. Upon moving away from the band center transport characteristics undergo a crossover to those of the
standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.
Numerical simulations agree qualitatively with the theory.
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I. INTRODUCTION

Since the introduction of the scaling approach to the pr
lem of Anderson localization,1,2 it has been known that trans
port characteristics of a disordered metal are universal,
vided the disorder is sufficiently weak, the temperatu
sufficiently low so that quantum coherence is maintain
over large distances, and the interaction between elect
can be neglected. An example is the phenomenon of w
localization,3,4 a small deviation from Ohm’s law for the
conductance of a weakly disordered metal, which is s
pressed by the application of a time-reversal symme
breaking magnetic field. Though small, the weak-localizat
correction is universal in the sense that it does not depen
the shape of the sample, nor on any other microscopic
macroscopic property other than its dimensionality and
presence or absence of time-reversal symmetry and s
rotation invariance. Another example is the phenomenon
universal conductance fluctuations:5,6 The sample-to-sample
fluctuations of the conductance of a disordered metal
semiconductor are of ordere2/h with a prefactor that de-
pends only on dimensionality and symmetry. Both the we
localization correction and the universal conductance fl
tuations are precursors of the true Anderson localizat
where as a result of destructive interference of multiple s
tered quantum mechanical waves the dirty metal turns
an insulator for sufficiently strong disorder, or, in one or tw
dimensions, for a sufficiently large sample size.7

The original paper by Anderson,8 and most of the effort
devoted to the problem of Anderson localization since th
consider the case of a particle on a lattice with a rand
on-site potential~diagonal disorder! and nonrandom hopping
amplitudes. In that case, one distinguishes three univers
classes, corresponding to the presence or absence of
reversal and spin-rotation symmetry. These three classe
called orthogonal, unitary, and symplectic. Here, we will
fer to these as the three ‘‘standard’’ universality classes.
PRB 620163-1829/2000/62~12!/8249~20!/$15.00
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The electronic localization problem was soon generaliz
to lattice models with randomness in the hopping amplitu
~off-diagonal disorder!.9 ~This type of randomness was pre
viously known from the description of phonons10,11 and
narrow-gap semiconductors.12! The localization problem
with off-diagonal disorder has received comparatively mu
less attention, although it has been known since the wor
Dyson10 that random systems with off-diagonal disorder, b
without diagonal disorder, can behave in a way dramatica
different from systems with diagonal disorder only, or wi
both types of disorder.10,13–18For instance, the average de
sity of states~DOS! for a one-dimensional chain with ran
dom nearest-neighbor hopping was found to be singula
the center of the band,«50.10,13,15According to the Thou-
less formula,19 such a singular DOS implies that at«50 the
conductance distribution is anomalous as well.18,20Gade and
Wegner in Ref. 21~see also Refs. 16 and 22–25! found a
two-dimensional counterpart to the singular behavior of
average DOS within their analysis of a nonlinear-s model
with a sublattice symmetry. Interest in the effect of o
diagonal disorder has revived in the 1990s on two fron
Motivated by quenched approximations to interacting th
ries such as the quantum Hall effect at half filling or gau
approaches to high-Tc superconductivity, the random flu
problem ~a special case of off-diagonal disorder in whic
hopping amplitudes have a random phase only! has been
extensively studied, although very little consensus on its
calization properties has emerged.26 A second thrust of ac-
tivity has been motivated by the close resemblance betw
the anomalies at zero energy induced by pure off-diago
disorder in two dimensions and the nature of the plate
transitions in the integer quantum Hall effect:27 both models
might share the property that all eigenstates are locali
except at one special energy.26

The reason why the localization properties of the rand
hopping problem can depart from those of the standard p
lem of Anderson localization is the existence of an additio
8249 ©2000 The American Physical Society
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sublattice symmetry in systems with off-diagonal but witho
diagonal disorder:16,17,28,29 In that case, the lattice can b
divided into two sublattices, such that the Hamiltoni
changes sign under a transformation where the wave fu
tion changes sign on one sublattice but not on the other. A
result, the spectrum is symmetric with respect to a reflec
about«50 ~i.e., eigenvalues appear in pairs6«). The fact
that the band center«50 is a very special energy in th
presence of sublattice symmetry explains why anomalie
the DOS and the localization properties occur at precis
this value of the energy. When the energy moves away fr
zero, the effect of the sublattice symmetry on the spectr
and the wave functions decreases and a crossover to the
dard behavior takes place. The sublattice symmetry is bro
by the presence of on-site disorder, long-range hopping,29 or
~in some cases! periodic boundary conditions.30 Counterparts
to this sublattice symmetry in other disordered systems o
quenched approximations to interacting problems are num
ous. They occur in, e.g., the QCD Hamiltonian,31,32 random
XY spin chains,33 diffusion in random environments,34 su-
persymmetric quantum mechanics,35 non-Hermitian quantum
mechanics,36 and two-dimensional disordered models in t
continuum such as Dirac fermions with random vec
potentials.37 Following previous work in this field, which
adopted the nomenclature of QCD,32 we will refer to the
sublattice symmetry aschiral symmetry and will restrict our
attention to random hopping problems with this symmetr

One-dimensional disordered systems with chiral symm
try have been well studied with all kinds of approaches a
in various contexts~for references, see the previous pa
graph!, and despite a continuing confusion about seman
their localization properties can be considered well und
stood. For two-dimensional systems the situation is differ
~see Refs. 26 and 38 and references therein!. Reliable ana-
lytical and numerical results are notoriously hard to obta
and no consensus has been reached to date, not even on
most elementary issues. In view of this controversy, it
particularly instructive to study the natural intermediate b
tween one and two dimensions, the thick~or ‘‘quasi-one-
dimensional’’! disordered wire. On the one hand, it shar
the existence of both a localized and a diffusive regime
quantum transport with two-dimensional disordered syste
while, on the other hand, it allows for a controllable analy
treatment, just like the truly one-dimensional system. Mo
over, quasi-one-dimensional systems appear as a logica
termediate step in the finite-size scaling approach for
merical simulations in two and three dimensions.39

Localization properties at the band center of a quasi-o
dimensional quantum wire with off-diagonal disorder we
investigated in several previous publications by the auth
together with Simons and Altland.40,30,41In those works we
derived a chiral counterpart to the so-called Dorokho
Mello-Pereyra-Kumar ~DMPK! equation,42–44 a Fokker-
Planck equation that governs the distribution of the transm
sion eigenvalues of a quantum wire without chiral symme
Solution of the chiral DMPK equation for lengths beyond t
localization length of the standard DMPK equation show
that there is no exponential localization if the numberN of
propagating channels is odd~including the one-dimensiona
case!, while the conductance decays exponentially w
length if N is even. This parity effect is strikingly similar to
t
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the sensitivity of the low-energy sector of a single antifer
magnetic spin-N/2 chain to the parity ofN,45 on the
one hand, or to the sensitivity of the low-energy sector oN
coupled antiferromagnetic spin-1/2 chains to the pa
of N,46 on the other hand. In the special case of the ch
Fokker-Planck equation without time-reversal invarian
~random phase quantum wire!, it was possible to calculate
exactly the crossover from the diffusive to the localized
gime for all moments of the conductance and to ver
the validity of the assumption of universality against a n
merical simulation of the random flux problem.30 The nu-
merical simulations also confirmed that, sufficiently far aw
from the center of the band, transport is governed by
standard universality classes.

A limitation of the approach relying on the Fokker-Plan
equations for the transmission eigenvalues is that it can
describe how the conductance distribution crosses over f
the chiral to the standard universality class as« is tuned
away from zero. In renormalization group language, ea
Fokker-Planck equation describes a fixed point correspo
ing to a case of pure symmetry and the fixed points by the
selves cannot be used to infer how the scaling flows t
place between them. One possibility to obtain informati
about the crossover energy and length scales below~above!
which the physics is that of the chiral~standard! universality
classes is to study the DOS of a chiral quantum wire.47 How-
ever, unlike in the case of a one-dimensional wire, where
Thouless formula connects conductance and DOS, fo
quasi-one-dimensional wire it is not possible to infer tran
port properties from the DOS. In this paper, we use an al
native approach, developed by one of us for the study
transmission through a random waveguide with absorptio48

Focusing on weak-localization corrections and univer
conductance fluctuations, we compute how, in the diffus
regime, the conductance distribution of a quantum wire w
random hopping crosses over from the chiral to the stand
universality classes as the energy is tuned away from z
We are not able to compute the crossover in the locali
regime. Instead, for the localized regime, we consider
conductance distributions in the pure symmetry classes
compare them to numerical simulations to establish
crossover scale and to verify the validity of our prediction

The paper is organized as follows. In Sec. II, we defi
our microscopic model and derive the symmetries of
scattering matrix in the presence of the chiral symmetry.
then explain the scaling approach in Sec. III. The localiz
regime is studied in Sec. IV. Our main results are presen
in Sec. V, where we consider the crossover from the chira
the standard universality classes in the diffusive regime
Sec. VI we compare our theoretical predictions to a num
cal simulation of a random hopping model on a square
tice. We conclude in Sec. VII.

II. MICROSCOPIC MODEL AND SCATTERING MATRIX

A. Microscopic lattice model with chiral symmetry

In a general form, the Schro¨dinger equation for an
N-chain system with random hopping between two sub
tices and without on-site randomness reads

2«C~m!5TmC~m11!1Tm21
† C~m21!. ~2.1!
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For a spinless particle,C(m) is theN-component wave func
tion where the indexm labels the position along the chain
For a particle with spin 1/2,C(m) is theN-component wave
function made of spinors. In that case, theN3N hopping
matrix Tm consists of quaternions.49 The system and the al
lowed hopping matrix elements are depicted in Fig. 1~a!.
Note that the case of a square lattice with nearest-neigh
random hopping is included in the general formula~2.1! @see
Fig. 1~b!#.

In order to model transport, we consider a disordered
gion of finite lengthL5Ma, a being the lattice constant, an
attach ideal leads with hopping matrixTm51N on both ends
@see Fig. 1~a!#. Following Refs. 40 and 41, we draw th
hopping matricesTm with m inside the disordered regio
from a distribution centered around theN3N unit matrix,

Tm5exp~dTm!. ~2.2!

We distinguish three symmetry classes depending on
presence or absence of time-reversal and spin-rotation s
metry. For a spinless particle~or for a spin-1/2 particle in the
presence of spin-rotation symmetry!, the hopping matrix
dTm is real ~complex! if time-reversal symmetry is presen
~absent!. These two cases are commonly referred to as
orthogonal and unitary symmetry classes and are labele
the symmetry indexb51 and 2, respectively. The case
broken spin-rotation symmetry with time-reversal symme
is denotedb54 and is referred to as the symplectic cla
Whenb54, the elements of theN3N matrix dTm are real
quaternions.49 The situation when both time-reversal symm
try and spin-rotation symmetry are broken reduces to
unitary class (b52) and will not be considered separately
this paper. We further assume thatdTm has a Gaussian dis
tribution, with zero mean and with variance given by

FIG. 1. ~a! Random hopping model as described by Eq.~2.1!,
for N53. A disordered section of the wire~of length M54) is
attached to ideal leads. Different chains are coupled only in
disordered region; there is no coupling between the chains in
perfect leads.~b! The nearest-neighbor random hopping model o
‘‘square’’ lattice is a special case of the model considered under~a!.
or
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e
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^~dTm!kl@~dTm8!k8 l 8#
†&

5
2ba

g l
dmm8S dkk8d l l 82

12h

N
dkldk8 l 8D ,

^~dTm!kl~dTm8!k8 l 8&5
22b

b
^~dTm!kl@~dTm8!k8 l 8#

†&,

~2.3!

where

g5bN122b2
2~12h!

N
, ~2.4!

and l is the mean free path.~Why l can be identified as the
mean free path is explained below.! Here, the symbol † de-
notes the operation of complex conjugation forb51,2,
whereas it denotes the operation of Hermitian conjugat
for quaternions forb54.49 We assume weak disorder,l
@a. The parameterh governs the relative randomness of t
determinant ofTm . ~See Ref. 41 for the reason for its intro
duction.!

We have chosen the statistical distribution~2.3! for tech-
nical convenience; it allows for an exact solution of t
transport problem. As a justification for this choice, we rec
that the transport properties do not depend on details of
microscopic model as long as disorder is weak,l @a, and the
length L of the system is much larger than the mean fr
path. All properties of the microscopic model are summ
rized in the two parametersl andh. @The proper value of the
parameterh depends on the details of the microscopic mo
under consideration. For instance, for the random fl
model26 ~which is a special case of a random hoppi
model!, h50, while h.0 in generic random hopping
models.41# To emphasize this universality, we compare o
final results to numerical simulations for nearest-neigh
random hopping on a square lattice; cf. Fig. 1~b!.

In the leads on the left~L! and right~R!, the Schrodinger
equation~2.1! at energy« is solved by a sum of plane wave
moving toward the disordered region~denoted by a subscrip
i) and away from the sample~denoted by a subscript o)~see
Fig. 2!,

C«
L~m!5c«

iLeikma1c«
oLe2 ikma,

C«
R~m!5c«

iRe2 ikma1c«
oReikma. ~2.5!

Here 0<k<p/a, «522 coska, andc«
iL andc«

iR (c«
oL and

c«
oR) areN-component vectors containing the amplitudes

the incoming~outgoing! plane waves in the left and righ
leads, respectively. The amplitudes of the ingoing and o
going waves are connected through the Schro¨dinger equation

e
e

a

FIG. 2. Quantum wire with a disordered region of lengthL
5Ma. Incoming plane waves arec«n

iL and c«n8
iR . Outgoing plane

waves are c«n
oL and c«n8

oR . There are N channels, i.e.,n,n8
51, . . . ,N. In a quasi-one-dimensional geometry,L5Ma@Na.
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8252 PRB 62CHRISTOPHER MUDRY, P. W. BROUWER, AND AKIRA FURUSAKI
~2.1! in the disordered region. This relation is formulated
terms of the 2N32N scattering matrixS« ,

S c«
oL

c«
oRD 5S«S c«

iL

c«
iRD . ~2.6!

Current conservation implies

S†S512N . ~2.7!

~Here and below we suppress the index« if only scattering
matrices at the same energy are involved.! For the casesb
51,4, i.e., if time-reversal symmetry is present, the comp
conjugate of any eigenfunction is itself an eigenfunction w
the same energy.~For b54, complex conjugation is mean
in the quaternion sense.49! Since outgoing and incoming
plane waves are interchanged under complex conjuga
we infer that time-reversal invariance is represented by
additional constraint

S* S512N . ~2.8!

The Schro¨dinger equation~2.1! has an additional symme
try: the Hamiltonian changes sign under the transforma
C(m)→(2)mC(m). Correspondingly, for any realization o
the disorder, the spectrum of energy eigenvalues is symm
ric about the band center«50. This symmetry, which origi-
nates from the fact that the disorder preserves the bipa
structure of the lattice, is referred to as chiral symmetry. T
chiral symmetry is a special attribute of random hopp
between different sublattices; it is broken by, e.g., on-s
randomness or next-nearest-neighbor hopping. It is the ch
symmetry that is responsible for the anomalous trans
properties at the special energy«50 of a quantum wire with
random hopping.18,20,40To find the effect of the chiral sym
metry on the scattering matrix, we note that the transform
tion C(m)→(2)mC(m) changes incoming waves at ener
« into outgoing waves at energy2«, and vice versa. Applied
to Eq. ~2.6!, this gives

S c2«
iL

c2«
iR D 5S«S c2«

oL

c2«
oR D 5~S2«!21S c2«

oL

c2«
oR D . ~2.9!

@The second equality follows from Eq.~2.6! at energy2«.#
Taken together with flux conservation~2.7!, we thus find that
the presence of the chiral symmetry results in the constr

S«5~S2«!† ~2.10!

for the scattering matrixS. Unlike the constraints of flux
conservation and time-reversal symmetry, Eq.~2.10! in-
volves scattering matrices at different energies. The exc
tion is the band center«50, where we find thatS is Hermit-
ian,

S05S0
† . ~2.11!

The scattering matrix is decomposed into fourN3N sub-
blocksr ,r 8 andt,t8, the reflection and transmission matrice

S5S r t 8

t r 8
D . ~2.12!
x
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The transmission and reflection matrices determine the tr
port properties of the quantum wire. They are related to
conductance of the wire through the Landauer formula,

G5
2e2

h
tr t†t[

2e2

h
g, ~2.13!

and to the shot noise power50

P5
4e3V

h
tr@ t†t~12t†t !#[

4e3V

h
p, ~2.14!

V being the applied voltage.~See Ref. 42 for more applica
tions to quantum transport.! A further decomposition ofS
follows from the polar decomposition of the matricesr ,r 8
and t,t8,

S5S V8 0

0 UD S tanhX ~coshX!21

~coshX!21 2tanhX D S V 0

0 U8
D ,

~2.15!

whereU, U8, V, andV8 areN3N unitary matrices andX is
an N3N diagonal matrix with real numbersxj ( j
51, . . . ,N) on the diagonal. In the presence of time-rever
symmetry, one has

U* U85V* V851N . ~2.16!

Chiral symmetry implies a relationship between the unita
matricesU, U8, V, andV8 at opposite energies,

U«5U82«
† , V«5V82«

† , X«5X2« . ~2.17!

In terms of the eigenvaluesxj , Eqs.~2.13! and~2.14! for the
conductance and the shot noise power read

g5(
j 51

N
1

cosh2 xj
, p5(

j 51

N
tanh2 xj

cosh2 xj
. ~2.18!

B. Continuum model with chiral symmetry

For weak disorder~mean free pathl much larger than the
lattice spacinga!, we may replace the lattice model~2.1! by
a continuum model. We linearize the spectrum of the kine
energy of the Schro¨dinger equation~2.1! in the close vicinity
of the band center«50. Choosing a representation with le
and right movers, we arrive at the continuum Schro¨dinger
equation

2«c~y!5@ is3^ 1N]y1s3^ v~y!1s2^ w~y!#c~y!.

~2.19!

Here c is a 2N-component vector~elements ofc occur in
pairs that correspond to left and right movers!, v andw are
N3N Hermitian matrices, and thesm (m51,2,3) are the
Pauli matrices. In the presence of time-reversal symme
w(v) is ~anti!symmetric. The continuum limit has been take
along the chains only; discreteness is maintained in the tr
verse direction through theN components ofc. The Fermi
velocity has been set to 1. The randomness in the hopp
amplitudes has been translated to the matricesv and w, by
means of the identifications



d

b
t

o
at
is

uc

rix
hi

in
rer
eft

-
nd

an

he
e

ls

nal

re

s

i-

a
i-
e of

PRB 62 8253CROSSOVER FROM THE CHIRAL TO THE STANDARD . . .
i ~dTm2dTm11
† !1H.c.→v~y!,

2~dTm2dTm11
† !1H.c.→w~y!. ~2.20!

With the choice~2.3!, the disorder inv is statistically inde-
pendent from the disorder inw. Both v andw are Gaussian
distributed with zero mean and with variances

^v i j ~y!@vkl~y8!#†&5
bd~y2y8!

g l S d ikd j l 2
22b

b
d i l d jk

2
2~b21!~12h!

bN
d i j dklD , ~2.21a!

^wi j ~y!@wkl~y8!#†&5
bd~y2y8!

g l S d ikd j l 1
22b

b
d i l d jk

2
2~12h!

bN
d i j dklD . ~2.21b!

The symmetries~flux conservation, time-reversal, an
chiral symmetry! of the scattering matrix in the continuum
model are the same as for the lattice model.~Note that in the
continuum model, the chiral transformation is represented
c→s1c. The chiral symmetry then follows from the fac
that s1 anticommutes with the Hamiltonian.!

III. SCALING APPROACH

The idea51 behind the scaling approach to the theory
localization in a quantum wire is to calculate how the sc
tering matrixSof the quantum wire changes if a thin slice
added to the disordered region@see Fig. 3~a!#. Here we are
mostly interested in the eigenvalues of the matrix prod
t†t512r †r , i.e., in the parametersxj of the decomposition
~2.15!. Hence, it is sufficient to consider the reflection mat
r, and calculate how it is changed upon the addition of a t
slice. This change follows from the composition law

r 5r 11t18~12r 2r 18!21r 2t1 ~3.1!

FIG. 3. ~a! A thin slice of lengthdL with a!dL! l !L is added
to the left of the disordered region of lengthL. ~b! Two disordered
regions 1 and 2 with scattering matricesS1 andS2, respectively, in
a quantum wire.
y

f
-

t

n

that gives the reflection matrix of two scatterers 1 and 2
series, in terms of the reflection matrix of the right scatte
~2! and all reflection and transmission matrices of the l
scatterer~1! @see Fig. 3~b!#.

If applied to a quantum wire, the only input in this ap
proach is the statistical distribution of the transmission a
reflection matricest1 , t18 , r 1, and r 18 of the thin slice. The
width dL of the slice is taken much smaller than the me
free pathl, so that the change ofr is small as well, although
dL must remain large compared to the lattice spacinga for
the continuum limit to be a good approximation. Then, t
scattering matrixS1 of the thin slice can be calculated in th
second-order Born approximation from the Schro¨dinger
equation~2.19!. The result is

r 152W1
i

2
@V,W#, ~3.2a!

t1511 iV2
1

2
V22

1

2
W21 i«dL, ~3.2b!

r 185W1
i

2
@V,W#, ~3.2c!

t18512 iV2
1

2
V22

1

2
W21 i«dL, ~3.2d!

where

V5E
0

dL

dyv~y!, W5E
0

dL

dyw~y!.

Here we neglected terms that are of order (dL)2. @We also
ignored they ordering of the integrals in Eq.~3.2! as it does
not affect the statistical distribution ofS1 in view of the
d-function correlation of the random potentialsv and w.#
Using Eq.~2.21! for the distribution of the random potentia
v and w, we find that the matricesV and W are Gaussian
distributed with zero average and with variance proportio
to the widthdL of the thin slice,

^Vi j ~Vkl!
†&5

bdL

g l S d ikd j l 2
22b

b
d i l d jk

2
2~b21!~12h!

bN
d i j dklD , ~3.3a!

^Wi j ~Wkl!
†&5

bdL

g l S d ikd j l 1
22b

b
d i l d jk 2

2~12h!

bN
d i j dklD .

~3.3b!

Equations~3.1!–~3.3! define the scaling approach. They a
exact for the continuum model~2.19! with the statistical dis-
tribution ~2.21! of the random potentials, which in turn wa
derived from the random hopping lattice model~2.1!,~2.3! in
the limit of weak disorder. A different choice for the distr
bution of the hopping matrices in Eq.~2.3! would have led to
different statistical properties of the scattering matrix for
thin slice. However, as we will verify in Sec. VI by numer
cal simulations, such differences are irrelevant in the sens
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the renormalization group, i.e., they disappear for sufficien
long wires~longer than the mean free pathl ).

Note that the reflection probabilityN21 tr r 1
†r 1 of a thin

slice has average

N21^tr r 1
†r 1&5dL/ l , ~3.4!

which justifies our choice thatl is the mean free path.
In terms of the matricesV and W, upon addition of the

thin slice, the reflection matrixr changes according to

r→r 1dr , ~3.5a!

with

dr 52i«dLr 2W1rWr2 i ~Vr2rV !1rWrWr

2 1
2 ~W2r 1rW21V2r 1rV2!1VrV. ~3.5b!

We have not included terms of orderVW as their contribu-
tions vanish upon disorder averaging.

Several observations can be made already on the lev
the evolution equation~3.5!, in combination with the Gauss
ian distribution ~3.3! of the matricesV and W. First, the
distribution of r is symmetric under a change of sign,r
→2r . This implies that the average of any odd function or
must be zero, for all values of the energy«.

Second, at the band center«50, the chiral symmetry im-
plies thatr is Hermitian, cf. Eq.~2.11!. The Hermiticity is
broken by the first term in Eq.~3.5b!, which is proportional
to the energy.

Third, the distribution ofr is invariant under transforma
tions r→UrU †, whereU is an orthogonal~unitary! N3N
matrix for b51 (2). Forzero energy, wherer is Hermitian,
this implies that the distribution ofr depends on its eigen
values tanhxj only @cf. Eq.~2.15!#. As was shown in Refs. 40
and 41, in this case, the scaling flow can be represente
terms of a Fokker-Planck equation for the distributi
P(x1 , . . . ,xN ;L),

]P

]L
5

1

g l (
i , j 51

N
]

]xi
S d i j 2

12h

N D J
]

]xj
J21P,

J5)
k, l

usinh~xl2xk!ub. ~3.6!

Away from the center of the band,r is no longer Hermitian,
and its distribution depends on both eigenvalues and eig
vectors. However, for« sufficiently far away from 0~this
notion will be made precise below!, the chiral symmetry has
no effect on the scattering matrix, andP(x1 , . . . ,xN ;L)
obeys the Fokker-Planck equation for the standard ortho
nal, symplectic, or unitary symmetry classes, the so-ca
Dorokhov-Mello-Pereyra-Kumar equation,43,44

]P

]L
5

1

2~bN122b!l (
j 51

N
]

]xj
J

]

]xj
J21P,

J5)
k

usinh 2xku )
k, l

usinh2 xl2sinh2 xkub. ~3.7!

There is no parameterh in the DMPK equation; the presenc
of the parameterh is special for the case of chiral symmet
y

of

in

n-

o-
d

at the band center«50. In the language of the Fokker
Planck equation~3.6!, h controls the relative strength of th

diffusion of the center of massx̄5(x11•••1xN)/N com-

pared to that of the relative coordinatesxj2 x̄.
The most important difference between the Fokker-Pla

equations~3.6! and ~3.7! is the symmetries of the Jacobian
J. In Eq. ~3.6!, i.e., at the band center«50, J is invariant
under a simultaneous translationxj→xj1dx and under a
simultaneous reflectionxj→2xj for all j. @The translation

invariance decouples the motion of the ‘‘center of mass’x̄

5(x11•••1xN)/N from the relative coordinatesxj2 x̄, and
hence calls for the presence of the parameterh in Eq. ~3.6!.#
In the standard DMPK equation~3.7!, i.e., for energies« far
away from the band center,J is invariant under a reflection
xj→2xj for eachj separately; there is no longer translatio
invariance. It is the absence of this ‘‘local’’ reflection sym
metry at«50 that is responsible for anomalies in transp
properties at«50. In the remainder of this paper, we d
scribe these in more detail, focusing on the distribution of
conductance in the localized regimeL@Nl and on the quan-
tum interference corrections to the conductance in the di
sive regimel !L!Nl. For the localized regime, we use th
Fokker-Planck equations~3.6! and ~3.7! to compare the
transport properties for«50 and « far away from 0.~A
comparison for the case of broken time-reversal symme
only has already been given in Ref. 30.! In the diffusive
regime we start from the evolution equation~3.5! directly, in
order to include the« dependence of the transport propertie
Knowledge of the crossover as a function of« will allow us
to specify what is meant by ‘‘« sufficiently far away from
0,’’ and hence when the standard DMPK equation~3.7! re-
places the special Fokker-Planck equation~3.6! in the ran-
dom hopping problem.

IV. LOCALIZED REGIME

Differences between the conductance distribution at
band center«50 and away from«50 are most pronounced
in the localized regimeL@Nl. Away from the band center
the conductance decreases exponentially with length, a
the case in the standard orthogonal, symplectic, and uni
classes. At the band center, however, the exponential
crease of the conductance is only observed if the numbe
channels is even, while for an odd number of channels
conductance decreases only algebraically.40

Exact calculations for the moments of the conductance
the standard symmetry classes have been obtained fo
b,52–56 while for the chiral symmetry classes governed
the Fokker-Planck equation~3.6! only exact results forb
52 andh51 are known.30 While we do not know of a way
to extend our exact analysis of Ref. 30 to the cases of
thogonal and symplectic symmetries, it is still possible
extract the conductance distribution deep inside the locali
regimeL@Nl using the approximation scheme of Refs. 4
57, and 58. This is done here. We are thus able to comp
the average and variance of the conductance and the ave
and variance of its logarithm at and away from the ba
center«50 for the orthogonal, symplectic, and unitary sym
metry classes for all values ofh.
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Our starting point is the Fokker-Planck equation~3.6!,
which we rewrite in the form

]P

]L
5

1

g l (
i , j 51

N S d i j 2
12h

N D ]

]xi
S ]P

]xj
1bP

]V

]xj
D ~4.1!

with the ‘‘potential’’

V52 (
k51

N

(
l 5k11

N

lnusinh~xk2xl !u. ~4.2!

Equation~4.1! has the interpretation that asL increases fic-
titious particles with the coordinatesxj perform a Brownian
motion subject to the repulsive two-body potentialV. Since
V has a hard core, we may assume thatx1,x2,•••,xN for
all L. In fact, as a result of their repulsive interaction, t
distances between thexj ’s will grow with increasing length,
until eventually for sufficiently largeL

x1!x2!•••!xN . ~4.3!

Then we may approximate

2
]V

]xj
'N1122 j , ~4.4!

and find that Eq.~4.1! is solved by a Gaussian distributio
for the xj ,

P~x1 , . . . ,xN ;L !} expH (
i , j 51

N

2
g l

4LS xi2
L

j i
D

3F S 1N2
12h

N
END 21G

i j
S xj2

L

j j
D J .

~4.5!

Here, theN3N matrix EN has the entries (EN) i j 51, and the
channel-dependent ‘‘localization length’’uj j u reads

j j5
g l

b~N1122 j !
. ~4.6!

For comparison, in the standard orthogonal and unitary s
metry classes, the probability distributionP(x1 , . . . ,xN ;L)
in the localized regime is also given by a Gaussian of
type ~4.5!, but with h51, g52(bN122b), andj j5(bN
122b) l /(11b j 2b).42

In the localized regimeL@Nl only thexj that are closes
to 0 contribute to the conductance@cf. Eq. ~2.18!#. For even
N, they arexN/2 andx(N/2)11, both of which are an averag
distance

^xN/2&52^x(N/2)11&5
L

j
, j5

g l

b
, ~4.7!

away from zero. The length scalej serves as the localizatio
length for evenN. For oddN, the conductance is determine
by only one eigenvalue,x(N11)/2, which has zero average,

^x(N11)/2&50. ~4.8!
-

e

The presence of the eigenvaluex(N11)/2 with zero average is
responsible for the absence of exponential localization in
case.

The average and variance of the conductance and the
erage and variance of its logarithm follow from the probab
ity distribution ~4.5!. For evenN the results are, with an
accuracyO(L0/j0) for the logarithms displayed,

ln^g&52
b

4S 12
12h

N D 21/2L

j
2

1

2
lnS L

j D , ~4.9a!

ln varg5 ln^g&, ~4.9b!

and

^ ln g&52
2L

j
12A 2

bpS 122
12h

N DL

j
, ~4.9c!

var lng5
4

bF11S 12
2

p D S 122
12h

N D G L

j
. ~4.9d!

The last result shows that, in the localized regime, the c
ductance distribution is well approximated by a log-norm
distribution; unlike the average conductanceg itself, which
has fluctuations that are much bigger than the average
logarithm lng provides a good characteristic of the e
semble.

For oddN, there is no exponential localization. The co
ductance has a broad distribution, which is characterized
neither the~average of the! conductance nor its logarithm,

P~g!}
exp$2~g l /4L !@12~12h/N!#21 arccosh2 g21/2%

gA12g
.

~4.10!

With this distribution and up to corrections of orderL0/j0,
the average conductance decays algebraically,

^g&5S b

p D 1/2S 12
12h

N D 21/2S j

L D 1/2

, ~4.11a!

^g2&5
2

3
^g&, ~4.11b!

while the average of its logarithm grows proportional toL1/2

rather thanL,

^ ln g&524A 1

bpS 12
12h

N DL

j
, ~4.11c!

var lng5
8

bS 12
2

p D S 12
12h

N DL

j
. ~4.11d!

Away from the band center«50, the conductance distri
bution follows from the standard DMPK equation~3.7!. It is
close to log-normal, with42,52,54,56

ln^g&52
L

2jst
2

3

2
lnS L

jst
D , ~4.12a!

ln varg5 ln^g&, ~4.12b!
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^ ln g&52
2L

jst
, ~4.12c!

var lng5
4L

jst
, ~4.12d!

up to an accuracy ofO(L0/j0). Here the localization length
for the standard symmetry classes is given by

jst5~bN122b!l . ~4.13!

The most striking difference in the conductance distrib
tion appears for oddN, where the absence of exponent
localization at«50 is contrasted with the exponential dec
of the conductance for«5” 0. However, for an even numbe
of channels also, there is an important difference. At«50,
the localization lengthj'Nl is b independent for largeN
@cf. Eqs. ~2.4! and ~4.7!# while the localization lengthjst
'bNl away from the band center is proportional tob for
«5” 0 @cf. Eq. ~4.13!#. Hence, upon moving away from th
band center, the localization length increases by a factob.
@The mean free path does not depend on«; see Eq.~3.4!.#

The absence of ab dependence for the localization leng
at the band center may be related to the anomaly in the D
for random hopping models at that energy. In Ref. 47, it w
shown that in the absence of time-reversal symmetry
DOS r(«) near zero energy has a pseudogap,r(«)}«u ln «u,
while in the presence of time-reversal symmetryr has a
logarithmic divergence,r(«)}u ln «u. We conclude that, upon
breaking time-reversal symmetry, the decrease in the D
available for transport cancels the suppression of destruc
interference responsible for the increase of the localiza
length in the standard case.

The average and variance of the conductance in the lo
ized regime are dominated by rare events, where the sma
xj is close to zero~corresponding to a transmission coef
cient close to unity!. For wires without chiral symmetry, ap
proximation of P(x1 , . . . ,xN ;L) by a Gaussian similar to
Eq. ~4.5! fails for xj close to zero because it does not acco
for the repulsion betweenxj and its mirror image2xj @cf.
Eq. ~3.7!#. While it does not affect the leadingO(L) behav-
ior of ln^g& and ln varg, this failure shows up in the sublead
ing logarithmic terms in Eqs.~4.12a! and~4.12b!, which are
different from what one would have obtained from a Gau
ian distribution for thexj . @The results quoted in Eqs
~4.12a! and ~4.12b! above follow from an exact solution o
the DMPK equation.52,54,56# In the presence of the chira
symmetry, there is no repulsion betweenxj and2xj , so that
the approximation~4.5! remains valid forxj close to zero. In
this respect, we remark that the logarithmic terms in E
~4.9!, which were obtained with the help of Eq.~4.5!, indeed
agree with the exact solution of Ref. 30 for the caseb52.

V. DIFFUSIVE REGIME

In the diffusive regimel !L!Nl, the effects of quantum
interference do not take such a dramatic form as in the
calized regime. The typical conductance of any sample
given by the classical Ohm’s lawg5Nl/L, and is not af-
fected by quantum mechanical phase coherence, the pres
or absence of time-reversal symmetry, or, as we shall
-
l

S
s
e

S
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n

al-
est

t

-

.

-
is

nce
ee

below, the presence or absence of chiral symmetry. The
of quantum mechanics, and hence the role of the symme
of the microscopic Hamiltonian in this regime, are confin
to small corrections to the average conductance and to
sample-to-sample fluctuations. In spite of their smallne
these corrections are of prime importance, as they are a
versal signature of quantum phase coherence, their size b
determined by the fundamental symmetries of the sys
only. They do not depend on microscopic properties of
quantum wire, nor on its macroscopic characteristics, suc
mean free path, width, or length.

The two corrections are referred to as ‘‘weak localiz
tion’’ and ‘‘universal conductance fluctuations.’’ The forme
is a small correctiondg(dp) to the ensemble averaged~di-
mensionless! conductancêg& ~shot noisê p&) that is sup-
pressed if time-reversal symmetry is broken by a magn
field. For a standard quantum wire, it reads

dg5
b22

3b S dp5
b22

45b D . ~5.1!

Since it signals the first departure from Ohm’s law, t
weak-localization correction to the conductance is precur
to the exponential suppression of the conductance in the
calized regime. The universal conductance fluctuations r
to the sample-to-sample fluctuations of the conductan
which have variance

varg5
2

15b
. ~5.2!

The breaking of time-reversal~spin-rotation! symmetry re-
duces the conductance fluctuations by a universal facto
A2 (2).

In this section we calculate those quantum corrections
the case of a quantum wire with random hopping. Our c
culations are inspired by the approach of Mello and Ston59

who have derived and solved scaling equations for the m
ments of the conductance in the standard universality cla
from the DMPK equation in the limit of largeN. We con-
sider the quantum corrections for both the pure symme
classes, corresponding to the Fokker-Planck equations~3.6!
and ~3.7! at «50 and« far away from 0, respectively, an
for the intermediate regime, where the crossover between
two symmetry classes takes place. Since in the latter cas
Fokker-Planck equation for the transmission eigenvaluesxj
is available, a modification of the approach of Ref. 59
needed, which is based on the more fundamental sca
equation for the reflection matrixr, Eq. ~3.5!, rather than on
a Fokker-Planck equation for the transmission eigenval
xj . Such a method was proposed by one of the authors48 in
the context of the transmission through a random wavegu
with absorption. Below, we adapt this method to the pres
case~Sec. V A!, and present solutions for the chiral symm
try classes at the band center«50 ~Sec. V B! and for the
crossover from the chiral symmetry classes to the stand
universality classes as« moves away from the band cente
«50 ~Sec. V C!.
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A. Scaling equations

Although we are primarily interested in the statistics
the transmission matrixt, and in particular in the~dimension-
less! conductance g5tr t†t and shot noise powerp
5tr@ t†t(12t†t)#, we find it more convenient to formulat
our scaling equations in terms of the reflection matrixr.
Once we knowr, unitarity of the scattering matrix allows u
to find the transmission properties without much effort.

Before we write down the most general scaling equat
for a trace of an arbitrary product of the reflection matrixr
and its Hermitian conjugate, we would like to focus on t
scaling equation for trr †r in order to demonstrate the metho
and the approximations involved. Addition of a thin diso
dered slice to a disordered wire causes a small changr
→r 1dr to the reflection matrixr; see Eq.~3.5b!. Hence,
upon addition of this slice, the trace trr †r changes to tr (r
1dr )†(r 1dr ). Using Eq.~3.5b! for dr , we thus find, up to
O(dL) @recall that the variance ofW is of order dL, so
keeping terms up toO(dL) means up toO(W2)#,

d tr r †r 52tr @r ~12r †r !W1W~12r †r !r †

2~12rr †!W~12r †r !W1r ~12r †r !WrW

1Wr†W~12r †r !r †#. ~5.3!

All terms that involve the disorder potentialV in Eq. ~3.5b!
canceled due to the cyclicity of the trace. Next we perform
disorder average overW and over the reflection matrixr of
the wire of lengthL. We thus find

g l

b

d ^tr r †r &
dL

5^@ tr ~12r †r !#2&2^tr r tr r ~12r †r !&

2^tr r † tr r †~12rr †!&1
22b

b
^tr ~12r †r !

3~12r †r 2r 22r †2!&2
2~12h!

bN

3^tr ~12rr †!~12r †r 2r 22r †2!&. ~5.4!

Finally, we take the limitdL! l , and replace the finite dif-
ferences on the left-hand side~LHS! of Eq. ~5.4! by differ-
entials.

It is apparent that the scaling equation obeyed by^tr r †r &
is not closed: On the RHS traces and products of traces o
to four reflection matrices appear. Closure requires an i
nite family of scaling equations, and cannot be achieved
the level of scaling equations for the moments, but only w
the help of the Fokker-Planck equation for the transmiss
eigenvaluesxj in the cases of pure symmetry. However, f
lengthsL!Nl it is possible to decouple this infinite set, an
to find a solution order by order inL/(Nl). Formally, this
decoupling scheme proceeds along the lines of a largN
expansion: In addition to the explicit factorsN in Eq. ~5.4!,
each trace contributes a factorN. Further, we assume that, t
leading order inN, the average of a product of traces equ
the product of the averages. As we will see below, corr
tions correspond to a~co!variance of traces, and are of ord
N0. Similarly, if we have a product ofn traces, we can ex
pand in cumulants, where annth cumulant will turn out to be
of relative sizeN22n. Such a decoupling scheme is known
f

n

a

up
-
n

h
n

s
-

work for the case of the standard DMPK equation,59 and its
consistency can be verified from the scaling equations
traces and products of traces that we derive in this secti

Let us now see how the scaling equation for^tr r †r & de-
couples in this large-N decoupling scheme. Recalling thatg
is of orderN @cf. Eq. ~2.4!#, we thus find that the RHS of Eq
~5.4! is of orderN2, i.e.,

l ]L^tr r †r &5N22^tr r †r &1
1

N
^tr r †r &21O~N0!. ~5.5!

Here we have used the fact that the average of the trace o
odd product ofr ’s andr †’s is zero; see our discussion belo
Eq. ~3.5!. The initial condition atL50 corresponds to per
fect transmission, i.e.,̂ tr r †r &50. The solution is easily
found,

^tr r †r &5
Ns

s11
1O~N0!, ~5.6!

wheres5L/ l . This solution corresponds to Ohm’s law fo
the conductanceg5N2tr r †r ,

^g&5
N

s11
1O~N0!. ~5.7!

To this order inN, the result is entirely classical. Th
average^tr r †r & ~and hencê g&) does not depend on th
energy« nor on the presence or absence of time-reve
symmetry. The dependence on time-reversal symm
shows up through the term proportional to (22b)/b on the
RHS of Eq.~5.4!, which is of orderN. It is this term in the
scaling equation that gives rise to the weak-localization c
rection to the conductance. The scaling equation for^tr r †r &

FIG. 4. Diagrammatic representation of Eq.~5.13!. Each circle
corresponds to a reflection matrixr or r †. To calculate the incre-
ment of ^Rj 1••• j n

& ~single box containingn open circles! one
chooses a pair of~filled! circles. As indicated in~b! the same circle
can be chosen twice. Overlapping or nested boxes represent m
plication of traces. Thus, ^Rj 1 j 2 j 3 j 4 j 5

&, ^Rj 3
Rj 3 j 4 j 5 j 1 j 2 j 3

&,
^Rj 2 j 3 j 4

Rj 4 j 5 j 1 j 2
&, ^Rj 3

Rj 5 j 1
&, ^Rj 2 j 3

Rj 5 j 1 j 2
&, and ^Rj 3 j 4

Rj 4 j 5 j 1
&, are

represented by~a!, ~b!, (b8), ~c!, ~d!, and~e!, respectively.
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does not contain an explicit energy dependence. Instead
energy dependence shows up through the appearance o
traces like trr 2 or tr r †r 3 in Eq. ~5.4! in the weak-localization
correction. Such traces that contain different numbers ofr ’s
andr †’s strongly depend on energy, as can be seen from
scaling equation of, e.g.,^tr r 2&,

g l

b
]L^tr r 2&5^@ tr ~12r 2!#2&22^tr r tr r ~12r 2!&

1
4i«g l

b
^tr r 2&1S 22b

b
2

2~12h!

bN D
3^tr ~12r 2!~123r 2!&. ~5.8!

With the same decoupling scheme as before, we find a clo
scaling equation for̂tr r 2& up to O(N),

l ]L^tr r 2&5N22~122i« l !^tr r 2&1
1

N
^tr r 2&21O~N0!,

~5.9!

which has the solution

^tr r 2&5N$122i« l 12A« l ~ i 1« l !cot@2A« l ~ i 1« l !s#%21

1O~N0!. ~5.10!
he
the

e

ed

One verifies that for«→0, the averagê tr r 2& equals the
averagê tr r †r & that we computed above, since for zero e
ergy one hasr 5r †. One also verifies that for« l @1 the av-
erage^tr r 2& approaches zero, as is the case in the stand
symmetry classes.

We are now ready to discuss the scaling equations for
trace of the product of an arbitrary number of reflection m
trices and for the product of such traces. Hereto we w
r 05r and r 15r †, and define

Rj 1••• j n
[tr r j 1

•••r j n
, ~5.11!

where the indicesj k can take the values 0 or 1. We defin
the symbolR without indices asR5N. We also define prod-
ucts of traces through the symbols

Qn1•••nm
5Ri

1
(1)

••• i
n1

(1)•••Ri
1
(m)

••• i
nm

(m) , ~5.12!

wherenj denotes then-tuple i 1
( j ) , . . . ,i nj

( j ) .

Proceeding along the same lines as above, we then
that the scaling equation for a single trace is given by~see
Fig. 4!
say,
g l

b
]L^Rj 1••• j n

&5

2i«g l F (
k51

n

~21! j kG2ng

b
^Rj 1••• j n

&

1 (
1<k< l<n

K Rj k••• j l
Rj l••• j nj 1••• j k

1
22b

b
Rj k••• j l j k••• j 1 j n••• j l

2
2~12h!

bN
Rj k••• j l j l••• j nj 1••• j kL

1 (
1<k, l<n

K Rj k11••• j l 21
Rj l 11••• j nj 1••• j k21

1
22b

b
Rj k11••• j l 21 j k21••• j 1 j n••• j l 11

2
2~12h!

bN
Rj k11••• j l 21 j l 11••• j nj 1••• j k21L

2 (
1<k, l<n

K Rj k••• j l 21
Rj l 11••• j nj 1••• j k

1
22b

b
Rj k••• j l 21 j k••• j 1 j n••• j l 11

2
2~12h!

bN
Rj k••• j l 21 j l 11••• j nj 1••• j kL

2 (
1<k, l<n

K Rj k11••• j l
Rj l••• j nj 1••• j k21

1
22b

b
Rj k11••• j l j k21••• j 1 j n••• j l

2
2~12h!

bN
Rj k11••• j l j l••• j nj 1••• j k21L .

~5.13!

Here, it is understood that j n11[ j 1 , j 0[ j n . Moreover, for n> l 5k11.1, Rj k11••• j l 21
[tr 1N5N,

Rj k11••• j l 21 j k21••• j 1 j n••• j l 11
[Rj k21••• j 1 j n••• j k12

, and Rj k11••• j l 21 j l 11••• j nj 1••• j k21
[Rj k12••• j nj 1••• j k21

, respectively, whereas

whenk51 andl 5n, Rj l 11••• j nj 1••• j k21
[tr 1N5N, Rj k11••• j l 21 j k21••• j 1 j n••• j l 11

[Rj k11••• j l 21 j l 11••• j nj 1••• j k21
[Rj 2••• j n21

, re-
spectively. Note that there is a one-to-one correspondence between contributions involving a product of two traces,

Rj k••• j l
Rj l••• j nj 1••• j k

[tr ~r j k
•••r j l

!tr ~r j l
•••r j n

r j 1
•••r j k

!,

and contributions arising in the presence of time-reversal symmetry,

22b

b
Rj k••• j l j k••• j 1 j n••• j l

[
22b

b
tr @~r j k

•••r j l
!~r j k

•••r j 1
r j n

•••r j l
!#5

22b

b
tr @~r j k

•••r j l
!~r j l

•••r j n
r j 1

•••r j k
! t#,

or due to the randomness in the determinant of the hopping matrices,
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2
2~12h!

bN
Rj k••• j l j l••• j nj 1••• j k

[tr @~r j k
•••r j l

!~r j l
•••r j n

r j 1
•••r j k

!#.

For products of traces, we find

g l

b
]L^Qn1•••nm

&5(
j 51

m K g l

b
Qn1•••nj 21nj 11•••nm

]LRnj L 1 (
1<k, l<m

^Qn1•••nk21nk11•••nl 21nl 11•••nm
Fnknl

&, ~5.14a!

where (g l /b)]LRnj
is given by the RHS of Eq.~5.13! with omission of the angular brackets for the disorder averaging,

whereFmn5(k51
m ( l 51

n f k,l with

f k,l5Ri k••• i mi 1••• i kj l••• j nj 1••• j l
1

22b

b
Ri k••• i mi 1••• i kj l••• j 1 j n••• j l

2
2~12h!

bN
Ri k••• i mi 1••• i k

Rj l••• j nj 1••• j l

1Ri k11••• i mi 1••• i k21 j l 11••• j nj 1••• j l 21
1

22b

b
Ri k11••• i mi 1••• i k21 j l 21••• j 1 j n••• j l 11

2
2~12h!

bN
Ri k11••• i mi 1••• i k21

Rj l 11••• j nj 1••• j l 21
2Ri k••• i mi 1••• i kj l 11••• j nj 1••• j l 21

2
22b

b
Ri k••• i mi 1••• i kj l 21••• j 1 j n••• j l 11

1
2~12h!

bN
Ri k••• i mi 1••• i k

Rj l 11••• j nj 1••• j l 21
2Ri k11••• i mi 1••• i k21 j l••• j nj 1••• j l

2
22b

b
Ri k11••• i mi 1••• i k21 j l••• j 1 j n••• j l

1
2~12h!

bN
Ri k11••• i mi 1••• i k21

Rj l••• j nj 1••• j l
. ~5.14b!
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Here we denotedm5 i 1 , . . . ,i m andn5 j 1 , . . . ,j n .
Below, we are interested in averages and~co!variances of

traces of an even number of reflection matrices up to or
N0. In both cases, the terms proportional to (12h) do not
play a role. For the average of a single trace, this is imm
diately clear from Eq.~5.13!. To see this for the~co!variance
of two traces, some further inspection of Eq.~5.14! is
needed. First,h appears explicitly in the quantityFmn mul-
tiplying a product of two traces@see Eq.~5.14b!#. A priori,
the leading contribution, which is obtained by replacemen
those traces by their averages, is of the same order@O(N)#
as the other terms in Eq.~5.14b!. However, asm andn are
even, each of the two traces multiplying (12h) contains an
odd number of reflection matrices, so that their averages v
ish. Hence, to leading order inN, the contribution from the
term proportional to (12h) vanishes. Second,h appears
implicitly through the derivative (g l /b)]LRnj

in Eq. ~5.14a!.

Again, to leading order inN, its contribution vanishes, an
one is left with a term of relative sizeN22.

It should be mentioned that Eqs.~5.13! and~5.14! can be
extended to the case in which a weak staggering of the h
ping amplitude is present in the microscopic model@cf. Eqs.
~2.1!–~2.4!#. @How to generalize the Fokker-Planck equati
~3.6! to include dimerization was shown in Ref. 40; see a
Ref. 47.# Weak staggering of the hopping amplitude
implemented by requiring that the disorder potentialW has
the Gaussian distribution with variance~3.3b! and mean
^Wjk&5(bdL/g l )Dd jk . HereD measures the strength of th
er

-

f

n-

p-

o

dimerization along the chain direction. With weak dimeriz
tion, Eq.~5.13!, say, is modified by the addition on the RH
of the contributionD(k51

n ^Rj k••• j n••• j k
2Rj k11••• j n••• j k21

&.
We see that the scaling equations now couple traces ove
even and odd number of reflection matrices, as is expe
since the probability distribution ofW is no longer symmet-
ric aboutW50 @cf. Eq. ~3.5b!#.

Equations~5.13! and ~5.14! are the central results of thi
section. These equations are more general than the Fok
Planck equations~3.6! and ~3.7! in the sense that they ar
valid both at the center of the band«50 and in its proximity.
Their limitation is that they can be solved only in the diffu
sive regimeL!Nl. In particular, they cannot be used
probe the localized regime~in contrast to their counterpart
in the problem of a waveguide with absorption; see Ref. 4!.
The next two subsections are devoted to a solution in
diffusive regime. The case of pure chiral symmetry («50) is
considered in Sec. V B; the energy dependence of the s
tion is discussed in Sec. V C.

B. Diffusive regime in the chiral limit

The general scaling equations~5.13! and ~5.14! simplify
considerably at the band center«50. At the band center, the
scattering matrix is Hermitian, and hencer 5r †. Restricting
our attention to single traces and products of two traces,
find the scaling equations
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g l

b
]L^tr r n&52

ng

b
^tr r n&1

n

2 (
k50

n

^tr r n2k11 tr r k11&

1
n

2 (
k51

n21

~^tr r n2k21 tr r k21&22^tr r n2k tr r k&!

1
n

2 S 22b

b
2

2~12h!

bN D @~n11!^tr r n12&

1~n21!^tr r n22&22~n21!^tr r n&#, ~5.15!

g l

b
]L^tr r m tr r n&5

g l

b
@^tr ~]L tr r m!r n&1^tr r m~]L tr r n!&#

1
2mn

b
^tr r m1n22~12r 2!2&

2
2mn~12h!

bN
^tr r m21~12r 2!

3tr r n21~12r 2!&. ~5.16!

Here (g l /b)]L tr r n is the RHS of Eq.~5.15! with the omis-
sion of the disorder averaging brackets.@If n51, the last
term in Eq. ~5.15! should be omitted.# @Alternatively, one
could have used the Fokker-Planck equation~3.6! to derive
these scaling equations. Both methods agree, as we
verified explicitly.#

The average and variance of the conductanceg5N
2tr r 2 can be computed by straightforward solution of Eq
~5.15! and ~5.16! using the decoupling scheme of Sec. V
The result is, up to corrections of orderN21,

^g&5
N

s11
1

22b

b

s2

~11s!3 , ~5.17a!

varg5
4

15b S 12
6s11

~s11!6D , ~5.17b!

where as befores5L/ l . For the derivation of these resul
we needed the following intermediate results:

^tr r 4&5
Ns2~3s218s16!

3~11s!4 ,

^tr r 6&5
Ns3~15s4182s31177s21180s175!

15~11s!7

up to corrections of orderN0 and

^tr r tr r &5
2

3b S 12
1

~s11!3D ,

^tr r tr r 3&5
2

15bS 42
5s3115s2124s14

~s11!6 D
up to corrections of orderN21.

In the diffusive regimel !L!Nl we observe that the
variance of the conductance at«50 is twice the value taken
in the standard case, for« far away from 0@cf. Eq. ~5.2!#.
The result that the presence of the extra chiral symm
ve

.

ry

leads to a doubling of conductance fluctuations was fou
previously for the random flux model~corresponding to our
caseb52) from numerical simulations60 and from an exact
solution of the Fokker-Planck equation~3.6!.30 The factor of
2 decrease in the fluctuations as the chiral symmetry is b
ken is reminiscent of the factor of 2 decrease of the cond
tance fluctuations upon breaking time-reversal symmetry42 or
upon breaking a spatial symmetry.61,62

According to Eq.~5.17a!, application of a magnetic field
has an effect on the average conductance, but this e
vanishes in the diffusive limitl !L!Nl, i.e., s@1. In other
words, there is no weak-localization correction to the co
ductance in the diffusive regime. It is instructive to note
coincidence between theb dependence of the average co
ductancê g& and theb dependence of the localization leng
j, which was considered in the previous section. In the c
of the random hopping model at zero energy, there is
weak-localization correction, and the localization lengthj
does not depend on the presence or absence of time-rev
symmetry. On the other hand, without chiral symmetry~for
large energies!, the negative correction to the average co
ductance forb51 foreshadows the localization transitio
which occurs on a length scalejst that is proportional tob,
i.e., localization takes place twice as fast without as with
time-reversal symmetry breaking magnetic field. The a
sence of weak-localization correction to the conductance
been pointed out in Ref. 63 for the single-chain random h
ping problem and by Gade and Wegner in their study o
~two-dimensional! nonlinear-s model implementing chiral
symmetry.21 ~See also Ref. 25.!

Finally, notice that there is no precursor in Eqs.~5.17! of
the even-odd effect seen in the localized regime. This ag
with the exact solution forb52, where it was found that the
even-odd effect is nonperturbative in the expansion par
eterL/Nl.30

To orderN, the average conductance is the same as in
case of a wire without chiral symmetry. Differences show
only to orderN0, where we find that there are no wea
localization corrections for the chiral case. This is not a c
incidence that is limited to the average of the conducta
g5tr t†t. It extends to the averages of traces of arbitra
powers ofr or t. To see this and in order to allow for a mor
detailed comparison to the case where chiral symmetr
absent, we rephrase the scaling equation~5.15! in terms of
the transmission matrixt. In the limit of largeN, one thus
obtains

S N1
22b

b D l ]L^tr ~ t†t !n&

52n (
m51

n

^tr ~ t†t !n112m&^tr ~ t†t !m&

1n (
m51

n21

^tr ~ t†t !n2m&^tr ~ t†t !m&

2n~2n11!
22b

b
^tr ~ t†t !n11&

12n2
22b

b
^tr ~ t†t !n&1O~N0!. ~5.18!
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For a quantum wire without the chiral symmetry, the lead
O(N) contribution to^tr (t†t)n& is precisely the same as th
first two terms on the RHS of Eq.~5.18!. The weak-
localization correction proportional to (22b)/b differs in
the standard case from the remaining terms on the RHS
Eq. ~5.18! as it reads59

2n2
22b

b
^tr ~ t†t !n&1n~n21!

22b

b
^tr ~ t†t !n11&.

Hence, whereas the solution of Eq.~5.18! is the same as fo
an ordinary quantum wire to leading order inN,

^tr ~ t†t !n&5
N

2s
B~n,1/2!, ~5.19!

whereB(x,y)5G(x)G(y)/G(x1y) is the beta function,64,65

the combination (2n11)^tr (t†t)n11&22n^tr (t†t)n& in Eq.
~5.18! conspires with the coefficientB(n,1/2) to ensure the
disappearance of a weak-localization correction for all av
ages^tr (t†t)n& in the presence of chiral symmetry. As
corollary, we find that the average density of the transm
sion eigenvaluesxj

r~x!5K (
j 51

N

d~x2xj !L ~5.20!

also has no weak-localization correction.
With these results, it is little work to compute the avera

shot noise power^p&5^tr t†t(12t†t)& and its weak-
localization correction,

^p&5
N

3 S 1

s11
2

1

~s11!4D1
22b

b S s2

3~11s!3 2
7s2

3~11s!6D .

~5.21!
Just as in the case of the conductance, there is no w
localization correction in the diffusive regimel !L!Nl.

C. Crossover between the chiral and standard
universality classes

For any nonzero energy«, the chiral symmetry of Eq
~2.11! is broken. Hence one expects that for a sufficien
long lengthL of the quantum wire, its transmission prope
ties will flow to those of the standard symmetry class. T
flow is governed by a crossover length scalel « so that for
L! l « the transmission properties are still like those in t
chiral symmetry class, while forL@ l « they resemble those
of the standard symmetry class. We distinguish three p
sible regimes where this crossover can take place:~1! The
crossover takes place in the ballistic regime,l «! l . ~2! The
crossover takes place in the diffusive regime,l ! l «!Nl. ~3!
The crossover takes place in the localized regime,l «@Nl.
This regime cannot be treated with the methods used in
paper. For the caseN51 of a single-channel quantum wire
this regime has been studied in Refs. 13, 15, 18, 66, and

The full set of scaling equations~5.13! and~5.14! can be
used to describe the first two regimes~and the intermediate
region between them!. Although the solution of the scaling
equations is straightforward—within the large-N decoupling
scheme, the scaling equations are linear ordinary differen
equations that can be solved one by one~see the
g

of
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Appendix!—it is a quite cumbersome task, and many expr
sions get quite lengthy.@The expression~5.10! for ^tr r 2& is
the only example whose solution can be represented b
one-line equation.# To simplify our presentation and to sav
the reader from those lengthy expressions, we focus on
regimel ! l «!Nl, where the crossover takes place inside
regime of diffusive dynamics.

The length scale for the crossover can be identified fr
Eq. ~5.10! as

l «5A l

2«
. ~5.22!

~Here we have neglected« l with respect toi in Ai 1« l . This
is consistent with our focus on the regimel «@ l .! We note
that« is none but the Thouless energy for a diffusive proc
with diffusion constantv f l ~having momentarily reinstated
the Fermi velocityv f) in a system of linear sizel « . Using
the hierarchy of length scalesl ! l « we then find that the
solution of the scaling equations takes a relatively sim
form. For the average and variance of the conductanceg we
find up toO(N0)

^g&5
Nl

s l «
2

22b

b S 1

3
2

z coth~z* s!1z* coth~zs!

4s D ,

~5.23!

varg5
2

15b
1

2

b S 3zs coth~zs!22

16s4

1
i

8s2 sinh2~z* s!
1c.c.D . ~5.24!

Here we definedz511 i and s5L/ l « . For the average of
the shot noise power we find up toO(N0)

^p&5
Nl

3s l «
2

22b

b F 1

45
1S ~3z22z* s2!coth~zs!

24s3

1
i

4s2 sinh2~z* s!
1c.c.D G . ~5.25!

For the derivation of these results, we needed the follow
intermediate results, all up to corrections of orderN0:

^tr ~r †r !3&5N2
Nl

l «

23

15s
,

^tr r 2&5N2
Nl

l «
z* coth~z* s!,

^tr r †r 3&5N2
Nl

l «
S ~4s21 i !z* coth~z* s!

4s2

2
1

2s sinh2~z* s!
D ,

^tr r †2r 2&5N2
Nl

l «
S 4s2z* coth~zs!2z coth~z* s!

2s2 D ,
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^tr ~r †r 2!2&5N2
Nl

l «
S ~16s4z* 18s2z1z* !coth~z* s!

16s4

2
z coth~zs!

4s4
2

8s222zs coth~z* s!15i

8s3 sinh2~z* s!
D ,

^tr ~r †r !2r 2&5N2
Nl

l «
S ~96s4z* 140zs213z* !coth~z* s!

96s4

2
40s226zs coth~z* s!13i

48s3 sinh2~z* s!
D . ~5.26!

In the limit s→0, corresponding toL! l « , the weak-
localization corrections to the conductance and the shot n
power and the conductance fluctuations approach their
ues for the chiral symmetry class@cf. Eqs.~5.17! and~5.21!#.
For s@1, corresponding toL@ l « , one verifies that the val
ues corresponding to the standard symmetry class are re
ered.

In this subsection, we have described the effect of a fin
energy by a crossover length scalel « . For the conductance
and the shot noise power the limits of large and smal«
correspond to the limits ofL large or small compared tol « .
However, upon inspection of Eqs.~5.10! or ~5.26! one ob-
serves that traces like trr 2 that contain different numbers o
r ’s and r †’s do not approach their large-energy limit^tr r 2&
50 asL→`.67 The origin of this difference is that the re
flection matrix is dominated by~interference of! paths that
enter only a distance of the order of a mean free pathl into
the quantum wire, while the conductance and the shot n
power depend on quantum interference throughout the e
wire. Hence, as long asl «@ l , the finite energy cannot alte
the interference of most paths that contribute tor. Hence, to
judge whether the finite energy is relevant for the traces
reflection matrices, one has to comparel « to l instead ofL.

We are now ready to define what is meant by ‘‘« suffi-
ciently large’’ in the crossover from the chiral symmet
class to the standard symmetry class. As far as quantum
terference corrections to the transmission properties are
cerned, the results of this subsection show that ‘‘« suffi-
ciently large’’ corresponds to the inequality of length sca
L@ l « , or, equivalently,«@ l /L2. However for reflection
traces like trr 2, a much more strict criterion is needed,l «

! l , or «! l . In the next section, these criteria, as well as
functional forms~5.23! and ~5.24! for the crossover, will be
compared to numerical simulations.

VI. NUMERICAL SIMULATIONS

In this section we report on numerical simulations of t
conductance of a quantum wire with random hopping on
and compare them with the theory of Secs. II–V. The sim
lations are for the random hopping model on a square latt
described by the Schro¨dinger equation

«cm, j52tm, j 21;'cm, j 212tm, j ;'* cm, j 112tm21,j ;icm21,j

2tm, j ;i* cm11,j , ~6.1!
se
l-

ov-

e

se
ire

f

in-
n-

s

e

,
-
e,

wherecm, j is the wave function at the lattice site (m, j ). A
site is labeled by the chain indexj 51, . . . ,N and by the
column indexm. We impose open boundary conditions
the transverse direction,tm,0;'5tm,N;'50. The system con-
sists of a disordered region (0,m,L), coupled to the left
and right to perfect leads (m,1 andm.L). In the leads, the
longitudinal and transverse hopping amplitudes aretm, j ;i
51 andtm, j ;'5t, where 0,t<1. With this choice, there is
a window of energies211t,«,12t around the band cen
ter, where the number of transmission channels does no
pend on energy~and equals the number of chainsN). In the
disordered region, the hopping amplitudes are taken fro
distribution centered around the valuestm, j ;i51 and tm, j ;'
5t for the leads. We consider two types of randomne
which we refer to as the real random hopping and rand
flux models.

~1! In the real random hopping~RRH! model, the hopping
amplitudestm, j ;' and tm, j ;i are chosen uniformly and inde
pendently in the intervalst(12d),tm, j ;',t(11d) and 1
2d,tm, j ;i,11d, respectively, whered measures the dis
order strength. A uniform magnetic field with a fluxfpl
through each plaquette is modeled by multiplication oftm, j ;i
with a Peierls phasee2p ifpl( j 21).

~2! In the random flux~RF! model, the longitudinal hop-
ping amplitudestm, j ;i51, while the transverse hopping am
plitudestm, j ;' are complex numberstm, j ;'5teium, j . Here the
um, j are chosen such that the fluxesfm, j5um, j2um21,j are
independently and uniformly distributed in the interv
2pp,fm, j,pp, wherep is a measure for the strength o
the disorder.

In the random flux model, the parameterh50 ~see Ref.
41!; in the real random hopping model the precise value oh
is not known. However, nonzeroh ~of orderN0 by assump-
tion! will give rise to corrections of relative order onl
1/N(1/N2 for the average conductance!, which can be ne-
glected for largeN. Since the statistics of the conductance
the RF model in a quasi-one-dimensional geometry has b
studied extensively in Ref. 30 at and away from the ba
center«50, we restrict our attention here to the crossover
a function of energy.

The wave functions that solve the Schro¨dinger equation
~6.1! at energy« can be written as

cm, j5 (
n51

N
1

sinkn
@eiknm sin~qn j !c«

iL~n!

1e2 iknm sin~qN112n j !c«
oL~n!# ~6.2!

in the left lead and as

cm, j5 (
n51

N
1

sinkn
@e2 iknm sin~qN112n j !c«

iR~n!

1eiknm sin~qn j !c«
oR~n!# ~6.3!

in the right lead, where the wave numberkn.0 is deter-
mined from «522 coskn22t cosqn with qn5pn/(N11).
With this parametrization, the definition of the scattering m
trix S« and its symmetries are the same as in Sec. II.

For each realization of the disorder, the dimensionl
conductanceg is computed from the Landauer formu
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~2.13!. The recursive Green’s function39,68,69method is used
to calculateS« . ~Application of the method to the random
hopping or random flux models is discussed in Ref. 30.! Our
numerical simulations use the parameterst50.6, d50.2, and
p50.3, for the RRH and RF models.

A. Localized regime in the RRH model

In the localized regime, the even-odd effect manifests
self most dramatically. Taking an average over 23104 real-
izations of the disorder, we have computed the mean
variance ofg at the band center«50 for the RRH model
with N520 and 21, and with and without a time-revers
breaking magnetic field~see Fig. 5!. The magnetic field cor-
responds to a fluxfpl5831024 per plaquette, or;1 flux
quantum per 50 lattice spacings along the chain, so that ti
reversal symmetry is broken for all but the shortest w
lengths shown in Fig. 5. For oddN(521) both^g& and varg
decrease algebraically whereas they decay exponentially
evenN(520). We observe that, for odd~even! N and fixed
L, ^g& and varg are larger~smaller! in the presence of a
magnetic field,b52, than without,b51, in agreement with
Eqs. ~4.9! and ~4.11!. Note that for smallL varg is L inde-
pendent for the chiral unitary class, while varg decreases
linearly with L for small L in the chiral orthogonal class

FIG. 5. Mean~a! and variance~b! of the conductance forN
520 and 21 at the band center«50 with and without magnetic
field in the RRH model. Averaging over 23104 realizations of
disorder is performed.
t-

d

l

e-

for

Similar L dependencies for smallL have been obtained fo
the standard symmetry classes; see Ref. 54.

Results for the crossover from the chiral universal
classes to the standard ones as a function of energy
shown in Figs. 6 and 7. Figure 6 shows the energy dep
dence of the localization lengthj522limL→`L/^ ln g& @cf.
Eq. ~4.9c!# for N520; Fig. 7 shows numerical data for th
ratio C52 limL→`^ ln g&/var lng. Here, the averages wer
taken over 500–1000 realizations of the disorder and m
netic fields corresponding to fluxesfpl5(2,4,6)31024 per
plaquette, respectively, have been used.

In the absence of a magnetic field,j(«) shows nonmono-
tonic behavior with a maximum around«'531026, while,
within 10%, the localization lengthj is the same in the chira
orthogonal class («50) and in the standard orthogonal cla
(«*1024 for the choice of parameters in the simulations!, in
agreement with Sec. IV. As we discussed in Sec. IV, the f
that j(«50)5j(«@0) in the absence of a magnetic fie
could be interpreted as the result of a cancellation of t
effects: the presence of an extra symmetry at the band ce
~the chiral symmetry!, which tends to makej shorter than
away from the band center, and the enhancement of the D

FIG. 6. Localization lengthj as function of energy« for fpl

50, 231024, 431024, and 631024 in the RRH model withN
520 chains. Averaging over 500 realizations of disorder is p
formed.

FIG. 7. RatioC52 limL→`^ ln g&/var lng versus« for fpl50
and 431024 in the RRH model withN520 chains andL54
3105. The disorder average is taken over 500 realizations.
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at the band center, which tends to makej larger.47 Appar-
ently, these two competing effects are not balanced in
crossover region, thereby giving rise to the nonmonoto
energy dependence toj displayed in Fig. 6. Such a non
monotonicity of j(«) is reminiscent of the nonmonotoni
voltage dependence of differential conductance found i
normal-metal/superconductor microbridge.70

In the presence of a magnetic field,j increases by a facto
;1.8 in the crossover from the chiral-unitary to the stand
unitary symmetry class, which is slightly less than the fac
2 predicted in Eq.~4.13!. Note that the increase in localiza
tion length is most rapid around the same energy scale«c
'531026 for which j reaches its maximumjc in the ab-
sence of a magnetic field. Moreover,«c is related tojc by the
Thouless relationjc;Al /«c where the mean free pathl is
obtained by dividing the localization lengthj(«510210) by
N520 in Fig. 6.

A plot of the ratioC52 limL→`^ ln g&/var lng is shown in
Fig. 7. In the standard symmetry classes,C takes the univer-
sal valueC51/2, while in the chiral classes one has41

C5
bN/2

N1~122/p!~N2212h!
5

b

424/p
1O~1/N!.

~6.4!

The data shown in Fig. 7 confirm thatC50.5 in the standard
symmetry classes~corresponding to«*1024 for the param-
eters of our simulation!. However, for the chiral symmetry
classes, a 20% discrepancy with Eq.~6.4! is found.

While the numerical simulations for the localized regim
qualitatively confirm the theory of Sec. IV, quantitativ
agreement is only up to;20%. As a possible source of th
discrepancy, we point to the fact that the simulations
done for an appreciable disorder strengthd50.2, while the
theory is derived for weak disorder, corresponding tod→0.
Hence, the system cannot be considered truly~quasi-!one-
dimensional, and corrections from two-dimensional dyna
ics on shorter length scales need to be taken into acco
Another cause of the observed discrepancies could be
uncertainty of the precise value ofh for the RRH model.
While we believe thath should not affect the conductanc
distribution significantly for largeN, it remains difficult to
make a quantitative assessment of finite-N corrections as
long ash is unknown. At this moment, we are not aware
a direct way to obtainh from the numerical simulations.

B. Diffusive regime in the RRH and RF models

We next consider the crossover from the chiral symme
classes to the standard symmetry classes in the diffusive
gime l !L!j. In Figs. 8 and 9 we show numerical simul
tions of the average and variance of the conductance
function of the energy« and the magnetic fluxf5L(N
21)fpl through the disordered part of the wire. The simu
tions are performed withN545 and L5800, in order to
ensure that the conditionsl !L!j for diffusive transport and
N!L for quasi-one-dimensionality are both met. The e
semble average is taken over 104 samples.

Numerical results for the variance of the conductance
the RRH model versusf and « are shown in Fig. 8. The
numerical data of varg versusf @Fig. 8~a!# agree within
e
ic

a

d
r

e

-
nt.
he

y
re-

a

-

-

n

10% with the theoretical predictions varg54/15 (2/15) for
f50 and varg52/15 (1/15) forf@1 for «50 («@0).
The crossover between the orthogonal and unitary cla
happens forf;1, both with chiral symmetry («50) and
without («50.005). The« dependence of varg is shown in
Fig. 8~b!, together with the theoretical result~5.24!, where
we fitted the crossover energy scale that enters into the d
nition of s5L/ l « @cf. Eq. ~5.22!#. Again we find quantitative
agreement well within 10%.~The fact that the numerica
data forf50 are below the theoretical curve can probab
be attributed to the suppression of varg as L approaches
the localization lengthj; see the remark in the discussion
Fig. 5.!

Numerical results for the average conductance are sh
in Fig. 9. All data shown are for the same lengthL5800 and
for the same number of channelsN545. For weak disorder
one can ignore thef and« dependence of the mean free pa
l, and hence of the Drude term in the conductance. The o
effect of a variation of« or f is thus to change the symmetr

FIG. 8. Variance ofg for the RRH model versus the total fluxf
through the disordered wire~a! and versus energy« ~b!. In ~a!,
varg is shown for two values of the energy,«50 and«50.005,
corresponding to the presence and absence of chiral symmetr
~b!, varg is shown for two values of the fluxf50 and f58,
corresponding to the presence and absence of time-reversal sym
try. The dashed line in~b! is the theoretical curve~5.24!, with s2

5(1.53104)«. The simulations are performed forN545, L
5800, and an averaging over 104 realizations of the disorder is
performed.
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of the quantum wire, which affects the weak-localizati
correction to the conductance. According to Eq.~5.23!, we
expect a nonzero weak-localization correctiondg in the stan-
dard orthogonal symmetry class, i.e., forf50 and «5” 0,
while dg50 if time-reversal symmetry is broken (f*1) or
if chiral symmetry is present («50). This behavior is con-
firmed in Fig. 9. However, quantitatively, the numerical r
sults differ by ;30% from Eq.~5.23!. In addition, Fig. 9
shows a small« dependence of̂g& at large magnetic fields
that cannot be accounted for within the theory of Sec. V.
particular, note the cusplike structure at small« in the f
58 data in Fig. 9~b!. This effect seems to be too large to b
explained by a spurious« dependence of the mean free pa
l. Since the feature at small« is suppressed at larger length
L, a possible cause might be a contact resistance ef
~Contact resistance is known to play a role for disorde
normal-metal–superconductor junctions, when the parti
hole degeneracy is destroyed by a finite voltage or by a m
netic field.71! As we discussed in the previous subsectio
other causes for the discrepancy between theory and num
cal simulations may be the fact that the disorder is not sm
or that the parameterh is not known.

FIG. 9. Mean conductance as a function of the total fluxf ~a!
and of the energy«. In ~a!, data are shown for«50 and «
50.005. In ~b!, ^g& is shown forf50 and f58 for the RRH
model ~circles! and for the RF model atp50.3 ~triangles!. All
simulations were done forN545 andL5800. The average wa
performed over 104 realizations of the disorder. The dashed line
~b! is taken from Eq.~5.23! with b51 ands25(1.53104)«.
n

ct.
d
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VII. CONCLUSIONS

In the vicinity of the band center, the physics of localiz
tion in a quantum wire with chiral symmetry exhibits diffe
ences with respect to the case of a quantum wire in one
the standard symmetry classes. The most prominent dif
ences are observed in the localized regime. For wires w
chiral symmetry~as is the case with off-diagonal disorder!, at
the band center, the statistics of the conductance dep
sensitively on the parity in the number of transmission ch
nelsN. For oddN, the band center represents a critical po
that is characterized by the absence of exponential loca
tion. The logarithm of the conductance is not self-averag
and the mean conductance or its variance decays alge
ically with the lengthL of the wire. For evenN, exponential
localization takes place with a self-averaging localizati
lengthj that does not depend on the presence or absenc
time-reversal and spin-rotation symmetry. As the energy
tuned away from the band center, the system crosses ov
the standard universality classes: The parity effect disapp
and the localization length acquires a dependence on
presence or absence of time-reversal and spin-rotation s
metry. In the presence of time-reversal symmetry, the loc
ization lengthj for even N is the same with and withou
chiral symmetry. Our numerical simulations indicate that t
crossover is nonmonotonic: in the crossover between the
ral and standard symmetry classes,j differs from the values
in the pure symmetry classes. A complete theoretical
scription of this crossover is still lacking.

In the diffusive regime, the differences between the ch
and standard universality classes are less pronounced.
show up in quantum interference corrections to the class
~Drude! conductance, which is the same in both cases.
have found that, in the chiral classes, weak-localization c
rections to the mean conductance^g& and, more generally, to
the density of transmission eigenvalues vanish at the b
center. This is the quasi-one-dimensional counterpart o
similar observation made in Ref. 63 in the context of t
single-chain random hopping problem and by Gade a
Wegner in their study of two-dimensional disordered s
tems with chiral symmetry.21 The conductance fluctuation
are twice as large at the band center relative to the stan
universality classes, a fact compatible with the presence
an extra symmetry in the system. We have calculated th
quantum interference corrections as a function of energy,
the entire crossover from the chiral universality class at
band center«50 to the standard unitary classes for« far
away from 0. The theoretical predictions for this crossov
agree qualitatively with numerical simulations though the
remain sizable deviations between theory and numerics
the order of 10–30%.

While the chiral symmetry classes have received an en
mous amount of theoretical attention~see the Introduction of
this paper for a brief summary!, there are several hurdles t
take before a chiral quantum wire can be realized in pract
Besides the effect of electron-electron interactions, which
not taken into account here, the main obstacle is the fact
the chiral symmetry is very fragile, since it is easily brok
by, e.g., on-site random energies, next-nearest-neighbor
ping, or a small shift of the chemical potential, which w
drive the system away from the chiral symmetric band c
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ter. Our calculation of the quantum interference correctio
in the crossover from the chiral symmetry classes to the s
dard ones can be seen as a first and necessary step to
the latter obstacle. The methods derived for this purpose
described in Sec. V, can, in principle, be extended to the c
where the crossover is driven by on-site disorder or ne
nearest-neighbor hopping, instead of a shift of the Fermi
ergy. For those cases, one can estimate that the cross
takes place at the length scaleL;Al l o (L;Al l nn), where
l o ( l nn) is the mean free path for scattering from the on-s
disorder ~or next-nearest-neighbor hopping!. The precise
form of the quantum interference corrections to the cond
tance in those cases is different from the case reported h
when the crossover is driven by energy, and requires a s
rate calculation.
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APPENDIX: SCALING EQUATIONS

In this Appendix, we present the scaling equations nee
to calculate the crossover for the weak-localization corr
tions of the conductance, shot noise, and universal con
tance fluctuations of the conductance as done in Sec.
The notation was defined in Eq.~5.11! and we use the short
hand

R[R10, R2[R1010, R3[R101010.

Equations needed up to corrections of orderN0 are

g l

b
]L^R&5N^N22R&1^R&21

22b

b
^N2R0022R2R00*

1R10001R1000* 1R2&, ~A1!

g l

b
]L^R2&54^R2R2&~N2^R&!1

22b

b
^R0014R1R00*

28R224R100024R1000* 14R312R101000

12R101000* 1R1001001R100100* &, ~A2!
c

d

s
n-
ckle
as
se
t-
n-
ver

e

-
re,
a-

i-
F

i-

-

d
-
c-
C.

g l

b
]LvarR54~^R&2N!varR1^R001R00* 12R22R1000

22R1000* 24R21R1001001R100100* 12R3&

1
22b

b
^R001R00* 12R22R100022R1000*

24R21R1001001R100100* 12R3&. ~A3!

Equations needed up to corrections of orderN are

g l

b
]L^R00&5

4i«g l

b
^R00&1N^N22R00&1^R00&

2,

~A4!

g l

b
]L^R1000&5

4i«g l

b
^R1000&1N^2R0012R24R1000&

2^R0012R22R1000&^R00&2^R22R1000&^R&,

~A5!

g l

b
]L^R1100&5N^R0012R1R00* 24R1100&

2^2R2R1100&^R00&2^2R00* 22R1100&^R&

1^R1100&^R00* &, ~A6!

g l

b
]L^R3&53~2N^R22R3&1^R24R212R3&^R&1^R2&

2!,

~A7!

g l

b
]L^R101000&5

4i«g l

b
^R101000&1^R100012R2&^R1000&

12N^2R10001R223R101000&

12^R2R10002R21R101000&^R00&)

1^R26R100022R214R101000&, ~A8!

g l

b
]L^R100100&5

4i«g l

b
^R100100&12N^2R10001R1100

23R100100&1^R0024R100012R100100&^R00&

12^R22R100022R110012R100100&^R&

12^R1000&
21^R1100&

2. ~A9!
d.
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