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Linear waveguides in photonic-crystal slabs, two-dimensionally periodic dielectric structures of finite height,
are fundamentally different from waveguides in two-dimensional photonic crystals. The most important dis-
tinctions arise from the fact that photonic-crystal slab waveguides must be index-confined in the vertical
direction(while a band gap confines them horizontallWe present a systematic analysis of different families
of waveguides in photonic-crystal slabs, and illustrate the considerations that must be applied to achieve
single-mode guided bands in these systems. In this way, the unusual features of photonic-crystal waveguides
can be realized in three dimensions without the fabrication complexity required by photonic crystals with
complete three-dimensional band gaps.

[. INTRODUCTION the frequency range of interest—this condition is necessary
in Ref. 5 and the increased reflections in a multi-mode wave-
Photonic crystals, which prohibit the propagation of light guide are a straightforward consequence of coupled-mode
for frequencies within a band gap, have enabled exciting newheory?® (Extraneous modes may have little effect if cou-
ways to control light and construct integrated opticalpling to them through the bend or cavity can be made neg-
devices' An important element of optical circuits is a linear ligible, but this is not generally the case for wavelength-scale
waveguide to carry light to and from components, and phostructures. Third, the guided mode should lie within the
tonic crystals also provide unique advantages forband gap of a photonic crystal in order to prohibit radiation
waveguides. Photonic-crystal waveguides, guided by théosses (which both decrease transmission and increase
band gap of the bulk crystar can exhibit near-zero reflec- reflectiorf%; otherwise, some losses are inevitable at a bend
tion and loss through sharp beRAdmd when coupled with or resonator, which breaks translational symmetry.
resonant cavitied’ due to the gap’s prevention of radiation ~ Conventional linear dielectric waveguides operate by in-
losses. Previous theoretical studies of photonic-crystatlex confinement(total internal reflection, in the short-
waveguides, however, have been restricted to purely twowavelength limif. Such waveguides can be made to satisfy
dimensional systems and have not examined the effects dfie first two criteria from abové.e., be guiding and single-
vertical confinement. In this paper, we present a systematimode, and thereby have relatively high transmission
study of waveguide modes in a three-dimensional systenthrough sharp bends and resonatcis?> However, the ab-
photonic-crystal slabs. Photonic-crystal slabs are twosence of a photonic band gap means that transmission is
dimensionally periodic dielectric structures of finite heightalways limited by radiation losses. In a purely two-
that have a band gap for propagation in the plane and usgimensional photonic-crystal linear waveguide, a lineare-
index-confinement in the third dimension; they have beerdimensionally periodicdefect is introduced into the crystal,
proposed as a more-easily fabricated alternative to true threereating a localized band that falls within and is guided by
dimensionally periodic photonic cryst§-1° Although the photonic band gap? Light is therefore prohibited from
their structure and properties strongly resemble those of twoescaping the waveguide, and all three criteria can be satisfied
dimensional crystals, slab systems require a fundamentallio achieve perfect transmission through bends and resonant
different, three-dimensional analysf®1®We will demon-  cavities>™’ These results have been experimentally con-
strate how such analyses apply to waveguides and explafirmed using structures that are uniform in the third dimen-
the considerations that arise for line defects in photonicsion for many wavelengths, and thus approximate a two-
crystal slabs. We shall show that, merely to produce guidedimensional systerft the large aspect ratios of such
modes(as well as to be single-mode and in-gae param- geometries and their lack of vertical confinement or a true
eters of the defect must be carefully chosen. band gap in the guided modes limit their practical applica-
Waveguides must satisfy three criteria in order to achieveions, however. There are several other possibilities for real-
optimal performance in many integrated-optical-circuit ap-izing photonic-crystal waveguides in three dimensions. The
plications; e.g., for maximum transmission through sharpmost ideal structure, and the only way to totally eliminate
bends(on the scale of the wavelengtAnd resonant cavities. radiation losses, would be a three-dimensionally periodic
First, of course, the waveguide must support true guidedtructure with a complete band gap, in which the photonic
modes(as opposed to resonances, as defined)lafbis also  crystal completely surrounds the waveguide. Such structures,
implies that the waveguide structure must be periodic alonghough, are challenging to construct at submicron
the direction of propagation, in order to have a well-definedengthscale$*?’ In this paper, we instead focus on
Bloch wave numbek and to thereby propagate without re- photonic-crystal slabs. Waveguides in photonic-crystal slabs
flections. Second, the waveguide should be single mode iare analogous to those in two-dimensional crystals, except
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FIG. 1. Photonic-crystal slabga) Square lattice of dielectric 0
rods in air withe of 12.0, lattice constarg, radius 0.2, and height
2.0a, with low-index (e of 2.0) rods extending infinitely above and
below. (b) Triangular lattice of air holes extending through both a  FIG. 2. Band structure for the rod slab from Figal Hollow
high-index(e of 12.0 finite-height dielectric slab and low-index and filled circles represent modes which are even and odd with
of 2.0) semi-infinite dielectric regions above and below. The holesreéspect to the horizontalz(0) mirror plane bisecting the slab.

have lattice constarat and radius 0.8, while the high-index slabis There is a band gap in the od@M-like) modes in the frequency
of thickness 0.&. range 0.3362—0.42@2a.

that they use index confinement in the third dimension. Simisymmetry plane of the slab; this is analogous to TE and TM,
lar waveguides, which use photonic-crystal confinement irrespectively, in two dimensions, although here the modes are
two dimensions and index confinement in the third, havenot completely polarized except in the symmetry plane. The
been subject to experimental studf&$® as well as theoret- rod and hole slabs have band gaps in their odd and even
ical work subsequent to the submission of this paPa@ihere  modes, respectively, though these are not complete gaps due
is also another type of photonic-crystal waveguide that we ddo the light cone. Nevertheless, in the gapguwdedmodes
not consider in this paper, the photonic-crystal filer?  exist for the corresponding symmetry. The slab band gap has
This is a two-dimensionally periodic system(@f principle)  been shown to support resonant cavities in point def&cts,
infinite thickness, in which the waveguide mode propagatesind we will show in this paper that it can also confine wave-
perpendicular to the plane of periodicity; in contrast,guide modes in linear defects. The differing thicknesses of
photonic-crystal slab waveguides are of finite thickness anthe slabs derive from the polarizations of the modes exhibit-
run parallel to the plane of periodicity. A waveguide operat-ing the band gap, and were chosen to achieve large gaps.
ing on principles similar to the fibers’ was also considered in In order to create a linear waveguide, we break the peri-
Ref. 33. odicity of the slabs in one direction by creating linear defects
In this paper, we analyze linear-defect waveguides in two
characteristic photonic-crystal slabs, a square lattice of di- 0.5

electric rods in air and a triangular lattice of air holes in ] -e-even - Se  lghtcons
dielectric, illustrated in Fig. 1. Above and below the slabs are 0457 e odd .
semi-infinite “extruded” substrates with the same cross sec- o044 =,
tions as the slabs, but having a lower dielectric constavie 1 0.3471
use a substrate in order to model a more practical systen %3 .
than a suspended slab, and having the substrate on both sid§ o_3_f . . 0.2708
of the slab preserves the mirror symmetry that is crucial for 3 3 '
the existence of a gapThe band diagrams of these two & %23
structures are given in Figs. 2 and 3, respectively; their cal-§ 23
culation and interpretation is described in Ref. 19. Each banc& ]
diagram includes a shaded regi@efining the light cone o158
and discrete(guided bands lying below the light cone, e
which are confined vertically in the vicinity of the slab by ]
index confinement(Thus, the slab forms a planar wave- %3
guide, but in this paper we use the term “waveguide” only 04
to describe linear waveguidgsThe presence of the light I P
r M K r

cone, with the corresponding constraint that all guided

modes be index-confined in the vertical direction, gives rise F|G. 3. Band structure for the hole slab from Figb)l Hollow

to the most significant differences between photonic-crystaind filled circles denote even and odd modes as in Fig. 2. There is
slabs and their two-dimensional cousins. The guided modes band gap in the evefTE-like) modes in the frequency range
are either even or odd with respect to the horizontal mirroi0.2708-0.347d/a.
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FIG. 5. Projected band structure for the reduced-index rod-slab
waveguide from Fig. @), showing the(odd-symmetry guided
bands for various defect rod raditompared to the bulk radius of
0.20a).

modes that reside primarily in aiunlike two- or three-
dimensional crystals with complete gap$Guided modes
can still reside, however, in a reduced-index region.

4
y [l. COMPUTATIONAL METHOD
The band structures of Figs. 2 and 3 were computed as
described in Ref. 19, using preconditioned conjugate-
, x gradient minimization of the Rayleigh quotiéhin a three-
, dimensional plane-wave baswith an imposed periodicity
at a large interval in the vertical direction. This is a general,
nonseparable, vectorial solution of the full Maxwell's equa-
FIG. 4. Linear defects, which give rise to waveguide modes, intions in a complete three dimensional b3%f—the only
the rod and hole photonic-crystal slabs from Fig. 1. The |0W-indeXapproximations are the discretization of the system, the
material is not shown, but “extrudes” above and below the struc-planewave cutoffand the imposition of a vertical supercell
tures as in Fig. 1.(a) Reduced-index waveguides, created by (which has a negligible effect on the localized, exponentially
decreasing/increasing the radii of a line of nearest-neighbor rOd?decaying guided modgsThe light cone boundary is derived

holes, respectively(b) Increased-index waveguides, created byfom the lowest two-dimensional band of the low-index ex-
increasing/decreasing the radii of a line of nearest-neighbor rodsy,qed region.

holes, respectively(c) Dielectric-strip waveguide surrounded by
the rod slab, from which a line of nearest-neighbor rods has bee
removed and replaced with the waveguide.

©

i
i

Calculation of projected band structures for line defects
finear waveguidesis similar to the above, except that an
additional supercell of seven or eight periods is used in the

of various kinds, as shown in Fig. 4. The possible perturbag'rec'[Ion perpen_dl_cular to the wavegmdéWavegmde
tions of the slab fall into two main categories: reduced—indeinOdeS are _suff|C|entIy localized so that the adja}c_ent
waveguides, as in Fig.(@, for which the amount of high- waveguides introduced by t_he supercell have a negligible
index material is decreased; and increased-indefﬁcect on the mode_frequenc@é’.he ba_nds_from the unper-
waveguides, as in Fig.(), for whiéh the amount of high- turbed slab are projected onto the Brillouin zone of th_e line
index material is increased. We also consider a third casa—gefeCt' and form the boundarle_s of the slab band_ continuum.
shown in Fig. 4c), in which a column of rods is removed o_th the slap bands and the light cone are depicted .W'th a
and replaced by a conventional dielectric “strip” waveguide. uqurm shad_lng in the prqjected banq structure, despite the
In all cases, we refer to the direction along the waveguide a arying _den5|ty of states in these regions. Only modes that
X, the perpendicular in-plane direction ysand the vertical aII_ OUtSf'de bo'_ch the light cone _and the slab _bands are truly
direction (out of plane asz guided in the line defect, decaying exponentially away from

The remainder of the paper begins with a discussion C;Ihe Wavegu_lde. When the guided bands cross into the con-
inuum regions, they become resonances that extend infi-
detailed analyses of reduced-index, increased-index, a;@'/tely away from_ the waveqguide, albeit with l.OW qmplitude.
strip waveguides in photonic-crystal slabs. We then sho e do not consider such resonance modes in this paper.
that waveguides along nearest-neighbor directions are the
most feasible. Finally, by estimating a lower bound on the
fraction of the electric-field energy in the dielectric, we argue  Photonic-crystal waveguides formed by removing high-
that it is not possible for photonic-crystal slabs to guideindex material*® effectively reducing the index of the

the computational methods that we employed, followed b .

IIl. REDUCED-INDEX WAVEGUIDES
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are projected onto thelf-X wave-vector component, result-
ing in the continuous shaded regions of Fig. 5. This band

O O O . O (:} O diagram continues symmetrically beyond so all of the

bands must have zero group velodiglope at X in order to
T be analytic functions of the wave vector. This condition of
O O O . O O O the zero slope at the Brillouin-zone edge also applies to all of

the other waveguide dispersion relations that we consider in
O O O . O O O this paper(The zero slope is not apparent in Fig. 5 because
the bands were only computed at a few points.

These discrete bands, all of od@M-like) symmetry, de-
(b) same mode, vertical cross-section cay exponentially away from the defect because they fall in
neither the light condvertically radiating modéesnor the
continuum of odd slab bandws/hich propagate freely within
the slab, and so cannot couple with those extended modes.
This strong confinement is illustrated in Fig. 6, which depicts
horizontal and vertical cross sections of the electric-field
component aX for the radius 0.14 line defect. We call this
an s mode because the field distribution around a rod re-
sembles ars electron state, in contrast to other waveguide
modes in subsequent sections.

By the time the defect radius decreases to 8.0&rsus
| 0.2( in the bulk, the guided mode has entirely disappeared
| | into the light cone. This stands in stark contrast to a two-
dimensional lattice of rods, in which a line defect with the
) ; rods entirely removed still supports a guided mdé#é This
, i F P difference is due solely to the slab’s constraint of vertical
Pt ' index confinement—that is, the guided bands must lie out-
side the light cone. The two-dimensional dispersion relation
of the removed-rod waveguide disappears into the upper gap
i _ ik edge at a wave vector of roughly 0.4tPa,* so it is not

(a) 5 guided mode at Xforr= 0.14a rods

Y=

¥ — surprising that it falls into the light cone of the slab in this

case. Even more generally, however, we do not expect a

_- - AN photonic-crystal slab waveguide to support guided modes
-1 E, +1 that exist primarily in air—a large fraction of the electric

field must lie within the dielectric. The basic reason for this
is that the vertical confinement of the mode entails an “en-

guided mode aiX(0.370%¢/a), showing thez component of the ergy cost,” and ha"i_”g much of the field within the dielecf[ric
electric field. The contours of the dielectric function are shown in'S the only way t_o brlr?g the mode t_)aCk down below the light
black. (8) Horizontal (xy) cross section in the plane bisecting the ONe- We quantify this argument in Sec. VII. In the case of

slab (z=0). (b) Vertical (y2) cross section in the plane perpendicu- the Fig. 5 waveguides, the fraction of the electric-field en-
lar to the waveguide and bisecting a row of rods. ergy inside the high dielectric & ranges from 55% for

radius 0.1@ to 68% for radius 0.18. (Nevertheless, the

waveguide compared to its surroundings, are dramatienode is still within the reduced-index region and is not index
demonstrations of the photonic band gap, as they have nguided in the plang.
analogues in conventional index guiding. Such waveguides A reduced-index waveguide in the hole slab is formed by
are also possible in photonic-crystal slabs, such as in Figncreasing the radius of a line of nearest-neighbor holes. The
4(a) where we have reduced the radius of a line of rods oresulting band diagrams for various radii are shown in Fig. 7.
increased the radius of a line of holes. The effective index idlere, only modes with evefTE-like) symmetry are de-
lower in the waveguide than in the surrounding slab, so thapicted, since that is the symmetry of the bands exhibiting a
modes can only be constrained horizontally by the band gaap. As with the rods, there is only a narrow range of radii
On the other hand, the index is higher in the waveguide thathat supports guided modéall of which are single mode
the regions above and below the slab, so that modes can #dthough the radius 0.40band is guided, it is barely in the
guided vertically by index confinement. In this section, weband gap, which begins at the maximum frequency of the
will first consider the reduced-radius rod-slab waveguide andower slab bands. The projected band structure for line de-
then the increased-radius hole-slab waveguide. fects retains a wave-vector quantum number, and this means

The dispersion relations for various reduced-radii rod-slalihat the range of frequencies available for guided modes may
waveguides are shown in Fig. 5. There is only one guidedbe greater than the range of the band gap, as is the case here
band for each radius, so the waveguide is single mode. That the K’ point. Since this quantum number disappears at
line defect is periodic along its axis, and so the dispersiobends and other places that break translational symmetry,
relation is plotted on th&'-X reduced Brillouin zone of this however, it is important to consider only guided modes
lattice. The light cone and the bulk slab bands from Fig. 2within the true band gap.

FIG. 6. (Color) Field cross sections for the rod-radius (al4



8216 JOHNSON, VILLENEUVE, FAN, AND JOANNOPOULOS PRB 62

0.36 ~ e because the mode is TE-like. Since the electric field loops
around the magnetic field like fields around a current, it is
r=0.48a concentrated in the dielectric just as it was for the rods—the
fraction of the electric-field energy inside the high dielectric
at K’ ranges from 63% for radius 0.480 86% for radius
0.4(a. The critical parameter in this case is the thickness of
b1 = 0.45a the narrow veins between the holes. It is only as that thick-
ness approaches zero that the guided modes rise up far into
the gap, while for small changes in defect hole radius there
are no modes at all in the gap. In contrast, when the rod-slab
radius is decreased, the electric field is forced directly into
the air and the frequency quickly increases even for small
perturbations.
There are many other ways to create reduced-index
waveguides. For example, one could remove a row of rods
(«D wavevector k (2n/a) X9 and then shift the lattices towards one another on either side
) ) of the waveguide. This might, however, be inconvenient for
FIG. _7. Prolecte_d band structure for the reduced-index hOIe'Slagpplications in high-density integrated optical devices, since
g::gg‘::ﬁevgrrfoﬂszgfe@’hzreo‘;‘gggo;:‘e;‘:;'srl:i':;r%it&’f’a‘g?uesdof lattice dislocations from different components may conflict.
0.30) P When a row of rods is rem_oved, one can run into addlyonal
e problems due to the electric field being concentrated in the
adjacent rows of remaining rods. This leads to near degen-
eracies between states that are even and odd with respect to
they=0 mirror plane, creating a multi-mode waveguide. Yet
another way to create a reduced-index waveguide is to actu-
ally decrease the dielectric constant within a linéane-
dimensionally periodicregion, without necessarily changing
the geometric structure.

frequency (c/a)

r=0.40a

0244
03 0.35 0.4 0.45 05

The nearest-neighbor direction corresponds to fh&
direction in the slab Brillouin zone, bl is not the edge of
the line-defect Brillouin zone. Figure 8 depicts how the re-
ciprocal lattice of the slab is projected to form the reciprocal
lattice of the line defect. The boundary of the projected Bril-
louin zone lies halfway betweeh andm’ (projected from
m)—this is the pointK’, projected fromM (which lies half-
way betweerl’ andm). Use of the correct projection is im-

portant for the computation of the light cone and the slab IV. INCREASED-INDEX WAVEGUIDES
bands continuum for Fig. 7.
As before, the waveguide bandsdike and strongly lo- A waveguide can also be created by a line defect in which

calized both vertically and horizontally, as shown in Fig. 9.high-dielectric material is added, leading to an increased ef-
In this case, we depict thecomponent of the magnetic field fective index. As shown in Fig.(#), we examine two types
of increased-index waveguides: first, a rod slab with a line of
increased-radius rods; and second, a hole slab with a line of
®----- () decreased-radius holes. In general, increased-index defects
' can introduce two sorts of guided modes. First, there are
modes that lie below both the light cone and the slab band
continuum—these modes are conventionally index-guided
horizontally as well as vertically. They do not satisfy our
third waveguide criterion, however: they do not lie in the
band gap, being below the lowest slab bands. Thus, we do
not consider such guided bands here. The second type of
® guided mode, which we shall study, is a state that is pulled
down into the gap from the upper slab bands. Such a mode is
confined horizontally purely by the band gap and index-
confined vertically, just like the reduced-index waveguides
in the previous section. Because these increased-index
modes derive from the upper slab bands, which have a higher
density of states and often come in degenerate [faiirsym-
' metry pointg, there is a greater tendency here towards multi-
®---- PY mode waveguides. As we shall see, however, the single-
mode criterion can be satisfied if the effective index is not
increased too greatly.

FIG. 8. Diagram of how the reciprocal lattice is projected onto  Increasing the radii of a line of nearest-neighbor rods re-
I'-K (vertical dashed linefor a nearest-neighbor line defect in the sults in the band diagram of Fig. 10, showing the odd bands
hole slab. The black dots are the reciprocal lattice points, the outfor rod radii of 0.2%. This rod radius gives rise to a pair of
lined hexagon is the first Brillouin zone, and the gray trianglenondegenerate guided modes, labeggdand py, but be-
within it is the reduced Brillouin zon&K' is the boundary of the cause these modes do not overlap in frequency the wave-
first Brillouin zone in the projected lattice. guide remains single modé&\ote that here, one can identify
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FIG. 11. (Color) Horizontal =0) E, field cross sections for
_ - the rod-radius 0.25 guided modes aiX. (a) p, guided mode
-1 ¥ 1 (0.388%/a). (b) p, guided mode (0.42@3a).
£

FIG. 9. (Color) Field cross sections for the hole-radius @45

guided mode aK’(0.302@&/a), showing thez component of the  Fig. 12. In this case, the, and p, states crosgwhich is
magnetic field. The contours of the dielectric function are shown inpossible because they have different symmetry with respect
black. (a) Horizontal (xy) cross section in the plane bisecting the tg the y=0 mirror plan@, meaning that they are not single
slab (z=0). (b) Vertical (y2) cross section in the plane perpendicu- mode over their whole guided range. The states Iabpi@d
lar to the waveguide and bisecting a defect hole. 2) o . .

andpy™ have similar horizontal cross sectionsgpandp,,

but are second-order excitations in their vertical cross section

modes with the same wave vector but opposite group velocil-€- theirl e!ectri(? fields have tyvo verti.call nogleShe state
ties) Figure 11 shows cross sections of the electric field for@beleds{}) is a first-order vertical excitation of the lowest
the two states at defect radius 0a25As can be seen in Fig. TE-like band(i.e., a single vertical node in the magnetic
11, the field around a rod is similar to melectron state, field), which is s like in its H, cross section(The lowest
oriented in thex andy directions for thep, and p, states, ~TE-like band is of even symmetry, but adding a vertical node
respectively. transforms it to odd symmetry and allows it to be guided by

When the defect rod radius is increased to 027ree  the gap Thep{?, p{?), ands{}" states have no analogues in
additional states are pulled down into the gap, as shown ifwo dimensions.

Figure 13 shows the dispersion relation of even modes for
the decreased-radius hole waveguides with radii of 0,8.15
and 0.2%. The waveguides are single mode at each fre-
quency, and there agg andp, modes for each radius as for
the rod slabs. In addition, the radius 0 and @ X®veguides
support a higher-ordet,, mode. All three modes for radius
0.1% are depicted in Fig. 14.

In both the rod and the hole slabs, increasing the amount
of dielectric brings more and more states into the gap, which
makes it harder to achieve single-mode waveguides. One can
ameliorate that situation by removing a row of holes and
then shifting the lattices on either side of the waveguide to-
wards one anothdreducing the effective index in the wave-
guide. Such a waveguide was considered for the hole struc-
ture in two dimensions by Ref. 3, and similar geometries
should be feasible in photonic-crystal slabs.

frequency (c/a)

0.3 0.35 0.4 0.45 05
(«D wavevector k (2n/a) X

] ) ) V. STRIP WAVEGUIDES IN PHOTONIC-CRYSTAL
FIG. 10. Projected band structure for the increased-index rod- SLABS

slab waveguide from Fig.(8), showing thgodd-symmetry guided
bands for defect rod radius 0 2%compared to the bulk radius of In this section, we study another possible photonic-crystal
0.208). slab waveguide, formed by replacing a row of rods in the
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0.3 0.35 0.4 0.45 0.5
03 0.35 0.4 0.45 05 (D wavevector k (2r/a) (K
(«T) wavevector k (2n/a) X) FIG. 13. Projected band structure for the increased-index hole-

slab waveguide from Fig. (8), showing the (even-symmetry
FIG. 12. Projected band structure for the increased-index r0dguided bands for defect hole radii 0, Oal5and 0.2% (compared to
slab waveguide from Fig.(8), showing thglodd-symmetryguided  the bulk radius of 0.38). For each radius, there are two or three
bands for defect rod radius 0.245 guided bandsp, (solid line), p, (dashed ling andd,, (dotted line,
triangles. Guided bands for a defect hole radius of 0, in which a

slab of Fig. 1a) with a conventional dielectric strip wave- oW of holes is entirely removed, are shown in bold.

guide of the same thickness as the slab, as shown in Fig.
4(c). As before, there is a low-index substrate with the saméion, though, the slope drops towards zero only as the wave
cross section as the slab and waveguide both above and b¢ector comes within 1% oK. The greater the periodic per-
low this structure. turbation, the greater the splitting and the larger the region of
In Fig. 15 we show the odd-symmetry band diagram forlow group velocity, leading eventually to the highly nonlin-
such a waveguide with a width of 0.251In this case, the €ar dispersions of the previous sections.
frequency axis extends down below the slab band continuum Despite the similarity in frequency with the modes of an
so that both the index-guided modekshed lines, below the isolated strip, the waveguide here has a significant
slab bandsand the gap-guided modésolid lineg are vis-  advantage—it supportsingle-modg bands in the photonic
ible. The two gap-guided modesXtare shown in Fig. 16— band gap, which will inhibit losses in the cases of sharp
they differ by a 90° phase shift—and the horizontal crossP€nds and cavity interactions. The index-guided lower
sections of the index-guided modes are nearly identical ténodes in this structure, on the other hand, have no advantage
those of the gap-guided modes. The vertical cross sections @ver a conventional waveguide. These modes might other-
the gap- and index-guided modes differ sharply, however, awise be preferred since they are the fundamental modes of
shown in Fig. 17—the index-guided mode is the fundamentalhe waveguide; if this is an important consideration, they can
mode and the gap-guided mode is a second-order excitatioRe Pushed up into the band gap by reducing the waveguide
In the absence of the rod slab, both of the modes showWidth to 0.1G (at the expense of increased height-to-width
would lie below the light cone and be purely index-guided.aspect ratin
Furthermore, since the strip has translational symmetry, the

Brillouin zone that we apply in Fig. 15 would be artificial— VI. WAVEGUIDES IN OTHER DIRECTIONS
the guided bands would simply fold back and forth at the '
zone boundaries and be degenerat. &ecause this folding In the preceding sections, we have only considered

is synthetic, the guided modes do not couple with the lighwaveguides in the nearest-neighbor directions of the slabs.
cone even when they fold on top of it. Adding the rod slab toAnother possibility might be waveguides in the other sym-
this system has three effects: first, the frequencies of the strimetry directions(i.e., along next-nearest neighbpras this

are perturbed; second, the degeneracy & broken by the is known to give rise to guided modes in two dimensibns.
true periodicity of the system; and third, an upper cutoff forBecause of the presence of the light cone, however, such
the guided modes is introduced by the light cdeimce the waveguides are not possible in the photonic-crystal slab
band folding is no longer artificial (Also, if it were not for  structures of Fig. 1.

the band gap of the rods, the gap-guided modes would only The problem is that, for the next-nearest-neighbor direc-
be resonances—they would couple with the slab and leakons, the edge of the projected Brillouin zone comes at too
slowly away) Because the guided modes are strongly localsmall a wave vector, and the resultant folding of the light
ized around the dielectric strip, however, the effect of thecone eliminates the band gap. For example, the next-nearest-
rods is small. The bands shown in Fig. 15 have an rootneighbor direction in the hole slab corresponds to e
mean-square deviation of less than 1% from the bands of adirection. When the reciprocal lattice is projected ohtd/,
isolated strip, and the splitting a¢ is also less than 1%. however, one of the reciprocal lattice poifitsin Fig. 8) falls
Because of the true periodicity of the system, the folded bandnto M. Therefore, the Brillouin-zone edge is Bt/2, at
structure must be analytic and the bands thus have zemghich point the light-cone frequency is only 0.228 Since
group velocity atX—due to the weakness of the perturba- this upper cutoff for guided modes is lower than the gap
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FIG. 14. (Color) Horizontal (z=0)H, field cross sections for
the hole-radius 0.15% guided modes aK’. (a) p, guided mode
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FIG. 16. (Color) Horizontal (z=0)E, field cross sections for the
0.2% strip-waveguide gap-guided modes Xt (a) Lower gap-
guided mode (0.362%a).

(0.362%/a).

(b) Upper gap-guided mode

bottom, there is no band gap and photonic-crystal
waveguides are not possible. Similarly, in the rod slab
(square lattice the Brillouin-zone boundary for the next-
nearest-neighbor direction is alsoM{2, corresponding to a
light-cone frequency of 0.382%a— again below the gap bot-

tom.

If the rod slab were suspended in &ie., no substraje

(a) upper bands
(gap-guided)

X —

FIG. 15. Projected band structure for the strip waveguide in a

rod slab, from Fig. &), showing thelodd-symmetry guided bands

for waveguide width 0.2&5. There are two pairs of guided bands: cell,

gap-guidedsolid lineg and index-guideddashed lines The gap-

bands are split aX into a 0.8% gap.

(b) lower bands
(index-guided)

{waveguide op) r

{wavaguids botom)

¥ —

FIG. 17. (Color) Vertical (y=0)E, field cross sections of a unit

(0.2632/a).

parallel to and bisecting the waveguide, for the strip-
waveguide gap-guided and index-guided modesKata) Upper
guided bands are split Ztinto a 0.07% gap, while the index-guided gap-guided mode (0.3621).

(b) Lower index-guided mode
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the light cone atM/2 would be at a frequency of 0.364, fact that the light cone must lie beneath the light cone of
while the band-gap bottom rises to only 0.388%, leavinga  vacuumy k2>ET is the mean-square wave vector of the trans-
slight (4%) band gap. So, in general, next-nearest-neighboyerse field, which is inversely related to the mode’s spatial
waveguides in photonic-crystal slabs are not impossible, bugonfinement. We will denote the transverse fraction of the
the available band gap is greatly reduced from the nearest|(d, (E1|ET)/(E|E), by f1. If we have a two-component

neighbor case. system(dielectrice and aiy, Eq. (3) leads to the following
rigorous lower bound on the fraction of energy in the dielec-
VII. ESTIMATING THE FIELD ENERGY tric:

IN THE DIELECTRIC ) ,
1- K2/ (F1(kD)e.)

In Sec. Ill, we suggested that much of the field energy f gie™ (4)
must lie within the dielectric material, not in the air, in order 1-1s

for a waveguide mode to fall underneath the light cone andrhe more localized the field is, the greater becomes the
be guided. In this section, we justify that claim; moreover,mean-square wave vector and the greater the minirfyum

we find an analytic relationship between a mode’s localiza- |y order to evaluate equatiqd) further, we need to esti-
explaining why some waveguide modes from two-yavevector. We treat the wave vector by breaking it into its

dimensional systems cannot exist in a slab. First, we derive gartesian components and examining each component sepa-

rigorous lower bound on the fraction of the electric field yately (dropping theE; subscripk:

energy inside the dielectric, in terms of the spatial extent of

the mode and the degree to which it is transverse. Then, we (k2= (KZ)+(k2) +(KZ). (5

approximate the transversality and spatial confinement of the,. o o

mpopde to compute a numeric);I valug for this lower bound,%Ince the _f'eld IS .Of the Bloch forr(for_a system perlod|c n

and compare with the results of our exact calculations. ) @ndKe is restricted to the first Brillouin zone, it can be
The frequency of a guided mode can be expressed as &HOWN that(ki) is bounded below bkg. Furthermore, we

. . 2 . .
expectation value of the Maxwell operator for the electricWill simply drop the(ky) term, which corresponds to hori-

field, evaluated over the unit cell: zontal confinement of the waveguide mode—we consider the
best case for creating a guided mode, when it is very weakly
, (E[VXVXIE) @ confined in the planée.g., near the gap edge
W=,
(EleIE) () =kE-+ (D). ©

where we takec to be unity. Now, we suppose that the di- . ) L .
electric function is piecewise constant, and write the fig)d Up to this point, we have maintained a strict lower bound

as a sum of field$E);, such thaiE); equals|E) where the on fdi_e|. l_\low, however, we will make two apprgximations. _
dielectric iss; and is zero elsewhere. Then, we can rewrite] N€ firstis based upon the observed mode profile, such as in

equation(1) as Figs. 6 and 9. We are only interested in modes that are lo-
calized inz, so we assume that the vertical mode profile is a
o (E[VXVX|E) & 1( (E[&i|E); Gaussian with a standard deviation less than the héigtit
YT (EE) 4 ;(W) the slab, and thus
1
(E|VXVX|E) i st .
=T (EEy “~ .- 2 H= 5.

. . - .. Second, in the case of the rod slab, we will assde& be
Here, f; is the fraction of the electric field energy that is in nearly unity—that is, neglect the longitudinal component of

the dielectrice;, and must sum to unity. In order t0 be ¢ fig|q. We justify this assumption by noting that the fields
guided, the frequency in EG2) must be less than the light ¢ the rod modes are very similar to those of the two-

cone frequencywc at that point in the Brillouin zone. We  jimensional structur in which the TM electric field is

will write the electric field in a Fourier basis, in which case divergenceless. The only longitudinal component comes
the curl operations become simply the total Fourier wavgrom the small regions near the rod ends where the electric
vectork squared. Because the electric field is not divergencefig|q has a component normal to the dielectric surfdEer
less, however, the curl also projects out the longitudinal ﬁeldexample the rod-slab defect-radius Gilfode is 86%
component|E, ), leaving only the transverse componenttransvers’e aK.)

|E7). (|E7) is divergenceless but not curl-free, vyhi[é,_) is Finally, combining Eqs.(4), (6), and (7), we have the
curl-free but not divergencelestE, ) is the static electric  f5j1owing approximate lower bound on the fraction of elec-
field of the bound chargesln this case, the combination of tromagnetic energy in the dielectrifor TM-like fields):

Eq. (2) with the guiding constraint become:

fAi tm-like _ 1
e I T fed = ke A=t ©

In the case of the rod slab at thepoint, this lower bound
Here, kg is the Bloch wave vector in the Brillouin zone of evaluates to 0.545, which is very close to the minimum of
the line defect, and the second relation is derived from th&5% that we observed for the smallest defect rod supporting
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guided modegradius 0.1@). If we instead takd ; to be the VIIl. CONCLUDING REMARKS
observed value of 0.86, then the minimuig, becomes
0.457. Photonic-crystal slabs, with their hybrid approach of in-

In contrast, let us consider the purely two-dimensionalplane band gap combined with vertical index-confinement,
system of rods. Here, there is no light cone, so the upperpromise a viable route to achieving photonic-crystal wave-
bound on the frequency is a constanty (the top of the  guide effects in real systems. We have shown how single-
gap instead ofkg. Also, there is no vertical confinement mode, in-gap waveguides can be achieved in a variety of
and the TM electric field is fully transverse. Thus, B4}  \ays with photonic crystal slabs. At the same time, the finite
becomes the following strict bound: height of the slabs and restriction of index confinement have

2 2 2 given rise to fundamentally new concerns compared to two-

1_wma>!(kB+<k )) ; ; i
fggl> 7 (9) dimensional systems. For example, slab waveguides do not
1-1/e support modes guided in air or along next-nearest-neighbor

Therefore, for small Bloch wave vectoks (or for large directions, unlike in twp dimensions. Th_us, ph_otonic—crystgl
wmay IN two dimensions, it is possible to both confine in the slab V\_/avegwdes require a full three-dlmensmnal analysis,
y direction and also have a low fraction of the field in the for which the formalism of the projected band structure pro-
dielectric. This corresponds precisely to what is observed ifides @ powerful visual and analytical tool.

Ref. 1, in which guiding in air is demonstrated, but not near

the edge of the Brillouin zondlarge kg). (Similarly, it

should be possible to guide primarily in air using three- ACKNOWLEDGMENTS

dimensional crystals with a complete band gap.
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