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Generation of a difference harmonic in a biased superlattice
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We calculate the difference-harmonic susceptibility of a superlattice subject to uniform electric field, where
generation of the difference harmonic is caused by interband transitions between hole and electron states. Both
the electron and hole states are considered in the framework of the Kane model with parabolic dispersion laws.
The hole states are uncoupled while for the electron states we use the tight-binding approximation. We obtain
numerical results for spectral dependencies of the susceptibility under the double-resonant generation condi-
tions, and discuss the efficiency of the double-frequency transformation of near-IR pump signal into THz
radiation and modifications of the obtained nonlinear response with variation of the electric-field magnitude.

I. INTRODUCTION states of bulk GaAs¢Ref. 8 and the quantized electron states
in heterostructures.

The second-order responses of various nonsymmetric Note that the system under consideration is of interest as a
semiconductor structures to high-frequency electro-magneti€Hz emitter among other cases that are actively investigated
field have been intensively studied over the past decade. Theow: different modifications of quantum cascade ldSer,
second-harmonic generation has been achieved by emplogransient oscillations under ultrafast optical puthp? and
ing interband transitions of near-surface electrons and intefar-infrared emission from electrically driven BSE There-
subband transitions of electrons in nonsymmetric heterofore, we also add a brief electrodynamical discussion to the
Structures(see Refs. 1 and 2, respectivb|ﬁecent|y, new e'fﬁCiency of transformation of the near-IR pump into THz
mechanisms of the difference-harmonic generation havé&ignal. ) )
come into existence, such as intersubband transitions of elec- | N€ paper is organized as follows. In Sec. Il we transform
trons in tunnel-coupled heterostructur@mth experimental the general expression of the third-order susceptibility ten-

data and theoretical consideratidishave been published SO using the tight-binding electron states and the uncoupled
and electron transitions in quantized metallic filfriso the hole states for the BSL under consideration. The numerical

esults for the susceptibility versus the photon energies,

best of our knowledge, the difference-harmonic generatio M ! .
due to interband transitions in nonsymmetric heterostructur%‘é’é al?ld \-f-?,resujstsjsiligﬁtr:)cf_f;ﬁf ;n;%r:ggggnirigézszwgﬂr:g

has not yet been considered. In the present paper, we exam-
ine this possibility for an undoped superlattice subject to —_
uniform electric field (biased superlattice, B3LWe also

discuss numerical results for the efficiency of the process
under consideration. -1-

The scheme of two-frequency excitation of a BSL with ! | q=0 Aq=1
the photon energie w; and i w, is shown in Fig. 1. We Ag=-1
have performed the calculation of the different-harmonic |
susceptibility in BSL for the case of weakly coupled SL,
where the tight-binding approximation is valid for the low-
energy electron states, while the hole states are assumed to
be uncoupled. Based on the Kane model with parabolic dis- 00
persion law$:” we have calculated the interband transitions
and analyze the spectral dependencies of susceptibility under
the double-resonant conditions.

Both spectral and bias-voltage dependencies of the sus-
ceptibility occur to be sharp nonmonotonic functions of the
difference between the energy of the pumping photons and
the level-splitting energythe last factor is determined by fe=- =1
both the bias voltage and the value of the tunnel-coupling =()
matrix element The absolute magnitude of the susceptibil- k=1
ity, which describes different-harmonic generation for typi-
cal parameters of GaAs/Aba _,As-based SL, is on several
orders of magnitude greater than the magnitude of the FIG. 1. The energy diagram of a biased superlattice being
second-order response for both the near-surface electrqgumped by two beams with the photon enerdies, and# ..

hcol
hwz
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comparison with the other methods of THz generation areSince the problem is translation invariant for any in-plane

given in the concluding section. direction, all the velocity matrix elements in E@®) are di-
agonal over two-dimensiond2D) momentum,p. The last
Il. INTERBAND SUSCEPTIBILITY multiplier in Eq. (3) depends on the momentum only in the

case of parabolic dispersion law. For the near-edge interband

The general expression for the nonlinear susceptibilitytransitions, which are only essential in E8), bothcv and
tensor of the third ordery,g,, Which describes the genera- cc matrix elements are diagonal with respect to the spin
tion of the difference harmonic, is written here on the basisyumbers. Thus, the summation in E8) includes the inte-
of the eigenstates problehiv)=¢,|v), whereh is the Kane  gration overp and the summation over the spin numbers,
Hamiltonian for SL(see Refs. 2 and)7|v) ande, are the o==1. The electron motion and the hole motion along the
eigenstate vector and the energy in SL under a uniform elegrowth axis are characterized by the discrete quantum num-
tric field, respectively. For the undoped structure, we takebersk andq, respectively(see below.

into account only the transitions between occupiedand The envelope function for the uncoupled hole states is
states|v,), and emptyc-band states,v.). Consideration of  written aseV,, (cf. the discussion of assumptions in Sec.
the second-order response on perturbatio® df, ) E, », V), wheree!” is the orbital of the hole ground state in the

whereE; , are the strengths of electric field of the first and quantum well centered at=0, K is the number of quantum

the second beams andis velocity operator, gives us the Well, andlis the period of SL. The energy of théh level is
susceptibility, y o g,( 1 ,,), in the form el)=—e4—ke;, s1=|e|F.| being the level-splitting en-
ergy under the transverse electric-field magnitkdeande g
being the interband gap, which includes the electron and hole
0 ,.p5(ve,v, V) confinement effects. Taking into account the in-plane kinetic
energy of the holes, we obtain the hole dispersion law in Eq.
(3) in the form e{y)=e("”)—p?(2my). Here,m, is the in-
plane hole mass. This mass is essentially smaller than the
bulk heavy-hole mass, due to the heavy-hole-light—hole mix-
ing effect.
Thec-band envelope function is written as a superposition
PI=3, VPl Here, ¢! is the orbital of the electron
1) ground state in the quantum well centeredzatO andr
=0,£1,=2,... because the BSL under consideration is
Here, Aw=w,— w, is the difference frequencj,vu|z3a| ve) supposed to be infinite in both directions. The column vector

is the velocity matrix elementy, 8, y are the Cartesian W% is determined by the eigenstates probléff-w (@
coordinate indexes, arld® is the normalization volume. Be- =8((f)\1’(“), where the matrix Hamiltonian of the BSL is
sides the summations over the stateg and|v,), Eq.(1)  written as

contains the intermediate summation owemwhich includes

ile® »

Xap@1,02)=
oy Awwiw,l3 voryy

<Vu|{)y|Vc>

evv—syc+ﬁw2—i)\

<VC|I;B|VU>
,,C—s,,v—ﬁwl—i)\

_®a7(VUVVC1V)8

all the states. Thé w-dependent facto® .z, has the form P =T(81 s 1= v 1)+ S e, (4)

P T is the tunnel matrix element for weakly coupleeband
r o (v al ") (V" v glv") states in adjacent quantum wells. The resulting wave func-
O, s(v,v' V")
“p ep—e,~hAw—i\ tion takes the form
(v[v gl v ) (v |0l v") 2T
_ @ (c) — N N (%)

81;!_{-I,,H_ﬁAw_i)\7 (2) ¢qz NqEr qur 8f (Pz—rI' (5)

where the transition broadeningis a phenomenological pa- WhereJ;(2) is therth-order Bessel function and,= iliig
rameter that is supposed to be independent of the quantufieé normalization of the wave function[N,
numbers, i.e., the broadening is the same for all the transi=2§°=,wJ§,r(2T/8f)=1]. The corresponding energy is

tions. Restricting the sum in E@1) to the resonant contri- ge¢, g=0,£1,=2, ..., sothat the electron dispersion law is
butions only, we transform this equation into as sgcp)zqsfnL p2/(2m,), wherem, is the c-band effective
mass.
ile]® The interband matrix elements of velocity in E®) are

Xap@1,02)= expressed through the overlap fadtpg= fdze{”, 4% , ac-

— qz »
Aww 0yl cording to Ref. 2,

% 2 <V(’:|l,;alyc><vc|l,;,3|VU><VU|{))/|V(,:> P P
svc—své—ﬁAw—i)\ <k0'|lA)x|qU>:E|k,qa <k0'|{)y|q0'>:0'ﬁ|k,q' (6)

VUVCV(,:

— _ —ix) 1! . .
X{(ey, ey, ~hwr—iN) where P is the Kane velocity, and the component of the

interband velocity is zero. Neglecting the weak tunneling for

- = - i 71 .
(SVC &, hwpin) 7 ®) the hole and electron ground states, we obtain the overlap
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factor in the forml, (=NgJq-«(2T/e¢). Using the wave wherep,p= ul/(7h?) is the reduced 2D density of states and
function of Eq(5), we transform the intraband matrix ele- 58:8g_ﬁ(wl+ wz)/z is the detuning energy. The mu|tipa-

ment in Eq.(3) as follows: rameter functiorF(de,AAw) is given as
. &yl - 2T 2T 3 (ZT) 2T
’ ~i—"N., R — F(de,hAw)= Jol — g Agl —
(q'|vla)=i 7 Ng qu;x kdgr - <8f)qu( e ( ) % al g ) Aq Py
iTl Ss+qei—hAwl2)2+\?
:i_Nq’ngq,q’il' (7) % |n\/ ( e T (&g w )
h (Se+[q—Aqle;+hAw/2)2+\2

The right-hand side of this equality has been obtained upon _
the sum transformation based on the identity +1
S o dk(X) I+ s(X) = 8s0. Thex andy components of the

detQei—hAw/2
arcta N

interband velocity are proportional #4. Thus, under the Se+[q—Aqles+hAw/2
resonance approximation, these contributions drop out of the + arCtaVE X ) .
sum in Eq.(3). Using the matrix elements of Eq7), we

rewrite the nonzero components of the susceptibility tensor (11)

= Xy @S L . .
Xapy™ Xevp The contribution withA q=sgn(A ) is essential only for the

double-resonance conditigthe term withAq= —sgnA »)

Xzﬁy(wlawZ):ﬂ occurs to be nonresondntNote, thatF(de,iAw) is the
Awwiw,l3 even function with respect toSe, i.e., F(— e, hAw)
. . . =F(fe,iAw).
«3 S (a'|v | a)(klvgla)y* (klv,la’)
7 Kaq ggcg—géc,)p—hAw—i)\ Ill. NUMERICAL RESULTS
X{(Sécg_a(kl;))_hwl_i)\)—l In thig ;gction, we obtain' the spectra] .dep.endencies of the
susceptibility(10) and examine the modifications gf | un-
— (&) —el)—hw,+in) 7Y, (8)  der bias voltage variations. The numerical results have been

obtained for GaAs/ A} Ga ;As SL with the following char-
where 8 and y are the in-plane indexes. The system underacteristics: the quantum welQW) layer width is 5 nm and
consideration is in-plane isotropic, so thgj.,=x,,x=0  the barrier layer width is 4 nm. We also have used the inter-
[upon substitution of the matrix elemer(® in Eq. (8), we  band gape, that includes confinement effects in the hard
obtainX ,0=0] and x,x,= x,yy= X1 - Substituting the ma- wall QW approximation ange=0.04n,, wherem, is the

trix elements of Eqs(6) and (7) in Eq. (8) and performing  free electron mass. The in-plane hole mass-=0.09m, have
the summation ovek (which gives us the normalization peen taken from Ref. 14.

length along SL, according t,/ =L), we obtain The absolute value of the susceptibility, ||, its real part
Rex, |, and its imaginary part I, |, are shown in Fig. 2,
X1 |(w1,02) as functions ofée andAAw. We put the broadening value
322 NA=1 meV and the splitting energy; =10 meV, which cor-
_ lel*P T f dp responds to the transverse electric field magnitude of
hAwwiw, (27h)? 11.1 kV/cm. The obtained spectra are symmetric with re-
spect tode; the results are plotted fa¥e >0 andZA w>0,
y AQIq- k(2T &) Ig-k-aq(2T/e4) because we assumg > w,. Since the divergence of | at
Ad=x1K—q Agei—hAw—iA Aw—0 is inessentiat,we have obtained the spectral depen-
dencies, starting with the difference photon energy 2.5 meV.
X{ (e aqpp— ey —fiwp+in) ! The spectral dependencies of both Fige)2and Fig. 2b)

show the resonant maximum &tAw=¢;, under zero-
detuning energy conditiode=0. The increase ok sup-
presses this maximum, as shown in Fig. 3, where the peak
value of y,| appears to be three times smaller, for
=2.5 meV. However, the second-order nonlinearity for the
system under consideration is substantially greater than both
/ ; difference-harmonic and second-harmonic susceptibilities
mass. The integral over the momentum plane in @gcan for bulk materials(cf. Refs. 15 and B The obtained suscep-
be prressed through the complex Ioganthr_n.. ) . tibility is also greater than the second-harmonic susceptibil-

Finally, the expression for the susceptibility tensor iy in'hiased SL(Ref. 16 while the difference-harmonic sus-
transformed into ceptibility is comparable with that for the tunnel-coupled

32 wells? in spite of the fact that the energiésv, , are sub-
(01, 0,)= |el*P*Tp2p F(ée,hdw) (10) stantially greater then those used in Ref. 3.
XL\ @1, @2 2hAwwiws (AQei—AAw—iN)’ We have considered the near-resonant regjidim=¢; in

—(Sgcg—sﬁl;))—hwl—i)\)_l}. (9)

Here,Aq is restricted by the conditiodnq= *1, due to the
selection rule in Eq(7). The denominators in E@9) contain

the reduced dispersion IangCg—s(k”p)ze_ng(q—k)sf

+p?/(2u,); w=(1/ms+1/my) ! being the reduced effective
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FIG. 2. |x,| (@), Rex| (b), and Imy | (c) versus the detuning enerdy and the difference energyA w; the splitting energy is taken
£;=10 meV, the transition broadening=1 meV.

more detail, and analyzed the dependencies of the susceptiromentum. If the splitting energy is relatively large., the
bility on the detuning energy and on the bias voltage. Noteargument of the Bessel functions in E§2) is small, the
that the imaginary part of the susceptibility equals zero at thesusceptibility is determined by the transitions between the

resonance. Making use of the resonant condition, we transubbands wittlq=0 and£1 only. In this situation the sus-
ceptibility curve has just two steps. At small splitting ener-

form the expression€l0) and(11) into
gies(i.e., large arguments of the Bessel functiprike tran-
—e|®*P?Tp,p sitions between other adjacent subbands become also
xy|(de)= C\ejwiwy essential; thus, the number of the steps increases.
, Figure 5 shows the dependencies of the absolute value of
2T 2T the susceptibility on the bias voltagehich determines the
x% JQ(Sf Jg-1 8f> splitting energy, at different pump frequencies. These
\ electric-field dependencies have maximums at the condition
oe+(q—1/2)&; fidw=¢; and weakly steplike form in the low-field range.
xarctaré N ) (120 These steps are due to the transitions between nonadjacent
subbands of the band; the contribution of such transitions is

This function is shown in Fig. 4 for different splitting ener- comparatively small.
gies; all the curves are of steplike form. These steps are due To estimate the intensity of the THz signal generated by

to interband transitions from band to several subbands®f the down-conversion process under consideration, we have
band having the same energy but different values Bf 2 calculated the THz flux along the SL plafeee the Appen-
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FIG. 3. The same as in Fig(&, for the transition broadening
A=2.5 meV. FIG. 5. The electric-field dependencies|gf || as functions of
the splitting energy;=|e|F,| at 5s=0, A=1 meV, and several

. . . . values ofi A w.
dix for detaily. The numerical results are obtained for the

500-period SL of the total thicknesk=5x10"% cm, under IV. CONCLUDING REMARKS

the pump intensity 1.7 kW/cfp which corresponds &,

~0.3 kv/cm. We assume that the two IR beams impinge on N this paper, we have obtained and analyzed the differ-
the sample at the angles 64° and 60°, so that the charactég?Ce harmonic susceptibility, |, of a based superlattice.
istic scale of the electric field localization in E¢al) is  DOth spectral and bias-voltage dependenciesy gf have
Ak-'~d. Then, the intensity of the total energy flux along been obtained, and the double-resonant enhancement; of

. . . — ~ has been demonstrated féw;+ w,)/2 close to?gj and
SL, introduced by Eqs(AS) and (A6), is estimated asS 317 ,| close tos;. The typical values of the susceptibility

=2x10 ! W/cm. Thus, the power propagating along a SLare 5 few times to an order of magnitude larger than those
strip of 0.1 cm width is equal to 20 nW. This value is 30 gptained for other mechanisms in Refs. 8, 9, 15, and 16, so
times greater than the result obtained in Ref. 3. that the efficiency of transformation of near-IR pump into
The output power increasing with the pump intensity asTHz signal appears to be noticeable.
(E1E,)?, at E; ,~3 kV/cm (which corresponds to the flux  Let us discuss the main assumptions we used in our cal-
170 kW/cnf) we obtain the THz signal power of about culations. The phenomenological description of the broaden-
0.2 mW/cm. Thus, BSL can be used for effective down-ing of intersubband and interband transitions is generally ac-
conversion of a pulse IR pump into THz radiation. cepted (see Ref. L The additional assumption of the
broadening energy being the same for all the transitions
does not substantially modify the shape of spectral depen-
I dencies and does not change the maximum valye pfind
presented numerical estimations will not change under more
precise microscopical description of the relaxation processes.
Due to significant broadening of the transitions in SL, we can
also neglect all the exciton effects. As it is stated in Ref. 17
(see also referencies thergthe exciton effects are essential
for more sensitive nonlinear effects, e.g., ultrafast four-wave
mixing. The resonant character of the interband transitions
allows us to use the parabolic dispersion laws for both the
electrons and the holes. Since the heavy-hole underbarrier
penetration is very weak, we consider the hole states as un-
coupled. It is a satisfactory approximation for the parameters
used in our numerical calculatiorigeneral consideration of
the hole states in SL is presented in Ref. For the same
reason, the effects of heavy-hole—light-hole mixing on the
tunneling are small enough and can be disregarded altogether
(see the discussion on this matter in Ref). Ihe restrictions
of the tight-binding approach for description of electron
FIG. 4. The spectral dependencies yf| as functions of the states are also well knowrand errors are small in the case
detuning energy, aAw=g¢; and several splitting energies\ ( under consideration. Thus, all above listed approximations
=1 meV). do not change either the character of spectral or electric-field

2x,110° cm/V)

0 1

0
de (meV)
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dependencies, nor the absolute values of susceptibility.  the induced polarizatioR, is expressed through the suscep-
Next, look more closely at the comparison the scheme ofibility of Eq. (10) according to the expressiorP,
THz emission suggested here and other methods discussed=y |(w,,,)E;,E,, whereE,; andE, are the electric field
literature. The complexity of the method under consideratiormagnitudes of the first and the second beams.
is the cumbersome scheme of two-frequency optical pump. The system of ordinary differential Eq$Al) is com-
At the same time this method has a high enough efficiency opleted by the continuity boundary conditions f&r, and
transformation and permits us to obtain monochromatic THZlE,/dz at z==+d/2 and with zero-field conditions at
radiation in a continuous regimes. Although the spontaneous- +«, The straightforward solution of this problem give us
THz emission under intersubband transitions has been denthe following distribution of the transverse electric field:
onstrated recentl}??° the quantum cascade laser still re-
mains to be unrealized for the THz spectral region. As for the __—AKd2 L
different methods of THz emissiom under ultrafast optical o 1 e_ COSEAkZ)’ 2l <dr2
pumpltt2some are more complicated than the method under E,=E{ sinh(Akd/2)e 2k, z>d/2 (A3)
consideration and such schemes permit us only to obtain e Kz _
ultrashort THz pulses with wide spectral characteristics. sinh(Akd/2)e”™, z<—di2,
To conclude, the obtained results convincingly demon- =
strate that the difference-harmonic response of biased supefhere the characteristic fieldl is introduced by the expres-
lattices in the situation of double resonance is a promising'o"
method of efficient THz emission due to down-conversion of

intense two-color pumping. Aw

2
E=47| —| yE;E,. A4
W(CAk) XE1E2 (A4)
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APPENDIX

E2.  (A5)

Thus, in the case of the normal interband excitatidk (
=0), there is no in-plane THz flux at all. The total energy

flux along the SL axisS=[~_dzS, is obtained from Egs.

a2 — —4m(Awlc)?P,, |z|<d/2 (A3)—~(A5) as
— —AK?|E,=
dz 0, |z|>d/2. o
(A1) 5 Sak f aze2= S0 K R, (a6
C 27Aw ZEZ_WAwﬁ ( ), (A6)

We consider only the case of localized mode in the dielectric
waveguide formed by the BSlAk?*=Ak?— e(Aw/c)?>0].

The in-plane wave vectakk is determined as where the dimensionless functiofr(y)=y—3/4+(y/2

+3/4)e*y2. Note, that the dimensionality o is W/cm,
Ak=Kky sin 03—k, sin,= \eeq/(ic)(sin 61— sin 6,); while the Poynting vectors of the pumping bearSs,
(A2)  =c\eEZJ(2m) are measured in W/ch
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