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Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors
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We investigate the current injection into a ballistic conductor under the space-charge limited regime, when
the distribution function of injected carriers is an arbitrary function of endfgle). The analysis of the
coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially sup-
pressed by Coulomb correlations, and the suppression level is determined by the skafe) o his is in
contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive
to F¢(¢) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved
shot-noise suppression has been found for an arbitrey-Poissonianinjection, which may suggest a new
field of investigation on the optimization of the injection energy profile to achieve the desired noise-
suppression level.

[. INTRODUCTION in a local equilibrium and the electron density injected into a
ballistic conductor is low, the electron gas is nondegenerate
Randomness in the transmission of discrete charge carrand described by the Maxwell-Boltzmann distribution func-
ers in mesoscopic conductors leads to the fluctuations of thigon. In this case, the injected electrons are statistically inde-
electric current called shot noi$é. Recently, shot-noise pendent obeying the Poissonian statistics. The self-consistent
measurements are emerging as an important tool to prolieeory of shot-noise suppression due to Coulomb interactions
carrier interactions in mesoscopic systehss interactions  for this type of ballistic injection has been recently
between electrons can regulate their motion, this effect mayeveloped. However, in nanoscale devices the injected car-
be detected in the shot-noise reduction, but cannot be deiers may be degenerate, or income from an emitter with an
duced from time-averaged dc measurements. Usually, thextremely nonequilibrium distribution, like in a hot-electron
shot-noise level is said to be reduced when its spectral denransistor, resonant-tunneling-diode emitter, superlattice
sity is lower in respect to the Poissonian valG8®s*™" emitter, etc.(see, e.g., Refs. 15-19The incoming carriers
=2ql, which is characteristic for transmission of uncorre-may be correlated priori and follow non-Poissonian statis-
lated carriers(Here, g is the electron charge anldis the tics.
mean curreni.The sub-Poisson shot noise could arise due to The main purpose of the present paper is to develop a
the Pauli exclusion principle or Coulomb interactions. Theself-consistent theory of shot noise in two-terminal ballistic
diversity of examples is available from recent revievis. space-charge-limited conductors with arbitrary injection
A matter of particular interest is the significance of Cou-energy distributior-.(e), which would also be valid foany
lomb interactions in  scattering-free  orballistic  given correlation properties of injected carriers. To distin-
conductord™’ This subject is important not only from a fun- guish the pure effect of Coulomb interactions on the shot-
damental, but also from an applied point of view. Indeed, asoise suppression, it will be convenient to measure the noise-
the dimensions of practical electronic devices are scaleduppression level in respect to the shot noise noh-
down, the ballistic component in carrier motion becomesPoissonian flow with disregarded Coulomb interactions,
dominant Then, unavoidable electric charge of carriers andrather than to the PoissonianRvalue. We have derived the
their redistribution across the device both give rise to theanalytical formulas that determine the steady-state and noise
charge-limited ballistic transportBased on ballistic trans- characteristics in ballistic conductors under the action of
port, a variety of new electronic devices is currently dis-Coulomb interactions in the asymptotic limit of high biases.
cussed in view of future applications to ultralarge scale inteThe time-averaged quantities are found to be insensitive to
grated circuits, logic, and memory technology?and new  F(¢) in the leading-order terms, giving, in particular, the
experimental techniques, like ballistic electron emissionuniversal Child law for the mean current. In contrast, the
spectroscopy, have already been realiZgd.In charge- current noise is shown to be crucially dependentrqfe),
limited ballistic conductors the shot-noise measurementsvith the noise suppressidqoaused by Coulomb interactions
may become one of the major tools not only to identify thedifferent for different injections. The derived energy-
ballistic transport, but also to probe carrier interactions andesolved shot-noise suppression formulas indicate the possi-
other electronic properties. bility to probe the injection energy profile of a ballistic emit-
In the absence of scattering, the transport and noise proger in shot-noise measurements, thereby obtaining an
erties of ballistic conductors are determined, to a great eximportant information not otherwise available from time-
tent, by the contactemitters. When the injecting contact is averaged conductance measurements. On the other hand, that
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information may help to optimize the injection energy distri- longitudinal momentunk, may vary, we use the electron

bution to achieve the desired noise-suppression level. distribution function averaged over the transversal momen-
The paper is organized as follows. In Sec. Il we introducetum k; according to

the basic equations that describe the space-charge-limited

ballistic transport: the collisionless kinetic equation coupled _ 2m  dk,

self-consistently with the Poisson equation. The obtained so- F(X,kye 1) = TJ d

lutions allow us to find the analytical formulas for the mean (27)

current and the current fluctuation transmission expresse\glhere d is the dimension of a momentum space and
through the injection distribution functioR(e). The shot- ¢y "\ 4y is the occupation number of a quantum state at
noise suppression factor is calculated for some particulafe cross sectiork. The additional multiplication factor
cases in Sec. llI. Finally, Sec. IV Summarizes the main Con- 5z in the integral(3) is introduced for further normal-
tributions of the paper, whereas in the appendix we presen .

) ) : e on convenience. Under the space-charge-limited trans-
mathematical details concerning the derivation of the self- ., o pace-charg
consistent potential fluctuations. port conditions, the distribution functioR and the space

charge in the Poisson equati@g®) are determined by the
electrons injected from the contact. Due to the stochastic

f(kakaL ,t), (3)

Il. TRANSPORT AND NOISE IN SPACE-CHARGE- nature of the injection, the distribution functida(x,k, ,t)
LIMITED BALLISTIC CONDUCTORS —F(x.k)+ SF(x.k.,1) and the potentialg(x.t)=¢(X)
A. The physical model + dp(x,t) fluctuate in time around their time-averaged val-

Consider a two-terminal semiconductor ballistic sampleues' The nonuniform distribution of the injected carriers cre-

with plane-parallel heavily doped contactsxatO andx=|.  ates the potential minimunpy(t) at a positionx=Xp,

The structure may be considered as-ai—n heterodiodé vyh|ch also fluctuates. It is the pqtenual minimum fluctua-
operating under a space-charge-limited current regime iffons, that I7eads to the suppression of the injected current
which the current is determined by a charge injection fromfluctuations. We assume that the applied bias is much larger
the contacts rather than by intrinsic carriers of the ballistich@n the characteristic energy spreading of injected electrons,
region. The applied bias between the contacts is assumedSO that the current injection from the secdneceiving con-

to be fixed by a low-impedance external circuit. In order totact is negligible. Another assumption dyp<U<Uc,
simplify the problem, we assume that due to the large differWhereUn=— ¢y, andUc, is the bias at which the potential
ence in the carrier density between the contacts and tharrier vgmshe%. This assumption may be fulfilled under
sample, and hence in the corresponding Debye screeniﬁae condltlo_n of a strong screening that corresponds to the
lengths, all the band bending occurs in the ballistic base, ang-called “virtual cathode” approximation, when the poten-
therefore the relative position of the conduction band and th&i@l minimum is so close to the contact, that one can disre-
Fermi levele.— & does not change in the contacts. For suchdard the region between the contact and the minirium.

a modeling, all of the potential drop takes place exclusivelythis limit, only those electrons that are able to pass over the
inside the ballistic base and the contacts are excluded frofiuctuating barrier(transmittedelectrons, contribute to the
the consideratiofi:’ In contrast to Refs. 57, the injected current and noise. _ _ .
carriers are not restricted to follow a thermal equilibrium It iS advantageous to use as a variable in the equations,
distribution, their distribution is an arbitrary function deter- msteazd of the kinetic energy, the total energy
mined by the particular properties of the emitter. Assuming=7%°ks/(2m)—®(x), where ®(x)=q¢(x)—q¢n is the

the transversal size of the conductor sufficiently thick andmean potential referenced to the minimum. By such a defi-
high enough electron density, the electrostatic problem mafition, ®(x)>0 in all the region(which is convenient for

be considered in a one-dimensional plane geonfetry. further consideration whereas the potential energy®(x)

is negative. Equationl), for the stationary casei(dt=0),

in terms of these variables may be written a@sak)F(x, €)

=0. Its solution, being invariant or, is expressed simply

through the distribution function at the injecting cont&gt
A semiclassical ballistic transport is described by the col-

lisionless kinetic equation for the time-dependent distribu- F(e)=F.(et+d.)0(e), 4

tion function F(x,k,,t) coupled self-consistently with the
Poisson equation for the electrostatic potengiék,t),

B. Distribution function and its fluctuation
in a self-consistent field

where & .=®(0) is the potential at the contact, and the
Heaviside step functiofi(e) establishes the lower bound for
the transmitted electrons. The fluctuatiéR is found from
linearization of Eq.(1) around the mean values. Equiva-
lently, one may just perturb the steady-state solut®ras a
compound function, and get

gt m oax 9 ok,

(ﬁ ik 9, 3¢ )T:(x,kx,t)zo, (1)

e _af= hidk IF(e+ D)
QZ;f F(X'kx't)ﬁ' @ SF()=F (et D) he)+ —— (et 5D d(e)
where « is the dielectric permittivity, andn the electron CF (et )59(6) Se )
C C .

effective mass. Since during the ballistic motion only the de
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Taking into account that the perturbation of the total energyThis equation, taken at=1, may then be used to find the

€ is related to the perturbation of the potential by= mean current
— 6®, and using the propertyd(e)/de= 6(€), one finally
obtaing* qA Joc (e+®)d gqA
l=—| Fetd)de=—F,
SF(€)=0F (e+D;)0(€)— Fo( D) 5P, S(€) y2mJo v2m
IF(e+ D) 4 2q(U+U)%? 3R 1
+ ————(6D.— 5P,)H(e€). 6 ~—kA\| ——| 1+ — —|,
S (0D— 5P 0(e) () s“V'm ot |1 R oo

The self-consistent potential fluctuations are defined as (13

0P, =qdp(X)— ¢y, 0P.=56Dy. This means thadd, is

measured in a frame referenced to fhetuating potential whereA is the cross-sectional area. Here, the leading factor
~U?%2 (if one neglectsx,,, U,, in respect tol, U, respec-

minimum (6®, =0). Itis clear, that in such a consideration . : . '

th tact mt tial and its fluctuati lated to th tively) is the Child current, which corresponds to what would
M co_nlacb poten ;]a . ahn Its udc_ ua '0(2) a_re LrJe a e5¢0 be expected if all the electrons are injected with zero initial

potential barrier height according t@bc=qUn, ¢ velocity. It is independent of the injection, but it is a function

=qéUp,. of the applied biadJ, the lengthl, and the parameters of the
Equations(4) and (6) should now be substituted into the . erialthe dielectric permittivityx, the effective masen).

I?ousson equations fob (x) anq 5¢)X'. correspondmgly,.to The next-order term-U contains information about the in-
find the self-consistent potential profile and its fluctuation. jection distribution function and gives the correction due to
the spread of electron momenta at the minimum, since
C. Steady state Fil Fo=(h12m)(k2)/{k,), where we denote the average
First we find the mean electron density as a functionvalues at the minimum by angular brackets. For the case of
of the potential® by integratingF over the momentum the Maxwellian injectionF (€)= exp(—e/kgT), this ratio be-
k, and changing the variable of integratiomk, comesF;/Fy,=\wkgT/2, and formula(13) leads to the

=(\2m/#)(del2\e+ D), we obtain Langmuir formula for a vacuum diode’?
From Eq.(12), one can get the asymptotic formula for the
o fx o de @ potential profilep®?(x) = 3 \/m/2q(1/kA)x?. Substituting the
N(®)= | Fele+ . 7 i i i -
(P) . ol C)Zm Child current, one obtains the universal behavipfx)

=U(x/1)*3 atx,,<x=<I, independently of the injection. The
Then, we solve the Poisson equatiom®®/dx? other quantities of interest tend to the following distribu-
— (9%/k)N(®), subject to the boundary conditions at thetions:  E(x)=—3(U/)(x/)™3  N(x)=§(xU/ql?)(x/

minimum ®(x,)=0, and at the receiving contacb, 1)~ It is seen, that the time-averaged quantities, such as
=®d(1)=q(U+U,,). First integration leads to the electric- the mean current and the spatial profiles, asymptotically at
field distribution high biases, are nonsensitive to the injection distribution

function. (Electrons coming to the receiving contact with the

1dd 2q energies much higher than their injecting energies forget
E(P)=— gox \ - Vh(®), (8 about their initial spreadingThe injection distribution gives
just a small correction to the lower-order terms, which how-
where ever may be essential at intermediate biases. In contrast, the
o current noise is sensitive to the injection distribution in the
_ Fvadm_ | T a_ leading-order termswhich decrease with bias, as will be
h(®) Jo N(®)d® fo Folet o) (Vet @ Je)de demonstrated below.
f .
Zfo\/a—ffr 2 +O<—3/2 Do, ©) D. Current fluctuations
2\ o The current fluctuation is obtained by integrating over the
energy the fluctuation of the distribution functi¢®)
fj(q)c)zf Feet+®do)ede, j=0,1,2.... (10
0 qA (= qA
Sl = —f OF (et P )de— —=F (D) 6P,
The similar expansion for the electron density is given by v2mJo v2m
d o T2 Efwﬁlc(e-i—d)c)de-i— S coul- (14)
N(q))_ﬁh(q))_m_mpm—i_o(q)_w) (11 0

Here, §l.(€) is the partial injected current fluctuation in a
unit of energy. The last terndl -,,, which is the current
fluctuation caused by the long-range Coulomb interactions,
9 42F may also be expressed more generally @cy
~_ u(x_xm)Z_ (12) =lloD.)oP.=(dl/dU) U, reflecting the modulation
8 « effect of the potential barrier fluctuations. To find that term,

Integration of Eq.(8) with the expansion(9) yields atx,
<x=l|

37 1

I 1+t —
Fo @
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we need to obtaid®; as a function of the injected fluctua- and the introduced energy= e+ . corresponds to th@éon-
tions 8F., by solving the Poisson equation. gitudinal) kinetic energy of electrons at the injecting contact.

Integrating Eq.(6) over the momentunk,, one gets the The constant in Eq.(21) is the characteristic velocity given
electron-density fluctuation as a sum of two contributions Py
SN= 6N + SN'"? where the injected part

Nm 1 jw JF
D)= = - —|Je—®.de.
L " N NN NN M RS R -
6N'”'(<I>)=f SF (e+d)——, (15
0 2yet® The main result, which follows from the derived expression
and the induced part (21), is thaty(e) is adecreasing function of the applied bias

U. With higher bias, a larger suppression of the current fluc-
tuations is expected. Another important conclusion is that the

*OF (et o) de suppression effect is different for different injection shapes

SN D)= (6D, 5<I>X)f
0

de 2\e+d F.(g). The dependence d¥.(e) is summarized by the char-
acteristic velocityv determined by Eq(22). Note, that the
Fo(Py) function 'y(s) has a meaning of the current fluctuation trans-
— 0 xﬁ fer function, and in general may be as positive, as negative,

depending on the particular energyIn the absence of cor-
relations, y""®°(¢)=0(e —qU,,), that means the fluctua-

) 5D, . (16)  tions of all energies above the barrier height,, are equally
transmitted.

dN  F (D)

R + —_
dd 2\/5
o . . . Having found the current fluctuationsl expressed
Substitution to the Poisson equation yields through the injected current fluctuatiodt,(€), the current-
noise spectral density may then be obtained from(E@). as

AN
T do T

Lod,= d” g’ dn oD ="
gy Kk do|[TX S|Af=f j v(e)y(e") (Sl (e)dl(e"))dede’.
(I)C (I)C
(AN Fo@o| @ 29
Tk @+ ﬁ 5¢c+75N'”J(q>)_ Here, Af is the frequency bandwidttwe assume the low-

frequency limi}, and in such a presentation the function
(17) v(g) plays the role of theenergy resolved shot-noise-
suppression factor
By solving this equation with the boundary conditions The incoming electrons may be correlated in eneagy
5<IJXm=O, 0D,= 5D, (see the appendixwe find the Cou- priori due to the properties of an emitter. In general case of
lomb correlation term in the form non-Poissonian injection, one can define the shot-noise-
suppression factor due to a pure Coulomb suppression by

e ]

"~ Fu(®@y)

2
qu

e [ dleler @y de, _ f;f;ws)y(s'><5lc<s>5lc<s'>>dsds'

(18) Ie=

. (24

_ ) ) o j J (6l(e)dl(e"))dede’
whereN,, is the electron density at the potential minimum. O J D,

Substitution of the found expression ftcoy into EQ.(14)  \hich can be easily found when the properties of injected
for the total current fluctuation shows, that the leading-ordegayriers are given.

terms, which do not depend explicitly on bias, are canceled, For the particular case when the injected carriers of dif-
i.e., the injected current fluctuation is suppressed. The referent energies are uncorrelated,

maining contribution
(dle(e)dlc(e))=K(e)(Af)d(e—e'), (25

3 (= N the shot-noise-suppression fact@d) is simplified to
5|=—f Je— ———| 8l (e+D.)de (19
\/QU 0 Fc(q)c) L3
f y*(e)K(g)de
is «U~ 2 We rewrite this expression in the form o= e . (26)
o0 J K(s)dS
&=f y(e)dl (e)de, (20) e
Pe Furthermore, for the Poissonian injection, the property of the

in which the effect of the interactions is summarized by the:fiﬁgnel K is such that(z) ol (e)Fc(e). Hence, one can

quantity y(e) determined by
3 f Y(e)Fo(e)de
[}

= ——[Ve— P~ (P 21 o= — S
¥(e) \/q_U[ € c—u(Po)], (21) I poissor foo 2q1° (27)
o F.(e)de




8188 O. M. BULASHENKO, J. M. RUBI, AND V. A. KOCHELAP PRB 62

Depending on the injection, one of the expressig24), 3r
(26), and(27) can be used together with the functiofe)

given by Eg.(21) to evaluate the shot-noise-suppression
level in ballistic space-charge-limited conductors under the
action of Coulomb interactions. Note that the formula for
v(¢g) is valid for any given energy distribution and statistical g
properties of the injected carriers under the condition of a
high bias, that idJ>U,, andU much larger than the char- =
acteristic energy spreading of injected electrons. The upper
bound for the bias is however restricted by the condition of
the existence of the potential barrie<U., (space-charge- )
limited transport Both conditions may be fulfilled simulta-
neously under a sufficiently strong screening, i.e., the length
of the conductor should be much larger than the characteris-
tic screening length.

2

3
IIl. EXAMPLES
To illustrate the implementation of the results, we con- L‘E
sider some examples. For the Maxwell-BoltzmdMB) in- o2

jection distribution(nondegenerate equilibrium electron gas

is injected we obtainv= \wkgT/2, i.e., it only depends on

the temperature of the injected electrons, but otherwise is 4
independent of the material parameters, since its dependence
on the barrier height is canceled out. For this case,(ED.

gives 0 1 2 8 4
ywe(e)=31 /kB_T( € (I)C_ﬁ) (29) FIG. 1. The shot-noise suppression lel/elcaused by Coulomb
MB qu kgT 2 ) interactiong for the Maxwell-Boltzmann injection with an addi-

. S . . 3 tional peak ate =& (shown in the insgtwith respect to the case
which coincides with the formula derived by Nortfi’ The when no peak is present. The raliol" g is shown as a function of

corresponding shot-noise-suppression factor follows fron’{he peak positiorE= (o~ ®)/(ksT). () the peak parametet is

Eq.(27) varied. The results are compared for two different shapes of the
kT peak: § function given by Eq.30) (symbolg; Gaussian function
1— Z) B (29) given by Eq.(33) for 0=0.2(lines). (b) the Gaussian peak case: the

Tye=9 -,
MB 4) qu width of the peaks is varied, whilea=0.6 is fixed.

For a quantitative estimation consider the heterodiode with

GaAs contacts and an AbGao osAs ballistic basé? For the peak, its magnitude, position, etc. In particular, the noise-
contact doping % 10 cm~3 at T=50 K. we obtain the suppression level may be obtained lower or higher than the

injected electron density about 7:280"cm™ 3, which cor- MB shot noise by simply shifting the position of the pe(ak

: _ the emittey in respect to the potential barrier.

fr(e),-f pt?]r;dsl_t;_tlr;ig?ﬁ bé/i%dsg: rZ?]ZIGi fgki?/_q‘,mtr? ;n 'n-l(;ihszr] Let us assume that the width of t.hg peak is narrow on the
suppression level estimated from the exact solufibgires scale of the_ temperature For_S|mpI|C|ty, we model it first
I'ye=~0.04, which is close to the value calculated from theby a4 function (monoenergetic electrons
asymptotic formulg29). _

Now we shall demonstrate, that the shot-noise- Fo(e)xe ®keT+ akgTo(e —€g) . (30)
suppression level may be achieved even deeper than that
given by Eq.(29) for the MB case, without involving any The injected carriers, from both the Maxwellian tail and the
other correlationglike the Pauli exclusion principjen ad- ~ peak, are assumed to be uncorrelated, so that&ycan be
dition to the Coulomb correlations. The higher suppressiorapplied. Thus, for the distributiof80) one gets thénormal-
may be achieved by modifying the energy profile for theized characteristic velocity22) as
injected carriers. Consider the heterodiode under the same

set of parameters considered above, in which, in addition to v J
the Maxwell-Boltzmann injection, nonequilibrium carriers w= =5 +—], (31
are injected from a specially designed emitter, so that the VkgT Vmé

injected distribution function has an additional peak at the _

energye, [see inset of Fig. (b)]. According to our theory, wherea=ae®c is the ratio between the two currents: from
these additional electrons do not change the current-voltagbe & peak and from the MB exponential tail, agd- (&g
characteristics much. Its asymptotic behavior is again the-®.)/(kgT) is the dimensionless position of the peak. The
Child law. However, the noise properties change signifi-shot-noise-suppression factor is then obtainedbatow we
cantly depending on the parameters of the electron-energymit the subindex atI")
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nkBT l—W\/;+W2+ a( \/E_W)2 IV. SUMMARY

“qu 1+a ' (32) In conclusion, we have presented a self-consistent theory

- . of transport and current noise in two-terminal ballistic space-
In the limit when the electron-energy peak vanishes;0,  charge-limited conductors under the action of Coulomb in-

formula(32) is reduced to the suppression fact®9) for the  (eractions. We have derived the analytical formulas that ac-
MB injection. We have studied how deviates fromI'yg  count for the non-Poissonian injection with arbitrary
when the peak current and the peak positio§ are varied.  distribution function and correlation properties of injected
The results are illustrated in Fig(d. The dependence of electrons, and these may be used to estim@atghe mean
I''T'yg on ¢ was found to be nonmonotonic displaying a current beyond the Child approximation with a next-order
minimum. In some range of¢ around the minimum, term specific of the injection distribution functiofij) the

I''T <1, that means the additional electron-energy peak aturrent-noise spectral density under the action of Coulomb
the injecting contact results in a less noisy transmission, thatteractions, which depends in the leading-order terms on the
in the case of its absence. The minimal noise is observed fdpjection distribution function and decreases with bias)
a~0.6, for which we find['/T'j;5~0.814 até,~1.45. As  the noise-suppression factor in respect to the injected non-
follows from Fig. 1(a), the most effective noise suppression Poissonian electron flod.

occurs when the peak is about 14gT above the barrier. The obtained analytical formula for the energy-resolved
When it is higher in energy, or too close to the barrier posi-Shot-noise suppression may suggest a new field of investiga-
tion (so— ®,=<kgT), the noise is enhanced in respect to thetion on the optimization of the injection energy profile to

MB case (although it may still be below the Poissonian achieve the desired noise-suppres_sion level. The presented
value. examples clearly show, that the noise-suppression level may

The analysis for other shapes of the peak shows that the controlled by monitoring the injection energy profile.

results are similar to those for tiepeak. As an example, we . The sensitivity of the noise-suppression level to the injec-
present here the results for the case when the peak is moHoN Parameters opens up new perspectives in shot-noise
eled by the Gaussian distribution function measurements as a tool not only to identify the ballistic

transport in mesoscopic conductors, but also to reveal an

Fo(s)xe o/keT+ Qef(efao)zl(a'kBT)Z, (33) important informat_ion on t_he injection energy profile a_nd the

level of Coulomb interactions in the structure. Experiments
where the factor ¢ is defined by g¢=2a/{o\a[1 have succeeded recently in observing shot noise in ballistic

+erf(e/aksT)]}. By such a definition, the parameter ~ guantum point contact$”’ and some other mesoscopic sys-
tems(see, e.g., Refs. 28—B0We believe, that it would be

=ae®c gives again, as in the previous case, the ratio be:*™ 4 o
tween the current originated from the Gaussian peak and th m_|IarIy po_ss_lble to measure the shot noise in space-charge-
Imited ballistic conductors.

from the MB tail. A comparison between the two cases is o S . :
Additionally, it is important to emphasize the difference

presented in Fig. (B). It is seen, that at high values éfthe h ic behavi £ the sh ise in diff
results for the noise suppression for both cases of the Gausg?tween the gsymptotlc ehavior of the shot noise in diffu-
ive and ballistic systems under the presence of a space

ian andé peak coincide. It can be shown, that this occurs at . . S
£=5¢. Hence, when the peak widi<(£,./5)~0.3, the charge. In the former case the noise-suppression level is lim-
-~ . 1 min =

minimal noise occurs at the same peak positigp,, inde- ited by the constant, specific of the dominating scattering
pendently of the value of. The information on t'he peak mechanisni,”>* while in the latter the suppression may be

width is presented, however, in the noise-suppression curve\"};lr:\:\tlri;'lyosstg?br}g';Vh'l?ga?;ysbe important from the point of
at low values of¢. While I' for the 5-peak case diverges at P PP '
£—0, du_e to a singularity of theS function, the .n(')ise- ACKNOWLEDGMENTS
suppression factor for the Gaussian-peak case exhibits a local
maximum[see Figs. (a) and 1b)]. The magnitude of this This work was partially supported by the Generalitat de
noise enhancemeltin respect to the MB casalepends on Catalunya, Spain, and the NATO linkage grant HTECH.LG
o the narrower the peak, the larger the noise enhancemef#4610.
and the closer is the location of the maximum to the potential

Summarizing this example, to observe the lower noise POTENTIAL FLUCTUATIONS
I(ra]vel for nqnd?generate r?a”;;'t'g eI_egtronz, theha?]dltmétml The second-order differential equati6tiv) with spatially
tbe MB t%:l) eecl;tronshs ou _ellgjec_te V\Qt t Ie ENer9Y dependent coefficients can be solved explicitly &dp, .
about 1.45gT above the potential barrier. This value is in- Here, we need just the value @b, which has entered

dependent of the energy spreading of the “peak” eleCtron%xplicitly into the nonhomogeneous part and can be obtained

once the latter is less than Gk3T. The optimal ratio be- 1, '550ving the Green's theorem for the self-adjoint operator
tween the current from the “peak” electrons and the MBI:

electrons is about 0.6.

F:

It is seen, that the shot noise contains important informa- [ . .
tion on: (i) the injection energy profile, andi) the param- J [U(X)L 6Py~ 6P,Lu(x)]dx
eters of the injected space charge, such as the potential bar- Xm
rier height and the electron densNly, at the barrier position. dod du\l!
Therefore, noise measurements may be used as a tool to =(U(X)W—5®x& (A1)

study those characteristics. X

m
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It is convenient to chose the functiar(x) as a solution of

the homogeneous equatitru(x)=0 satisfying the bound-

ary conditionu(l)=0. This gives

0. & [ o[V, Fe®o .
J' 2 dx +—J usNMdx
=—u'(1)éP.—u(xy) 5Py, . (A2)

where prime stands for the derivative gnlt can be shown,
that at largel, both terms in the right-hand side of E@\2)
may be neglected. Indeé8u’(1)=1/E(l)=0(®; ¥)—0,

O. M. BULASHENKO, J. M. RUBI, AND V. A. KOCHELAP

PRB 62
d[u B 1 dju B 1 A7
W \E/T gEdE T g A
Thus, Eq.(A3) becomes
<1>ch)' N~ N(cb)—Fc(cba@dq)
0 E3(®)
Jet+ @ —
f desF (e+ D) f ddE (, (AB)
E3(d)

at®,—o. The termu(X,,) 5(1)’ may be evaluated from the whereN ,=N(®=0) is the electron density at the potential

matching with the expressmn similar to E@A2) for the
adjacent region & x<Xx,,. It occurs to beO(1) atd,—oe,

minimum. At the high-bias limith,—<, by using Eqs(8)—
(11), one obtains

and hence gives negligible contribution in respect to the

leading term@(d') (see below. Changing the variable of f‘l’le— N(P)— Fc(‘bc)\/adq)
integrationdx= —d®/(qE) , one gets 0 E3(®)
o udN  Fo(d) f(b. u_ 4 371 Np ) P
— | — o= — SNinidd. =P F (D) 1+3| 5=
Cfo ( 2\/5 d o E d 3 C( C) 2f0 C((DC) |
(A3)
-1
In this equation the integrals may be integrated by parts in a +0O(®, )}' (A9)
similar way
? u dG; 4o U D s d /u 4 D\ e+ D— \/_ @3/{1 3(3i_ 5)(1)_1/2
fo Edo “PTIEC O‘L CawlE 0o EX®) 2F, !
:lfq" Edq), i—12 (Ad) +0O(d Y. (A10)
qJo E
with In the latter expansion it is assumed, that the range of valu-
able injection energies is much less than the applied lias,
G(P)=N(D)—N(0)+F (D) P, (A5)  <®,. Substituting these expansions into E48), one ob-
tains
Gz(<1>)=f0 SF(e+ Do) (Ve+rD—e)de.  (AB) Feo(D,) 6D,
Notice, that the first term in right-hand side of E&4) is (™ 3 N
zero, since at the upper limii(®,)=0, and at the lower “Jo OFo(e+ D) 1- \/al Ve- Fo(do) de, (A1D)

limit we have G;(®)~®, E(P)~ P at P—0, andu(0)
= k/[qN(0)] is finite. In the second integral of EGA4) we
have use

which is used to find the Coulomb correlation teéi,,, in
Eqg. (14).
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