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Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

O. M. Bulashenko and J. M. Rubı´
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

V. A. Kochelap
Department of Theoretical Physics, Institute of Semiconductor Physics, Kiev 252028, Ukraine
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We investigate the current injection into a ballistic conductor under the space-charge limited regime, when
the distribution function of injected carriers is an arbitrary function of energyFc(«). The analysis of the
coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially sup-
pressed by Coulomb correlations, and the suppression level is determined by the shape ofFc(«). This is in
contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive
to Fc(«) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved
shot-noise suppression has been found for an arbitrary~non-Poissonian! injection, which may suggest a new
field of investigation on the optimization of the injection energy profile to achieve the desired noise-
suppression level.
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I. INTRODUCTION

Randomness in the transmission of discrete charge c
ers in mesoscopic conductors leads to the fluctuations of
electric current called shot noise.1,2 Recently, shot-noise
measurements are emerging as an important tool to p
carrier interactions in mesoscopic systems.3 As interactions
between electrons can regulate their motion, this effect m
be detected in the shot-noise reduction, but cannot be
duced from time-averaged dc measurements. Usually,
shot-noise level is said to be reduced when its spectral d
sity is lower in respect to the Poissonian valueSI

Poisson

52qI, which is characteristic for transmission of uncorr
lated carriers.~Here, q is the electron charge andI is the
mean current.! The sub-Poisson shot noise could arise due
the Pauli exclusion principle or Coulomb interactions. T
diversity of examples is available from recent reviews.1,2

A matter of particular interest is the significance of Co
lomb interactions in scattering-free or ballistic
conductors.4–7 This subject is important not only from a fun
damental, but also from an applied point of view. Indeed,
the dimensions of practical electronic devices are sca
down, the ballistic component in carrier motion becom
dominant.8 Then, unavoidable electric charge of carriers a
their redistribution across the device both give rise to
charge-limited ballistic transport. Based on ballistic trans
port, a variety of new electronic devices is currently d
cussed in view of future applications to ultralarge scale in
grated circuits, logic, and memory technology,9–12 and new
experimental techniques, like ballistic electron emiss
spectroscopy, have already been realized.13,14 In charge-
limited ballistic conductors the shot-noise measureme
may become one of the major tools not only to identify t
ballistic transport, but also to probe carrier interactions a
other electronic properties.

In the absence of scattering, the transport and noise p
erties of ballistic conductors are determined, to a great
tent, by the contacts~emitters!. When the injecting contact is
PRB 620163-1829/2000/62~12!/8184~8!/$15.00
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in a local equilibrium and the electron density injected into
ballistic conductor is low, the electron gas is nondegene
and described by the Maxwell-Boltzmann distribution fun
tion. In this case, the injected electrons are statistically in
pendent obeying the Poissonian statistics. The self-consis
theory of shot-noise suppression due to Coulomb interact
for this type of ballistic injection has been recent
developed.7 However, in nanoscale devices the injected c
riers may be degenerate, or income from an emitter with
extremely nonequilibrium distribution, like in a hot-electro
transistor, resonant-tunneling-diode emitter, superlat
emitter, etc.~see, e.g., Refs. 15–19!. The incoming carriers
may be correlateda priori and follow non-Poissonian statis
tics.

The main purpose of the present paper is to develo
self-consistent theory of shot noise in two-terminal ballis
space-charge-limited conductors with anarbitrary injection
energy distributionFc(«), which would also be valid forany
given correlation properties of injected carriers. To dist
guish the pure effect of Coulomb interactions on the sh
noise suppression, it will be convenient to measure the no
suppression level in respect to the shot noise ofnon-
Poissonian flow with disregarded Coulomb interaction
rather than to the Poissonian 2qI value. We have derived the
analytical formulas that determine the steady-state and n
characteristics in ballistic conductors under the action
Coulomb interactions in the asymptotic limit of high biase
The time-averaged quantities are found to be insensitive
Fc(«) in the leading-order terms, giving, in particular, th
universal Child law for the mean current. In contrast, t
current noise is shown to be crucially dependent onFc(«),
with the noise suppression~caused by Coulomb interactions!
different for different injections. The derived energ
resolved shot-noise suppression formulas indicate the po
bility to probe the injection energy profile of a ballistic emi
ter in shot-noise measurements, thereby obtaining
important information not otherwise available from tim
averaged conductance measurements. On the other hand
8184 ©2000 The American Physical Society



ri-

c
it

le
s

an
s

ul
on
e

el

pl

om
ti

ed
to
e
t

ni
an
th
c
el
ro
d
m
r-
in
n
a

o
u

e

he

n
en-

nd
at

ns-

stic

l-
re-

a-
rent
ger
ons,

l
r
the
n-
re-

the

ons,

efi-

e
r

-

PRB 62 8185SUPPRESSION OF NON-POISSONIAN SHOT NOISE BY . . .
information may help to optimize the injection energy dist
bution to achieve the desired noise-suppression level.

The paper is organized as follows. In Sec. II we introdu
the basic equations that describe the space-charge-lim
ballistic transport: the collisionless kinetic equation coup
self-consistently with the Poisson equation. The obtained
lutions allow us to find the analytical formulas for the me
current and the current fluctuation transmission expres
through the injection distribution functionFc(«). The shot-
noise suppression factor is calculated for some partic
cases in Sec. III. Finally, Sec. IV summarizes the main c
tributions of the paper, whereas in the appendix we pres
mathematical details concerning the derivation of the s
consistent potential fluctuations.

II. TRANSPORT AND NOISE IN SPACE-CHARGE-
LIMITED BALLISTIC CONDUCTORS

A. The physical model

Consider a two-terminal semiconductor ballistic sam
with plane-parallel heavily doped contacts atx50 andx5 l .
The structure may be considered as an2 i 2n heterodiode7

operating under a space-charge-limited current regime
which the current is determined by a charge injection fr
the contacts rather than by intrinsic carriers of the ballis
region. The applied biasU between the contacts is assum
to be fixed by a low-impedance external circuit. In order
simplify the problem, we assume that due to the large diff
ence in the carrier density between the contacts and
sample, and hence in the corresponding Debye scree
lengths, all the band bending occurs in the ballistic base,
therefore the relative position of the conduction band and
Fermi level«c2«F does not change in the contacts. For su
a modeling, all of the potential drop takes place exclusiv
inside the ballistic base and the contacts are excluded f
the consideration.5–7 In contrast to Refs. 5–7, the injecte
carriers are not restricted to follow a thermal equilibriu
distribution, their distribution is an arbitrary function dete
mined by the particular properties of the emitter. Assum
the transversal size of the conductor sufficiently thick a
high enough electron density, the electrostatic problem m
be considered in a one-dimensional plane geometry.7

B. Distribution function and its fluctuation
in a self-consistent field

A semiclassical ballistic transport is described by the c
lisionless kinetic equation for the time-dependent distrib
tion function F̃(x,kx ,t) coupled self-consistently with th
Poisson equation for the electrostatic potentialw̃(x,t),

S ]

]t
1

\kx

m

]

]x
1q

dw̃

dx

]

\]kx
D F̃~x,kx ,t !50, ~1!

]2w̃

]x2
5

q

kE F̃~x,kx ,t !
\dkx

A2m
, ~2!

where k is the dielectric permittivity, andm the electron
effective mass. Since during the ballistic motion only t
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longitudinal momentumkx may vary, we use the electro
distribution function averaged over the transversal mom
tum k' according to

F̃~x,kx ,t !5
A2m

\ E dk'

~2p!d
f ~x,kx ,k' ,t !, ~3!

where d is the dimension of a momentum space a
f (x,kx ,k' ,t) is the occupation number of a quantum state
the cross sectionx. The additional multiplication factor
A2m/\ in the integral~3! is introduced for further normal-
ization convenience. Under the space-charge-limited tra
port conditions, the distribution functionF̃ and the space
charge in the Poisson equation~2! are determined by the
electrons injected from the contact. Due to the stocha
nature of the injection, the distribution functionF̃(x,kx ,t)
5F(x,kx)1dF(x,kx ,t) and the potentialw̃(x,t)5w(x)
1dw(x,t) fluctuate in time around their time-averaged va
ues. The nonuniform distribution of the injected carriers c
ates the potential minimumw̃m(t) at a positionx5xm ,
which also fluctuates. It is the potential minimum fluctu
tions, that leads to the suppression of the injected cur
fluctuations.7 We assume that the applied bias is much lar
than the characteristic energy spreading of injected electr
so that the current injection from the second~receiving! con-
tact is negligible. Another assumption isUm!U,Ucr ,
whereUm[2wm , andUcr is the bias at which the potentia
barrier vanishes.20 This assumption may be fulfilled unde
the condition of a strong screening that corresponds to
so-called ‘‘virtual cathode’’ approximation, when the pote
tial minimum is so close to the contact, that one can dis
gard the region between the contact and the minimum.7 In
this limit, only those electrons that are able to pass over
fluctuating barrier~transmittedelectrons!, contribute to the
current and noise.

It is advantageous to use as a variable in the equati
instead of the kinetic energy, the total energye
5\2kx

2/(2m)2F(x), where F(x)[qw(x)2qwm is the
mean potential referenced to the minimum. By such a d
nition, F(x).0 in all the region~which is convenient for
further consideration!, whereas the potential energy2F(x)
is negative. Equation~1!, for the stationary case (]/]t50),
in terms of these variables may be written as (]/]x)F(x,e)
50. Its solution, being invariant onx, is expressed simply
through the distribution function at the injecting contactFc

F~e!5Fc~e1Fc!u~e!, ~4!

where Fc[F(0) is the potential at the contact, and th
Heaviside step functionu(e) establishes the lower bound fo
the transmitted electrons. The fluctuationdF is found from
linearization of Eq.~1! around the mean values. Equiva
lently, one may just perturb the steady-state solution~4! as a
compound function, and get

dF~e!5dFc~e1Fc!u~e!1
]Fc~e1Fc!

]e
~de1dFc!u~e!

1Fc~e1Fc!
]u~e!

]e
de. ~5!
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Taking into account that the perturbation of the total ene
e is related to the perturbation of the potential byde5
2dFx and using the property]u(e)/]e5d(e), one finally
obtains21

dF~e!5dFc~e1Fc!u~e!2Fc~Fc!dFxd~e!

1
]Fc~e1Fc!

]e
~dFc2dFx!u~e!. ~6!

The self-consistent potential fluctuations are defined
dFx[qdw(x)2qdwm , dFc[dF0. This means thatdFx is
measured in a frame referenced to thefluctuatingpotential
minimum (dFxm

50). It is clear, that in such a consideratio
the contact potential and its fluctuation are related to
potential barrier height according toFc5qUm , dFc
5qdUm .

Equations~4! and ~6! should now be substituted into th
Poisson equations forF(x) and dFx , correspondingly, to
find the self-consistent potential profile and its fluctuation

C. Steady state

First we find the mean electron density as a funct
of the potentialF by integratingF over the momentum
kx and changing the variable of integrationdkx

5(A2m/\)(de/2Ae1F), we obtain

N~F!5E
0

`

Fc~e1Fc!
de

2Ae1F
. ~7!

Then, we solve the Poisson equationd2F/dx2

5(q2/k)N(F), subject to the boundary conditions at th
minimum F(xm)50, and at the receiving contactF l
[F( l )5q(U1Um). First integration leads to the electric
field distribution

E~F!52
1

q

dF

dx
52A2q

k
Ah~F!, ~8!

where

h~F!5E
0

F

N~F̃ !dF̃5E
0

`

Fc~e1Fc!~Ae1F2Ae!de

5F0AF2F11
F2

2AF
1OS 1

F3/2D , F→`, ~9!

Fj~Fc!5E
0

`

Fc~e1Fc!e
j /2de, j 50,1,2, . . . . ~10!

The similar expansion for the electron density is given b

N~F!5
d

dF
h~F!5

F0

2AF
2

F 2

4F3/2
1OS 1

F5/2D . ~11!

Integration of Eq.~8! with the expansion~9! yields at xm
!x& l

F3/2F11
3F1

F0

1

AF
G'

9

8

q2F0

k
~x2xm!2. ~12!
y

s

e

n

This equation, taken atx5 l , may then be used to find th
mean current

I 5
qA

A2m
E

0

`

Fc~e1Fc!de5
qA

A2m
F0

'
4

9
kAA2q

m

~U1Um!3/2

~ l 2xm!2 F11
3F1

F0

1

Aq~U1Um!
G ,

~13!

whereA is the cross-sectional area. Here, the leading fac
;U3/2 ~if one neglectsxm , Um in respect tol, U, respec-
tively! is the Child current, which corresponds to what wou
be expected if all the electrons are injected with zero ini
velocity. It is independent of the injection, but it is a functio
of the applied biasU, the lengthl, and the parameters of th
material~the dielectric permittivityk, the effective massm).
The next-order term;U contains information about the in
jection distribution function and gives the correction due
the spread of electron momenta at the minimum, sin
F1 /F05(\/A2m)^kx

2&/^kx&, where we denote the averag
values at the minimum by angular brackets. For the cas
the Maxwellian injection,Fc(e)}exp(2e/kBT), this ratio be-
comes F1 /F05ApkBT/2, and formula~13! leads to the
Langmuir formula for a vacuum diode.7,22

From Eq.~12!, one can get the asymptotic formula for th
potential profilew3/2(x)5 9

4 Am/2q(I /kA)x2. Substituting the
Child current, one obtains the universal behaviorw(x)
5U(x/ l )4/3, atxm!x< l , independently of the injection. Th
other quantities of interest tend to the following distrib
tions: E(x)52 4

3 (U/ l )(x/ l )1/3, N(x)5 4
9 (kU/ql2)(x/

l )22/3. It is seen, that the time-averaged quantities, such
the mean current and the spatial profiles, asymptotically
high biases, are nonsensitive to the injection distribut
function.~Electrons coming to the receiving contact with th
energies much higher than their injecting energies for
about their initial spreading.! The injection distribution gives
just a small correction to the lower-order terms, which ho
ever may be essential at intermediate biases. In contrast
current noise is sensitive to the injection distribution in t
leading-order terms, which decrease with bias, as will b
demonstrated below.

D. Current fluctuations

The current fluctuation is obtained by integrating over t
energy the fluctuation of the distribution function~6!

dI 5
qA

A2m
E

0

`

dFc~e1Fc!de2
qA

A2m
Fc~Fc!dFc

[E
0

`

dI c~e1Fc!de1dI Coul. ~14!

Here, dI c(e) is the partial injected current fluctuation in
unit of energy. The last termdI Coul, which is the current
fluctuation caused by the long-range Coulomb interactio
may also be expressed more generally asdI Coul
5(]I /]Fc)dFc5(]I /]Um)dUm , reflecting the modulation
effect of the potential barrier fluctuations. To find that ter
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we need to obtaindFc as a function of the injected fluctua
tions dFc , by solving the Poisson equation.

Integrating Eq.~6! over the momentumkx , one gets the
electron-density fluctuation as a sum of two contributio
dN5dNin j1dNind, where the injected part

dNin j~F!5E
0

`

dFc~e1Fc!
de

2Ae1F
, ~15!

and the induced part

dNind~F!5~dFc2dFx!E
0

`]Fc~e1Fc!

]e

de

2Ae1F

2dFx

Fc~Fc!

2AF

5
dN

dF
dFx2S dN

dF
1

Fc~Fc!

2AF
D dFc . ~16!

Substitution to the Poisson equation yields

L̂dFx[F d2

dx2
2

q2

k

dN

dFGdFx

52
q2

k S dN

dF
1

Fc~Fc!

2AF
D dFc1

q2

k
dNin j~F!.

~17!

By solving this equation with the boundary conditio
dFxm

50, dF l5dFc ~see the appendix! we find the Cou-
lomb correlation term in the form

dI Coul52E
0

`

dI c~e1Fc!F12
3

AqU
SAe2

Nm

Fc~Fc!
D Gde,

~18!

whereNm is the electron density at the potential minimum
Substitution of the found expression fordI Coul into Eq. ~14!
for the total current fluctuation shows, that the leading-or
terms, which do not depend explicitly on bias, are cance
i.e., the injected current fluctuation is suppressed. The
maining contribution

dI 5
3

AqU
E

0

`FAe2
Nm

Fc~Fc!
GdI c~e1Fc!de ~19!

is }U21/2. We rewrite this expression in the form

dI 5E
Fc

`

g~«!dI c~«!d«, ~20!

in which the effect of the interactions is summarized by
quantityg(«) determined by

g~«!5
3

AqU
@A«2Fc2y~Fc!#, ~21!
,

.

r
d,
e-

e

and the introduced energy«5e1Fc corresponds to the~lon-
gitudinal! kinetic energy of electrons at the injecting conta
The constanty in Eq. ~21! is the characteristic velocity given
by

y~Fc!5
Nm

Fc~Fc!
5

1

Fc~Fc!
E

Fc

` F2
]Fc

]« GA«2Fcd«.

~22!

The main result, which follows from the derived expressi
~21!, is thatg(«) is adecreasing function of the applied bia
U. With higher bias, a larger suppression of the current fl
tuations is expected. Another important conclusion is that
suppression effect is different for different injection shap
Fc(«). The dependence onFc(«) is summarized by the char
acteristic velocityy determined by Eq.~22!. Note, that the
functiong(«) has a meaning of the current fluctuation tran
fer function,7 and in general may be as positive, as negati
depending on the particular energy«. In the absence of cor
relations, guncor(«)5u(«2qUm), that means the fluctua
tions of all energies above the barrier heightqUm are equally
transmitted.

Having found the current fluctuationdI expressed
through the injected current fluctuationsdI c(e), the current-
noise spectral density may then be obtained from Eq.~20! as

SID f 5E
Fc

` E
Fc

`

g~«!g~«8!^dI c~«!dI c~«8!&d«d«8.

~23!

Here, D f is the frequency bandwidth~we assume the low-
frequency limit!, and in such a presentation the functio
g(«) plays the role of theenergy resolved shot-noise
suppression factor.

The incoming electrons may be correlated in energya
priori due to the properties of an emitter. In general case
non-Poissonian injection, one can define the shot-no
suppression factor due to a pure Coulomb suppression b

GC5

E
Fc

` E
Fc

`

g~«!g~«8!^dI c~«!dI c~«8!&d«d«8

E
Fc

` E
Fc

`

^dI c~«!dI c~«8!&d«d«8

, ~24!

which can be easily found when the properties of injec
carriers are given.

For the particular case when the injected carriers of d
ferent energies are uncorrelated,

^dI c~«!dI c~«8!&5K~«!~D f !d~«2«8!, ~25!

the shot-noise-suppression factor~24! is simplified to

GC5

E
Fc

`

g2~«!K~«!d«

E
Fc

`

K~«!d«

. ~26!

Furthermore, for the Poissonian injection, the property of
kernel K is such thatK(«)}I c(«)}Fc(«). Hence, one can
find

GPoisson5

E
Fc

`

g2~«!Fc~«!d«

E
Fc

`

Fc~«!d«

→ SI

2qI
. ~27!
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Depending on the injection, one of the expressions~24!,
~26!, and ~27! can be used together with the functiong(«)
given by Eq. ~21! to evaluate the shot-noise-suppress
level in ballistic space-charge-limited conductors under
action of Coulomb interactions. Note that the formula f
g(«) is valid for any given energy distribution and statistic
properties of the injected carriers under the condition o
high bias, that isU@Um and U much larger than the char
acteristic energy spreading of injected electrons. The up
bound for the bias is however restricted by the condition
the existence of the potential barrierU,Ucr ~space-charge
limited transport!. Both conditions may be fulfilled simulta
neously under a sufficiently strong screening, i.e., the len
of the conductor should be much larger than the characte
tic screening length.7

III. EXAMPLES

To illustrate the implementation of the results, we co
sider some examples. For the Maxwell-Boltzmann~MB! in-
jection distribution~nondegenerate equilibrium electron g
is injected! we obtainy5ApkBT/2, i.e., it only depends on
the temperature of the injected electrons, but otherwis
independent of the material parameters, since its depend
on the barrier height is canceled out. For this case, Eq.~21!
gives

gMB~«!53AkBT

qU SA«2Fc

kBT
2

Ap

2 D , ~28!

which coincides with the formula derived by North.7,23 The
corresponding shot-noise-suppression factor follows fr
Eq. ~27!

GMB59S 12
p

4 D kBT

qU
. ~29!

For a quantitative estimation consider the heterodiode w
GaAs contacts and an Al0.05Ga0.95As ballistic base.24 For the
contact doping 431016 cm23 at T550 K, we obtain the
injected electron density about 7.2531014cm23, which cor-
responds to the Debye screening lengthLD546 nm. Then
for the 1.5m-length diode andU'45kBT/q, the noise-
suppression level estimated from the exact solutions24 gives
GMB'0.04, which is close to the value calculated from t
asymptotic formula~29!.

Now we shall demonstrate, that the shot-nois
suppression level may be achieved even deeper than
given by Eq.~29! for the MB case, without involving any
other correlations~like the Pauli exclusion principle! in ad-
dition to the Coulomb correlations. The higher suppress
may be achieved by modifying the energy profile for t
injected carriers. Consider the heterodiode under the s
set of parameters considered above, in which, in additio
the Maxwell-Boltzmann injection, nonequilibrium carrie
are injected from a specially designed emitter, so that
injected distribution function has an additional peak at
energy«0 @see inset of Fig. 1~b!#. According to our theory,
these additional electrons do not change the current-vol
characteristics much. Its asymptotic behavior is again
Child law. However, the noise properties change sign
cantly depending on the parameters of the electron-en
e
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peak, its magnitude, position, etc. In particular, the noi
suppression level may be obtained lower or higher than
MB shot noise by simply shifting the position of the peak~of
the emitter! in respect to the potential barrier.

Let us assume that the width of the peak is narrow on
scale of the temperatureT. For simplicity, we model it first
by a d function ~monoenergetic electrons!

Fc~«!}e2«/kBT1ãkBTd~«2«0! . ~30!

The injected carriers, from both the Maxwellian tail and t
peak, are assumed to be uncorrelated, so that Eq.~27! can be
applied. Thus, for the distribution~30! one gets the~normal-
ized! characteristic velocity~22! as

w[
y

AkBT
5

Ap

2 S 11
a

Apj
D , ~31!

wherea5ãeFc is the ratio between the two currents: fro
the d peak and from the MB exponential tail, andj5(«0
2Fc)/(kBT) is the dimensionless position of the peak. T
shot-noise-suppression factor is then obtained as~below we
omit the subindexc at G!

FIG. 1. The shot-noise suppression levelG ~caused by Coulomb
interactions! for the Maxwell-Boltzmann injection with an addi
tional peak at«5«0 ~shown in the inset! with respect to the case
when no peak is present. The ratioG/GMB is shown as a function of
the peak positionj5(«02Fc)/(kBT). ~a! the peak parametera is
varied. The results are compared for two different shapes of
peak:d function given by Eq.~30! ~symbols!; Gaussian function
given by Eq.~33! for s50.2 ~lines!. ~b! the Gaussian peak case: th
width of the peaks is varied, whilea50.6 is fixed.
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G59
kBT

qU

12wAp1w21a~Aj2w!2

11a
. ~32!

In the limit when the electron-energy peak vanishes,a→0,
formula ~32! is reduced to the suppression factor~29! for the
MB injection. We have studied howG deviates fromGMB
when the peak currenta and the peak positionj are varied.
The results are illustrated in Fig. 1~a!. The dependence o
G/GMB on j was found to be nonmonotonic displaying
minimum. In some range ofj around the minimum,
G/GMB,1, that means the additional electron-energy pea
the injecting contact results in a less noisy transmission, t
in the case of its absence. The minimal noise is observed
a'0.6, for which we findG/GMB'0.814 atjmin'1.45. As
follows from Fig. 1~a!, the most effective noise suppressio
occurs when the peak is about 1 –2kBT above the barrier.
When it is higher in energy, or too close to the barrier po
tion («02Fc&kBT), the noise is enhanced in respect to t
MB case ~although it may still be below the Poissonia
value!.

The analysis for other shapes of the peak shows that
results are similar to those for thed peak. As an example, w
present here the results for the case when the peak is m
eled by the Gaussian distribution function

Fc~«!}e2«/kBT1%e2(«2«0)2/(skBT)2
, ~33!

where the factor % is defined by %52ã/$sAp@1
1erf(«0 /skBT)#%. By such a definition, the parametera

5ãeFc gives again, as in the previous case, the ratio
tween the current originated from the Gaussian peak and
from the MB tail. A comparison between the two cases
presented in Fig. 1~a!. It is seen, that at high values ofj the
results for the noise suppression for both cases of the Ga
ian andd peak coincide. It can be shown, that this occurs
j*5s. Hence, when the peak widths,(jmin/5)'0.3, the
minimal noise occurs at the same peak positionjmin , inde-
pendently of the value ofs. The information on the peak
width is presented, however, in the noise-suppression cu
at low values ofj. While G for the d-peak case diverges a
j→0, due to a singularity of thed function, the noise-
suppression factor for the Gaussian-peak case exhibits a
maximum @see Figs. 1~a! and 1~b!#. The magnitude of this
noise enhancement~in respect to the MB case! depends on
s: the narrower the peak, the larger the noise enhancem
and the closer is the location of the maximum to the poten
barrier energy@see Fig. 1~b!#.

Summarizing this example, to observe the lower no
level for nondegenerate ballistic electrons, the additional~to
the MB tail! electrons should be injected with the ener
about 1.45kBT above the potential barrier. This value is i
dependent of the energy spreading of the ‘‘peak’’ electro
once the latter is less than 0.3kBT. The optimal ratio be-
tween the current from the ‘‘peak’’ electrons and the M
electrons is about 0.6.

It is seen, that the shot noise contains important inform
tion on: ~i! the injection energy profile, and~ii ! the param-
eters of the injected space charge, such as the potential
rier height and the electron densityNm at the barrier position.
Therefore, noise measurements may be used as a to
study those characteristics.
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IV. SUMMARY

In conclusion, we have presented a self-consistent the
of transport and current noise in two-terminal ballistic spa
charge-limited conductors under the action of Coulomb
teractions. We have derived the analytical formulas that
count for the non-Poissonian injection with arbitra
distribution function and correlation properties of inject
electrons, and these may be used to estimate:~i! the mean
current beyond the Child approximation with a next-ord
term specific of the injection distribution function;~ii ! the
current-noise spectral density under the action of Coulo
interactions, which depends in the leading-order terms on
injection distribution function and decreases with bias;~iii !
the noise-suppression factor in respect to the injected n
Poissonian electron flow.25

The obtained analytical formula for the energy-resolv
shot-noise suppression may suggest a new field of inves
tion on the optimization of the injection energy profile
achieve the desired noise-suppression level. The prese
examples clearly show, that the noise-suppression level
be controlled by monitoring the injection energy profile.

The sensitivity of the noise-suppression level to the inj
tion parameters opens up new perspectives in shot-n
measurements as a tool not only to identify the ballis
transport in mesoscopic conductors, but also to reveal
important information on the injection energy profile and t
level of Coulomb interactions in the structure. Experime
have succeeded recently in observing shot noise in ball
quantum point contacts26,27 and some other mesoscopic sy
tems ~see, e.g., Refs. 28–30!. We believe, that it would be
similarly possible to measure the shot noise in space-cha
limited ballistic conductors.

Additionally, it is important to emphasize the differenc
between the asymptotic behavior of the shot noise in dif
sive and ballistic systems under the presence of a sp
charge. In the former case the noise-suppression level is
ited by the constant, specific of the dominating scatter
mechanism,31–34 while in the latter the suppression may b
arbitrarily strong, which may be important from the point
view of possible applications.
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APPENDIX A: DERIVATION OF THE SELF-CONSISTENT
POTENTIAL FLUCTUATIONS

The second-order differential equation~17! with spatially
dependent coefficients can be solved explicitly fordFx .7,35

Here, we need just the value ofdFc , which has entered
explicitly into the nonhomogeneous part and can be obtai
by applying the Green’s theorem for the self-adjoint opera
L̂

E
xm

l

@u~x!L̂dFx2dFxL̂u~x!#dx

5S u~x!
ddF

dx
2dFx

du

dxD U
xm

l

. ~A1!
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It is convenient to chose the functionu(x) as a solution of
the homogeneous equationL̂u(x)50 satisfying the bound-
ary conditionu( l )50. This gives

2dFc

q2

k E
xm

l

uS dN

dF
1

Fc~Fc!

2AF
D dx1

q2

k E
xm

l

udNin jdx

52u8~ l !dFc2u~xm!dFxm
8 , ~A2!

where prime stands for the derivative onx. It can be shown,
that at largeU, both terms in the right-hand side of Eq.~A2!
may be neglected. Indeed,36 u8( l )51/E( l )5O(F l

21/4)→0,
at F l→`. The termu(xm)dFxm

8 may be evaluated from th

matching with the expression similar to Eq.~A2! for the
adjacent region 0,x,xm . It occurs to beO(1) at F l→`,
and hence gives negligible contribution in respect to
leading termsO(F l

3/4) ~see below!. Changing the variable o
integrationdx52dF/(qE) , one gets

dFcE
0

F l u

E S dN

dF
1

Fc~Fc!

2AF
D dF5E

0

F l u

E
dNin jdF.

~A3!

In this equation the integrals may be integrated by parts
similar way

E
0

F l u

E

dGi

dF
dF5S u

E
Gi D U

0

F l

2E
0

F l
Gi

d

dF S u

EDdF

5
1

qE0

F l Gi

E3
dF, i 51,2, ~A4!

with

G1~F!5N~F!2N~0!1Fc~Fc!AF, ~A5!

G2~F!5E
0

`

dFc~e1Fc!~Ae1F2Ae!de. ~A6!

Notice, that the first term in right-hand side of Eq.~A4! is
zero, since at the upper limitu(F l)50, and at the lower
limit we haveGi(F);F, E(F);AF at F→0, andu(0)
5k/@qN(0)# is finite. In the second integral of Eq.~A4! we
have used36
eg
e

a

d

dF S u

ED52
1

qE

d

dx S u

ED52
1

qE3
. ~A7!

Thus, Eq.~A3! becomes

dFcE
0

F l Nm2N~F!2Fc~Fc!AF

E3~F!
dF

5E
0

`

dedFc~e1Fc!E
0

F l
dF

Ae1F2Ae

E3~F!
, ~A8!

whereNm[N(F50) is the electron density at the potenti
minimum. At the high-bias limitF l→`, by using Eqs.~8!–
~11!, one obtains

E
0

F l Nm2N~F!2Fc~Fc!AF

E3~F!
dF

5
4

3
F l

3/4Fc~Fc!F113S 3F1

2F0
2

Nm

Fc~Fc!
DF l

21/2

1O~F l
21!G , ~A9!

E
0

F lAe1F2Ae

E3~F!
dF5

4

3
F l

3/4F113S 3F1

2F0
2Ae DF l

21/2

1O~F l
21!G . ~A10!

In the latter expansion it is assumed, that the range of v
able injection energies is much less than the applied biae
!F l . Substituting these expansions into Eq.~A8!, one ob-
tains

Fc~Fc!dFc

5E
0

`

dFc~e1Fc!F12
3

AF l
SAe2

Nm

Fc~Fc!
D Gde, ~A11!

which is used to find the Coulomb correlation termdI Coul in
Eq. ~14!.
E
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