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Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry
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The only Landau-type model for antiferroelectric phase transitions was proposed by Kittel, in which two
interpenetrating sublattices with opposite polarizations of equal amplitude were assumed. The theory, however,
did not include any mechanism to specify the relative spatial positions of the two sublattices, and therefore
could not address the cell doubling during antiferroelectric phase transitions. We propose a Landau-Ginzburg-
type model based on microscopic symmetry and group theory, which can, without having to assume sublat-
tices, account for all aspects of antiferroelectric states, including local dipole orientation and cell doubling. The
average of these dipoles naturally leads to the Kittel model. The inclusion of gradient terms in the free energy
allows the modeling of multidomain structures and domain walls in antiferroelectric states.

INTRODUCTION referred to as ADPas a prototype system to illustrate the
procedure and the characteristics of the antiferroelectric
Kittel' proposed a macroscopic Landau-type model forphase transition.
the antiferroelectri€AFE) state by introducing two interpen-
etrating sublattices with opposite polarizations. His model
describes a second-order transition from the paraelectric state ~ ANTIFERROELECTRIC PHASE TRANSITION

to the antiferroelectric state, by truncating the free energy at e high-temperature phase of ADP is tetragonal with

the fourth order: space group42d.3~% Following the notation of thénterna-
tional Tables for Crystallography the conventionalnon-
F=a;(P{+P3)+a,P 1Pyt ayy(P+P3), (1)  primitive) unit cell contains four formula units. Two of the
formula units are in the primitive cell while the other two are
related by the centering translatioi33). At T~
—125°C, the material undergoes an antiferroelectric transi-
tion to an orthorhombic phase with space gr&tgy2,2, .%®
&he transition is driven by a zone-boundawpoint soft
mode and results in ionic displacements that create one di-
75 pole moment in each formula urifour dipoles per AFE unit
state. o . . cell) as shown in Fig. 1. These dipole moments form a net
This model has the intrinsic limitation that it contains ,piferroelectric polarization along th&00] or [010] of the
only local interactions. In other words, there is no mechayrent phase. This means that the fourfold rotational inver-
nism to fix the spatial relationship between the two sublatticej,, axis of the parent paraelectric phase is lost during the
polarizations within the crystal. This local model creates UN+ansition. which leads to two rotationally related, energeti-
certainty in the antiferroelectric state. For example, the sub(—:a”y equivalent orientation domain states in ’the low-
lattice polarizations?, and P, are assumed at the same 10- yomnerature  phase. Moreover, the transiton causes a
cation in spacéor can be anywhere in spacehich leads to  injitive-cell doubling(equivalently, the centering point in

the cancellation o, and P,. Such a situation does not e conyventional parent cell is I9steading to two additional
fully describe the antiferroelectric state in which adjacent

primitive cells acquire opposite dipole moments and the lo-

where P, and P, are the polarizations of the sublattices. If
a,>0, the transition will favoiP, andP, being antiparallel,
making the low-temperature phase antiferroelectric. On th
other hand, ifa,<0, the transition will favorP,; and P,
being parallel, and the transition will lead to a ferroelectric

cal polarization at any space point is actually nonzero. Using Y z=0 o7
group-theoretical techniques, we propose a continuum model

for the antiferroelectric state built upon microscopic symme- -~ . z=147 0
try. The symmetry allowed distortions associated with the il 21y
soft mode are given in our model, which accounts for the

formation of antiparallel dipoles in adjacent cells. The free b — z2=3/4 %~y
energy has also been expanded to include gradient terms of >

the order parameter so that multidomain structures, such as

orientation twins and antiphase walls, can be modeled using FIG. 1. Dipoles formed in the antiferroelectric phase of ADP in
the same formulation. Specifically, in this paper we will usea conventional cell. The lattice displacement pattern can be gener-
ammonium dihydrogen phosphdtéH,)H,(PO,) (commonly  ated from group theory.
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—_————— TABLE II. Group theoretically allowed distortions at Wyckaif

z=0 o7 sites in domairs, .
~a
[} ) z=147 0 Position Distortions Relationship 1®,0,0 site
- | - |
< ™ z=ip«” (00,0  Pa(1,0,0)+py(0,~1,0) {Eloog
111
——g_ _'_g—_ - (5‘515) pa(_11010)+ pb(ollvo) {C22|%%%
=3/4 T 11 _ - I
s - ((1),2,;) Pa(—1,0,0)}+ py(0,—1,0) (Cyl313}
b 4 4 r (31,2 pa(1,0,0)+py(0,1,0) {Cxhlz13}

FIG. 2. Microscopic positions of the symmetry elements, creatration shown in Fig. 1, which agree well with the observed
ing the antiferroelectric polarization. The AFE unit cell is shown by dipolar distribution by Blincet al®
the dashed line, with origin 0, 3, 3). The screw axes parallel Figure 1 was constructed based only on the microscopic
are atz= 3, and the screw axes parallel oare atz= 3. positioning of the symmetry elements and the allowed dis-
tortions from group theoretical considerations, as in Fig. 2.
antiphase states that are translationally related to the twBor example, a dipole moment at posititth 0, O necessar-
orientation states. Overall, there are four possible domains ity means, by action of the screw axis parallel to thaxis,

the AFE state of ADP. an oppositely directed dipole moment at the parent cell cen-
tering point of (333). The screw axis parallel to the axis

GROUP THEORETICAL DESCRIPTION OF THE further implies, from these two dipoles, that the other two

TRANSITION antialigned dipoles within the AFE unit cell must be present.

Hence, there is no need for defining sublattices and no need
Once the structures and space groups of the high- ang explain why such sublattices would adopt exactly equal
low-temperature phases have been determined, the micrgnagnitudes but opposite orientation. More importantly, the
scopic positions of the symmetry elements are fikee will  spatial relationship between the two sublattices naturally
use the settings of Ref,),7as shown in Fig. 2. Specifically, comes out of our model. If a single dipole moment is formed
we note that the three mutually perpendicular twofold screwyithin a parent formula unit, one can generate its counter-
axes in the AFE phase do not allow a net dipole moment foparts by symmetry requirements to form the antiferroelectric
the unit cell of the low-temperature phase, although they dgyolarization of the whole unit cell of the low-temperature
allow antiferrolectric polarizations. phase. Also, since the dipole moment at the centering point
The M—point soft mode driving the transition in ADP may (:_ZL%%) is opposite to the d|po|e moment €3,0,0, the dou-
be described by the physically irreduciblMsM,  bling of the unit cell size is naturally explained.
representatiofl, which is simply the direct suni 3®M3
(here we use the labeling of Miller and L&)BThiS repre- HYSTERESIS AND THE RELATION TO THE
sentation carries a two-component order paramée@dp), SUBLATTICES PROPOSED BY KITTEL
(p1,p2), Whose values are listed in Table I. Physically, the
OP Corresponds to the molecular d|p0|e moments within the A well-known characteristic of antiferroelectrics is the
a-b plane;p, represents the component along ¢hgirection, ~ double hysteresis loop, as shown in Fig. 3. In the one-
andp, represents the component along thdirection. This dimensional antiferroelectric model proposed by Kittel, there
OP is a continuum field, which is equal to the dipole momentS No net polarization. However, if an external electric field is
at the sites of each formula unit. applied, the sublattice polarization parallel to the field grows
Knowing the irreducible representation allows the latticeand the other sublattice polarization opposite to the field
distortions that arise in the transition to be calculated usinghrinks, resulting in a net polarization. When the field
the 1ISOTROPY-? software package. For simplicity we will re- Strength becomes sufficiently large, the polarization in the
strict our discussion to distortions arising at Wyckafsites ~ direction opposite to the field abruptly switches orientation
only, which are listed in Table IIl. These distortions can beto become parallel to the field, resulting in a ferroelectric
used to construct the dipole arrangement within the low-State. Because of symmetry constraints, a double hysteresis
temperature unit cell. As an example, consider the distortions

that arise in domainS;, for which the OP is 1,p») P A

=(pPa,Pp)- If Pa>pyp, the distortions result in the configu- K
|
TABLE I. Values of the order parameter for different domain |
states. =
Domain Order parameter E
Sl (pa 1pb)
SZ (pb [ pa) -
S3 (_ Pa,— pb)
4 (—Pp.Pa) FIG. 3. Double hysteresis loop, a characteristic of the antiferro-

electric state.
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E > TABLE lll. Invariants for the antiferroelectric transition driven
by a soft mode corresponding to tiM;M, irreducible representa-
- .
. . . tion.
Y\: Y\: ; ¢P=p2+p3 02 (dp,\2
1 & 4 ' e 51=(£1) +(ﬁ)
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' ' ' (4)_ (n21 n2\2
"I T (' ) _(p1+p2) PP, IPy IP;
. B e has N _9P10P2  0P1 P2
n n [ ] @ X X (7)’ ﬂy
' ' ' ¢85V =pi+p3 )2 [Py
) V- A V- ] :(_1 + _2)
1 : v % %Y oX
' 1 [ (4 —_n3n . 3
N SRR S P5 T Pipe Pip:
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difference between the microscopic theory presented here

:' eeTTT ': TTTTT ': and macroscopic continuum theory of Kittel is that the latter
' ' ’ cannot provide the spatial relationships among dipoles of
Y a7 adjacent cells, and cannot account for the dipole tilt which
' s ' occurs in the ADP system.
] ] 1
ol mmmym b L "
. B 3 . =5
1 1 1 LANDAU-GINZBURG FREE ENERGY BASED ON
Y a7 MICROSCOPIC SYMMETRY

]
: : ' Adding OP gradient terms to the free energy, i.e., using
bl emep bsTanng the Landau-Ginzburg-type free energy, will allow us to de-

(0) scribe inhomogeneous structures, such as orientational twins

aﬁnd antiphase walls. The invariant polynomials of the OP

and its derivatives can also be obtained usingisaagrROPY

program. In this paper, we have truncated the free energy at

will be produced during such a switching procéss. the fourth power o.f.the OP to limit our discussions to a
In our model, we describe the hysteresis in terms of th egond-order_transﬂmn. We also assume th"’.‘t the OP field

dipole moments associated with each of the four formulavaries sl'owly in space so that only the first Qerlvatlves of the

units in an AFE unit cell. Consider an external electric field ©F '€ included in the free energy. We write

applied to domairg,; , parallel to the+a direction. This field

will inFeract with the dipoles, cau_singa>Q to increase in _ F:A¢(2)+Bi@i(4)+ D8 (i=1,2,3), 3)

magnitude ang,<0 to decrease in magnitude, as shown in

Fig. 4@). Note thatpy, is not affected in our model. At suf-

ficiently large field strength, the dipoles wih, antiparallel ~ where the invariant polynomiats!®, ¢{*, ands; are given

to the external field will flip so thap, becomes parallel to in Table Ill. The coefficient®\=Ay(T—T), B;, andD; are

+a, as shown in Fig. é). This results in a state in which the constants.

dipole components are parallel along thdirection and an- For single domain states, all derivatives of the OP must

tiparallel along thé direction. It is a ferroelectric state with vanish; i.e.,5=0. Considering the single domain stee,

the polarization along, but with a cell size twice that of the the two component OP if ,p,) with both p, andp;, non-

Kittel model. zero. Since the symmetry of the low-temperature phase is
In order to make the connection between our microscopinown, the ionic displacements and dipole moments in each

model and the Kittel macroscopic model, we use the definiunit cell can be determined experimentally from neutron

tion of the polarization, which is an average of molecularscattering. In other words, the ratio of the amplitudes

dipole moments over a given volune=(1NV)3p;. The  =Pp./pp can be measured in the antiferroelectric state

sublattice polarizationsP; and P, in the Kittel one-

dimensional model can then be defined, in terms of the mo-

lecular dipole moments in our model, as Pb= KPa- ()

FIG. 4. Molecular dipole moments in the presence of an extern
electric field,(a) before switching andb) after switching.

Plzl E Pais pzzi E Pai 2) Be_cause all derivativga; of th_e OP vanished in the single
vV 5 vV 5 domain state, energy minimization of E@&) leads to
(pa>0) (Pa<0)
In other words, in the AFE state the formula units containing
a positive dipole-moment component in thelirection form —
one sublattice with polarizatio,, and the formula units IP1 P=(Pg.«P,)
containing a negative dipole-moment component in #he a3
direction form the other sublattice with polarizati®n. The +B3(3k—«%)]pa=0, (5a)

IF
=2Ap,+[4B;(1+ k%) +4B,
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JF TABLE IV. Equivalence classes of two-domaftwins and an-
— =2Akp,+|4B;(1+ k%) +4B,k? tiphase structures.
P2 _
P=(Pa.«P,)
1 Domain pair Type Relation t&,;
3
+ Bs( Pl 3K) kPz=0. (5b) (51,S) orientation twin {70211
. . S.,S orientation twin 143
In order for Eqs.(5a) and(5b) to give the same solution for (5.5 ] {‘Tbtlﬂfll ab
P, the sum involving thé, and B3 terms must be equal, (51,5 antiphase structure (g3 33}

;_3")’ (6) theory, the pairing set can be much reduced. We find three
classes of two-domain structures to be considered, as listed
yvhich can be written as a fourth-degree polynomial equation, Taple IV along with the type of structure representéu
In & trivial degenerate structure that has the same domain on both
4 3 2 _ sides of the wall is actually a single domain struciute/o
K br" =6k =br+1=0 @) orientation twins, and one antiphase structure.
with b=4B,/Bs. This equation has four roots, We will first consider the orientation twin formed by do-
mainsS; and S,. The domain wall orientation for such a
twin can be determined by strain matchittg? noting that

this transition belongs to the Aiztispecies 2mF222. The
strain allowed domain walls are the planes =y (see Fig.
5). Since properties of the crystal will change only along the
b 1 1 direction normal to this wall, we will rotate to a new coor-
k1= — —— — 16+ b%+ — (16+b?)¥*\ b+ 16+ b?, dinate system so that is normal to the wall. The OP com-
4 4 2v2 ponents(and any other properties of the twithen will be
(%3 functions ofx’ only. This means that the derivatives in the

b 1 1 gradient part of the free energy, E®), can be rewritten as
K= — —+ = 16+ b?+ — (16+b?) Y4\ —b+ \/16+ b2
4 4 2V2 p 1dp dp 1 ap

(9b) (9XH_‘EW' ——r— . (11

ay T3 X

One of the above solutions, E@a), will be less than 1 and
greater than Qi.e., 0<«<1), which is the solution we seek  For such a twin structure, the OP varies across the wall
since it corresponds to the OP in domd&p, with p,>py, from its value inS; to its value inS,,
(see Fig. 1L Because Eq.(7) does not contain any
temperature-dependent terms, the solukawill be tempera- Pa, X ——o Py, X ——o
ture independent. p= , o P2= , .

Oncec is determined, Eq.(® allows the value o, to Po, X' “Pa, X

be determined as a function of the expansion coefficients ify, grder to match the boundary conditions in E4), it is

4B,+B3(3k— k%) =4B,k%+ By

1 1
Kll_K_llKZY__ l (8)

K2

where

(12

Eq. 3): convenient to change the dependent variables
) —2A B
Pa=4B,(1+ k2 + 4B, + By(3k— 1) (10 P1=Paf1t Pofz,
We note that the expansion coefficights temperature de- P>=Ppf1—Pafs. (13

pendentA=Ay(T—T.), so that the amplitude of the order
parameter satisfies the universal relation for a second ordétere, the function$, andf, are normalized order-parameter

phase transition, i.e., components and have simpler boundary conditions
PpePa* VT~ T. f f f
» »
ORDER-PARAMETER PROFILES FOR TWINS AND R v * y y y
ANTIPHASE STRUCTURES = 1 1
Y
The Landau-Ginzburg free energy, E®), allows us to AP ; : y S
describe inhomogeneous structures. We will study both ori- oy Ty 4
entation twins and antiphase structures in the AFE phase,
each composed of two different domains separated by a do- T a4
main wall. Since there are four possible domains in the AFE - = =

state, there will be %4=16 possible pairings of domains
from which we can construct orientation twins or antiphase FIG. 5. Twin structure with a domain wall oriented parallel to
walls. However, using the idea of equivalence in groupthe (110) lattice plane.
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FIG. 6. Numerical solution for the order parameter profile of an

orientation twin withy’ =3.0.

1, X'—»—w 0, X'——oo
f= 0, x'—+’ f2= 1, X' >+ a4

We now apply the Euler-Lagrange equations
d oF JF 10 15
ax ot o, 1712 (15)

and obtain a coupled set of ordinary differential equations

d?f, 3 5
D W=af1+,3fl+ ’yflf y
d?f, 3 )
Dd72=af2+ﬁf2+ ’yflfz, (16)
where
D=(1+«?)(D;+Dj3),
a=(1+k?A, (17

B=p4(1+ k?)?B,+4(1+ k*)By+4k(1— k?)Bg],

y=p2[4(1+ k?)?B, + 24kB,— 12«(1— k?)Bg].

In order to meet the boundary conditions in E@4), we
must have

a+B=0. (18
Thex’ axis can be rescaled to
" _ ! 'B
X"=Xx \fﬁ (19

to arrive at a simplified set of dimensionless equations

d?f, 5 5
W:—fl-i-fl-i- ‘y'flf ,

d*f, 3 2
Wz—fz-i-fz-i-’y’flfz, (20)

where y' = /B is temperature independent. Equatid2)
have been solved for other systéfhand the solutions for
the choice ofy’=3.0 are illustrated in Fig. 6.
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FIG. 7. Dipole arrangement in the vicinity of an antiphase wall
betweenS,; andS;.

For the second type of orientation twin involving domains
S, andS,, the boundary conditions are

X' — —o

X'—+o @D

D= Pa. X'— —o Py
Y =Py, Pa.

We make the following change of variables

X' — + o’ P2=

P1=Paf1—Pof2,

P2=ppf1t+pPafs. (22

The same set of equations, E¢0), for the functionsf; and
f, can be derived and similar solutions can be obtained.

For the antiphase structures, we cannot use the strain
compatibility relations to predict the orientation of the wall
since the strain compatibility relations are automatically sat-
isfied. However, we can simplify the equations to quasi-one-
dimensional using the same procedure described above.
Again, we rotate the coordinate system such thais per-
pendicular to the wall. The derivatives in the gradient part of
the free energy can again be expressed in terms of deriva-
tives in thex’ direction. By defining the new normalized
order parameteg,

P1=Pag:; P2=PrY (23)

and using a rescaling of the space variable similar to(E®).
(but dependent upon the specific orientation of the wale
can simplify the system to a single differential equation for
the functiong,

d?g -

dX//2 (24)

—g+gd°.

For the antiphase structure formed by doma$ijsand S;
(see Fig. 7, the boundary conditions are

~Pa, X' P, X' ==
plz( .y Xt pzz[ Dy, X o]
(25
or
-1, X'——w
g:[l’ X'— 40 (26)

Equation(24) has the analytic solution
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NG tally that the dipoles are actually tilted from tleeand b
gztan?‘(— . (27)  directions.
V2 There are four domain states in the antiferroelectric phase

and they form two distinct orientation twins and one type of
SUMMARY AND CONCLUSIONS antiphase structure. The addition of gradient energy terms in
, the free energy allows us to model multidomain inhomoge-
‘We have proposed a Landau-Ginzburg model based OReqys structures. Numerical solutions for the inhomogeneous
microscopic symmetry to descrlbe. a SECOHQ-OFQGF antiferropp profiles describe the gradual change of the dipole ampli-
electric phase transition. The OP field used is directly correy,qe and orientation across the domain walls. We find that if,
lated to the local dipole moments of the formula units, in-j, the free energy, only the coefficient of the quadratic term
stead of the macroscopically averaged polarization. Oufs assumed to be temperature dependent, the local dipoles
model not only can derive the macroscopic model proposeflaye 5 fixed orientation independent of temperature, while

by Kittel but also can address the dipole tilt and cell doublingihe amplitude of the dipole moment is a function of tempera-
in the antiferroelectric transition. There is no need to assumg, e

separate sublattices in our model.

_ When the antiferroelectric state is switched to a ferrqelec— ACKNOWLEDGMENTS
tric state by an external electric field, our model predicts a
unit cell size twice as large as that of the macroscopic picture This work was sponsored by the Office of Naval Research
obtained from previous investigatiohdhis picture is more under the MRUI Grant and the Grant for Piezocrystal Re-
consistent with the microscopic picture observed experimensource.

1C. Kittel, Phys. Rev82, 729 (1951). tions of Space Groups and Co-Representations of Magnetic
2L. E. Cross, J. Phys. Soc. JiB, 77 (1967. Space Groups$Pruett, Boulder, 1967
®H. Meisteret al, Phys. Rev184, 550 (1969. 104, T. Stokes and D. M. Hatchsotropy Subgroups of the 230
:H. Konwent and J. Lorenc, Phys. Status Solid8& 747(1978. Crystallographic Space Group@Norld Scientific, Singapore,
L. Tenzer, B. C. Frazer, and R. Pepinsky, Acta Crystalldgy. 1988. Internet and DOSPC) versions of this software are
505 (1958. available at URL http://www.physics.byu.edwstokesh/
®R. O. Keeling, Jr. and R. Pepinsky, Z. Kristallogt06, 236 isotropy.html
, (1955. _ 113, Sapriel, Phys. Rev. B2, 5128(1975.
International Tables for Crystallographyedited by T. Hahn 123, Fousek and V. Janovec, J. Appl. Phg8, 135(1969.
(Reidel, Dordrecht, 1983 3K Aizu, J. Phys. Soc. Jpr27, 387 (1969.

8R. Blinc, J. Slak, and I. Zupdiic J. Chem. Phys51, 988(1974. 14
' ' ' W. Cao and G. R. Barsch, Phys. Rev4R 4334(1990.
9S. C. Miller and W. F. LoveTables of Irreducible Representa- y & (1990



