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Landau-Ginzburg model for antiferroelectric phase transitions based on microscopic symmetry
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The only Landau-type model for antiferroelectric phase transitions was proposed by Kittel, in which two
interpenetrating sublattices with opposite polarizations of equal amplitude were assumed. The theory, however,
did not include any mechanism to specify the relative spatial positions of the two sublattices, and therefore
could not address the cell doubling during antiferroelectric phase transitions. We propose a Landau-Ginzburg-
type model based on microscopic symmetry and group theory, which can, without having to assume sublat-
tices, account for all aspects of antiferroelectric states, including local dipole orientation and cell doubling. The
average of these dipoles naturally leads to the Kittel model. The inclusion of gradient terms in the free energy
allows the modeling of multidomain structures and domain walls in antiferroelectric states.
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INTRODUCTION

Kittel1 proposed a macroscopic Landau-type model
the antiferroelectric~AFE! state by introducing two interpen
etrating sublattices with opposite polarizations. His mo
describes a second-order transition from the paraelectric
to the antiferroelectric state, by truncating the free energ
the fourth order:

F5a1~P1
21P2

2!1a2P1P21a11~P1
41P2

4!, ~1!

whereP1 and P2 are the polarizations of the sublattices.
a2.0, the transition will favorP1 andP2 being antiparallel,
making the low-temperature phase antiferroelectric. On
other hand, ifa2,0, the transition will favorP1 and P2
being parallel, and the transition will lead to a ferroelect
state.1–2

This model has the intrinsic limitation that it contain
only local interactions. In other words, there is no mec
nism to fix the spatial relationship between the two sublat
polarizations within the crystal. This local model creates u
certainty in the antiferroelectric state. For example, the s
lattice polarizationsP1 and P2 are assumed at the same l
cation in space~or can be anywhere in space!, which leads to
the cancellation ofP1 and P2 . Such a situation does no
fully describe the antiferroelectric state in which adjace
primitive cells acquire opposite dipole moments and the
cal polarization at any space point is actually nonzero. Us
group-theoretical techniques, we propose a continuum m
for the antiferroelectric state built upon microscopic symm
try. The symmetry allowed distortions associated with
soft mode are given in our model, which accounts for
formation of antiparallel dipoles in adjacent cells. The fr
energy has also been expanded to include gradient term
the order parameter so that multidomain structures, suc
orientation twins and antiphase walls, can be modeled u
the same formulation. Specifically, in this paper we will u
ammonium dihydrogen phosphate~NH4!H2~PO4! ~commonly
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referred to as ADP! as a prototype system to illustrate th
procedure and the characteristics of the antiferroelec
phase transition.

ANTIFERROELECTRIC PHASE TRANSITION

The high-temperature phase of ADP is tetragonal w
space groupI 4̄2d.3–6 Following the notation of theInterna-
tional Tables for Crystallography,7 the conventional~non-
primitive! unit cell contains four formula units. Two of th
formula units are in the primitive cell while the other two a
related by the centering translation~1

2
1
2

1
2!. At TC'

2125 °C, the material undergoes an antiferroelectric tran
tion to an orthorhombic phase with space groupP212121 .6,8

The transition is driven by a zone-boundaryM-point soft
mode and results in ionic displacements that create one
pole moment in each formula unit~four dipoles per AFE unit
cell! as shown in Fig. 1. These dipole moments form a
antiferroelectric polarization along the@100# or @010# of the
parent phase. This means that the fourfold rotational inv
sion axis of the parent paraelectric phase is lost during
transition, which leads to two rotationally related, energe
cally equivalent orientation domain states in the lo
temperature phase. Moreover, the transition cause
primitive-cell doubling~equivalently, the centering point in
the conventional parent cell is lost!, leading to two additional

FIG. 1. Dipoles formed in the antiferroelectric phase of ADP
a conventional cell. The lattice displacement pattern can be ge
ated from group theory.
818 ©2000 The American Physical Society
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antiphase states that are translationally related to the
orientation states. Overall, there are four possible domain
the AFE state of ADP.

GROUP THEORETICAL DESCRIPTION OF THE
TRANSITION

Once the structures and space groups of the high-
low-temperature phases have been determined, the m
scopic positions of the symmetry elements are fixed~we will
use the settings of Ref. 7!, as shown in Fig. 2. Specifically
we note that the three mutually perpendicular twofold scr
axes in the AFE phase do not allow a net dipole moment
the unit cell of the low-temperature phase, although they
allow antiferrolectric polarizations.

TheM-point soft mode driving the transition in ADP ma
be described by the physically irreducibleM3M4

representation,4 which is simply the direct sumM3% M3*
~here we use the labeling of Miller and Love9!. This repre-
sentation carries a two-component order parameter~OP!,
(p1 ,p2), whose values are listed in Table I. Physically, t
OP corresponds to the molecular dipole moments within
a-b plane;p1 represents the component along thea direction,
andp2 represents the component along theb direction. This
OP is a continuum field, which is equal to the dipole mom
at the sites of each formula unit.

Knowing the irreducible representation allows the latt
distortions that arise in the transition to be calculated us
the ISOTROPY10 software package. For simplicity we will re
strict our discussion to distortions arising at Wyckoffa sites
only, which are listed in Table II. These distortions can
used to construct the dipole arrangement within the lo
temperature unit cell. As an example, consider the distorti
that arise in domainS1 , for which the OP is (p1 ,p2)
5(pa ,pb). If pa.pb , the distortions result in the configu

FIG. 2. Microscopic positions of the symmetry elements, cre
ing the antiferroelectric polarization. The AFE unit cell is shown
the dashed line, with origin at~0, 1

4,
3
8!. The screw axes parallel toa

are atz5
3
8 , and the screw axes parallel tob are atz5

1
4 .

TABLE I. Values of the order parameter for different doma
states.

Domain Order parameter

S1 (pa ,pb)
S2 (pb ,2pa)
S3 (2pa ,2pb)
S4 (2pb ,pa)
o
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ro-
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e
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-
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ration shown in Fig. 1, which agree well with the observ
dipolar distribution by Blincet al.8

Figure 1 was constructed based only on the microsco
positioning of the symmetry elements and the allowed d
tortions from group theoretical considerations, as in Fig.
For example, a dipole moment at position~0, 0, 0! necessar-
ily means, by action of the screw axis parallel to thez axis,
an oppositely directed dipole moment at the parent cell c
tering point of ~1

2
1
2

1
2!. The screw axis parallel to thex axis

further implies, from these two dipoles, that the other tw
antialigned dipoles within the AFE unit cell must be prese
Hence, there is no need for defining sublattices and no n
to explain why such sublattices would adopt exactly eq
magnitudes but opposite orientation. More importantly,
spatial relationship between the two sublattices natur
comes out of our model. If a single dipole moment is form
within a parent formula unit, one can generate its coun
parts by symmetry requirements to form the antiferroelec
polarization of the whole unit cell of the low-temperatu
phase. Also, since the dipole moment at the centering p
~1

2
1
2

1
2! is opposite to the dipole moment at~0,0,0!, the dou-

bling of the unit cell size is naturally explained.

HYSTERESIS AND THE RELATION TO THE
SUBLATTICES PROPOSED BY KITTEL

A well-known characteristic of antiferroelectrics is th
double hysteresis loop, as shown in Fig. 3. In the o
dimensional antiferroelectric model proposed by Kittel, the
is no net polarization. However, if an external electric field
applied, the sublattice polarization parallel to the field gro
and the other sublattice polarization opposite to the fi
shrinks, resulting in a net polarization. When the fie
strength becomes sufficiently large, the polarization in
direction opposite to the field abruptly switches orientati
to become parallel to the field, resulting in a ferroelect
state. Because of symmetry constraints, a double hyste

t-

TABLE II. Group theoretically allowed distortions at Wyckoffa
sites in domainS1 .

Position Distortions Relationship to~0,0,0! site

~0,0,0! pa(1,0,0)1pb(0,21,0) $Eu000%
~1

2,
1
2,

1
2! pa(21,0,0)1pb(0,1,0) $C2zu

1
2

1
2

1
2 %

~0,1
2,

1
4! pa(21,0,0)1pb(0,21,0) $C2yu

1
2 1̄ 3

4 %
~1

2,1,34! pa(1,0,0)1pb(0,1,0) $C2xu
1
2 1 3

4 %

FIG. 3. Double hysteresis loop, a characteristic of the antifer
electric state.
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820 PRB 62RICHARD A. HATT AND WENWU CAO
will be produced during such a switching process.2

In our model, we describe the hysteresis in terms of
dipole moments associated with each of the four form
units in an AFE unit cell. Consider an external electric fie
applied to domainS1 , parallel to the¿a direction. This field
will interact with the dipoles, causingpa.0 to increase in
magnitude andpa,0 to decrease in magnitude, as shown
Fig. 4~a!. Note thatpb is not affected in our model. At suf
ficiently large field strength, the dipoles withpa antiparallel
to the external field will flip so thatpa becomes parallel to
¿a, as shown in Fig. 4~b!. This results in a state in which th
dipole components are parallel along thea direction and an-
tiparallel along theb direction. It is a ferroelectric state with
the polarization alonga, but with a cell size twice that of the
Kittel model.

In order to make the connection between our microsco
model and the Kittel macroscopic model, we use the defi
tion of the polarization, which is an average of molecu
dipole moments over a given volumeP5(1/V)Spi . The
sublattice polarizationsP1 and P2 in the Kittel one-
dimensional model can then be defined, in terms of the m
lecular dipole moments in our model, as

P15
1

V (
i

~pa.0!

pai , P25
1

V (
i

~pa,0!

pai . ~2!

In other words, in the AFE state the formula units contain
a positive dipole-moment component in thea direction form
one sublattice with polarizationP1 , and the formula units
containing a negative dipole-moment component in thea
direction form the other sublattice with polarizationP2 . The

FIG. 4. Molecular dipole moments in the presence of an exte
electric field,~a! before switching and~b! after switching.
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difference between the microscopic theory presented h
and macroscopic continuum theory of Kittel is that the lat
cannot provide the spatial relationships among dipoles
adjacent cells, and cannot account for the dipole tilt wh
occurs in the ADP system.

LANDAU-GINZBURG FREE ENERGY BASED ON
MICROSCOPIC SYMMETRY

Adding OP gradient terms to the free energy, i.e., us
the Landau-Ginzburg-type free energy, will allow us to d
scribe inhomogeneous structures, such as orientational t
and antiphase walls. The invariant polynomials of the O
and its derivatives can also be obtained using theISOTROPY

program. In this paper, we have truncated the free energ
the fourth power of the OP to limit our discussions to
second-order transition. We also assume that the OP
varies slowly in space so that only the first derivatives of
OP are included in the free energy. We write

F5Aw~2!1Biw i
~4!1Did i ~ i 51,2,3!, ~3!

where the invariant polynomialsw (2), w i
(4) , andd i are given

in Table III. The coefficientsA5A0(T2Tc), Bi , andDi are
constants.

For single domain states, all derivatives of the OP m
vanish; i.e.,d i50. Considering the single domain stateS1 ,
the two component OP is (pa ,pb) with both pa andpb non-
zero. Since the symmetry of the low-temperature phas
known, the ionic displacements and dipole moments in e
unit cell can be determined experimentally from neutr
scattering. In other words, the ratio of the amplitudesk
5pa /pb can be measured in the antiferroelectric state

pb5kpa . ~4!

Because all derivatives of the OP vanished in the sin
domain state, energy minimization of Eq.~3! leads to

]F

]p1
U

p5~pa ,kpa!

52Apa1@4B1~ l 1k2!14B2

1B3~3k2k3!#pa
350, ~5a!

al

TABLE III. Invariants for the antiferroelectric transition drive
by a soft mode corresponding to theM3M4 irreducible representa
tion.

f (2)5p1
21p2

2

d15S]p1

]x D2

1S]p2

]y D2

f1
(4)5(p1

21p2
2)2

d25
]p1

]x

]p2

]x
2

]p1

]y

]p2

]y

f2
(4)5p1

41p2
4

d35S]p1

]y D2

1S]p2

]x D2

f3
(4)5p1

3p22p1p2
3
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]F

]p2
U

p5~pa ,kpa!

52Akpa1F4B1~11k2!14B2k2

1B3S 1

k
23k D Gkpa

350. ~5b!

In order for Eqs.~5a! and~5b! to give the same solution fo
pa , the sum involving theB2 andB3 terms must be equal,

4B21B3~3k2k3!54B2k21B3S 1

k
23k D , ~6!

which can be written as a fourth-degree polynomial equa
in k:

k41bk326k22bk1150 ~7!

with b54B2 /B3 . This equation has four roots,

S k1 ,2
1

k1
,k2 ,2

1

k2
D , ~8!

where

k152
b

4
2

1

4
A161b21

1

2&
~161b2!1/4Ab1A161b2,

~9a!

k252
b

4
1

1

4
A161b21

1

2&
~161b2!1/4A2b1A161b2.

~9b!

One of the above solutions, Eq.~9a!, will be less than 1 and
greater than 0~i.e., 0,k,1!, which is the solution we see
since it corresponds to the OP in domainS1 , with pa.pb
~see Fig. 1!. Because Eq.~7! does not contain any
temperature-dependent terms, the solutionk will be tempera-
ture independent.

Oncek is determined, Eq. 5~a! allows the value ofpa to
be determined as a function of the expansion coefficient
Eq. ~3!:

pa
25

22A

4B1~11k2!14B21B3~3k2k3!
. ~10!

We note that the expansion coefficientA is temperature de
pendent,A5A0(T2Tc), so that the amplitude of the orde
parameter satisfies the universal relation for a second o
phase transition, i.e.,

pb}pa}ATc2T.

ORDER-PARAMETER PROFILES FOR TWINS AND
ANTIPHASE STRUCTURES

The Landau-Ginzburg free energy, Eq.~3!, allows us to
describe inhomogeneous structures. We will study both
entation twins and antiphase structures in the AFE ph
each composed of two different domains separated by a
main wall. Since there are four possible domains in the A
state, there will be 434516 possible pairings of domain
from which we can construct orientation twins or antipha
walls. However, using the idea of equivalence in gro
n

in

er

i-
e,
o-
E

e

theory, the pairing set can be much reduced. We find th
classes of two-domain structures to be considered, as li
in Table IV along with the type of structure represented~the
trivial degenerate structure that has the same domain on
sides of the wall is actually a single domain structure!: two
orientation twins, and one antiphase structure.

We will first consider the orientation twin formed by do
mains S1 and S2 . The domain wall orientation for such
twin can be determined by strain matching,11,12 noting that
this transition belongs to the Aizu13 species 4̄2mF222. The
strain allowed domain walls are the planesx56y ~see Fig.
5!. Since properties of the crystal will change only along t
direction normal to this wall, we will rotate to a new coo
dinate system so thatx8 is normal to the wall. The OP com
ponents~and any other properties of the twin! then will be
functions ofx8 only. This means that the derivatives in th
gradient part of the free energy, Eq.~3!, can be rewritten as

]p

]x
→6

1

&

]p

]x8
,

]p

]y
→6

1

&

]p

]x8
. ~11!

For such a twin structure, the OP varies across the w
from its value inS1 to its value inS2 ,

p15H pa , x8→2`

pb , x8→1`
, p25H pb , x8→2`

2pa , x8→1`
. ~12!

In order to match the boundary conditions in Eq.~12!, it is
convenient to change the dependent variables

p15paf 11pbf 2 ,

p25pbf 12paf 2 . ~13!

Here, the functionsf 1 and f 2 are normalized order-paramete
components and have simpler boundary conditions

TABLE IV. Equivalence classes of two-domain~twins and an-
tiphase! structures.

Domain pair Type Relation toS1

(S1 ,S2) orientation twin $sbdu0
1
2

1
4 %

(S1 ,S4) orientation twin $sbdu
1
2 1 3

4 %
(S1 ,S3) antiphase structure $Eu 1

2
1
2

1
2 %

FIG. 5. Twin structure with a domain wall oriented parallel

the (11̄0) lattice plane.
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f 15H 1, x8→2`

0, x8→1`
, f 25H 0, x8→2`

1, x8→1`
. ~14!

We now apply the Euler-Lagrange equations

d

dx8

]F

] f i ,x8
5

]F

] f i
~ i 51,2! ~15!

and obtain a coupled set of ordinary differential equation

D
d2f 1

dx82 5a f 11b f 1
31g f 1f 2

2,

D
d2f 2

dx82 5a f 21b f 2
31g f 1

2f 2 , ~16!

where

D5~11k2!~D11D3!,

a5~11k2!A, ~17!

b5pa
2@4~11k2!2B114~11k4!B214k~12k2!B3#,

g5pa
2@4~11k2!2B1124k2B2212k~12k2!B3#.

In order to meet the boundary conditions in Eq.~14!, we
must have

a1b50. ~18!

The x8 axis can be rescaled to

x95x8Ab

D
~19!

to arrive at a simplified set of dimensionless equations

d2f 1

dx92 52 f 11 f 1
31g8 f 1f 2

2,

d2f 2

dx92 52 f 21 f 2
31g8 f 1

2f 2 , ~20!

whereg85g/b is temperature independent. Equations~20!
have been solved for other systems14 and the solutions for
the choice ofg853.0 are illustrated in Fig. 6.

FIG. 6. Numerical solution for the order parameter profile of
orientation twin withg853.0.
For the second type of orientation twin involving domai
S1 andS4 , the boundary conditions are

p15H pa , x8→2`

2pb , x8→1`
, p25H pb , x8→2`

pa , x8→1`
. ~21!

We make the following change of variables

p15paf 12pbf 2 ,

p25pbf 11paf 2 . ~22!

The same set of equations, Eqs.~20!, for the functionsf 1 and
f 2 can be derived and similar solutions can be obtained.

For the antiphase structures, we cannot use the st
compatibility relations to predict the orientation of the wa
since the strain compatibility relations are automatically s
isfied. However, we can simplify the equations to quasi-o
dimensional using the same procedure described ab
Again, we rotate the coordinate system such thatx8 is per-
pendicular to the wall. The derivatives in the gradient part
the free energy can again be expressed in terms of de
tives in thex8 direction. By defining the new normalize
order parameterg,

p15pag, p25pbg ~23!

and using a rescaling of the space variable similar to Eq.~19!
~but dependent upon the specific orientation of the wall!, we
can simplify the system to a single differential equation
the functiong,

d2g

dx92 52g1g3. ~24!

For the antiphase structure formed by domainsS1 and S3
~see Fig. 7!, the boundary conditions are

p15H 2pa , x8→2`

pa , x8→1`
, p25H 2pb , x8→2`

pb , x8→1`
,

~25!

or

g5H 21, x9→2`

1, x9→1`
. ~26!

Equation~24! has the analytic solution

FIG. 7. Dipole arrangement in the vicinity of an antiphase w
betweenS1 andS3 .
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g5tanhS x9

&
D . ~27!

SUMMARY AND CONCLUSIONS

We have proposed a Landau-Ginzburg model based
microscopic symmetry to describe a second-order antife
electric phase transition. The OP field used is directly co
lated to the local dipole moments of the formula units,
stead of the macroscopically averaged polarization. O
model not only can derive the macroscopic model propo
by Kittel but also can address the dipole tilt and cell doubl
in the antiferroelectric transition. There is no need to assu
separate sublattices in our model.

When the antiferroelectric state is switched to a ferroel
tric state by an external electric field, our model predict
unit cell size twice as large as that of the macroscopic pic
obtained from previous investigations.2 This picture is more
consistent with the microscopic picture observed experim
-

n
o-
-

-
r
d

e

-
a
re

n-

tally that the dipoles are actually tilted from thea and b
directions.

There are four domain states in the antiferroelectric ph
and they form two distinct orientation twins and one type
antiphase structure. The addition of gradient energy term
the free energy allows us to model multidomain inhomog
neous structures. Numerical solutions for the inhomogene
OP profiles describe the gradual change of the dipole am
tude and orientation across the domain walls. We find tha
in the free energy, only the coefficient of the quadratic te
is assumed to be temperature dependent, the local dip
have a fixed orientation independent of temperature, w
the amplitude of the dipole moment is a function of tempe
ture.
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