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Universality of the Kondo effect in a quantum dot out of equilibrium
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We study the Kondo effect in a quantum dot subject to an external ac field. The Kondo effect can be probed
by measuring the dc current induced by an auxiliary dc biasVdc applied across the dot. In the absence of ac
perturbation, the corresponding differential conductanceG(Vdc) is known to exhibit a sharp peak atVdc50,
which is the manifestation of the Kondo effect. There exists only one energy scale, the Kondo temperatureTK ,
which controls all the low-energy physics of the system;G is some universal function ofeVdc/TK . We
demonstrate that the dot driven out of equilibrium by an ac field is also characterized by a universal behavior:
the conductanceG depends on the ac field only through two dimensionless parameters, which are the frequency
v and the amplitude of the ac perturbation, both divided byTK . We analytically find the large- and small-
frequency asymptotes of the universal dependence ofG on these parameters. The obtained results allow us to
predict the behavior of the conductance in the crossover regime\v;TK .
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I. INTRODUCTION

The Kondo effect results from an exchange interaction
itinerant electrons with a localized spin state. This interact
leads to local spin-polarization of the electron gas. The
larization becomes significant only at low temperatures,
to the existence of collective states1 with small excitation
energies. Simultaneously with the modification of the s
susceptibility, the scattering properties of conduction el
trons are significantly modified. The modification is esp
cially striking in the case of antiferromagnetic exchange
teraction, when the ‘‘spin cloud’’ formed out of free-electro
gas tends to screen the magnetic moment of the local
state. In this case, the scattering cross section grows a
temperature is lowered, and reaches the unitary limit aT
→0. This phenomenon is responsible for the nonmonoto
temperature behavior of the resistivity of metals with ma
netic impurities at low temperatures, which was the first
perimentally observed manifestation of the Kon
resonance.1 However, the system of magnetic impurities em
bedded in a metal sample does not offer much control o
the parameters even at the stage of fabrication of the sam
let alone allow a dynamic variation of the parameters in
course of an experiment.

Another class of systems, whose transport properties
also be affected by the Kondo effect, but which offer a mu
higher degree of control over the system parameters, is
vided by quantum dots. A quantum dot in a semiconduc
planar heterostructure is a confined few-electron system
tacted by sheets of two-dimensional electron gas~leads!. If
the total number of electrons on the dot is odd, then the
is similar to a magnetic impurity. Junctions between the
and the leads produce an overlap of the states in the dot
in the two-dimensional~2D! leads. This overlap leads to a
exchange interaction between the spin of the dot and spin
the itinerant 2D electrons. At sufficiently low temperatures
‘‘spin screening cloud’’ is formed by the electrons in th
leads. As in bulk metals, the scattering off the result
many-body state is enhanced as the temperature is lowe
PRB 620163-1829/2000/62~12!/8154~17!/$15.00
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and reaches the unitary limit atT→0. The only difference is
in how the Kondo resonance is manifested in bulk met
and in the quantum dot systems. In bulk metals, the enha
ment of scattering by the Kondo resonance increases the
sistivity. In quantum dot systems, conversely, the enhan
scattering facilitates transport through the dot. The Kon
effect results in a specific temperature dependence of
linear conductance across the dot. If the temperature is l
ered, the conductance first drops due to the Coulomb blo
ade phenomenon,2 and then increases again due to the Kon
effect.3 At T→0, the conductanceG reaches its maximum
which corresponds to the unitary limit of tunneling. R
cently, the Kondo effect in a quantum dot was observ
experimentally.4–6

Quantum dot devices are highly controllable, and can
operated in regimes inaccessible in conventional magn
impurity systems, that were used previously for studying
Kondo effect. Irradiation of a quantum dot with an ac fie
offers a clever way of affecting its dynamics, which enab
one to study the Kondo anomaly under fundamentally n
equilibrium conditions. An ac field can be applied to th
gate, thus modulating the dot’s potential with respect to
leads; alternatively, one may apply ac bias to the leads
any case, driving the system out of equilibrium affects the
conductance discussed above. Measuring the dcI -V charac-
teristics, one can investigate the effects of the irradiation
the Kondo anomaly.

A generic theoretical description of a quantum dot use
significant number of parameters and energy scales to
scribe the system. Nevertheless, in the case of no ac fie
turns out that the low-energy properties of the quantum
system which are related to the Kondo effect are contro
by only one relevant energy scale, which is the Kondo te
peratureTK . The Kondo temperature, in turn, depends
the microscopic parameters of the system, e.g., on the
voltage and conductances of the dot-lead junctions. S
universality allows for easier understanding and descript
of the problem.

The ac field introduces new parameters to the proble
thus apparently breaking the universal description, which
valid in the static case. This re-emerging abundance of
8154 ©2000 The American Physical Society
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rameters makes it difficult to build a consistent description
the effects of the ac field on the Kondo conductance. T
theoretical work performed up to now concentrated on so
specific regimes. Goldin and Avishai7 considered the case o
very strong ac bias with the help of third-order perturbat
theory in the dot-lead coupling. Nordlanderet al.8 analyzed
the effects of ac field of sufficiently high frequency to ioni
the dot. They conjectured that even at a temperatureT50 of
the thermal bath, the finite rate of dot ionization results in
finite effective temperature ‘‘seen’’ by the Kondo state.
this way, irradiation provides the cutoff for the Kondo si
gularity and reduces the conductance. Later,
demonstrated9 that even in the absence of dot ionizatio
irradiation is able to flip the spin of the dot, thus decoher
the Kondo state and diminishing the Kondo effect. In ad
tion to analytical methods, a number of numerical a
proaches have been used8,10 to study the conductance of
Kondo system out of equilibrium at certain sets of values
the bare parameters of the system. Because of the large
ber of parameters involved, the results of such calculati
are hard to analyze. At any rate, such a consideration c
not reveal the universalities of the problem. In our view,
also cannot provide an insight into the regimes which do
allow for a perturbative treatment.

In our earlier paper9 we showed how to apply the
renormalization-group~RG! technique to a Kondo system
out of equilibrium, allowing us to sum the infinite series
perturbation theory in the dot-lead coupling. This treatme
valid at relatively high decoherence rates, yielded an exp
sion for conductance as a function of only one parameter:
ratio of the decoherence rate\/t to the Kondo temperature
Thus we established that the Kondo temperatureTK remains
a meaningful parameter of the theory, even if the ac fi
strongly suppresses the manifestations of the Kondo eff
We do not see a way, however, of measuring the deco
ence rate directly. Moreover, the definition of this quantity
Ref. 9 makes sense only at a high frequency of the ac fi
\v@TK . Therefore, the dimensionless ratio\/tTK cannot
be the only parameter describing the effect of an ac field
the Kondo system.

In this paper, we find the correct dimensionless variab
that characterize the amplitude and frequency of the ac fi
perturbing the Kondo system. If the ac field is applied a
bias across the dot, then the proper variables areeVac/TK
and\v/TK , whereVac is the amplitude of the ac bias. Th
ac field applied to the gate acts as an auxiliary gate volta
and yields parametric variationsdTK of the Kondo tempera-
ture. The strength of the perturbation introduced by suc
field is characterized by the dimensionless variabledTK /TK .
In terms of the proper pair of variables, the behavior of
Kondo conductance is universal. We find analytically t
asymptotes of the universal dependence by further deve
ing the RG treatment~valid in the case of a strong suppre
sion of the Kondo effect!, and by generalizing Nozie`res’
Fermi-liquid theory11 to the nonequilibrium case~which ad-
equately describes the limit of weak perturbation by a lo
frequency field!.

Within this picture, we are able to describe in a consist
way the effect of irradiation over a wide range
frequencies—from zero to the dot ionization threshold; t
includes the regime most interesting for curre
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experiments:12 \v;TK . The remarkable feature of our de
scription is that the Kondo temperature remains the only
evant energy scale, despite the essentially nonequilibr
character of the problem.

The outline of our paper is as follows. In Sec. II we i
troduce the description of the system by means of the tim
dependent Kondo Hamiltonian. Then we derive the expr
sion for the Kondo conductance of the dot in the absence
ac field. The purpose of this derivation is to present a f
malism which later will be suitable to describe the noneq
librium states produced by the irradiation.

In Secs. III–VI we consider the effect of ac modulation
the gate voltage on the Kondo conductance. At higher
quencies\v/TK*1, the decoherence of the Kondo man
body state is the principal channel via which the ac fie
influences the Kondo anomaly. This frequency domain
considered in Secs. III–IV. Depending on the strength of
modulation,dTK /TK , the suppression of the Kondo condu
tance is significant~Sec. III! or relatively weak~Sec. IV!. In
Sec. V we consider the limit of very small frequencies of t
ac field. The decoherence probability in these conditions
exponentially small. However, the adiabatic evolution of t
collective state, caused by the ac modulation, affects its s
tering properties. This results in a small deviation of t
conductance from the unitary limit. The results of Se
III–V are summarized in Sec. VI.

In Sec. VII we consider the effect of ac bias on the Kon
conductance. It turns out that a strong suppression of
Kondo effect is possible only ifeVac/TK@1. Upon increas-
ing the frequency, the suppression diminishes. This
quency dependence is opposite to the one in the case of
voltage modulation.

In Sec. VIII we consider satellite peaks in theI -V char-
acteristic of a quantum dot which can be created by irrad
tion. Finally in Sec. IX we compare experimental results12

with our theory.

II. KONDO EFFECT IN A QUANTUM DOT

A. Model

The system we study is a quantum dot attached to
leads by high-resistance junctions, so that the charge of
dot is nearly quantized. The Kondo effect emerges in a qu
tum dot occupied by an odd number of electrons at temp
tures below the mean level spacing in the dot. Under s
conditions, the topmost occupied level is special, since i
filled by only one electron. It is this level which produces t
Kondo effect. The other levels, occupied by two electrons
zero, are unimportant in our discussion13 ~similarly to the
inner shells of a magnetic impurity in the convention
Kondo effect!. Therefore, the model of a dot attached to tw
leads can be truncated to the Anderson single-level impu
model

Ĥ5 (
k,s,a

~jk1eVa!cksa
† cksa1 (

k,s,a
~vacksa

† ds1H.c.!

1(
s

~2Ed1eVdotcosvt !ds
†ds1Ud↑

†d↑d↓
†d↓, ~1a!
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1

2
@Vdc1Vac cos~v8t1f0!#,

Ga[2pnuvau2. ~1b!

Here the first two terms correspond to noninteracting e
trons in the two leads (a5L,R), and tunneling of free elec
trons between the dot and leads, respectively. The dot i
is described by the third and fourth terms of the Hamiltoni
whereEd andU2Ed are the ionization and electron additio
energy, respectively. The tunneling matrix elementsva are
related to the tunneling ratesGa by Eq. ~1b!, wheren is the
density of states in a lead. The ac field can be applied to
gate, which is coupled to the dot capacitively, and thus
modulate the energy of the electron localized in the dot w
amplitudeeVdot. The leads can be either simply dc biase
or an additional ac bias can be applied.

B. Time-dependent Schrieffer-Wolff transformation

In the present paper we consider the dot in the Kon
regime:U2Ed ,Ed@GL,R . Under such conditions, the num
ber of electrons on the dot is a well-defined quantity. In
limit of no tunneling, the ground state of the system d
scribed by Hamiltonian~1! is doubly degenerate due to th
spin of the~single! electron which occupies the leveld. The
states with two or zero electrons on the dot are highe
energy byU2Ed or Ed, respectively, and are not importa
for the low-energy dynamics of the system. In our paper,
study the irradiation effects when the applied fields do
drive the dot out of the Kondo regime:

$eVdc,eVdot,eVac%,$Ed ,U2Ed%. ~2!

Therefore, the excited states with two or zero electrons
the dot are to be projected out. This can be achieved by
Schrieffer-Wolff transformation,14 modified to account for
the time dependence of the parameters of Hamiltonian~1!. In
the present subsection we perform this transformation, wh
finally yields a description of the quantum dot system
terms of the Kondo Hamiltonian with time-dependent para
eters.

First we move all dependence of the Hamiltonian on
applied voltagesVdot, Vdc, andVac to the off-diagonal terms
This is achieved by the unitary transformation

U5expH 2
ie

\ E
t

dt8F (
k,s,a

Va~ t8!cksa
† cksa

1Vdot~ t8!ds
†dsG J . ~3!

After this transformation, the Hamiltonian has the form

Ĥ85UĤU†2 i\
]U

]t
U†

5 (
k,s,a

jkcksa
† cksa1 (

k,s,a
@ ṽa~ t !cksa

† ds1H.c.#

1(
s

~2Ed!ds
†ds1Ud↑

†d↑d↓
†d↓ , ~4!
-
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ṽa~ t ![vaexpH 2
ie

\ E
t

dt8@Va~ t8!2Vdot~ t8!#J . ~5!

Now we can make the time-dependent Schrieffer-Wo
transformation, which is defined by the unitary operator

W5exp~V!, ~6!

with

V5 (
k,s,a

$@wka
(1)~ t !~12n2s!1wka

(2)~ t !n2s#ds
†cksa2H.c.%.

~7!

The functionswka
( j )(t) are found from the condition

05Ĥv1@V,Ĥ1#2 i\
]V

]t
, ~8!

whereĤv is the part of Hamiltonian~4! responsible for mix-
ing of electron states in the leads and in the dot@the second
term of Eq. ~4!#, and Ĥ1 describes the uncoupled dot an
leads@the other terms in Eq.~4!#. Condition~8! ensures that
the resulting HamiltonianWĤ8W† has no linear-in-va terms,
which allows variations in the number of electrons in the d

The only difference of the transformation~6!-~7! from the
conventional Schrieffer-Wolff transformation14 is the time
dependence ofwka

( j ) . For the static Anderson Hamiltonian
these factors are constant; in our case they are function
time because of the time variations of Hamiltonian~1!. Solv-
ing Eq. ~8! for wka

(1)(t), we obtain

wka
(1)~ t !5F2 i E t

dt8ei (jk2Ed)t8/\ṽa~ t8!Ge2 i (jk2Ed)t/\.

~9!

When the ac fields applied to the dot are slow enou
$\v,\v8%!$U2Ed ,Ed%, one can solve Eq.~8! in the adia-
batic approximation, neglecting the third term in it. This a
proach yields a simplified expression forwka

(1)(t):

wka
(1)~ t !'

ṽa~ t !

Ed2eVa~ t !1eVdot~ t !
. ~10!

Here we have also neglected the single-electron energiejk
because the Kondo effect is produced by states close to
Fermi level, whose energies are small in comparison toEd .
The formulas forwka

(2)(t) are analogous to Eqs.~9! and~10!,
only Ed must be replaced byEd2U.

Applying the modified Schrieffer-Wolff transformatio
~6!-~7! to Hamiltonian~4!, we come to the Kondo Hamil-
tonian

ĤK5Ĥ01ĤJ , Ĥ05 (
k,s,a

jkcksa
† cksa , ~11a!

ĤJ5 (
k,s,a

k8,s8,a8

Jaa8~ t !S 1

4
dss81Ŝlsss8

l D cksa
† ck8s8a8 ,

~11b!
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where ŝ and Ŝ are the spin operators of the electrons in t
leads and of the electron on the isolated level, respectiv
we assume a summation over the repeating indicel
5x,y,z. In the framework of Hamiltonian~11!, the state of
the dot is fully described by its spin. The terms of the And
son Hamiltonian~1!, that are responsible for the electro
tunneling to and from the dot, and for the Coulomb intera
tion of electrons in the dot, have been transformed to
term ĤJ of the Kondo Hamiltonian~11!. This term repre-
sents an exchange interaction between the spin of the do
that of the electrons in the leads. Hamiltonian~11! operates
within the band2Ed,jk,U2Ed ; see Ref. 15. The cou
pling parametersJaa8(t) are given by

Jaa8~ t !5 ṽa~ t !@2wk8a8
(1)

~ t !1wk8a8
(2)

~ t !#* 1C.c. ~12!

The applied bias is accounted for by the time dependenc
Jaa8(t) with a5” a8. The dependence of the right-hand si
of Eq. ~12! on the indicesk is negligible near the Fermi leve
therefore, we can disregard this dependence in the coup
constantsJ.

In this paper, we are primarily interested in the irradiati
effects when the applied fields are unable to ionize the d

$eVdc,eVdot,eVac%!$Ed ,U2Ed%,

$\v,\v8%!$Ed ,U2Ed%.

Under these conditions, one can use the approximate solu
@Eq. ~10!# of Eq. ~8!, expanding it in powers of small param
eterseVdot/Ed , eVdot/(U2Ed), etc. For simplicity we will
consider the cases when the system is affected by only
kind of ac field: either ac voltage applied to the gate, or
ac bias.

In the former case—eVdot5” 0 and eVac50—we obtain
the following expression for the coupling parameters:

Jaa8~ t !5J aa8
(0)

@11g cosvt#expF ie

\
~Vdc,a2Vdc,a8!t G ,

~13!

where the exchange constantsJ aa8
(0) are given by

J aa8
(0) [

AGaGa8

pnẼd

, Ẽd[
~U2Ed!Ed

U
. ~14!

The exponential factor in Eq.~13! is due to the dc bias
which produces a phase difference between the electron
the left and right leads. The cosine term accounts for
applied ac field, and stems from the adiabatic variation of
electron energy in the dot,Ed1eVdot(t); see Eq.~10!. The
strength of the applied ac field is characterized by the dim
sionless parameter

g[eVdot

2Ed2U

~U2Ed!Ed
!1. ~15!

If the ac field is applied to the leads rather than to
gate—eVdot50 and eVac5” 0—the expressions forJaa8(t)
read

Jaa~ t !5J aa
(0) ,
y;
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JLR~ t !5J LR
(0)expF ieVdct

\
1 ig8 sin~v8t1f0!G , ~16!

where Jaa8
(0) is given by Eq.~14!. The ac bias creates th

phase difference between the electrons in the left and r
leads, and therefore enters the exponent in Eq.~16! together
with the dc bias. The relevant parameter characterizing
strength of the ac perturbation here is

g8[
eVac

\v8
. ~17!

The variation of the electron energy in the dot with respec
the Fermi level of the leads,Ed6eVac(t) @see Eq.~10!#,
generates a term smaller by a factor of;\v8/Ẽd , and is
neglected in Eqs.~16!.

In the limit of small amplitude of ac bias,g8!1, expres-
sions~16! for Jaa8(t) may be further simplified by dropping
terms of high orders ing8. Expanding the right-hand sides o
Eq. ~16! in powers ofg8 up to the first power, we arrive a

Jaa~ t !5J aa
(0) ,

JLR~ t !5J LR
(0)expF ieVdct

\ G@11 ig8 sin~v8t1f0!#. ~18!

C. Kondo conductance in equilibrium

In the framework of the Kondo Hamiltonian@Eqs.~11!–
~12!#, two types of tunneling between the left and right lea
are possible: regular elastic cotunneling@the first term in pa-
rentheses in Eq.~11b!#, and ‘‘exchange cotunneling’’~the
second term!. In an act of ‘‘exchange cotunneling,’’ simul
taneous flipping of the spins of the tunneling electron and
dot can occur. In the case of weak coupling (nuJaa8

(0) u!1),
one may apply perturbation theory to evaluate the cond
tance through the dot. It turns out that atT→0, the higher-
order terms of the perturbation theory series grow, fina
making the series diverge, signaling the Kondo anoma
This phenomenon was extensively studied for magnetic
purities in metals.1 In Sec. II C we demonstrate how a simila
behavior emerges in the tunneling through a quantum
The main purpose of the current subsection is to prese
formalism which is suitable for a treatment of the noneq
librium case at hand. For simplicity, we first consider t
case of no ac field. Effects of the ac field are introduced
subsequent sections.

Unlike the conventional treatment of the Kondo problem1

we have to consider the Kondo anomaly directly in the co
ductance, rather than in the scattering amplitude. This n
emerges from the kinetic nature of the problem atg,g85” 0.
To calculate the differential dc conductanceG(Vdc), we em-
ploy the nonequilibrium Keldysh technique in the time re
resentation. In this formalism,

G~Vdc!5
]

]Vdc
^S~2`,0! Î ~0!S~0,2`!&0 , ~19!

and
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Î ~ t !5
ie

\ (
k,s

k8,s8

FJLR~ t !S 1

4
dss81Ŝlsss8

l D cksL
† ck8s8R

2H.c.G ~20!

is the current operator, whileS(t2 ,t1) is the evolution matrix
determined byĤJ .

In the lowest nonvanishing~second! order of the pertur-
bation theory in the coupling constantJ aa8

(0) , the conduc-
tance of the dot is given by the expression

G(2)5p2
e2

p\
n2@J LR

(0)#2. ~21!

Logarithmic divergences appear starting from the terms
third order inJaa8

(0) . A representative term has the followin
structure:

e2

p\

@J LR
(0)#2J RR

(0)

\3 E
2`

0

dt1E
t1

0

dt2^Ŝj~0!Ŝk~ t1!Ŝl~ t2!&

3« jkl@ t1cos~eVt1 /\!1t2 cos~eVt2 /\!#

3 (
k1 ,k2 ,k3

Gk1
~2t2!Gk2

~ t22t1!Ḡk3
~ t1!. ~22!

Here « jkl is the antisymmetric unit tensor, andGk(t) and
Ḡk(t) are the time-ordered and anti-time-ordered Gre
functions of free electrons in the leads, given by

Gk~ t !5H 2 i [12 f ~jk!] if t.0,

i f ~jk!] if t,0,
~23!

with f (j) being the Fermi distribution function. This term
and other terms of the same structure yield the Kondo div
gence in the conductance.

If there is no external ac field, the averag

^Ŝj (t1)Ŝk(t2)Ŝl(t3)& are independent of time and equal
( i /4)« jkl . After adding up all the terms cubic inJ aa8

(0) in the
expression for the conductanceG @one of them is given by
Eq. ~22!#, summing over the electron stateski , and perform-
ing the integration overt2 @see Eq.~22!#, we arrive at

G(3)~T,Vdc!5
3p2

2

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)#

3E
2`

0

dt
~2t !cos~eVdct/\!

sinh2~pTt/\!1~T/D0!2 S pT

\ D 2

.

~24!

Here

D0[AEd~U2Ed! ~25!

is the effective bandwidth.15 Hereafter we measure temper
ture in units of energy, and therefore omit the Boltzma
constantkB . For the sake of simplicity, from now on we wi
mostly consider the zero-bias conductanceGpeak. In this
case, Eq.~24! yields
f

n

r-

n

Gpeak
(3) ~T!5

3p2

2

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)# ln
D0

T
. ~26!

The results for the finite-bias conductanceG(3)(Vdc), with
eVdc@T, can be obtained from Eq.~26! by replacingT with
eVdc.

Thus the second@Eq. ~21!# and third@Eq. ~26!# orders of
perturbation theory in the coupling constantJaa8

(0) yield the
following expression for the dot conductance:

Gpeak5
3p2

4

e2

p\
n2@J LR

(0)#2F112n~J RR
(0)1J LL

(0)!ln
D0

T G
1

p2

4

e2

p\
n2@J LR

(0)#2. ~27!

Here we have split the quadratic contribution inJ aa8
(0) @Eq.

~21!# in two: one part is due to the ‘‘exchange cotunneling
which entered the first term in Eq.~27!; and one part is due
to regular cotunneling, which became the last term in E
~27!. The cubic term inJ aa8

(0) in Eq. ~27! grows as the tem-
perature is lowered, demonstrating the Kondo anomaly.
regular cotunneling does not produce terms growing
low temperatures and bias, and does not contribute to
Kondo effect. Equation ~27! is valid when T@TK

;D0 exp@1/n(J LL
(0)1J RR

(0))#.
If this condition is not satisfied, then the expansion up

terms cubic inJaa8
(0) is insufficient. AtT*TK , the conduc-

tance can be derived in the leading logarithmic approxim
tion. This consists of a summation of the most divergi
terms at each order inJ aa8

(0) , i.e., terms proportional to

@J LR
(0)#2@J aa8

(0) ln(D0 /T)#n in the series forG. To perform this
summation, we modify the ‘‘poor man’s scaling
technique.16 In the framework of this technique, the electro
bandwidthD is gradually reduced, and the exchange co
stants in the Kondo Hamiltonian~11! are renormalized to
compensate for this band reduction, i.e.,Jaa8

(0) is replaced
with someJaa8(D) . The proper dependence ofJaa8 on D
should be derived from the condition of invariance of phy
cal quantities with respect to the RG transformation. Fina
the renormalized Hamiltonian with reduced bandwidth w
allow for a calculation of the conductance in second orde
perturbation theory in the renormalized exchange const
Jaa8 ; the resulting expression will be equal to the sum
the dominant terms of all orders in perturbation theory in
initial, bare exchange constantsJ aa8

(0) (D5D0).
For the nonequilibrium system we consider, RG equatio

for the exchange constants should be derived from the c
dition of the invariance of the linear conductance~or current!
under the RG transformation, rather than the invariance
the scattering amplitudes. In the main logarithmic appro
mation which we are going to employ, the~invariant! con-
ductance must be evaluated in the two lowest nonvanish
orders of the perturbation theory, namely, the second
third orders@see Eqs.~21! and~24!#. The Kondo divergence
~and, therefore, the renormalization ofJaa8) occur due to
exchange scattering@the second term in braces in Eq.~11b!#
only. Therefore, we single out this contribution in the term
second order inJaa8 :
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Gexch
(2) ~D !5

3p2

4

e2

p\
n2@J LR

(0)~D !#2. ~28!

In third order in the exchange constants, the conductanc
given by Eq.~24!. The resulting condition of invariance ofG
under the transformation, which corresponds to ‘‘poor ma
scaling,’’ has the following form:

]

]D H Gexch
(2) ~D !1

3p2

2

e2

p\
n3@JLR#2@JRR1JLL# ln

D

T J 50.

~29!

Within the accuracy of this equation, when differentiati
the second term, we should neglect any implicit depende
on D through the parametersJaa8(D).

Equation~29!, together with Eq.~28!, yields the equation
for the evolution ofJLR under scaling:

dJLR

dD
5n

JLR~JRR1JLL!

D
. ~30!

The corresponding equations forJRR andJLL can be derived
from the condition of invariance of other physical quantiti
under the RG transformation. For this purpose, we pick
spin currents from the left and right lead,

I a
(s)5^S~2`,0! Î a

(s)~0!S~0,2`!&0 , ~31!

Î a
(s)~ t ![ i F ĤJ ,(

k
~ck↑a

† ck↑a2ck↓a
† ck↓a!G , ~32!

which is induced by applying infinitesimal magnetic field
the leads to create spin polarization there. The resulting
equations will be independent, in contrast to the correspo
ing equations for the charge, because the spin of the dot
vary while the charge cannot in the Kondo regime.

EvaluatingI a
(s) in second and third orders of perturbatio

theory inJ aa8
(0) , similarly to Eq.~27!, and differentiating it

by D, we arrive at

dJRR

dD
5n

J RR
2 1J LR

2

D
, ~33!

dJLL

dD
5n

J LL
2 1J LR

2

D
. ~34!

Equations~30!, ~33!, and ~34! make a complete system
which, with the initial conditions

Jaa8~D0!5Jaa8
(0) [

AGaGa8

pnẼd

~35!

@See Eq.~14!#, yields

JLR~D !5
2AGLGR

GL1GR

1

2n ln~D/TK!
. ~36!

The Kondo temperatureTK is given here by

TK5mA~GL1GR!U

p
expF2

pẼd

~GL1GR!
G , ~37!
is

s

ce

e

o
d-
an

with m;1. To obtain the pre-exponential facto
A(GL1GR)U/p in the equation forTK , one in fact has to
include the next order inJaa8(D) in the RG equations; se
Ref. 15.

The renormalization should proceed until the bandwid
is reduced toT. After that, the current and conductance c
be calculated in the Born approximation@Eq. ~28!# in the
renormalized exchange constantJLR given by Eq.~36! with
D5T. The resulting expression for the conductance in
domainT*TK is

Gpeak5
3p2

16

1

@ ln~T/TK!#2
GU , ~38!

where

GU[
e2

p\

4GLGR

~GL1GR!2
~39!

is the conductance of the dot in the unitary limit of tunnelin
At T@TK , one can expand Eq.~38! into a series in pow-

ers ofJaa8
(0) ln(D0 /T). The first term of the series is the con

ductance calculated in the Born approximation@see Eq.
~28!#, and the second term yields the lowest order Kon
correction given by Eq.~26!.

The RG technique can be also used to derive the dep
dence of Kondo conductance on the applied dc bias in
domain eVdc*TK , eVdc.T. Starting from Eqs.~24! and
~28!, and proceeding along the lines of Eqs.~29!–~36!, we
arrive at

G~Vdc!5
3p2

16

1

@ ln~eVdc/TK!#2
GU . ~40!

Thus the renormalization-group technique@Eqs. ~29!–
~38!# allows one to perform a summation of infinite series
perturbation theory in the exchange constantsJaa8

(0) . The re-
sults obtained in this way are valid in a wider domain
parameters than results of the finite-order perturbat
theory. The RG technique reveals the meaning of the ene
scaleTK : The resulting expressions~38! and~40! for physi-
cal quantities contain the single relevant characteristic of
system,TK , rather than numerous parameters of the And
son Hamiltonian@Eq. ~1a!#. For example, in Eq.~38! the
dependence of the differential conductance on the app
bias is expressed in terms of the dimensionless varia
T/TK . The dependence ofG/GU on this variable is given by
some universal function for any value ofT/TK ;1 its high-
temperature asymptote@Eq. ~38!# is established with the help
of the RG technique. Similarly, the frequency and magnitu
of the applied ac field may enter into some new univer
formulas forG/GU in the form of dimensionless variables
normalized byTK . The generalization of the RG techniqu
which we presented in this section will allow us to check t
validity of this conjecture, and to establish the asymptotes
these new universal dependences.

III. SPIN DECOHERENCE BY AC GATE VOLTAGE

Now we include into consideration the effects of an
field. As we have shown in our earlier paper,9 the ac field can
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decohere the dynamics of the dot’s spin, thus affecting
Kondo conductance. We start our study of the irradiatio
modified Kondo anomaly by considering the decoherenc

A. Mechanisms of spin decoherence

In terms of the Anderson Hamiltonian@Eq. ~1a!#, the loss
of coherence by the dot spin occurs when an electron lea
the dot and another electron, with the opposite spin, ente
If the frequency of the applied ac field is large enough,\v
.Ed ,U2Ed , this process can consist of two real process
the dot is ionized by the ac field, and then an electron from
lead enters the dot to fill the vacancy. Alternatively, an ex
electron can be put in the dot, and then an electron wh
was initially present in the dot leaves it.

In the present paper we deal with a more subtle ca
when the applied ac field is unable to ionize the dot. In t
case the dot can still change its spin, even at zero bias
means of ‘‘spin-flip cotunneling,’’ which is shown schema
cally in Fig. 1. In the course of this process, an electr
which interacts with the dot spin@see Eq.~11!#, absorbs a
photon and hops to a state above the Fermi level, while
spin of the dot flips. In terms in the Anderson Hamiltoni
@Eq. ~1a!#, this process cannot be described as two sepa
real processes. Instead, the change of the dot spin occurs
single process, while a state with two or zero electrons in
dot appears only as a virtual intermediate state.

The rate of spin-flip cotunneling can be calculated w
the help of the Kondo Hamiltonian given by Eqs.~11!, ~12!,
and ~10!. In the case of weak modulation,g!1 @see Eq.
~16!#, it is sufficient to account for single-photon process
only, and use the reduced form of the Hamiltonian, given
Eqs.~11! and~13!–~15!. An arbitrarily small dc bias, neede
for actual measurements of the linear conductance, does
affect the rate of spin-flip cotunneling. Therefore, in this su
section we setVdc50 for the sake of simplicity.

Applying the Fermi golden rule, we obtain

\

t
5

1

8p
\vFGL1GR

Ẽd
G 2

g2, ~41!

where g is given by Eq.~15!. The amplitude of inelastic
transitions yielding Eq.~41! was evaluated in lowest-orde
perturbation theory. This corresponds to first order in
amplitude of the ac perturbation, and zeroth order in
time-independent~at Vdc50) part of the exchange interac
tion @Eq. ~11b!#. Accounting for the terms of higher order i

FIG. 1. Spin-flip cotunneling: absorbing a photon, an elect
hops from a state below the Fermi level to a state above the F
level; the spins of the electron and of the dot flip due to excha
interaction between them.
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this time-independent part renormalizes the amplitude of
inelastic transition~which is still linear in the amplitude of
the ac field!. Similarly to the calculation of the conductanc
we intend to collect the leading logarithmic terms in t
renormalization of the inelastic transition amplitude. Th
can be accomplished by RG transformation described in S
II C. The transformation reduces the electron band widthD
and renormalizes the matrix elementsJaa8 of the Kondo
Hamiltonian~11! to account for this band reduction. Finally
one can calculate the decoherence rate in second-order
turbation theory in renormalizedJaa8; the result given by
such a treatment equals the sum of an infinite perturba
theory series in the initial Hamiltonian.

The RG transformation starts from the bandwidthD
5D0 given by Eq.~25!, and the initial matrix elements

Jaa8~D !uD5D0
5Jaa8

(0)
@11g cosvt#; ~42!

cf. Eq. ~13!. When the widthD of the band exceeds\v, the
time dependence of the Hamiltonian matrix elements@Eq.
~42!# can be treated adiabatically, i.e., timet on the right-
hand side of Eq.~42! can be considered as just a paramet
The RG equations, derived from the condition of invarian
of physical quantities under the transformation, have
now-familiar forms of Eqs.~30!, ~33!, and ~34!. The trans-
formation must be stopped when the bandwidth is reduce
values of the order of the frequency\v of the applied ac
field. Expanding the solution of the RG equations~30!, ~33!,
and~34! with the initial condition~42! in powers ofg up to
the first power, we obtain

Jaa8~D !uD;\v5
2AGaGa8

Ga1Ga8

1

2n ln~\v/TK!

3F11g
pẼd

GL1GR

1

ln~\v/TK!
cosvtG .

~43!

The Fermi golden rule applied to Hamiltonian~11!, with
Jaa8 given by Eq.~43!, yields the following expression fo
the decoherence rate:

\

tTK
5

3p

32

\v

TK

1

@ ln~\v/TK!#4 FdTK

TK
G2

. ~44!

Here we have introduced the relative amplitude

dTK

TK
[g

pẼd

GL1GR
~45!

of adiabatic variations of the ‘‘time-dependent Kondo te
perature.’’ The latter is defined by

TK~ t ![mA~GL1GR!U

p
expF2

pẼd~ t !

~GL1GR!
G , ~46!

with

Ẽd~ t !5Ẽd~11g cosvt !, ~47!

cf. Eqs.~37! and ~14!.
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One can see that the amplitude of the ac field enters
~44! through the dimensionless parameterdTK /TK . The
value of this parameter, in principle, can be directly me
sured. Representation of\/tTK in terms of dTK /TK will
allow us to build a universal description of the ac field
effect on the Kondo conductance.

As we mentioned before, spin-flip cotunneling is ess
tially different from dot ionization and subsequent refillin
During a process of spin-flip cotunneling, the ionized d
exists only as a virtual state. Therefore, spin-flip cotunnel
persists at frequencies min$Ed ,U2Ed%.\v, leading to deco-
herence of the dot spin state without ionization.

B. Effects of spin decoherence on Kondo conductance

As we have just shown, the external ac field is able to
the dot’s spin. Therefore, in the presence of the ac fie
averages of the typêSj (t1)Sk(t2)Sl(t3)& no longer equal
^Sj (0)Sk(0)Sl(0)&5TrSjSkSl[( i /4)« jkl . In the limiting
caseutm2tnu@t (m5” n), the orientations of the dot spin a
t5t1 , t2 , t3 are independent of each other, because of
spin-flip cotunneling, and one has

^Sj~ t1!Sk~ t2!Sl~ t3!&5^Sj~ t1!&^Sk~ t2!&^Sl~ t3!&50.

At finite time intervalsutm2tnu, the spin correlator decay
exponentially, with the spin-flip cotunneling rate being t
characteristic decay rate:

^Ŝj~ t1!Ŝk~ t2!Ŝl~ t3!&5~ i /4!« jkl exp~2tmax/t!,

tmax[max$ut12t2u,ut22t3u,ut12t3u%. ~48!

Equation~48! can be derived using the formalism of equ
tions of motion. In the framework of this formalism, Eq.~48!
appears as the solution of the equation

]

]t1
^Ŝj~ t1!Ŝk~ t2!Ŝl~ t3!&

5^S~ t3 ,t1!~ i @ĤJ ,Ŝj # !S~ t1 ,t2!ŜkS~ t2 ,t3!Ŝl&0

~49!

where S(t,t8) is the evolution matrix determined byĤJ .
Expanding S(t,t8) in powers of gJaa8

(0) , up to the first
power, we arrive at

]

]t1
^Ŝj~ t1!Ŝk~ t2!Ŝl~ t3!&

5
1

t
@u~ t32t1!u~ t22t1!2u~ t12t3!u~ t12t2!#

3^Ŝj~ t1!Ŝk~ t2!Ŝl~ t3!&, ~50!

wheret is given by Eq.~41!. Equation~50! with t given by
Eq. ~44! can be obtained by expanding the evolution mat
S(t,t8) up to the second power ingJaa8

(0) , and using the RG
technique described in Sec. II C.

The leading effect of the irradiation is in cutting off th
logarithmic divergences in the time integrals like Eq.~22!.
One can easily see that with the time-decaying spin corr
tion function ~48!, correctionGpeak

(3) is finite even atT→0:
q.

-

-

t
g

p
,

e

a-

G(3)5
3p2

2

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)# ln
D0t

\
. ~51!

As we have shown in Sec. III A, spin decoherence by ex
nal irradiation does not require ionization of the impuri
level, and therefore exists at frequencies belowEd , U
2Ed .

The effect of irradiation on the Kondo conductance is n
analytic in the intensity of the ac field. It cannot be obtain
by a finite-order perturbation theory ing in Eq. ~19!. To
obtain Eq.~51! directly from Eq.~19! using the perturbation
theory series inJaa8

(0) , one would need to add up all the term
proportional to@Jaa8

(0)
#3@gJaa8

(0)
#2n.

Finite-order perturbation theory@Eqs. ~21! and ~51!# can
be used to evaluate the Kondo conductance only if the de
herence rate\/t is much larger than the Kondo temperatu
TK . At lower decoherence rates we have to take into acco
terms of all orders inJaa8

(0) . This can be done by means o
the renormalization-group technique described in Sec. I
One RG equation is to be derived from the condition
invariance of the conductance, given by the second and t
orders of perturbation theory inJaa8

(0) @Eqs. ~28! and ~51!#,
similarly to Eq. ~30!. The other two RG equations can b
obtained using the requirement of invariance of the spin c
rent @Eq. ~31!# under the RG transformation. The resultin
set of equations coincides with the one given by Eqs.~30!,
~33!, and~34!. When the decoherence rate exceeds the t
peratureT, the RG transformation must be stopped when
bandwidthD reaches\/t rather thanT. Then the linear con-
ductance can be evaluated in second-order perturba
theory in the renormalized exchange constantsJLR , given
by Eq. ~36!, with D5\/t:

Gpeak5
3p2

16

1

@ ln~\/tTK!#2
GU . ~52!

Equation~52! is the central formula of this section. Throug
the dependence of\/tTK on the amplitude and frequency o
the ac field, it defines the conductance of the quantum do
a function of two dimensionless parameters:\v/TK and
dTK /TK @see Eqs.~44! and ~45!#. The region of validity of
Eq. ~52! is determined by the condition

\

tTK
*1, ~53!

and corresponds to the regime of strong suppression of
Kondo effect by the external ac field. At fixed strength of t
ac field the spin-flip rate@Eq. ~41!# decreases with the de
crease of ac field frequencyv. Correspondingly, the pea
conductance@Eq. ~52!# grows. The crossover from weak t
strong@G;GU# Kondo effect occurs when\/t;TK . Equa-
tions ~41! and ~44! show that this value of\/t is reached
while \v/TK@1.

IV. WEAK SPIN-DECOHERENCE

In this section we consider the regime of ‘‘intermedia
suppression’’ of the Kondo effect by ac radiation. By ‘‘in
termediate’’ we mean that the decoherence is relativ
weak,
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\/t,TK , ~54a!

and formula~52! is no longer valid, but the frequency is sti
sufficiently high,

TK,\v, ~54b!

so that the RG result@Eq. ~44!# for the decoherence rat
holds. In this regime, the formation of the many-body state
not suppressed, because of Eq.~54a!. However, Eq.~54b!
allows for sudden spin flips. The complicated nature of
many-body state hampers a quantitative consideration of
regime, and we limit ourselves to qualitative analysis.

When the many-body Kondo resonance is fully forme
the conductance of the dot equalsGU @Eq. ~39!#, and corre-
sponds to the unitary limit of tunneling through the do
Radiation-induced spin-flip destroys the many-body sta
and the conductance drops substantially below the va
given by Eq.~39!. The time necessary for the many-bod
state to be restored approximately equals\/TK .17 Therefore,
the fraction of time which the system spends in the hig
conducting (G'GU) state approximately equals
2a\/tTK , wherea;1. The resulting time-averaged con
ductance of the dot can be estimated as

Gpeak5F12a
\

tTK
GGU . ~55!

The rate\/t of the spin-flip processes here is given by E
~44!. Under conditions~54!, parametera does not depend on
the characteristics of the ac field. The value ofa should be
found from the quantum-mechanical problem of evolutio
which starts with a state ‘‘prepared’’ by the flip of the im
purity spin, and results eventually in the reformation of
Kondo polaron. Our qualitative treatment of regime~54!
does not allow us to find the exact value of the univer
coefficient a, which, however, could be found from a nu
meric calculation. At the upper limit of applicability,\/t
;TK , the peak conductance given by Eq.~55! matches re-
sult ~52!.

V. LOW-FREQUENCY AC FIELD:
ADIABATIC APPROXIMATION

In Secs. II C and III we considered the case when
isolated spin is only weakly screened by the many-elect
state formed around it. The complete screening was s
pressed either by relatively high temperatureT.TK , or by
large biaseVdc.TK , or by decoherence. In the case of Se
IV, the spin-screening cloud is able to form; however, t
spin flips, produced by the irradiation, occasionally dest
this many-body state, thus reducing the conductance.

In this section, we consider the case of low frequencies
the ac field\v!TK , when the energy of a photon is insu
ficient to flip the dot’s spin in the fully formed many-bod
Kondo state. For the irradiation to be the leading cause
deviation of the conductance from the unitary limit, we su
pose the temperature and bias to be also low:T,eVdc!TK .
The RG technique we used before is not applicable in
regime. Therefore, we need another approach to evaluat
conductance of the quantum dot system and the effects o
external irradiation on it.

The required approach is provided by the scaling the
s
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of Nozières and Blandin.18 This theory states that th
renormalization-group transformation, whose initial sta
was described in Sec. II C, can be continued, and fina
leads to a fixed point. At the fixed point, the system exhib
Fermi-liquid behavior, and its Hamiltonian has a relative
simple form.19 This fixed-point Hamiltonian can be used
study the properties of the Kondo system at low tempe
tures,T!TK .11,19 Mapping the quantum dot system in th
Kondo regime onto the regular one-channel Kondo proble
we can employ the fixed-point Hamiltonian to evaluate t
dc current through the dot induced by applied bias.

The external ac field disturbs the many-particle st
formed near the isolated spin, leading to deviations of
system behavior from that dictated by the~static! fixed-point
Hamiltonian. In this section we study the case when the
quency of the field is low (\v!TK), so that the many-body
state is not destroyed but rather adiabatically varied by the
field, as the level in the dot goes up and down@see Eq.~1a!#.
Then the current through the dot can be evaluated with
help of the fixed-point Hamiltonian with time-dependent p
rameters.

Now we map the problem of transport through the d
onto the regular scattering problem. For this purpose, i
convenient to use the basis ofs andp scattering states rathe
than that of the left- and right-lead states. These two ba
are connected by

aks
(s)5jcksL1hcksR , aks

(p)52hcksL1jcksR , ~56!

where

j[
vL

AvL
21vR

2
, h[

vR

AvL
21vR

2
.

The p-states are decoupled from the dot because of t
symmetry, so the dot-lead coupling term in the Anders
Hamiltonian@Eq. ~1a!# has the form

AvL
21vR

2 (
k,s

~aks
(s)†ds1H.c.!.

The initial basiscksa is composed of the states residing e
tirely in the left or right lead, which is convenient for th
problem of two leads connected by a weak link, when
interlead tunneling is to be considered as a perturbation
terms of incident and reflected/transmitted waves, th
states correspond to the waves incident from one of the le
to the dot and completely reflected back to the same le
Therefore, thes waves of Eq.~56!, which enter the new
basis, have a scattering phase equal top/2.20

Making the Schrieffer-Wolff transformation, we arrive a
the regular Kondo problem, which at low temperatures c
be studied with the help of the fixed-point Hamiltonian19

Under these conditions, thes-wave electrons, interacting via
the isolated spin, form the screening cloud. This many-bo
state still has Fermi-liquid properties, though its scatter
characteristics are different from those of just an isola
spin. One of the principal differences is the shift of the sc
tering phase byp/2 for states at the Fermi level.11 This sug-
gests another change of basis for the sake of convenie
from s waves having a scattering phase equal top/2, aks

(s) to
those with a scattering phasep.
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The formal relation betweenaks
(s) and the new basis, which

we denotebks , is given by

bks[E dxeikxĈs~x!,

Ĉs~x!5expF ipE
2`

x

dx8g~x8!G ĉs
(s)~x!,

ĉs
(s)~x![E dke2 ikxaks

(s) , ~57!

whereg(x) is an arbitrary function obeying*2`
` dx8 g(x8)

51. The ‘‘coordinate’’x was introduced for convenience t
separate the incoming and outgoing parts of the scatte
states, which correspond to negative and positive valuesx,
respectively.

Before the scattering region@x→2` in Eq. ~57!#, the
wave functions of the statesbks andaks

(s) coincide. Therefore,
the states

cksL
(in) 5jbks2haks

(p) , cksR
(in) 5hbks1jaks

(p) ~58!

represent waves incident from a left or right lead only. Pa
ing the scattering region, the wave function of the statebks

acquires an extra phase ofp as compared to that ofaks
(s) .

Then one can see that the states

cksL
(out)52jbks2haks

(p) , cksR
(out)52hbks1jaks

(p) ~59!

have an outgoing wave only in the left or right lead, resp
tively. The current operator in terms of these states eq
simply

Î ~V!5(
k,s

~cksL
(out)†cksL

(out)2cksR
(out)†cksR

(out)!. ~60!

The fixed-point Hamiltonian in the basisbks , aks
(s) has a

relatively simple form,19

Ĥ fp5vF(
ks

kbks
† bks1vF(

ks
kaks

(p)†aks
(p)

2
vF

nTK
(

k1k2s
~k11k2!bk1s

† bk2s

1
1

n2TK
(

k1k2k3k4

:bk1↑
† bk2↑bk3↓

† bk4↓ :, ~61!

where :•••: denotes normal ordering. The spectrum of ele
trons is linearized,«k5vFk, since the reduced bandwidth
of the order ofTK!«F ; the Kondo temperatureTK is the
only energy scale of the fixed-point Hamiltonian~61!.

The third term in Eq.~61! determines the phase shi
which a quasiparticle acquires as it passes through the
This shift is energy dependent: it equalsp at the Fermi level,
as we discussed above, andp1«k /TK in the general case.11

In terms of waves incident from the left or right lead, su
behavior of the phase shift is analogous to that seen in
neling through a resonant state tied to the Fermi level. T
fourth term in the Hamiltonian describes the interaction
the quasiparticles of the Fermi liquid at the fixed point. T
g

s-

-
ls

-

ot.

n-
e
f

p waves are not affected by the Kondo screening, so
Hamiltonian for them has the same form as the one given
Eqs.~1a! and ~56!.

Using Hamiltonian~61!, we can rewrite the current opera
tor ~60! in a form more convenient for further calculations

Î ~V!5~2hj!2H e2

p\
V2

ie

\ F Ĥ fp ,(
k,s

cksR
(out)†cksR

(out)G J .

~62!

The first term in Eq.~62! is the current that would flow if all
the incident states were resonantly transmitted through
dot; the scattering between the left- and right-incident s
cies ~which is just backscattering whenj5h) reduces the
magnitude of the current, and is accounted for by the sec
term.

To evaluate the conductance of the dot, we employ
Keldysh technique@Eq. ~19!#, treating the last two terms o
Hamiltonian ~61! as a perturbation. At an infinitely sma
temperature and bias, the current through the dot is tra
ferred by electrons at the Fermi level. The transmission
efficient for these electrons equals (2jh)2, i.e., the second
~backscattering! term in the current operator~62! yields zero.
Therefore the dot under these conditions has maximum c
ductance,G5GU[(e2/p\)(2hj)2. At finite temperatures,
the electrons which carry the current are spread within a s
of width T near the Fermi level. The departure of the partic
energy from the Fermi level in system~61! leads to the de-
viation of its scattering phase fromp, i.e., from resonance
Therefore the conductance in this case will be lower th
GU . Indeed, substituting Eqs.~62! and~61! into Eq.~19! and
employing second-order perturbation theory in the last t
terms of Hamiltonian~61!, we arrive at

Gpeak(T)5
e2

p\
~2hj!2H 12

vF

nTK
2 (

k
k2F2

d f~vFk!

dk G
2

2

vFn3TK
2 (

k1k2k3
F2

d f~vFk1!

dk1
G f ~vFk2!

3[12 f (vFk3)] f [vF~k12k21k3!]] J
5F12p2S T

TK
D 2GGU , ~63!

where f («)[1/@exp(«/T)11# is the Fermi distribution func-
tion. One can see from Eq.~63! that the conductance of th
quantum dot system at low temperatures decreases with
creasing temperature. This behavior has been obse
experimentally,4,5 and is analogous to the decrease of t
resistivity in a regular Kondo system~bulk metal with mag-
netic impurities!.

The differential conductance of the dot at finite biasV dc,
with T!eVdc!TK , can be derived analogously to Eq.~63!.
The resulting formula

G~Vdc!5F12
3

8 S eVdc

TK
D 2GGU ~64!
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shows thatG(Vdc) decreases with increasing bias applied
the dot.

A slow (\v!TK) ac field results in an adiabatic tim
dependence of the Kondo temperature; see Eq.~46!. The
time-dependent part of Hamiltonian~61! with 1/TK(t), given
by Eq. ~46!, accounts for the interaction of quasiparticl
with the ac field. To consider this part of the Hamiltonian
conventional terms of electron-photon interaction, we
pand 1/TK(t) in a Fourier series:

1

TK~ t !
[(

n

1

TK
(n)

einvt. ~65!

After absorption of a photon, a current-carrying quasiparti
is transferred from the Fermi level, i.e., away from the re
nance. As a result, at low temperatures even a low-freque
ac field must reduce the conductance of a quantum dot in
Kondo regime. At\v!TK , the conductance can be calc
lated in second order of perturbation theory in the tim
dependent part of the Hamiltonian. Substituting Eq.~65! into
Eq. ~61!, and then using the Keldysh formalism@Eq. ~19!# to
evaluate the conductance, we arrive at

Gpeak5H 12(
n

S 1

TK
(n)D 2FvF

2

n (
k

k2d~vFk2n\v!

1
2

n3 (
k1k2k3

d~vFk12n\v!u~vFk2!

3@12u~vFk3!#u@vF~k12k21k3!#G J GU

5H 123(
n

S \nv

TK
(n) D 2J GU , ~66!

where for simplicity we set the temperature to zero. Tra
forming Eq.~66! back from 1/TK

(n) to 1/TK(t) @Eq. ~65!#, we
finally obtain

Gpeak5H 123S d

dt

1

TK~ t ! D
2J GU

'H 12
3

2 S dTK

TK
D 2S \v

TK
D 2J GU , ~67!

where . . . denotes averaging over the period of variation

TK(t), anddTK /TK is defined by Eq.~45!.
The single-photon decoherence processes describe

Sec. III A do not occur in this regime, because the ene
necessary to flip the dot’s spin is increased by its interac
with the screening ‘‘spin cloud’’ in the leads, and is of th
order ofTK@\v. The rate of spin flips due to many-photo
processes is exponentially small inTK /\v.

VI. SCALING FORMULA FOR THE CONDUCTANCE

In this section we summarize the results obtained in S
III–V for the effect of periodic modulation of the dot’s po
tential on the Kondo conductance. In the absence of ac
diation, the quantum dot system is described by a numbe
-

e
-
cy
he

-

-

f

in
y
n

s.

a-
of

physical parameters; see Eqs.~11! and~14!. However, in the
Kondo regime all these parameters combine into a sin
relevant energy scaleTK , @see Eq.~37!#, controlling the be-
havior of the system, see, e.g., Eqs.~38! and~63!. The peri-
odic modulationVdotcosvt of the dot potential adds two
more parameters to the initial Hamiltonian~11!, and, most
importantly, drives the system into a nonequilibrium sta
Surprisingly, such a drastic perturbation does not break do
the universal description of the problem, and the Kondo te
perature remains the only relevant energy scale. We h
shown that the effect of the irradiation is described by t
dimensionless parameters\v/TK anddTK /TK}Vdot, where
dTK is the size of the adiabatic variation of the Kondo te
perature under the influence of ac modulation; see Eq.~45!.

At sufficiently large frequenciesv of the ac field, when

\v

TK
.

32

3p

@ ln~dTK /TK!#4

@dTK /TK#2
, ~68!

the rate\/t of the spin-flip cotunneling exceeds the Kond
temperatureTK . The spin-flip cotunneling brings decohe
ence into the spin dynamics of the dot, destroying the Kon
resonance. A small lifetime of the Kondo resonance lead
a significant suppression of the Kondo effect; see Sec. II
The dependence of the zero-bias dc conductanceGpeakof the
dot on the power and frequency of the ac field is given
Eqs.~52! and ~44!.

Upon lowering the frequencyv, condition ~68! breaks
down, and\/t becomes smaller than the Kondo temperatu
Under such conditions, strong suppression of the Kondo c
ductance is not possible. However, the conductance still m
deviate from the unitary limitGU . The violation of condition
~68! occurs while\v still exceedsTK . The zero-bias con-
ductance in this regime can be estimated by Eq.~55! and
~44!.

At frequencies below the Kondo temperature, the ac fi
is unable to flip the spin of the dot, and spin-flip cotunneli
does not occur. In this regime, the ac-driven deviation fr
the unitary limit is small, and can be accounted for within t
framework of the Fermi-liquid description.11 The main role
of the ac field is to scatter the conduction electrons, trans
ring them to energies away from the Fermi level. These s
tered electrons miss the Kondo resonance, which is tied
the Fermi level. This produces a small deviation of the
conductanceGpeak from the unitary limit; see Sec. V, Eq
~67!.

The results obtained for these three regimes match e
other on the corresponding limits of applicability. This a
lows us to piece together the dependence ofGpeak on
dTK /TK and\v in a broad frequency range; see Fig. 2.

This dependence allows us to conjecture that at sm
dTK /TK the conductance can be cast in the form

Gpeak

GU
5FF S dTK

TK
D 2

f S \v

TK
D G , ~69!

with two universal functionsF(x) and f (y). Each of the
functions depends on only one variable; they have the
lowing asymptotes:
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F~x!5H 12ax if x!1

3p2

16

1

~ ln x!2
if x@1,

~70!

and

f ~y!55
1

a
3y2 if y!1,

3p

32

y

~ ln y!4
if y@1.

~71!

The numerical parametera;1 is introduced and discusse
in Sec. IV. When\v@TK , the argument of functionF has
the meaning of dimensionless decoherence rate\/tTK .

VII. CONDUCTANCE SUPPRESSION BY AC BIAS

In Secs. III–VI we considered the effects of modulati
of the dot potential on the Kondo conductance. In the pres
section we study the conductance in the system where th
field is applied between the leads, thus creating an alter
ing biasVac. The parameters characterizing such a field
the dimensionless amplitudeeVac/TK and frequency
\v8/TK .

First we consider the case of ‘‘fast’’ ac bias,\v8
@max$TK ,eVac%. Under these conditions, the ac bias affe
the Kondo conductance through the decoherence of the d
spin. The dependence of the corresponding decoherence
\/t8 on the amplitude and frequency of the ac bias can
calculated with the help of the renormalization group te
nique which we used in Secs. II C, III A, and III B. The re
sulting expression reads

\

t8TK

5
1

p

GU

e2/p\
S eVac

TK
D 2 TK

\v8

1

@ ln~\v8/TK!#2
. ~72!

FIG. 2. The zero-bias Kondo conductanceGpeak of a quantum
dot monotonically decreases with increase in the frequency\v of
modulation of the dot potential. The plot shows the dependenc
Gpeakon \v at a fixed amplitudeeVdot}dTK /TK of the modulation.
The conductance in the unitary limitGU is given by Eq.~39!. The
value ofGpeak/GU at \/t5TK is denoted byA&1; this value can
be found from numerical calculation.
nt
ac
t-

e

s
t’s
ate
e
-

Note that, in contrast to the ac modulation of the gate volta
~Sec. III A!, in the case of ac bias the rate of decoheren
decreases with the growth of the field frequencyv8. The
parameter

GU

e2/p\
[

4GLGR

~GL1GR!2

characterizes the asymmetry in the dot, and emerges in
expressions for quantities associated with electron tran
between the leads.

When \/t8TK.1, the conductance can be evaluated
means of perturbation theory; see Sec. II C. The decay
function ^Sj (t1)Sk(t2)Sl(t3)&, which enters the terms of th
perturbation theory, provides the large-time cutoff for t
integrals in equations of the type of Eq.~22!. The derivation
of the expressions for conductance is identical to the
given in Sec. III B; cf. Eq.~52!. The final formula reads

Gpeak5
3p2

16

1

@ ln~\/t8TK!#2
GU , ~73!

with \/t8TK given by Eq.~72!.
At smaller amplitudes,\/t8TK,1, the ac bias is unable

to suppress the formation of the Kondo many-electron st
For this case we may repeat the reasoning of Sec. IV. A
result, we obtain

Gpeak5F12a
\

t8TK
GGU , ~74!

i.e., the Kondo conductance is only weakly suppressed.
In the opposite limit of slow variations of bias,\v8

!max$TK ,eVac%, one can use the adiabatic approximation

Gpeak5G~Vaccosv8t !. ~75!

HereG(V) is the differential dc conductance at finite biasV,
and . . . denotes averaging over the period of variation of

bias. ForeV/TK!1, the conductance is given by Eq.~64!.
Substituting this into Eq.~75!, we obtain

FIG. 3. The regimes of the ac bias effect on the Kondo cond
tance. The solid line is the border between the two domains~78a!
and ~78b!. The dashed line separates the regimes of weak~below
the line! and strong~above the line! suppressions of the Kondo
conductance in each of these two domains.
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Gpeak5H 12
3

16S eVac

TK
D 2J GU . ~76!

In the opposite case,eVac/TK@1, using Eqs.~40! and ~75!
we obtain:

Gpeak5
3p2

16

1

@ ln~eVac/TK!#2
GU . ~77!

Figure 3 shows the possible regimes of the ac bias ef
on the Kondo conductance of a dot. At

\v8!max$eVac,TK%, ~78a!

the peak conductance depends only oneVac/TK ; see Eqs.
~76! and ~77!. In the opposite case of high frequencies,

\v8@max$eVac,TK%, ~78b!

the peak conductance depends only on\/t8TK ; see Eqs.
~73! and~74!. Thus in both regions~78a! and~78b!, Gpeak is
a function of a single variable. However, the correspond
variables are different in the two regions. Therefore, at
crossover between these two frequency domains, the p
conductanceG peak(\v8/TK ,eVac/TK) cannot be cast into a
simple form of a single-variable function.

It is instructive to consider the peak conductance a
function of the frequencyv8 at a fixed field amplitudeeVac.
At small amplitudeseVac/TK!1, the suppression of th
Kondo effect is weak at any frequency. At stronger fie
eVac/TK@1, the Kondo effect is suppressed far below t
unitary limit at low frequencies. The height of the zero-bi
peak recovers with increasing field frequencyv8; see Fig. 4.
The description of the crossover between regimes~78a! and
~78b! is developed in Appendix A.

VIII. SATELLITE CONDUCTANCE PEAKS

In Secs. III–VII of this paper we mostly concentrated
the effects of the ac field on the zero-bias Kondo cond
tanceGpeak. In this section we study how the ac field mod
fies the finite-bias differential Kondo conductanceG(Vdc).

Without an ac field, the dependence of the differen
Kondo conductance onVdc is given by Eq.~64! for eVdc

FIG. 4. The suppression of the Kondo effect with ac bias we
ens as the frequency\v8 of the bias grows. The plot shows th
dependence of the dc zero-bias conductanceGpeak on \v8 at fixed
bias amplitudeVac@TK /e.
ct

g
e
ak

a

s

-

l

!TK , and by Eq.~40! for eVdc@TK . As we have seen from
the previous sections, the ac field reduces the height of
zero-bias peak,Gpeak[G(Vdc50).

Another effect of external irradiation on the differenti
conductanceG(Vdc) is in producing satellite peaks ateVdc
56n\v. If an external ac field is applied, then, ateVdc5
6n\v, a tunneling electron can hop from a state at t
Fermi level in one lead to a state at the Fermi level in
other lead, emitting or absorbingn photons. Thus at finite
bias the external irradiation can effectively put a tunneli
electron into zero-bias conditions, and the Kondo anomal
the conductance is revived. The height of these peaks ca
calculated from formula~19!, similarly to Eq.~24!. At a low
enough irradiation level,g!1, it is sufficient to consider
only one-photon processes, accounted for by Hamilton
~11! with the coupling constantsJaa8(t) given by Eqs.~13!–
~15!. In this approximation, we will be able to describe th
first pair of satellite peaks, which emerge next to the ma
zero-bias, peak. The resulting correction to the conducta
at euVdcu close to\v has the form

Gstl,6
(3) ~Vdc!5

3p2

8

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)#g2

3E
2`

0

dt~2t !exp~2utu/tstl!

3S pT

\ D 2 cos@~eVdc6\v!t/\#

sinh2~pTt/\!1~T/D0!2
. ~79!

When eV5” 6\v, the cosine function cuts off the logarith
mic divergence here. However, wheneVdc→6\v, the co-
sine factor becomes essentially constant@cf. Eq. ~24! at Vdc
→0#, and the differential conductance has a peak again
T→0, the height of the satellite conductance peak is de
mined by the spin decoherence rate\/tstl . We must mention
thattstl may be significantly shorter thant given by Eq.~41!.
The timet characterizes the spin decoherence at zero b
whereas the satellite corresponds to a finite biaseVdc
56\v. In the latter case, the spin decoherence occ
mostly due to the tunneling of electrons through the dot~see
Fig. 5, and also Ref. 21!. The rate of this process at\v
@TK is given by

\

tstl
5

1

2p
\v

GLGR

Ẽd
2

. ~80!

-

FIG. 5. At finite bias, the coherence of the spin state of the
can be lost in an act of cotunneling, when an electron leaves the
to the lower voltage lead, and another electron enters it from
higher voltage lead.
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To extend result~80! to lower frequencies\v*TK , we em-
ploy the RG technique. As a result, we obtain the decoh
ence rate as a function of the universal parameter\v/TK :

\

tstlTK
5

3p

32

GU

e2/p\

\v/TK

@ ln~\v/TK!#2
. ~81!

Note that Eqs.~80! and ~81! imply eVdc'\v.
Using the RG technique, we derive the formula f

G stl,6(Vdc), which is the contribution of one-photon pro
cesses to the differential dc conductance:

Gstl,6~Vdc!5F ln
A~\/tstl!

21~eVdc6\v!2

TK
1 ln

\v

TK
G24

3
3p2

4 FdTK

TK
G2

GU . ~82!

One can see from Eqs.~81! and~82! thatGstl depends on the
parameters of irradiation only through the universal variab
dTK /TK and \v/TK . The details of derivation of Eq.~82!
are given in Appendix B.

The full expression forG(Vdc) reads

G~Vdc!5Gmain~Vdc!1Gstl,1~Vdc!1Gstl,2~Vdc!. ~83!

HereGmain accounts for the tunneling through the dot wit
out absorption or emission of photons, and is responsible
the zero-bias Kondo peak. The other two terms in Eq.~83!
describe the satellite peaks inG(Vdc).

As the criterion for resolution of the satellites, we ado
the requirement that the functionG(Vdc) must be nonmono-
tonic on the sides of the zero-bias peak. This requirement
be reformulated as

dTK

TK
.1,

\v

TK
@1 ~84!

In the derivation of conditions~84! we used Eq.~83! with
Gmain(Vdc) given by Eq. ~40!. Such a form of the elastic
Kondo conductanceGmain should be used because ateuVdcu
;\vGmain is suppressed mainly due to the finite bias rat
than due to the decoherence, since\v@\/tstl@\/t.

The above discussion involved an ac field applied to
gate. The case of ac bias can be considered similarly.
third-order perturbation theory result for the shape of sa
lite peak may be obtained from Eqs.~79! and~82! by replac-
ing g2 with (g8)2. The RG treatment yields

Gstl,6~Vdc!5F ln
A~\/tstl!

21~eVdc6\v!2

TK
1 ln

\v

TK
G24

3F ln
\v

TK
G4 3p2

4 FeVac

\v8
G 2

GU . ~85!

The condition for the satellite peaks to be clearly visib
takes the forms

eVac

\v8
.1,

\v

TK
@1. ~86!
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Conditions~84! and ~86!, together with Eq.~52!, demon-
strate that upon the increase of the amplitude of the ac fi
the zero-bias peak is suppressed first, and only after tha
satellite peaks may become distinguishable from the ba
ground conductance.

IX. COMPARISON WITH EXPERIMENT

In this section, we discuss possible ways of comparison
the theory presented here with experiments. Ideally,
should measure the dc conductance through a dot while
plying the ac bias to the gates or leads in a controllable w
and varying its frequencyv and amplitude in a broad range
Our results predict that the data obtained at various value
TK should be scalable, when using the proper dimension
variables, Eqs.~70!, ~71!, ~73!, ~74!, ~76!, and~77!. We pre-
dict also that at a fixed magnitude of ac field, the suppress
of the Kondo effect should become more severe with
increase ofv, if the applied field modulates the gate pote
tial; the dependence onv in the case of ac field applied t
the leads is opposite. Ifv significantly exceedsTK @see Eqs.
~84! and~86!# observation of ‘‘satellites’’ ateV5\v of the
main Kondo singularity may become possible. The appe
ance of even small side peaks, however, should not oc
without a strong suppression of the zero-bias Kondo sin
larity.

Presently, there is only one experiment aimed at obse
tion of effects of irradiation on the Kondo conductance in t
quantum dot.12 In the analysis of this experiment below, w
will see that the frequencies used were of the order ofTK ,
and the range ofv was less than one decade. In addition
was impossible to calibrate the amplitude of the field appl
to the device; the attenuation coefficients were frequen
dependent. Therefore, one could not perform the meas
ments ofGpeak(v) at a fixed field amplitude. However, i
was possible to measure the dependence of the peak con
tance on the amplitude of the applied field at a discrete se
fixed frequencies. The ac source was powerful enough
allow the authors of Ref. 12 to completely suppress
Kondo anomaly. Nominally, the ac field was applied to t
gate, but it was apparently hard to exclude ‘‘leaking’’ of th
field to other electrodes of the device.22 This creates further
ambiguity in the interpretation of the experimental results

The Kondo temperature of the system can be found fr
the dependenciesGpeak(T) andG(Vdc) measured in the ab
sence of irradiation. Comparing the experimentally measu
width of the zero-bias peak without irradiation with th
width A4/3TK inferred from Eq.~64!, we findTK;50 meV.
From the temperature dependence of the conductance@Eq.
~63!#, we expect the width of the Kondo anomaly to be of t
order ofA2TK /p; comparison of this estimate with the ex
periment yieldsTK;150 meV. The external irradiation was
applied through a high-frequency coaxial cable, coupled
pacitively to the gate. The frequency of the irradiatio
ranged from 10 to 50 GHz~i.e., \v between 40 and 200
meV!.

The zero-bias Kondo peak was clearly observed in
G(Vdc) dependence, when no ac field was applied. With
increase of the amplitude of the ac field, the height of
zero-bias peak decreased for each of the frequencies u
Such a behavior is in agreement with our conclusion t
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irradiation must suppress the Kondo effect in a quantum
even when dot ionization does not occur. Also, satellites
not appear, in agreement with our theory for\v;TK ; see
Sec. VIII.

The authors of Ref. 12 attempted to collapse data for
dependence ofGpeak on the amplitudeVirr and frequencyv
of the ac field. In this procedure,Virr was scaled by some
frequency-dependent parameter, in order to bring to a sin
curve the dependenciesGpeak vs Virr measured at differen
values ofv. Successful data collapse means that a unive
dependence exists:

Gpeak5F@Virr f ~\v!#. ~87!

In the experiment12 the scaled curves coincided with goo
precision; see Fig. 7 of Ref. 12 for conductancesGpeakrang-
ing from the unitary limit down to values small compare
with GU . Our theory indeed allows for such a singl
parameter scaling@Eq. ~87!#; see Eqs.~70! and~71! and Fig.
2, in the case of ac modulation of the gate voltage. C
versely, according to Fig. 3, scaling like Eq.~87! would be
possible only in the domain of large or small conductanc
if the ac field of frequencyv;TK is applied to the leads.

We must mention here that the experimentally measure12

Kondo conductance was suppressed by irradiation unifor
across the Coulomb blockade valley, including its midd
point, whereEd5U2Ed . In our theory, however, the sup
pression is not uniform, and vanishes atEd5U/2, if the ac
field is applied to the gate@see Eqs.~15!, ~44!, and~45!#. We
see two possible reasons for this discrepancy. First, our
clusion is valid for weak modulation only. This conditio
most probably was not satisfied in the experiment12 per-
formed at\v;TK ; at such frequencies strong modulatio
of the gate potential,dTK;TK , is required to achieve sig
nificant suppression of the Kondo effect. Second, leakag
the ac field to the leads would result in suppression of
Kondo conductance by ac bias even at the center of the
ley; see Sec. VII.

X. CONCLUSION

We have considered the Kondo conductance of a quan
dot subjected to ac field. We have shown that, despite
essentially nonequilibrium character of the problem,
Kondo temperatureTK @Eq. ~37!# remains the only relevan
energy scale. The dc Kondo conductance depends on th
field only through two dimensionless variables, the f
quency and the amplitude of the ac perturbation, each
vided byTK . In terms of these two variables, conductance
a universal function. The form of this function, and the re
tion of the perturbation amplitude to the ‘‘bare’’ value of th
ac field amplitude, depends on the way the ac field is appl

If the ac field is applied to the gate, then the strength
the perturbation is characterized by the amplitudedTK of
adiabatic variations of the Kondo temperature; see E
~45!–~47!. At low frequencies\v,TK , the conductance is
close to the unitary limit@Sec. V, Eq.~67!#. At higher fre-
quencies\v.TK , the ac field suppresses the Kondo effe
by means of the decoherence of the dot’s spin~Secs. III, IV!.
The value of the zero-bias conductance decreases with
increase of the frequencyv of the ac field. The results we
ot
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obtained for the modulation of the gate voltage are summ
rized in Sec. VI.

If the ac field is applied across the dot, then the pro
variable is the corresponding dimensionless bias between
leads:V ac/TK . A ‘‘slow’’ field, \v8,max$eVac,TK%, sup-
presses the Kondo effect essentially the same way as a fi
dc bias does; see Eqs.~76! and ~77!. A ‘‘fast’’ ac field,
\v8.max$eVac,TK%, affects the Kondo conductanc
through the decoherence of the dot spin@Eqs.~72!, ~73!, and
~74!#. At a fixed amplitude of the field, the suppression of t
Kondo effect diminishes with the increase of the ac fie
frequencyv8.

The ac field also produces satellite peaks in the dep
dence of the differential dc conductance on the dc bias. H
ever, the satellite maxima in the conductance are inevita
small, see Sec. VIII. The analysis of the experiment12 ~Sec.
IX ! demonstrates good agreement between our theore
results and the results of recent experiments.
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APPENDIX A: AC BIAS WITH eVacÈ\v8

In this appendix we describe the crossover between
regimes of ‘‘slow’’ and ‘‘fast’’ ac bias, which occurs at

\v8;eVac@TK ; ~A1!

see Fig. 3. Throughout this appendix, we will use the fini
order perturbation theory to evaluate the decoherence
and conductance. The RG technique is abandoned here,
the finite-order perturbation theory is sufficient in the regi
defined by condition~A1!.

1. Decoherence by ac bias

Unlike the caseg8[eVac/\v8!1, in the crossover re-
gion @Eq. ~A1!# the decoherence rate is determined also
many-photon processes. Using the Fermi golden rule w
the Hamiltonian of Eqs.~11! and ~16!, we arrive at

\

t8
5

2

p

GLGR

Ẽd
2

M ~g8!\v8, ~A2!

where M (x)[2xJ0(x)J1(x)1x2@J0(x)#21x2@J1(x)#2. In
the case of a ‘‘fast’’ ac field,g8[eVac/\v8!1, Eq. ~A2!
reduces to

\

t8
5

1

p

GLGR

Ẽd
2 ~g8!2\v8. ~A3!

The latter formula is similar to Eq.~41!, and accounts for
single-photon processes only. Equation~A3! is the first term
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in the perturbation theory series inJaa8 for \/t8. The sum-
mation of leading terms of all orders inJaa8 can be per-
formed with the help of the RG technique, and yields E
~72! @cf. Eqs.~41! and ~44!, respectively#.

In the limiting case of ‘‘slow’’ ac bias,g8@1, Eq.~A2! is
reduced to

\

t8
5

4

p2
eVac

GLGR

Ẽd
2

; ~A4!

cf. Eq. ~80!.

2. Conductance

The conductance in the crossover region@Eq. ~A1!# can
be evaluated with the third-order perturbation-theory se
in Jaa8(t). Using Eqs.~11!, ~16!, ~19!, and~20!, we arrive at

Gpeak
(3) ~T,Vdc!5

3p2

2

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)#

3E
2`

0

dt
~2t !cos~eVdct/\!exp~2utu/t!

sinh2~pTt/\!1~T/D0!2

3S pT

\ D 2

cos@g8 sin~v8t1f0!2g8 sinf0#

~A5!

@cf. Eq. ~24!#. Expression~A5! accounts for the current in
duced by both dc and ac biases. To single out the for
contribution, which is the true dc conductance, we must
erage over the phasef0. This averaging in the limit of zero
temperature and dc bias yields

Gpeak
(3) 5

3p2

2

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)#

3E
2`

0

dt
exp~2utu/t!

At21~\/pD0!2
J0F2g8 sin

v8t

2
G .

~A6!

In the limit v8→0, Eq. ~A6! yields

Gpeak
(3) } ln~D0 /eVac!. ~A7!

This result is analogous to Eq.~77! at eVac@TK . At small
frequencies,v8t,1, the corrections to Eq.~A7! are propor-
tional to exp(21/v8t). At larger frequencies\/t,\v8
!eVac, the two leading terms in the expansion of the rig
hand side of Eq.~A5! in powers of 1/g8 are

Gpeak
(3) 5

3p2

32

e2

p\
n3@J LR

(0)#2@J RR
(0)1J LL

(0)#

3F ln
D0

eVac
1

1

g8
ln v8tG . ~A8!

At even larger frequencies,\v8@eVac, Eq. ~A6! yields

Gpeak
(3) } ln~D0t8/\!. ~A9!
.

s

er
-

-

This is the first logarithmic term of the series that a
summed up in Eq.~73!. Note that the results given by Eq
~A7!, ~A8!, and~A9! match each other at the correspondi
applicability limits.

APPENDIX B: RG TRANSFORMATION
FOR SATELLITE PEAKS

In this appendix, we describe the RG transformation
used to derive Eq.~82!. Unlike the other instances of appl
cation of the RG technique in our paper, the RG transform
tion of this appendix consists of two stages. The first stag
analogous to the one considered in Sec. III A@Eqs.~42! and
~43!#. It stops when the bandwidthD reacheseVdc'\v.
Since\/t stl,\v @see Eq.~81!#, we need to reduce the ban
further to account for all possible virtual transitions contri
uting to the Kondo anomaly inGstl(Vdc).

The RG transformation we consider in this appendix
aimed at evaluation of the conductanceGstl . In processes
which contribute to the singularity inGstl , a tunneling elec-
tron jumps from the Fermi level in one lead to the Fer
level in the other, emitting or absorbing a photon. Therefo
the reduced band in each lead must be centered at its F
level. WhenD is below\v, transitions of only two types are
possible within such a band. First, there can be transiti
within a lead without absorption or emission of a photo
Second, transitions from the higher potential lead to
lower potential lead with emission of a photon, and a reve
transition with absorption of a photon is also possible. T
other types of transitions bring electrons out of the redu
band, and should be excluded from the consideration. Su
treatment yields the RG equations

dJaa

dD
5n

J aa
2

D
, ~B1!

dJLR

dD
5n

JLR~JLL1JRR!

D
, ~B2!

with the initial conditions

Jaa~D !uD;\v5
2Ga

GL1GR

1

2n ln~\v/TK!
, ~B3!

JLR~D !uD;\v5
2AGLGR

GL1GR

1

4n@ ln~\v/TK!#2

dTK

TK
;

~B4!

cf. Eq. ~43!. The second stage of the transformation must
stopped atD;D* [A(\/t stl)

21(eVdc6\v)2. Expanding
the solution forJLR in powers ofdTK /TK up to the first
power, we obtain

JLRuD;D* 5
2AGLGR

GL1GR

dTK

TK

3F ln
A~\/tstl!

21~eVdc6\v!2

TK
1 ln

\v

TK
G22

.

~B5!

The conductanceGstl must be calculated in the second-ord
perturbation theory inJLR(D;D* ), given by Eq.~B5!. This
calculation finally yields Eq.~82!.
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