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Universality of the Kondo effect in a quantum dot out of equilibrium
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We study the Kondo effect in a quantum dot subject to an external ac field. The Kondo effect can be probed
by measuring the dc current induced by an auxiliary dc bigsapplied across the dot. In the absence of ac
perturbation, the corresponding differential conducta@¢¥ 4o is known to exhibit a sharp peak ®t.=0,
which is the manifestation of the Kondo effect. There exists only one energy scale, the Kondo temgrature
which controls all the low-energy physics of the systeBnjs some universal function oéVy./Ty . We
demonstrate that the dot driven out of equilibrium by an ac field is also characterized by a universal behavior:
the conductanc& depends on the ac field only through two dimensionless parameters, which are the frequency
o and the amplitude of the ac perturbation, both dividedTRy We analytically find the large- and small-
frequency asymptotes of the universal dependendg off these parameters. The obtained results allow us to
predict the behavior of the conductance in the crossover regisne Ty .

[. INTRODUCTION and reaches the unitary limit &— 0. The only difference is
in how the Kondo resonance is manifested in bulk metals
The Kondo effect results from an exchange interaction ofind in the quantum dot systems. In bulk metals, the enhance-
itinerant electrons with a localized spin state. This interactioent of scattering by the Kondo resonance increases the re-
leads to local spin-polarization of the electron gas. The poSiStiVity. In quantum dot systems, conversely, the enhanced

larization becomes significant only at low temperatures, dugcattering facilitates transport through the dot. The Kondo
to the existence of collective statewith small excitation effect results in a specific temperature dependence of the

energies. Simultaneously with the modification of the SpinIlnear conductance across the dot. If the temperature is low-

susceptibility, the scattering properties of conduction elec-ered’ the conductance first drops due to the Coulomb block-
P Y, g prop o ade phenomenchand then increases again due to the Kondo
trons are significantly modified. The modification is espe-

iall ina in th f i . h ““effect® At T—0, the conductanc6 reaches its maximum,
cially striking In the case of antiferromagnetic exchange N~ hichy corresponds to the unitary limit of tunneling. Re-

teraction, when the “spin cloud” fqrmed out of free—electrqn cently, the Kondo effect in a quantum dot was observed
gas tends to screen the magnetic moment of the |°Ca|'zeé‘xperimentally‘.‘6

state. In this case, the scattering cross section grows as the Quantum dot devices are highly controllable, and can be
temperature is lowered, and reaches the unitary limiT at operated in regimes inaccessible in conventional magnetic
—0. This phenomenon is responsible for the nonmonotonigmpurity systems, that were used previously for studying the
temperature behavior of the resistivity of metals with mag-Kondo effect. Irradiation of a quantum dot with an ac field
netic impurities at low temperatures, which was the first ex-offers a clever way of affecting its dynamics, which enables
perimentally observed manifestation of the Kondoone to study the Kondo anomaly under fundamentally non-
resonance.However, the system of magnetic impurities em- equilibrium conditions. An ac field can be applied to the
bedded in a metal sample does not offer much control ovegate, thus modulating the dot’s potential with respect to the
the parameters even at the stage of fabrication of the sampligads; alternatively, one may apply ac bias to the leads. In
let alone allow a dynamic variation of the parameters in theany case, driving the system out of equilibrium affects the dc
course of an experiment. conductance discussed above. Measuring the dacharac-
also be affected by the Kondo effect, but which offer a muchthe Kondo anomaly. .

higher degree of control over the system parameters, is pro- A generic theoretical description of a quantum dot uses a

vided by quantum dots. A quantum dot in a semiconductosignificant number of parameters and energy scales to de-

planar heterostructure is a confined few-electron system corpc"0€ the system. Nevertheless, in the case of no ac field, it

tacted by sheets of two-dimensional electron eads. If turns out that the low-energy properties of the quantum dot

: stem which are related to the Kondo effect are controlled
the total number of electrons on the dot is odd, then the d y S
is similar to a magnetic impurity. Junctions between the do y only one relevant energy scale, which is the Kondo tem

. ratureTy . The Kondo temperature, in turn, depends on
and the leads produce an overlap of the states in the dot anf, microscopic parameters of the system, e.g., on the gate

in the two-dimensiona(2D) leads. This overlap leads to an \5jtage and conductances of the dot-lead junctions. Such
exchange interaction between the spin of the dot and spins fiversality allows for easier understanding and description
the itinerant 2D electrons. At sufficiently low temperatures, asf the problem.

“spin screening cloud” is formed by the electrons in the  The ac field introduces new parameters to the problem,
leads. As in bulk metals, the scattering off the resultingthus apparently breaking the universal description, which is
many-body state is enhanced as the temperature is lowereghalid in the static case. This re-emerging abundance of pa-
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rameters makes it difficult to build a consistent description ofexperiments? #w~ T, . The remarkable feature of our de-
the effects of the ac field on the Kondo conductance. Thescription is that the Kondo temperature remains the only rel-
theoretical work performed up to now concentrated on somevant energy scale, despite the essentially nonequilibrium
specific regimes. Goldin and AvisHaionsidered the case of character of the problem.

very strong ac bias with the help of third-order perturbation ~The outline of our paper is as follows. In Sec. Il we in-
theory in the dot-lead coupling. Nordlandet al® analyzed troduce the description of the system by means of the time-
the effects of ac field of sufficiently high frequency to ionize dependent Kondo Hamiltonian. Then we derive the expres-
the dot. They conjectured that even at a temperafur@ of ~ SION for the Kondo conductance of the dot in the absence of

the thermal bath, the finite rate of dot ionization results in a2¢ field. The purpose of this derivation is to present a for-
finite effective temperature “seen” by the Kondo state. In malism which later will be suitable to describe the nonequi-

this way, irradiation provides the cutoff for the Kondo sin- llorium states produced by the irradiation. _
gularity and reduces the conductance. Later, we In Secs. llI-VI we consider the effect of ac modulation of

demonstratetithat even in the absence of dot ionization, the gate voltage on the Kondo conductance. At higher fre-

irradiation is able to flip the spin of the dot, thus decoheringduénciesiw/T=1, the decoherence of the Kondo many-

the Kondo state and diminishing the Kondo effect. In addi-20dy state is the principal channel via which the ac field
tion to analytical methods, a number of numerical ap_mflugnces t.he Kondo anomaly. Tr_ns frequency domain is
proaches have been u&fito study the conductance of a con5|dered in Secs. llI-IV. Depen_dlng on the strength of the
Kondo system out of equilibrium at certain sets of values ofhodulation,éT /Ty, the suppression of the Kondo conduc-

the bare parameters of the system. Because of the large nuf@nce is significantSec. Il) or relatively weak(Sec. IV). In

ber of parameters involved, the results of such calculation$€¢- V We consider the limit of very small frequencies of the
are hard to analyze. At any rate, such a consideration coul@c field. The decoherence probability in these conditions is
not reveal the universalities of the problem. In our view, it exponentially small. However, the adiabatic evolution of the

also cannot provide an insight into the regimes which do nofllective state, caused by the ac modulation, affects its scat-
allow for a perturbative treatment. tering properties. This results in a small deviation of the

In our earlier papér we showed how to apply the conductance from the unitary limit. The results of Secs.
renormalization-grougRG) technique to a Kondo system !ll=V are summarized in Sec. V1. _
out of equilibrium, allowing us to sum the infinite series of I Sec. VIl we consider the effect of ac bias on the Kondo
perturbation theory in the dot-lead coupling. This treatmentconductance. It turns out that a strong suppression of the
valid at relatively high decoherence rates, yielded an expregsondo effect is possible only #€V,./Tx>1. Upon increas-
sion for conductance as a function of only one parameter: thid the frequency, the suppression diminishes. This fre-
ratio of the decoherence ratér to the Kondo temperature. duency dependence is opposite to the one in the case of gate
Thus we established that the Kondo temperafiggemains ~ Voltage modulation. _ _
a meaningful parameter of the theory, even if the ac field !N Sec. VIl we consider satellite peaks in thev char-
strongly suppresses the manifestations of the Kondo effec@cteristic of a quantum dot which can be created by irradia-
We do not see a way, however, of measuring the decoheflon. Finally in Sec. IX we compare experimental resilts
ence rate directly. Moreover, the definition of this quantity inWith our theory.
Ref. 9 makes sense only at a high frequency of the ac field,
hw>Tg. Therefore, the dimensionless ratid7Tx cannot
be the only parameter describing the effect of an ac field on Il. KONDO EFFECT IN A QUANTUM DOT
the Kondo system. . . _ _ A. Model

In this paper, we find the correct dimensionless variables )
that characterize the amplitude and frequency of the ac field The system we study is a quantum dot attached to two
perturbing the Kondo system. If the ac field is applied as déads by high-resistance junctions, so that the charge of the
bias across the dot, then the proper variablesearg/Ty dot is nearly quantized. The Kondo effect emerges in a quan-
and#w/ Ty, whereV,. is the amplitude of the ac bias. The tum dot occupied by an odd numb_er qf electrons at tempera-
ac field applied to the gate acts as an auxiliary gate voltagdures below the mean level spacing in the dot. Under such
and yields parametric variations of the Kondo tempera- qondmons, the topmost occgpleq level is s_peual, since it is
ture. The strength of the perturbation introduced by such filled by only one electron. Itis this Iev'el which produces the
field is characterized by the dimensionless variafiig /T,.  Kondo effect. The other levels, occupied by two electrons or
In terms of the proper pair of variables, the behavior of theZ€f0, aré unimportant in qur_dlscu_ss}é_r(&mllarly to the
Kondo conductance is universal. We find analytically thelnner shells of a magnetic impurity in the conventional

asymptotes of the universal dependence by further developiondo effect. Therefore, the model of a dot attached to two
ing the RG treatmentvalid in the case of a strong suppres- leads can be truncated to the Anderson single-level impurity

sion of the Kondo effegt and by generalizing Nozies’ Model

Fermi-liquid theory! to the nonequilibrium casevhich ad-

equately describes the limit of weak perturbation by a low-

frequency fieldl A= +evel e+ o d +Hec
Within this picture, we are able to describe in a consistent k;a (& @) ChoaCioa k;a (VaCioadot H-C

way the effect of irradiation over a wide range of

frequencies—from zero to the dot_ ioniza’gion threshold; this +E (—Ed+evdotcos<ut)dld‘,+Ud}rdeIdl, (13

includes the regime most interesting for current o
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1 with
VL,R: iE[Vdc+ Vac COS(w’H ¢0)]-

ie [t
~at =v, — — | dt'[V,(t") = Vgot' . 5
I,=2mv|v,|2 (1b) va()=v exD{ ﬁf [Va(t") = Vaolt')] ©)

Here the first two terms correspond to noninteracting elec- Now we can make the time-dependent Schrieffer-Wolff
trons in the two leads¢=L,R), and tunneling of free elec- transformation, which is defined by the unitary operator
trons between the dot and leads, respectively. The dot itself
is described by the third and fourth terms of the Hamiltonian, W=exp(V), (6)
whereEy andU — E4 are the ionization and electron addition it
energy, respectively. The tunneling matrix elememnjsare
related to the tunneling ratds, by Eq. (1b), wherev is the ) @) +
density of states in a lead. The ac field can be applied to theV=kz {Iwil (D(1=n_ ) + W ()N, ]dgCrre—H.CJ.
gate, which is coupled to the dot capacitively, and thus can e 7)
modulate the energy of the electron localized in the dot with _
amplitudeeV . The leads can be either simply dc biased,The functionSN(k‘a(t) are found from the condition
or an additional ac bias can be applied.
: _ _ 0:|3|0+[v,|3|1]—iﬁﬂ, )

B. Time-dependent Schrieffer-Wolff transformation ot

In the present paper we consider the dot in the KondQyherefy, is the part of Hamiltoniari) responsible for mix-

regime:U—Eq,Eq>T"| . Under such conditions, the num- g of electron states in the leads and in the [dbe second
ber of electrons on the dot is a well-defined quantity. In theterm of Eq.(4)], andFl, describes the uncoupled dot and
limit of no tunneling, the ground state of the system de- q- 1%l 1 P

scribed by Hamiltoniar(1) is doubly degenerate due to the leads[the other terms in Eq4)]. Condition(8) ensures that

. . X 4 . . . ~ ’ T . .
spin of the(single electron which occupies the levél The  the resulting HamiltonialvH"W" has no linear-in; , terms,
states with two or zero electrons on the dot are higher ivhich allows variations in the number of electrons in the dot.
energy byU — E, or Eg, respectively, and are not important The only difference of the transformati@6)-(7) from the
for the low-energy dynamics of the system. In our paper, w&enventional Schrieffer-Wolff transformatithis the time
study the irradiation effects when the applied fields do nodependence ofv{)). For the static Anderson Hamiltonian,

drive the dot out of the Kondo regime: these factors are constant; in our case they are functions of
time because of the time variations of Hamilton{an Solv-
{eVye,8Vaor,€ Vad <{Eg,U—Eg}. (2)  ing Eq.(8) for w{l(t), we obtain

Therefore, the excited states with two or zero electrons on t ) , ,
the dot are to be projected out. This can be achieved by the W(t)= —if dt’ e/ (kBTG (17) |~ (G Ealt/h,
Schrieffer-Wolff transformatio? modified to account for (9)
the time dependence of the parameters of Hamilto(fiarn
the present subsection we perform this transformation, whichVhen the ac fields applied to the dot are slow enough,
finally yields a description of the quantum dot system in{Zw,io’'}<{U—Eq4,E4}, one can solve Eq8) in the adia-
terms of the Kondo Hamiltonian with time-dependent param-batic approximation, neglecting the third term in it. This ap-
eters. proach yields a simplified expression fef)(t):

First we move all dependence of the Hamiltonian on the
applied voltage¥ 41, V4c, andV.to the off-diagonal terms.
This is achieved by the unitary transformation

0 ,(1)
Ed_ eVa(t) + eVdot(t) )

Wig (1)~ (10
e [t Here we have also neglected the single-electron enefgies
UZGXP{ - gf dt'[kZ V(') Choa because the Kondo effect is produced by states close to the
i Fermi level, whose energies are small in comparisoBE o
) The formulas fow{2)(t) are analogous to Eq&9) and(10),
+Vd0t(t,)dadaH' ) only E4 must be replaced bi,—U.
Applying the modified Schrieffer-Wolff transformation
After this transformation, the Hamiltonian has the form (6)-(7) to Hamiltonian(4), we come to the Kondo Hamil-
tonian

“ n U
H'=UHU'-i% —-UT e :
Hk=HotH, Ho=kz &ChpaCioar (118

,O,
= 2 &ClpaChoat 2 [Valt)Cy dotH.c]
K,o,a k,o,a ~ 1 A +
Hj: E jaa’(t) Z§<r(r’+sls(rg-’ CkoaCka’a’
k,o,a

+2, (—~Egd!d,+udlddld,, (4) Koo' (a1
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wheres and S are the spin operators of the electrons in the 0 ieVgd

leads and of the electron on the isolated level, respectively; JR(t) = Tirexg——+iy'sin('t+¢o)|, (16)

we assume a summation over the repeating indices

=X,Y,z. In the framework of Hamiltoniani11), the state of where j(aocz, is given by Eq.(14). The ac bias creates the
the dot is fully described by its spin. The terms of the Ander-phase difference between the electrons in the left and right
son Hamiltonian(1), that are responsible for the electron |eads, and therefore enters the exponent in(E8). together
tunneling to and from the dot, and for the Coulomb interac-yijth the dc bias. The relevant parameter characterizing the
tion of electrons in the dot, have been transformed to thetrength of the ac perturbation here is

term H ; of the Kondo Hamiltonian(11). This term repre-

sents an exchange interaction between the spin of the dot and eV
that of the electrons in the leads. Hamiltonidrl) operates y'= ~. 17
within the band—Ey<¢,<U-—-E4; see Ref. 15. The cou- ho

pling parameters/.. (t) are given by The variation of the electron energy in the dot with respect to

the Fermi level of the leadsy+eV,{t) [see Eq.(10)],
generates a term smaller by a factorefiw’/E4, and is
The applied bias is accounted for by the time dependence efeglected in Eqs(16).

Jaa (1) with a# a'. The dependence of the right-hand side  |n the limit of small amplitude of ac biag,’ <1, expres-
of Eq.(12) on the indicek is negligible near the Fermi level; sjons(16) for .7, (t) may be further simplified by dropping
therefore, we can disregard this dependence in the couplingrms of high orders i’ . Expanding the right-hand sides of

Taa (D=0 (D[ =W, () +w (D] +Cc. (12

constants?’. Eq. (16) in powers ofy’ up to the first power, we arrive at
In this paper, we are primarily interested in the irradiation
effects when the applied fields are unable to ionize the dot: Toa1) =T,
{€Vic,€ Vior,€ Vad <{Eq,U —Eg}, eVt
— ~7(0) dc’ . ’
{ﬁw,ﬁw’}@{Ed,U—Ed}. jLR(t) jLRexp{ 7 [1+|’y Sln(w t+¢0)]. (18)
Under these conditions, one can use the approximate solution
[Eq. (10)] of Eq. (8), expanding it in powers of small param- C. Kondo conductance in equilibrium

Eters.eVdOt/Ed' eV o/ (U —Eq), etc. For simplicity we will In the framework of the Kondo Hamiltonidiegs. (11)—
consider the cases when the system is affected by only ong )} o types of tunneling between the left and right leads
kmd.of ac field: either ac voltage applied to the gate, or theare possible: regular elastic cotunnelitige first term in pa-
ac bias. ) rentheses in Eq(11b)], and “exchange cotunneling(the
In the _former Cas?'evd'?ﬁéo and e_VaC: 0—we obtain second term In an act of “exchange cotunneling,” simul-
the following expression for the coupling parameters: taneous flipping of the spins of the tunneling electron and the
ie dot can occur. In the case of weak couplirndjaoi,|<1),
jw,(t)=ji°3,[l+ ycosm]exp{g(Vdc,a—vdcva,)t}, one may apply perturbation theory to evaluate the conduc-
tance through the dot. It turns out thatTat>0, the higher-

(13 order terms of the perturbation theory series grow, finally
where the exchange consta[ﬁgi, are given by making the series diverge, signaling the Kondo anomaly.
This phenomenon was extensively studied for magnetic im-
0 _ NI . - (U-EyEq4 puritiefs, in metalé.ln_Sec. I1C we _demonstrate how a similar
Jaa,=¥, Ed=T (14) behavior emerges in the tunneling through a quantum dot.
d

The main purpose of the current subsection is to present a
The exponential factor in Eq(13) is due to the dc bias, formalism which is suitable for a treatment of the nonequi-
which produces a phase difference between the electrons |rium case at hand. For simplicity, we first consider the
the left and right leads. The cosine term accounts for th€ase of no ac field. Effects of the ac field are introduced in
applied ac field, and stems from the adiabatic variation of théubsequent sections.

electron energy in the doEy+eVy(t); see Eq.(10). The Unlike the conventional treatment of the Kondo probfem,
strength of the applied ac field is characterized by the dimenwe have to consider the Kondo anomaly directly in the con-
sionless parameter ductance, rather than in the scattering amplitude. This need
emerges from the kinetic nature of the problemyay’ #0.
2E4—U To calculate the differential dc conductar@éVyy), we em-
'yEeVdotm<l' (15 ploy the nonequilibrium Keldysh technique in the time rep-

resentation. In this formalism,

If the ac field is applied to the leads rather than to the

gate—eVy,=0 andeV,#0—the expressions for7,, (t) d -
read * G(Va) = 5—(S(~= 01 (0)S(O.~ =)o, (19
C

Twa)=T, and



8158 A. KAMINSKI, YU. V. NAZAROV, AND L. I. GLAZMAN PRB 62

L e 1 a1\ @ o 3T € ot 0 s (020
I(t)= 7 kE Jir(1) Z5oa'+513wr CroLCk’o'R Gpeal T)= > " [JLR [jRR+\7LL]|nT- (26)
k':a"
The results for the finite-bias conductanGé®(V,J), with
—H.c. (200  eVg>T, can be obtained from E@26) by replacingT with
eVyc-

is the current operator, whil(t,,t;) is the evolution matrix Thus the Secon@EQ- (21)] and.third[Eq. (26%] orders of
determined byilj perturbation theory in the coupling constaﬁfa, yield the

In the lowest nonvanishingsecond order of the pertur-  following expression for the dot conductance:
bation theory in the coupling constamfof,, the conduc-

o ¢ 372 €? Do
tance of the dot is given by the expression Gpeal= Z EVZ[j(LOR)]Z 1+ 20T+ «7(LOL))|n?
2
e
G=m2— v} J{R1% (21 w? e
wh LR = o 70)y2
+ g VIR (27)

Logarithmic divergences appear starting from the terms of 0
third order in7\”), . A representative term has the following Here we have split the quadratic contribution "), [Eq.
structure: (21)] in two: one part is due to the “exchange cotunneling,”
which entered the first term in E€R7); and one part is due
to regular cotunneling, which became the last term in Eq.

e? [ 791279 ro 0
— R dty | di(5(0)5(t) S (1) he cubi iz, | h
s 3 Ot dtds 1 2 (27). The cubic term in7,,,, in Eq. (27) grows as the tem-
! perature is lowered, demonstrating the Kondo anomaly. The
x e[ t,coqe VY /) +t,cogeV, /h)] regular cotunneling does not produce terms growing at

low temperatures and bias, and does not contribute to the
= Kondo effect. Equation (27) is valid when T>Ty
X Gy, (—12) Gy (t,— 1) Gy (tq). 22
B, Gl 1Bt 1) Gig(t) @2 25 exfln( 79+ 7],

If this condition is not satisfied, then the expansion up to
terms cubic inj(aocz, is insufficient. AtT=Ty, the conduc-
Mance can be derived in the leading logarithmic approxima-
tion. This consists of a summation of the most diverging
—i[1—f(&)] if t>0, terrgs at (%;ach order it:ﬁ(aocz,, i.e., terms proportional to
. . 23 [T T In(Dy/T)]" in the series foG. To perform this
if(&)] if t<O, oo : " , .

summation, we modify the “poor man’'s scaling
with (&) being the Fermi distribution function. This term techniq.uel.6 In' the framework of this technique, the electron
and other terms of the same structure yield the Kondo diverbandwidthD is gradually reduced, and the exchange con-
gence in the conductance. stants in the Kondo Hamiltoniafill) are renormalized to

If there is no external ac field, the averagescompensate for this band reduction, i.g.‘doi, is replaced
(5(t1)S(t2)Si(ts)) are independent of time and equal to with some,, (D) . The proper dependence ¢f,,, on D
(i/4)e)y, . After adding up all the terms cubic 7, inthe  should be derived from the condition of invariance of physi-

aa

expression for the conductan@[one of them is given by cal quantities with respect to the RG transformation. Finally,

Eq. (22)], summing over the electron states and perform- the renormalized Hamiltonian with reduced bandwidth will
ing the integration ovet, [see Eq(22)], we arrive at allow for a calculation of the conductance in second order of

perturbation theory in the renormalized exchange constants

Here /X' is the antisymmetric unit tensor, ar@(t) and

Ek(t) are the time-ordered and anti-time-ordered Gree
functions of free electrons in the leads, given by

Gy(t)=

372 e? 0 o o Jaa' i the resulting expression will be equal to the sum of
GO(T V4= > 5 A NVARNAY VA the dominant terms of all orders in perturbation theory in the
initial, bare exchange constantéaoi,(Dz Dy).
fo (—t)cogeVyd/h) ( TrT) 2 For the nonequilibrium system we consider, RG equations
X - [ -
SNt (A TUR) + (T/Dg)2 | for the exchange constants should be derived from the con

dition of the invariance of the linear conductarioe currenj
(24 under the RG transformation, rather than the invariance of
the scattering amplitudes. In the main logarithmic approxi-
mation which we are going to employ, tligvariany con-
- e ductance must be evaluated in the two lowest nonvanishing
Do= VEa(U~Eq) @9 orders of the perturbation theory, namely, the second and
is the effective bandwidtl? Hereafter we measure tempera- third orders[see Egs(21) and(24)]. The Kondo divergence
ture in units of energy, and therefore omit the Boltzmann(and, therefore, the renormalization ¢f,,/) occur due to
constankg . For the sake of simplicity, from now on we will exchange scatteririghe second term in braces in E41b)]
mostly consider the zero-bias conductar®g... In this  only. Therefore, we single out this contribution in the term of
case, Eq(24) yields second order in7,, :

Here
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@) 372 €2 2 H{0) 5 with u~1. To obtain the pre-exponential factor
Gexel D)= —— v Jtr(D)]% (28) (T, +T U/ in the equation foiTc, one in fact has to

include the next order i7,,/(D) in the RG equations; see
In third order in the exchange constants, the conductance Ref. 15.

given by Eq.(24). The resulting condition of invariance &f The renormalization should proceed until the bandwidth
under the transformation, which corresponds to “poor man’ss reduced tdl. After that, the current and conductance can
scaling,” has the following form: be calculated in the Born approximatipkg. (28)] in the
5 322 & 5 renormalized exchange constafitz given by Eq.(36) with
PP o€ g 2 Pl D=T. The resulting expression for the conductance in the
(29)
2
Within the accuracy of this equation, when differentiating peak:3l ;Gw (39)
the second term, we should neglect any implicit dependence 16 [In(T/T)1?
on D through the paramete(s,, (D). where
Equation(29), together with Eq(28), yields the equation
for the evolution of 7, g under scaling: €2 4 Tg
Gy (39

d + T @h (T +Tp)?
L7LFQ:V&7LR(t7RR jLL). (30) ( L R)

dD D is the conductance of the dot in the unitary limit of tunneling.

The corresponding equations fgkg and.7,, can be derived At T>O;FK’ one can expand E@38) into a series in pow-
from the condition of invariance of other physical quantities®’S of 790, In(Do /T). The first term of the series is the con-
under the RG transformation. For this purpose, we pick th@luctance calculated in the Born approximatifsee Eg.

spin currents from the left and right lead, (28)], and the second term yields the lowest order Kondo
correction given by Eq(26).
19 =(S(—,011(0)S(0,—*)),, (32) The RG technigue can be also used to derive the depen-

dence of Kondo conductance on the applied dc bias in the
domain eVy=Tk, eVy>T. Starting from Eqgs.(24) and

19w=ilA,> (Cht oCkia— ChyaCkia) |: (32) (28, and proceeding along the lines of E489)—(36), we
: arrive at
which is induced by applying infinitesimal magnetic field to 5
the leads to create spin polarization there. The resulting two 37 1
pn p g G(Vg=oe —————Gy. (40)

equations will be independent, in contrast to the correspond-

ing equations for the charge, because the spin of the dot can

vary while the charge cannot in the Kondo regime. Thus the renormalization-group techniqliEgs. (29—
Evaluating| S) in second and third orders of perturbation (38)] allows one to perform a summation of infinite series of

theory in jffoz, , similarly to Eq.(27), and differentiating it perturbation theory in the exchange constaﬁ,ﬁg, . The re-

16 [In(eVy/Ty)1?

by D, we arrive at sults obtained in this way are valid in a wider domain of
parameters than results of the finite-order perturbation
d7rr  Jart JiR theory. The RG technique reveals the meaning of the energy
dp 7 D ' (33 scaleTy : The resulting expressior{88) and(40) for physi-
cal quantities contain the single relevant characteristic of the
d7 . jEL + jER system, Ty, rather than numerous parameters of the Ander-

—_— (39 son Hamiltonian[Eq. (1a@]. For example, in Eq(38) the
dD D dependence of the differential conductance on the applied

Equations(30), (33), and (34 make a complete system, bias is expressed in terms of the dimensionless variable

which. with the initial conditions T/T¢ . The dependence @/G, on this variable is given by
’ some universal function for any value @7 Ty ;! its high-
JO.T.. temperature asymptof&q. (38)] is established with the help
e (Do) =0, = —= (35  of the RG technique. Similarly, the frequency and magnitude
mvEq of the applied ac field may enter into some new universal
[See Eq(14)], yields formulas forG/Gy in the form of dimensionless variables,
normalized byTy . The generalization of the RG technique
2\ Tr 1 which we presented in this section will allow us to check the

(36)  validity of this conjecture, and to establish the asymptotes of

Jr(D)= T
these new universal dependences.

L+FR 2V|n(D/TK) '

The Kondo temperatur@y is given here by
Ill. SPIN DECOHERENCE BY AC GATE VOLTAGE

(37) Now we include into consideration the effects of an ac
field. As we have shown in our earlier pagéhe ac field can

. (T +TRrU mEq
KTH 7w O (Tl
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(i) (f) this time-independent part renormalizes the amplitude of the
inelastic transition(which is still linear in the amplitude of

—_— T the ac field. Similarly to the calculation of the conductance,
—— N . — Ihw we intend to collect the leading logarithmic terms in the
%I? h ‘:'; %| renormalization of the inelastic transition amplitude. This
L4 "l 41 VI ¢' ! - can be accomplished by RG transformation described in Sec.
— . 4 4 IIC. The transformation reduces the electron band width
4t % +4 v ‘lﬁ —— and renormalizes the matrix elemenfs,, of the Kondo

Hamiltonian(11) to account for this band reduction. Finally,
FIG. 1. Spin-flip cotunneling: absorbing a photon, an electron®N€ can calculate the decoherence rate in second-order per-
hops from a state below the Fermi level to a state above the Ferniirbation theory in renormalized,,; the result given by

level; the spins of the electron and of the dot flip due to exchang&uch a treatment equals the sum of an infinite perturbation
interaction between them. theory series in the initial Hamiltonian.

The RG transformation starts from the bandwidth
decohere the dynamics of the dot’s spin, thus affecting the= Do given by Eq.(25), and the initial matrix elements
Kondo conductance. We start our study of the irradiation- 0
modified Kondo anomaly by considering the decoherence. Jaa’(D)|D:D0:»7(aczr[l+ y coswt]; (42

cf. Eq.(13). When the widttD of the band exceedsw, the
time dependence of the Hamiltonian matrix elemditis.
In terms of the Anderson Hamiltonidiq. (1a)], the loss  (42)] can be treated adiabatically, i.e., timen the right-
of coherence by the dot spin occurs when an electron leavdgand side of Eq(42) can be considered as just a parameter.
the dot and another electron, with the opposite spin, enters iThe RG equations, derived from the condition of invariance
If the frequency of the applied ac field is large enoufjly,  of physical quantities under the transformation, have the
>E4,U—Ey, this process can consist of two real processesnow-familiar forms of Eqs(30), (33), and (34). The trans-
the dot is ionized by the ac field, and then an electron from dormation must be stopped when the bandwidth is reduced to
lead enters the dot to fill the vacancy. Alternatively, an extravalues of the order of the frequendw of the applied ac
electron can be put in the dot, and then an electron whicliield. Expanding the solution of the RG equatidB§), (33),
was initially present in the dot leaves it. and(34) with the initial condition(42) in powers ofy up to
In the present paper we deal with a more subtle casehe first power, we obtain
when the applied ac field is unable to ionize the dot. In this
case the dot can still change its spin, even at zero bias, by 2yr, I, 1
means of “spin-flip cotunneling,” which is shown schemati- Taa'(D)p-po=
cally in Fig. 1. In the course of this process, an electron,
which interacts with the dot spifsee Eq.(11)], absorbs a 7E, 1
photon and hops to a state above the Fermi level, while the X|1+y
spin of the dot flips. In terms in the Anderson Hamiltonian I+ TR IN(folT)
[Eq. (18], this process cannot be described as two separate (43
real processes. Instead, the change of the dot spin occurs as a ) ) o )
single process, while a state with two or zero electrons in thd '€ Férmi golden rule applied to Hamiltoniddl), with
dot appears only as a virtual intermediate state. Jaar given by Eq.(43), yields the following expression for
The rate of spin-flip cotunneling can be calculated withth® decoherence rate:
the help of the Kondo Hamiltonian given by Edq$1), (12),

A. Mechanisms of spin decoherence

r,+I, 2vin(fiw/Ty)

CoSwt

and (10). In the case of weak modulation;<1 [see Eq. h_3mhe 1 0Tk 2 (44)
(16)], it is sufficient to account for single-photon processes Tk 32 Tk [IN(w/T)]*L Tk |

only, and use the reduced form of the Hamiltonian, given by

Egs.(11) and(13)—(15). An arbitrarily small dc bias, needed Here we have introduced the relative amplitude

for actual measurements of the linear conductance, does not _

affect the rate of spin-flip cotunneling. Therefore, in this sub- 0Tk wEy

section we seVy.=0 for the sake of simplicity. T_K=7’FL+FR (45

Applying the Fermi golden rule, we obtain
of adiabatic variations of the “time-dependent Kondo tem-

I
Eq

2
Y2 (41

—=—ho

., (46)

perature.” The latter is defined by
I +TgU mE4(t

TeO= g TR exp[_ - f(r)
where y is given by Eq.(15). The amplitude of inelastic ™ (I' +Tr)
transitions yielding Eq(41) was evaluated in lowest-order ,iin
perturbation theory. This corresponds to first order in the
amplitude of the ac perturbation, and zeroth order in the E(O=E.(1+ v cosot 4
time-independentat V4.=0) part of the exchange interac- a()=Eq(1+y cosot), @0
tion [Eq. (11b]. Accounting for the terms of higher order in cf. Egs.(37) and (14).
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One can see that the amplitude of the ac field enters Eq. 372 e? oT
(44) through the dimensionless paramet&F,/Ty. The G(s):Tﬁvs[jl(_O) AT+ (O)]m . (5)
value of this parameter, in principle, can be directly mea-
sured. Representation &f/ 7Ty in terms of 6Ty /Ty will As we have shown in Sec. lll A, spin decoherence by exter-
allow us to build a universal description of the ac field’s nal irradiation does not require ionization of the impurity
effect on the Kondo conductance. level, and therefore exists at frequencies bel&y, U

As we mentioned before, spin-flip cotunneling is essen—Egq.
tially different from dot ionization and subsequent refilling.  The effect of irradiation on the Kondo conductance is not
During a process of spin-flip cotunneling, the ionized dotanalytic in the intensity of the ac field. It cannot be obtained
exists only as a virtual state. Therefore, spin-flip cotunnelingoy a finite-order perturbation theory i in Eq. (19). To
persists at frequencies njlfy,U—Egy}>%w, leading to deco- obtain Eq.(51) directly from Eq.(19) using the perturbation

herence of the dot spin state without ionization. theory series i7", , one would need to add up all the terms
| proportional to[j(o) BLyd?, 12,
B. Effects of spin decoherence on Kondo conductance Finite-order perturbation theoffEgs. (21) and (51)] can

As we have just ShOWﬂ, the external ac field is able to f||pbe used to evaluate the Kondo conductance 0n|y if the deco-
the dot's spin. Therefore, in the presence of the ac fieldherence raté/ is much larger than the Kondo temperature
averages of the typéS;(t;)Si(t2)S(ts)) no longer equal Tk . At lower decoherergce rates we have to take into account
(S;(0)S((0)S(0))=TrS;SS=(i/4)ej . In the limiting  terms of all orders inj‘mf,. This can be done by means of
case|t,—t,|> 7 (m#n), the orientations of the dot spin at the renormalization-group technique described in Sec. IIC.
t=t,, t5, t3 are independent of each other, because of th®©ne RG equation is to be derived from the condition of

spin-flip cotunneling, and one has invariance of the conductance, given by the second and third
_ _ orders of perturbation theory iﬂ‘aooz, [Egs. (28) and (51)],
(Sj(t1)Sk(t2)S(t3)) =(Sj(t1) }(Sk(t2) }(Si(t3))=0. similarly to Eq. (30). The other two RG equations can be

At finite time intervals|t,,—t,|, the spin correlator decays obtained using the requirement of invariance of the spin cur-
exponentially, with the spin-flip cotunneling rate being therent[Eq. (31)] under the RG transformation. The resulting

characteristic decay rate: set of equations coincides with the one given by EGg§),
(33), and(34). When the decoherence rate exceeds the tem-
(S (t)S(t2) S (t3)) = (i/4)& 1 eXp(—tmax/ 7), peratureT, the RG transformation must be stopped when the
bandwidthD reachedi/ = rather thanT. Then the linear con-
tmax=Mmax |t —ty|,|to—ts], |ty —ts]}. (48)  ductance can be evaluated in second-order perturbation

theory in the renormalized exchange constafitg, given

Equation(48) can be derived using the formalism of equa- by Eq. (36), with D=#/7:

tions of motion. In the framework of this formalism, E¢38)
appears as the solution of the equation 372 1
16 [In(fi/7Te) ]2

Equation(52) is the central formula of this section. Through
_ o e & e the dependence df/ 7T on the amplitude and frequency of
(S(ta,t)(ITH7, S S(11,2) SS(t2,1)S)o the ac field, it defines the conductance of the quantum dot as
(490 a function of two dimensionless parametefsn/T, and
8Tk /T [see Eqgs(44) and (45)]. The region of validity of
Eq. (52 is determined by the condition

G peak— Gy (52

(588 (1)

where S(t,t") is the evolution matrix determined Uylj
Expanding S(t,t’) in powers of yj( ,, up to the first
power, we arrive at
=1, (53
TTK
<S (ta) (tZ)S'(t3)> and corresponds to the regime of strong suppression of the
Kondo effect by the external ac field. At fixed strength of the
ac field the spin-flip rat¢Eq. (41)] decreases with the de-
- ;[6(t3—t1) 0(t,= 1) = 6t~ t3) (11— 1) ] crease of ac field frequenay. Correspondingly, the peak
R R ~ conductancgEq. (52)] grows. The crossover from weak to
X(Sj(t1)Sk(t2)S (1)), (50 strong[ G~ G,] Kondo effect occurs wheh/7~Ty . Equa-
tions (41) and (44) show that this value ofi/ 7 is reached

wherer is given by Eq.(41). Equation(50) with 7 given by while £ o/ Te>1
K .

Eq. (44) can be obtained by expanding the evolution matrix
S(t,t") up to the second power imj(aoi, , and using the RG
technique described in Sec. Il C.

The leading effect of the irradiation is in cutting off the In this section we consider the regime of “intermediate
logarithmic divergences in the time integrals like Eg2). suppression” of the Kondo effect by ac radiation. By “i
One can easily see that with the time-decaying spin correlaermediate” we mean that the decoherence is relatlvely
tion function (48), correctlonG(eak|s finite even aff—0: weak,

IV. WEAK SPIN-DECOHERENCE
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hlT<Ty, (549 of Noziges and Blandin® This theory states that the
renormalization-group transformation, whose initial stage
was described in Sec. IIC, can be continued, and finally
leads to a fixed point. At the fixed point, the system exhibits
Fermi-liquid behavior, and its Hamiltonian has a relatively
Tk<ho, (54 simple form!® This fixed-point Hamiltonian can be used to
so that the RG resultEq. (44)] for the decoherence rate study the properties of the Kondo system at low tempera-
holds. In this regime, the formation of the many-body state igures, T<T .}*'® Mapping the quantum dot system in the
not suppressed, because of Ef§4d. However, Eq.(54b)  Kondo regime onto the regular one-channel Kondo problem,
allows for sudden spin flips. The complicated nature of thewe can employ the fixed-point Hamiltonian to evaluate the
many-body state hampers a quantitative consideration of thidc current through the dot induced by applied bias.
regime, and we limit ourselves to qualitative analysis. The external ac field disturbs the many-particle state
When the many-body Kondo resonance is fully formed,formed near the isolated spin, leading to deviations of the
the conductance of the dot equag [Eq. (39)], and corre-  system behavior from that dictated by tfsatio fixed-point
sponds to the unitary limit of tunneling through the dot. Hamiltonian. In this section we study the case when the fre-
Radiation-induced spin-flip destroys the many-body stategquency of the field is low#Aw<<T), so that the many-body
and the conductance drops substantially below the valustate is not destroyed but rather adiabatically varied by the ac
given by Eq.(39). The time necessary for the many-body field, as the level in the dot goes up and ddwee Eq(1a)].
state to be restored approximately equal$, .1” Therefore, Then the current through the dot can be evaluated with the
the fraction of time which the system spends in the highlyhelp of the fixed-point Hamiltonian with time-dependent pa-
conducting G~Gy) state approximately equals 1 rameters.
—an/7Ty, wherea~1. The resulting time-averaged con- Now we map the problem of transport through the dot

and formula(52) is no longer valid, but the frequency is still
sufficiently high,

ductance of the dot can be estimated as onto the regular scattering problem. For this purpose, it is
convenient to use the basis ®&ndp scattering states rather
Gpeai=| 1-a Gy . (55) than that of the left- and right-lead states. These two bases
7Tk are connected by

The ratef/r of the spin-flip processes here is given by Eq. a®=¢c, . +nc alP = _ pe, | +&c 56
(44). Under conditiong54), parameter does not depend on ko= ECot T Cor, A = Mot + ECkor, (56)
the characteristics of the ac field. The valueaocshould be ~ where

found from the quantum-mechanical problem of evolution,

which starts with a state “prepared” by the flip of the im- = UL DR
urity spin, and results eventually in the reformation of a - M= :
purtty’ sp Y \/UE+UZR \/UE‘FU%

Kondo polaron. Our qualitative treatment of regin@4)
does not allow us to find the exact value of the universafThe p-states are decoupled from the dot because of their
coefficienta, which, however, could be found from a nu- symmetry, so the dot-lead coupling term in the Anderson

meric calculation. At the upper limit of applicability;/r Hamiltonian[Eqg. (18] has the form
~Ty, the peak conductance given by E§5) matches re-

sult (52). \/vf+v§k2 (a'd,+H.c).

V. LOW-FREQUENCY AC FIELD:

ADIABATIC APPROXIMATION The initial basisc,,, is composed of the states residing en-

tirely in the left or right lead, which is convenient for the

In Secs. IIC and 1l we considered the case when theproblem of two leads connected by a weak link, when the
isolated spin is only weakly screened by the many-electromterlead tunneling is to be considered as a perturbation. In
state formed around it. The complete screening was sugerms of incident and reflected/transmitted waves, these
pressed either by relatively high temperatlire T, or by  States correspond to the waves incident from one of the leads
large biaseVy>Ty , or by decoherence. In the case of Sec.to the dot and completely reflected back to the same lead.
IV, the spin-screening cloud is able to form; however, theTherefore, thes waves of Eq.(56), which enter the new
spin flips, produced by the irradiation, occasionally destroybasis, have a scattering phase equairid.*°
this many-body state, thus reducing the conductance. Making the Schrieffer-Wolff transformation, we arrive at

In this section, we consider the case of low frequencies ofhe regular Kondo problem, which at low temperatures can
the ac fieldh w<T, when the energy of a photon is insuf- be studied with the help of the fixed-point Hamiltonign.
ficient to flip the dot’s spin in the fully formed many-body Under these conditions, treewave electrons, interacting via
Kondo state. For the irradiation to be the leading cause ofhe isolated spin, form the screening cloud. This many-body
deviation of the conductance from the unitary limit, we sup-state still has Fermi-liquid properties, though its scattering
pose the temperature and bias to be also [ByeV,.<T . characteristics are different from those of just an isolated
The RG technique we used before is not applicable in thispin. One of the principal differences is the shift of the scat-
regime. Therefore, we need another approach to evaluate titering phase byr/2 for states at the Fermi levE!.This sug-
conductance of the quantum dot system and the effects of trgests another change of basis for the sake of convenience:
external irradiation on it. from s waves having a scattering phase equairta, a(kfﬁ to

The required approach is provided by the scaling theornthose with a scattering phase
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The formal relation betweea®) and the new basis, which p waves are not affected by the Kondo screening, so the
we denoteb,,,, is given by Hamiltonian for them has the same form as the one given by
Egs.(1a and(56).

Using Hamiltonian61), we can rewrite the current opera-
tor (60) in a form more convenient for further calculations:

} (62

‘/’Ers)(x)zj dke ™**af), (57)  The first term in Eq(62) is the current that would flow if all
) ) ] o the incident states were resonantly transmitted through the
whereg(x) is an arbitrary function obeying”..dx" g(x’)  dot; the scattering between the left- and right-incident spe-
=1. The “coordinate”x was introduced for convenience to cjes (which is just backscattering whef= 7) reduces the
separate the incoming and outgoing parts of the scatteringyagnitude of the current, and is accounted for by the second
states, which correspond to negative and positive valugs of term.
respectively. To evaluate the conductance of the dot, we employ the
Before the scattering regiojpx— — in Eq. (57)], the  Keldysh techniquéEg. (19)], treating the last two terms of
wave functions of the statés,, anda() coincide. Therefore, Hamiltonian (61) as a perturbation. At an infinitely small
the states temperature and bias, the current through the dot is trans-
(in) _ - (in) _ ) ferred by electrons at the Fermi level. The transmission co-
Chol = Ebko— M8k Ckor™ DKo T EBG (58 efficient for these electrons equals&#)?, i.e., the second
represent waves incident from a left or right lead only. PasstPackscatteringterm in the current operat¢62) yields zero.
ing the scattering region, the wave function of the state Therefore the dot unger these cgndlthn§ has maximum con-
acquires an extra phase of as compared to that af{®).  ductanceG=Gy=(e"/mh)(27¢)". At finite temperatures, -
Then one can see that the states the t_electrons which carry the current are spread within a §tr|p
of width T near the Fermi level. The departure of the particle
cO=— b, —nal®, cW=— b, +&al? (59  energy from the Fermi level in syste(61) leads to the de-
viation of its scattering phase from, i.e., from resonance.
have an outgoing wave only in the left or right lead, respec-Therefore the conductance in this case will be lower than
tiyely. The current operator in terms of these states equal@ul Indeed, substituting Eq€62) and(61) into Eq.(19) and
simply employing second-order perturbation theory in the last two
terms of Hamiltonian(61), we arrive at

bkozf dxe ¥ (x),

~ (s . e? ie
PI(x), I(V)=(2n§)2[EV—%

" (out)T~(out)
pr’kE CkoR CkoR
Ned

\irg(x)=ex+wfx dx'g(x’)

V)= (€G- cGRcGr). (60 ,
a e vE df(vgk)

= — 2 [ — 2 _

Gpeal T) = — (277¢) [1 T2 2k [ ik

The fixed-point Hamiltonian in the basks,, , a(kfl has a
relatively simple form°

2 df(veky)
A 0T ~ Tk, |T(veke)
pr:UF% kblgbko—i_vF% ka(k’()r)Ta(kr‘)f) UVEV TK kikoks 1
_ Uk (k1+k2)bl Pk o [ (vekg)] flvp(ky—ks 3)]]]
VTKklkz(T 1 2
[ i
- 1_772(_ }G o5
AT + . o
1/2-|-Kk1k22k3k4 'blebszbkslbkﬂ'i 5 (61 Te
heref(s)=1 IT)+1] is the Fermi distribution func-
where = - -: denotes normal ordering. The spectrum of eIeCW eref(e)=1[exp@/T)+1] is the Fermi distribution func

tion. One can see from E@63) that the conductance of the

quantum dot system at low temperatures decreases with in-

) : o creasing temperature. This behavior has been observed

only energy scale qf the fixed-point I-_|am|Iton|@1). _experimentally*® and is analogous to the decrease of the
The third term in Eq.(61) determines the phase shift \ogjgtivity in a regular Kondo systetbulk metal with mag-

which a quasiparticle acquires as it passes through the dqfqic impurities.

This shift is energy dependent: it equaisat the Fermi level, The differential conductance of the dot at finite biag.,

as we discussed aboye, and- ¢, /Tg in the ggneral casé. with T<eV,.<Ty, can be derived analogously to H63).
In terms of waves incident from the left or right lead, such,o resulting formula

behavior of the phase shift is analogous to that seen in tun-
neling through a resonant state tied to the Fermi level. The 3
fourth term in the Hamiltonian describes the interaction of G(Vdc):[l_ .
the quasiparticles of the Fermi liquid at the fixed point. The 8

trons is linearizeds .= vk, since the reduced bandwidth is
of the order of Ty<<eg; the Kondo temperatur@y is the

eVye?
T ) }G“ (64
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shows thatG(Vy) decreases with increasing bias applied tophysical parameters; see E¢t1) and(14). However, in the
the dot. Kondo regime all these parameters combine into a single
A slow (Aw<Ty) ac field results in an adiabatic time relevant energy scal€ , [see Eq(37)], controlling the be-
dependence of the Kondo temperature; see (B6).. The havior of the system, see, e.g., E33) and(63). The peri-
time-dependent part of Hamiltonidf1) with 1/T«(t), given  odic modulationVy,;coswt of the dot potential adds two
by Eg. (46), accounts for the interaction of quasiparticlesmore parameters to the initial Hamiltonighl), and, most
with the ac field. To consider this part of the Hamiltonian inimportantly, drives the system into a nonequilibrium state.
conventional terms of electron-photon interaction, we ex-Surprisingly, such a drastic perturbation does not break down

pand 1T (t) in a Fourier series: the universal description of the problem, and the Kondo tem-
perature remains the only relevant energy scale. We have
1 1 ot shown that the effect of the irradiation is described by two
Te(t) E; Tf{" e (65) dimensionless parametefiso/ Ty and 6Ty /Ty Vo, Where

OTk is the size of the adiabatic variation of the Kondo tem-
After absorption of a photon, a current-carrying quasiparticleperature under the influence of ac modulation; see(&5).
is transferred from the Fermi level, i.e., away from the reso- At sufficiently large frequencies of the ac field, when
nance. As a result, at low temperatures even a low-frequency
ac field must reduce the conductance of a quantum dot in the
Kondo regime. Athw<Tg, the conductance can be calcu- —
lated in second order of perturbation theory in the time- Tk 37 [6Ty /Ty
dependent part of the Hamiltonian. Substituting &%) into
Eq.(61), and then using the Keldysh formalidiig. (19)]to  the rate/ 7 of the spin-flip cotunneling exceeds the Kondo
evaluate the conductance, we arrive at temperatureT. The spin-flip cotunneling brings decoher-
) ence into the spin dy_nar_nics of the dot, destroying the Kondo
1_2 i resonance. A small lifetime of the Kondo resonance leads to
o T(Kn) a significant suppression of the Kondo effect; see Sec. 11l B.
The dependence of the zero-bias dc conduct&)gg,of the
2 dot on the power and frequency of the ac field is given by
+— 2 S(veky—Nhw)O(veky) Egs.(52) and (44).
V" kikoks Upon lowering the frequency, condition (68) breaks
down, andiz/ T becomes smaller than the Kondo temperature.
Gy Under such conditions, strong suppression of the Kondo con-
ductance is not possible. However, the conductance still may
deviate from the unitary limiG, . The violation of condition

4
ho_ 32 [IN(5T/Ty)] -

2
UF
Gpeak= — ; k25(vek—nhw)

X[1=0(veks) ]Ove(ki—Ko+Ks)]

2
_ 1_32 hinw G 66) (68) occurs whilefiw still exceedsTy . The zero-bias con-
= | T U ductance in this regime can be estimated by &%) and
“ (44)

where for simplicity we set the temperature to zero. Trans- At frequencies below the Kondo temperature, the ac field
forming Eq.(66) back from lW(K“) to 1/T(t) [Eq. (65], we is unable to flip the spin of the dot, and spin-flip cotunneling
finally obtain does not occur. In this regime, the ac-driven deviation from
the unitary limit is small, and can be accounted for within the

d 1 )2 framework of the Fermi-liquid descriptidi. The main role
Gpea=)1-3 dt Te(t) U of the ac field is to scatter the conduction electrons, transfer-
2 ring them to energies away from the Fermi level. These scat-

%[ -3

5T\ %[ hw)\? tered electrons miss the Kondo resonance, which is tied to

2\ T ) | T Gu. 67 the Fermi level. This produces a small deviation of the dc
- _ _ o conductanceG e, from the unitary limit; see Sec. V, Eq.

where . .. denotes averaging over the period of variation of(g7).

Tw(t), and 8Ty /T is defined by Eq(45). The results obtained for these three regimes match each

The single-photon decoherence processes described @iher on the corresponding limits of applicability. This al-
Sec. A do not occur in this regime, because the energyows us to piece together the dependence Gafc ON
necessary to flip the dot’s spin is increased by its interactior? Tk / Tk and%w in a broad frequency range; see Fig. 2.
with the screening “spin cloud” in the leads, and is of the ~ This dependence allows us to conjecture that at small
order of Ty>7%w. The rate of spin flips due to many-photon 6Tk /Tk the conductance can be cast in the form
processes is exponentially small Ty /% w.

, (69

Gpeak 5Tk\? (ho
VI. SCALING FORMULA FOR THE CONDUCTANCE G = T f T
V] K K

In this section we summarize the results obtained in Secs.
[1I-V for the effect of periodic modulation of the dot’s po- with two universal functiond=(x) and f(y). Each of the
tential on the Kondo conductance. In the absence of ac irrdunctions depends on only one variable; they have the fol-
diation, the quantum dot system is described by a number dbwing asymptotes:



PRB 62 UNIVERSALITY OF THE KONDO EFFECT INA ... 8165

Note that, in contrast to the ac modulation of the gate voltage
T (Sec. Il A), in the case of ac bias the rate of decoherence
UE 67 decreases with the growth of the field frequenay. The
1 4 arameter

_\ p

2
1_ 3[%] [ Tttt ?' Eq' (55) GU o 4FLFR
e2at (T +TR)?2

A .. Eq.(52) ho  Characterizes the asymmetry in the dot, and emerges in the
: : e expressions for quantities associated with electron transfer
: : between the leads.
0 32 [In T, /TK)]4 When /7' Tx>1, the conductance can be evaluated by
0 1 3n W means of perturbation theory; see Sec. Il C. The decaying
[87 /T function (S;(t;) Sc(t2) Si(t3)), which enters the terms of the
FIG. 2. The zero-bias Kondo conductan@ges of a quantum perturbation theory, provides the large-time cutoff for the
dot monotonically decreases with increase in the frequéneyof  integrals in equations of the type of EQ2). The derivation
modulation of the dot potential. The plot shows the dependence o8f the expressions for conductance is identical to the one
GpeakONiw at a fixed amplitude Vgoee 5Ty /Ty of the modulation.  given in Sec. Il B; cf. Eq(52). The final formula reads
The conductance in the unitary lim&, is given by Eq.(39). The

value of Gyea/ Gy athi/7=Ty is denoted byA=<1; this value can G _3772 1 G 73
be found from numerical calculation. peak— 15 [In(%i/ 7' Te) ]2 U
1—ax if x<1 with /7' Ty given by Eq.(72).
) At smaller amplitudesfi/ 7' T¢<1, the ac bias is unable
F(x)=9 37 1 : (700 to suppress the formation of the Kondo many-electron state.
— if x>1, h .
16 (Inx)2 For this case we may repeat the reasoning of Sec. IV. As a
result, we obtain
and
Gpea=| 1—a——|Gy, (74)
1, . 7' Tk
53y it y=<1, i.e., the Kondo conductance is only weakly suppressed.
f(y)= 3 (71 In the opposite limit of slow variations of biad,w’
°m if y>1. <maxXTy,eVag, one can use the adiabatic approximation
32 (Iny)* _
Gpear= G(VqcCOS0'). (75

The numerical parameter~1 is introduced and discussed HereG(V) is the differential dc conductance at finite biés

in Sec. IV. Whenhw>Ty, the argument of functiof has 5,47 denotes averaging over the period of variation of ac
the meaning of dimensionless decoherence #&td y .

bias. ForeV/T¢<1, the conductance is given by E@®4).

Substituting this into Eq(75), we obtain
VIl. CONDUCTANCE SUPPRESSION BY AC BIAS

In Secs. llI-VI we considered the effects of modulation eVac
of the dot potential on the Kondo conductance. In the presen T_
section we study the conductance in the system where the a K
field is applied between the leads, thus creating an alternat
ing biasV,.. The parameters characterizing such a field are Eq. (77)
the dimensionless amplitudeeV,./Tx and frequency
ﬁw’/TK .

First we consider the case of “fast” ac biagw’
>maxXTk,.eVid. Under these conditions, the ac bias affects

the Kondo conductance through the decoherence of the dot’ h(D'
spin. The dependence of the corresponding decoherence ra Eq. (76) _—
fl7' on the amplitude and frequency of the ac bias can be TK

calculated with the help of the renormalization group tech-Q
nigue which we used in Secs. IIC, lllA, and Il B. The re-
sulting expression reads

FIG. 3. The regimes of the ac bias effect on the Kondo conduc-
tance. The solid line is the border between the two dom@iBs
eV, 2 T 1 and (78b). The dashed line separates the regimes of wbalow

. (72 the line and strong(above the ling suppressions of the Kondo
Tk | ho' [In(ho'ITy)]? conductance in each of these two domains.

i1 Gy

7Tk T
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FIG. 5. At finite bias, the coherence of the spin state of the dot
can be lost in an act of cotunneling, when an electron leaves the dot
to the lower voltage lead, and another electron enters it from the
higher voltage lead.
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FIG. 4. The suppression of the Kondo effect with ac bias weak-

ens as the frequencyw’ of the bias grows. The plot shows the
dependence of the dc zero-bias conductaBggonfiw’ at fixed
bias amplitudev,> T /e.

Gpeak: [ 1- (76)
In the opposite cas&V,./Tx>1, using Eqs(40) and (75)
we obtain:

37 1 s -
P16 [In(eVae/ T2

<Tg, and by Eq(40) for eVy>Tk . As we have seen from
the previous sections, the ac field reduces the height of the
zero-bias peakG &= G(Vgc=0).

Another effect of external irradiation on the differential
conductances (V) is in producing satellite peaks atV 4.
=*+nho. If an external ac field is applied, then, @Vy.=
*nhw, a tunneling electron can hop from a state at the
Fermi level in one lead to a state at the Fermi level in the
other lead, emitting or absorbing photons. Thus at finite
bias the external irradiation can effectively put a tunneling
electron into zero-bias conditions, and the Kondo anomaly in
the conductance is revived. The height of these peaks can be
calculated from formul&19), similarly to Eq.(24). At a low

Figure 3 shows the possible regimes of the ac bias effece:nough irradiation levelyy<1, it is sufficient to consider

on the Kondo conductance of a dot. At

ho'<maxeVye, Tk}, (78a

the peak conductance depends onlyed,./Tx; see Egs.
(76) and (77). In the opposite case of high frequencies,
fho'>maxeVye, Tk}, (78b

the peak conductance depends only 7o' Ty ; see Eqgs.
(73) and(74). Thus in both region$78g and(78b), Gyeaxis

a function of a single variable. However, the corresponding
variables are different in the two regions. Therefore, at the

only one-photon processes, accounted for by Hamiltonian
(12) with the coupling constantg,,,,(t) given by Eqs(13)—

(15). In this approximation, we will be able to describe the
first pair of satellite peaks, which emerge next to the main,
zero-bias, peak. The resulting correction to the conductance
ate|Vyd close tofiw has the form

37% €2

Gl (Ved =g~ 2 VLRI Tk T2

0
xf dt(— tyexp(— [t]/ )

crossover between these two frequency domains, the peak

conductances e i’/ Ty eV, /Ty) cannot be cast into a
simple form of a single-variable function.

(W_T)Z cog(eVythw)t/h]
fi | sint(aTth)+(T/Dg)?"

(79

It is instructive to consider the peak conductance as a

function of the frequencw’ at a fixed field amplitude Vy.
At small amplitudeseV,./Tx<<1, the suppression of the

WheneV+# +fw, the cosine function cuts off the logarith-
mic divergence here. However, wheV 4.— *#w, the co-

Kondo effect is weak at any frequency. At stronger fieldssine factor becomes essentially constarfit Eq. (24) at Vg
eV,./Tx>1, the Kondo effect is suppressed far below the— 0], and the differential conductance has a peak again. At
unitary limit at low frequencies. The height of the zero-biasT—0, the height of the satellite conductance peak is deter-

peak recovers with increasing field frequeng};, see Fig. 4.
The description of the crossover between regirf&s and
(78b) is developed in Appendix A.

VIIl. SATELLITE CONDUCTANCE PEAKS

mined by the spin decoherence réterg;. We must mention
that 7y may be significantly shorter thangiven by Eq.(41).

The time 7 characterizes the spin decoherence at zero bias,
whereas the satellite corresponds to a finite bég,,
=*+hw. In the latter case, the spin decoherence occurs
mostly due to the tunneling of electrons through the (@ee

In Secs. llI-VII of this paper we mostly concentrated onFig. 5 and also Ref. 31 The rate of this process @tw
the effects of the ac field on the zero-bias Kondo conducs-T, is given by

tanceGpeq In this section we study how the ac field modi-
fies the finite-bias differential Kondo conductar@éV ).

Without an ac field, the dependence of the differential

Kondo conductance oWy is given by Eq.(64) for eV

hoo1

Tst| 2 aw

I Tg

E

(80)
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To extend resulf80) to lower frequencied w=Ty , we em- Conditions(84) and (86), together with Eq(52), demon-
ploy the RG technique. As a result, we obtain the decoherstrate that upon the increase of the amplitude of the ac field,
ence rate as a function of the universal param&iefTy : the zero-bias peak is suppressed first, and only after that the
satellite peaks may become distinguishable from the back-
3 37 Gy hwl Ty @1 ground conductance.

Tsulk 32 &/ wh [In(Aw/T)]?
IX. COMPARISON WITH EXPERIMENT
Note that Eqs(80) and (81) imply eV~ w. ) ) ) ) )

Using the RG technique, we derive the formula for In this section, we discuss pQSS|bIe ways of comparison of
G <1+ (Vg), which is the contribution of one-photon pro- the theory presented here with experiments. Ideally., one
cesses to the differential dc conductance: should measure the dc conductance through a dot while ap-

plying the ac bias to the gates or leads in a controllable way,

2 T 2 —4 and varying its frequency and amplitude in a broad range.
Ga +(Vdc)=[ln\/(h/75“) * (Vo o) + In@ Our results predict that the data obtained at various values of
' Tk Tk Tk should be scalable, when using the proper dimensionless
372[ 5T ]2 variables, Eqs(70), (71, (73), (74), (76), and(77). We pre-
XT[T— Gy. (82 dict also that at a fixed magnitude of ac field, the suppression
K of the Kondo effect should become more severe with an

One can see from Eqé81) and(82) thatG, depends on the increase ofw, if the appligd field modulates Fhe gate'poten—
parameters of irradiation only through the universal variabledi@l; the dependence om in the case of ac field applied to

ST« /Ty andhe/Ty. The details of derivation of Eqg2)  the leads is opposite. tb significantly exceed3y [see Egs.
are given in Appendix B. (84) and(86)] observation of “satellites” aeV=%w of the

The full expression foG(Vy) reads main Kondo singularity may become possible. The appear-
ance of even small side peaks, however, should not occur
G(Vao) = Gpmai Vo) + Gt (Vad + Gey— (Vo). (83) :/vit.?out a strong suppression of the zero-bias Kondo singu-
arity.
Here G,4in accounts for the tunneling through the dot with-  Presently, there is only one experiment aimed at observa-
out absorption or emission of photons, and is responsible fation of effects of irradiation on the Kondo conductance in the
the zero-bias Kondo peak. The other two terms in 88)  quantum dot? In the analysis of this experiment below, we
describe the satellite peaks G(V o). will see that the frequencies used were of the order jof
As the criterion for resolution of the satellites, we adoptand the range o was less than one decade. In addition, it
the requirement that the functigd(Vy4) must be nonmono- was impossible to calibrate the amplitude of the field applied
tonic on the sides of the zero-bias peak. This requirement caio the device; the attenuation coefficients were frequency-

be reformulated as dependent. Therefore, one could not perform the measure-
ments of Gpeaw) at a fixed field amplitude. However, it
0Tk ho was possible to measure the dependence of the peak conduc-
T_K> 1, T_K>1 84 tance on the amplitude of the applied field at a discrete set of

fixed frequencies. The ac source was powerful enough to
In the derivation of condition$84) we used Eq(83) with  allow the authors of Ref. 12 to completely suppress the
GmalV4o given by Eq.(40). Such a form of the elastic Kondo anomaly. Nominally, the ac field was applied to the
Kondo conductanc& i, should be used becauseedV/ gate, but it was apparently hard to exclude “leaking” of the
~hwGman is suppressed mainly due to the finite bias ratheffield to other electrodes of the deviteThis creates further
than due to the decoherence, sifice>h/rg>h/7. ambiguity in the interpretation of the experimental results.

The above discussion involved an ac field applied to the The Kondo temperature of the system can be found from
gate. The case of ac bias can be considered similarly. Thiéie dependencieG..(T) and G(V4) measured in the ab-
third-order perturbation theory result for the shape of satelsence of irradiation. Comparing the experimentally measured
lite peak may be obtained from Eq$9) and(82) by replac-  width of the zero-bias peak without irradiation with the
ing y2 with (y')2. The RG treatment yields width \/4/3T inferred from Eq.(64), we find T~ 50 ueV.

From the temperature dependence of the conductiage
—4 (63)], we expect the width of the Kondo anomaly to be of the
order of 2T /7; comparison of this estimate with the ex-
periment yieldsTx~ 150 ueV. The external irradiation was
applied through a high-frequency coaxial cable, coupled ca-
u- (85  pacitively to the gate. The frequency of the irradiation
ranged from 10 to 50 GHti.e., iw between 40 and 200
ueVv).

The zero-bias Kondo peak was clearly observed in the
G(Vq4o dependence, when no ac field was applied. With the
o increase of the amplitude of the ac field, the height of the
. —>1. (86)  zero-bias peak decreased for each of the frequencies used.
ho' Tk Such a behavior is in agreement with our conclusion that

flrg)’+(eVytho)® &
Gstl i(Vdc) _ ln\/( 7'stl) ( dc ) n In—w
' Tk Tk

2
C

43,”_2

4

| hw
nT—K

eV,
ho'

X

The condition for the satellite peaks to be clearly visible
takes the forms

eVye
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irradiation must suppress the Kondo effect in a quantum dobbtained for the modulation of the gate voltage are summa-
even when dot ionization does not occur. Also, satellites didized in Sec. VI.
not appear, in agreement with our theory fon~Ty ; see If the ac field is applied across the dot, then the proper
Sec. VIII. variable is the corresponding dimensionless bias between the
The authors of Ref. 12 attempted to collapse data for théeads:V ,o/Tx . A “slow” field, 7w’ <maxXeVy., Tk}, sup-
dependence 06, 0n the amplitudeV, and frequencyw presses the Kondo effect essentially the same way as a finite
of the ac field. In this procedurd/;, was scaled by some dc bias does; see Eqér6) and (77). A “fast” ac field,
frequency-dependent parameter, in order to bring to a singl®«’>maxeV,., T}, affects the Kondo conductance
curve the dependencieSe, vs Vi, measured at different through the decoherence of the dot sjfis.(72), (73), and
values ofw. Successful data collapse means that a universdl74)]. At a fixed amplitude of the field, the suppression of the

dependence exists: Kondo effect diminishes with the increase of the ac field
frequencyw’.
Gpear= F[ Virf(fiw)]. (87) The ac field also produces satellite peaks in the depen-

dence of the differential dc conductance on the dc bias. How-
In the experiment the scaled curves coincided with good ever, the satellite maxima in the conductance are inevitably
precision; see Fig. 7 of Ref. 12 for conductan@g,rang-  small, see Sec. VIIl. The analysis of the experim@iBec.
ing from the unitary limit down to values small compared IX) demonstrates good agreement between our theoretical
with G . Our theory indeed allows for such a single- results and the results of recent experiments.
parameter scalinfEq. (87)]; see Egs(70) and(71) and Fig.
2, in the case of ac modulation of the gate voltage. Con- ACKNOWLEDGMENTS

versely, according to Fig. 3, scaling like E®7) would be . . .
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field is applied to the gatisee Eqs(15), (44), and(45)]. We L.P. Kogwenhpven, D. Goldhaber-Gordon, and Y. Meir for
see two possible reasons for this discrepancy. First, our coS€ful discussions.

clusion is valid for weak modulation only. This condition

most probably was not satisfied in the experimemter- APPENDIX A: AC BIAS WITH  eVye~fie'

formed atho~Ty; at such frequencies strong modulation |, this appendix we describe the crossover between the
of the gate potentialgT~ Ty, is required to achieve sig- regimes of “slow” and “fast” ac bias, which occurs at
nificant suppression of the Kondo effect. Second, leakage of

the ac field to the leads would result in suppression of the ho'~eV,S>Tk; (Al)

llé;l_’uig:osr:adcucitl?lnce by ac bias even at the center of the Vals_ee Fig. 3. Throughout this appendix, we will use the finite-

order perturbation theory to evaluate the decoherence rate
and conductance. The RG technique is abandoned here, since
X. CONCLUSION the finite-order perturbation theory is sufficient in the region

We have considered the Kondo conductance of a quantur(]jweflned by conditiorAL).
dot subjected to ac field. We have shown that, despite the
essentially nonequilibrium character of the problem, the
Kondo temperatur@ ¢ [Eg. (37)] remains the only relevant Unlike the casey’=eV,J/hw'<1, in the crossover re-
energy scale. The dc Kondo conductance depends on the gion [Eq. (A1l)] the decoherence rate is determined also by
field only through two dimensionless variables, the fre-many-photon processes. Using the Fermi golden rule with
quency and the amplitude of the ac perturbation, each dithe Hamiltonian of Eqs(11) and(16), we arrive at
vided by Ty . In terms of these two variables, conductance is
a universal function. The form of this function, and the rela- h 2T T'g
tion of the perturbation amplitude to the “bare” value of the 7: T E2
ac field amplitude, depends on the way the ac field is applied. d

If the ac field is applied to the gate, then the strength ofwhere M (x)= —xJo(X)J1(X) + X[ Jo(X) 12+ Xx*[I1(X)]?. In
the perturbation is characterized by the amplituilg; of  the case of a “fast” ac fieldy'=eV /hw'<1, Eq.(A2)
adiabatic variations of the Kondo temperature; see Eqseduces to
(45—(47). At low frequenciesiw<Ty, the conductance is
close to the unitary limifSec. V, Eqg.(67)]. At higher fre- A1
quenciesiw>Ty, the ac field suppresses the Kondo effect ;: P
by means of the decoherence of the dot’s $fiecs. IlI, IV).

The value of the zero-bias conductance decreases with thehe latter formula is similar to Eq41), and accounts for
increase of the frequenay of the ac field. The results we single-photon processes only. Equati@3) is the first term

1. Decoherence by ac bias

M(y o', (A2)

I
B

(,y/)Zﬁw/. (A3)
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in the perturbation theory series #f,,+ for 2/7’. The sum-
mation of leading terms of all orders if,,, can be per-
formed with the help of the RG technique, and yields Eq.
(72) [cf. Egs.(41) and(44), respectively.

In the limiting case of “slow” ac biasy’>1, Eq.(A2) is
reduced to

h

T!

4

I'I'r
—€Vac ;
772

=2
Ed

(A4)

cf. Eq. (80).

2. Conductance

The conductance in the crossover regj@y. (Al)] can
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This is the first logarithmic term of the series that are
summed up in Eq(73). Note that the results given by Eqgs.
(A7), (A8), and(A9) match each other at the corresponding
applicability limits.

APPENDIX B: RG TRANSFORMATION
FOR SATELLITE PEAKS

In this appendix, we describe the RG transformation we
used to derive E¢(82). Unlike the other instances of appli-
cation of the RG technique in our paper, the RG transforma-
tion of this appendix consists of two stages. The first stage is
analogous to the one considered in Sec. I[Egs.(42) and
(43)]. It stops when the bandwidt® reacheseVy~#%w.
Sincef/ T y«<hw [see Eq(81)], we need to reduce the band

be evaluated with the third-order perturbation-theory serie.%urther to account for all possible virtual transitions contrib-

in J,q (). Using Eqs(11), (16), (19), and(20), we arrive at
372 e?
G T Vad = —— —= v TR T+ T

0
"
wT\? ) .

F cog ¥’ sin(w't+ o) — ¥ sin o]

(A5)

(—t)cogeVydt/h)exp —|t|/7)
sintP(7Tt/%)+(T/Dg)?

X

[cf. Eq. (24)]. Expression(A5) accounts for the current in-
duced by both dc and ac biases. To single out the form
contribution, which is the true dc conductance, we must av
erage over the phasg,. This averaging in the limit of zero
temperature and dc bias yields

2 A2

@ 2™ & a0 0, (0
Gpeac —— 5 VIJRITIRrT 1]
2 wh
0 exp(—|t|/7) o't
xf dt———————J| 29’ sin—|.
~= N2+ (hlmDy)? 2
(A6)
In the limit " —0, Eq.(A6) yields
G IN(Do/e V). (A7)

This result is analogous to E(77) at eV, Tk . At small
frequenciesw’ 7<1, the corrections to EqA7) are propor-
tional to expt-l/w’'7). At larger frequenciesh/T<fhw'
<eV,, the two leading terms in the expansion of the right-
hand side of Eq(A5) in powers of 14’ are

3) 37 e (012 7(0) . 7(0)
Gpea& 32 75" [TiRrITTRRT T ]
Dy 1
X|In +—lno'r|. (A8)
ac Yy

At even larger frequencieg,w’>eV,., Eg.(A6) yields

G2 (D' /). (A9)

uting to the Kondo anomaly iG¢y(Vqyo) -

The RG transformation we consider in this appendix is
aimed at evaluation of the conductanGgy. In processes
which contribute to the singularity i, a tunneling elec-
tron jumps from the Fermi level in one lead to the Fermi
level in the other, emitting or absorbing a photon. Therefore,
the reduced band in each lead must be centered at its Fermi
level. WhenD is below# w, transitions of only two types are
possible within such a band. First, there can be transitions
within a lead without absorption or emission of a photon.
Second, transitions from the higher potential lead to the
lower potential lead with emission of a photon, and a reverse
transition with absorption of a photon is also possible. The
other types of transitions bring electrons out of the reduced

el5and, and should be excluded from the consideration. Such a

treatment yields the RG equations

djaa_ ‘7(2110’ Bl
dib "D (B1)
dir  JAr(ILLT TRR
with the initial conditions

5 _er, 1 53
JaeDlo-ro=F T, Zointharmgy’ B

7o) _2\I'I'g 1 5Ty

LRTIPTR T T 4 TR aufIn(holT) ]2 Tk
(B4)

cf. Eq. (43). The second stage of the transformation must be
stopped atD~D*=/(#/7¢)*+ (eVg*hw)?. Expanding
the solution forJ g in powers of STk /Tx up to the first
power, we obtain

2\T T 6Tk

jLR|D~D*:mT_K

IP\/(ﬁ/Tsn)ZJr (eVacthw)? N
1 TK
(B5)

The conductanc&g, must be calculated in the second-order
perturbation theory i/, s(D~D*), given by Eq.B5). This
calculation finally yields Eq(82).
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