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Solution of the Schrödinger equation for quantum-dot lattices
with Coulomb interaction between the dots
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Institute for Solid State and Materials Research Dresden, Postfach 270016, 01171 Dresden, Germany

~Received 10 January 2000!

The Schro¨dinger equation for quantum-dot lattices with noncubic, non-Bravais lattices built up from ellip-
tical dots is investigated. The Coulomb interaction between the dots is considered in dipole approximation.
Then only the center of mass~c.m.! coordinates of different dots couple with each other. This c.m. subsystem
can be solved exactly and provides magnetophononlikecollective excitations. The interdot interaction is in-
volved only through a single interaction parameter. The relative coordinates of individual dots form decoupled
subsystems giving rise tointradot excitationmodes. As an example, the latter are calculated exactly for
two-electron dots. Emphasis is layed onqualitative effects, like: ~i! Influence of the magnetic field on the
lattice instability due to interdot interaction;~ii ! closing of the gap between the lower and the upper c.m. mode
at B50 for elliptical dots due to dot interaction; and~iii ! Kinks in the intradot excitation energies~versus
magnetic field! due to change of ground-state angular momentum. It is shown that for obtaining striking
qualitative effects one should go beyond simple cubic lattices with circular dots. In particular, for observing
effects of electron-electron interaction between the dots in far-infrared spectra~breaking Kohn’s Theorem! one
has to consider dot lattices with at least two dot species with different confinement tensors.
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I. INTRODUCTION

Quantum dots have been in the focus of intensive rese
already for at least a decade which lead to a countless n
ber of publications, therefore we will refer here only to p
pers which are directly connected to the scope of this w
~for a recent book see Ref. 1!. Although almost all experi-
ments are performed at dot lattices, in the vast majority
theoretical investigations the interaction between dots is
glected. This is for the following reasons:~i! Because the
confinement frequencyv0 is a parameter, which is mainl
extracted from optical properties, it is difficult to tell th
influence of dot interaction apart from the intrinsic single d
value. ~Possibilities to overcome this problem are discus
in the present work.! ~ii ! The theory of Raman spectra, whic
can in principle monitor the dispersion~wave-number depen
dence! of excitation energies as a direct consequence of
terdot interaction, is not yet advanced enough to extract
dispersion.~iii ! The lattice constant of dot arrays produc
with current technologies is so large (.2000 Å) that large
electron numbersN per dot are necessary to obtain a seiza
amount of shift. For these N, however, reliable first-princip
calculations are not possible. With the advent of se
assembled dot arrays the last item might change.

The scope of this paper is to investigate conditions wh
lead toqualitativeand observable effects of interdot intera
tion on excitation spectra and the phase transition found
Ref. 2. Unlike in Ref. 2, a magnetic fieldB is explicitly taken
into account and a microscopic theory is applied. Our
proach is purely microscopic, i.e., we solve the Schro¨dinger
equation of a model systemexactly. Our model comprises
the following approximations:~i! The dot confinement is
strictly parabolic in radial direction, but with anisotrop
confinement frequenciesv i ( i 51,2) and independent ofN
andB. ~ii ! Overlap of wave functions between different do
PRB 620163-1829/2000/62~12!/8126~11!/$15.00
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is neglected~no hopping!. ~iii ! The Coulomb interaction of
the electrons in different dots is treated in dipole approxim
tion ~second order in dot diameter over lattice constant!. Our
model is similar to that in Ref. 3, but allows more comp
cated dots and lattice structures. Besides, we calculate
the intradot excitations~apart from the collective center-of
mass excitations! for N52 explicitly and discuss the
instability2 in this microscopic model. Our results on the la
eral dot dimer are compared with a former paper,4 which
uses a high magnetic field approach, in Sec. III.

The plan of this paper is as follows. For further referen
we briefly summarize in Sec. I some relevant results for o
single dot, or for dot lattices, where the distance between
dots is very large. This is important, because all exact so
tions in the center-of-mass subsystem are traced back~by
special transformations! to the solution of this one-electro
Hamiltonian. This is analogous to ordinary molecular a
lattice dynamics. After this, we consider a dot dimer, whi
mimics a lattice, where the dots are pairwise close to e
other. This model can give an idea of the effects expecte
dot lattices with a basis. Next we consider a rectangular,
primitive lattice in order to obtain the dispersion in the spe
tra. Finally, the intradot excitations of the Hamiltonian in th
relative coordinates are calculated numerically. The pa
ends with a summary. In the Appendix we give a short a
elementary proof for the fact that the Generalized Ko
Theorem holds even for arbitrary arrays of identical nonc
cular quantum dots with Coulomb interaction~between the
dots! in an homogeneous magnetic field.

II. SINGLE DOT

The Hamiltonian considered here reads~in atomic units
\5m5e51)
8126 ©2000 The American Physical Society
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H5(
i 51

N H 1

2m* Fpi1
1

c
A~r i !G2

1
1

2
r i•C•r i J

1
1

2 (
iÞk

b

ur i2r ku
, ~1!

wherem* is the effective mass~in units of the bare electron
massm), b the inverse dielectric constant of the backgroun
andC a symmetric tensor. In case of a single dot,C is given
by the confinement potential and we defineC5V. It is al-
ways possible to find a coordinate system whereV125V21

50 and V i i 5v i
25m* v i*

2 . We use the symmetric gaug
A5 1

2 B3r throughout.The Zeeman term inH is disregarded
at the moment. ForN51, the Hamiltonian

H5
1

2m*
Fp1

1

c
A~r !G2

1
1

2
r•C•r ~2!
-

e
s

r

t

a

,

can be diagonalized exactly. Later on we will see that a
the case of interacting dots can be traced back to the solu
of type ~2!. ~Therefore we kept the off diagonal elements
C in the results given below because the dynamical mat
which also contributes toC, is generally nondiagonal and w
want to use the same coordinate system for allq values.!
After transforming the operatorsr i and pi to creation-
annihilation operators~see, e.g., Ref. 1! and using the proce
dure described by Tsallis,6 we obtain for the eigenvalues

E~n1 ,n2!5S n11
1

2Dv11S n21
1

2Dv2 ;

n650,1,2, . . . , ~3!

where
v65Avc*
2

2
1ṽ0

26Avc*
4

4
1vc*

2ṽ0
21

D2

4
1C12

2 , ~4!

5AF 1

2
Avc*

214ṽ0
21

~D214C12
2 !

vc*
2

6
vc*

2
G 2

2
~D214C12

2 !

4vc*
2

, ~5!

ṽ0
25

1

2
~C111C22!; D5C112C22 ~6!
ent
e
ak-
se
and vc* 5B/m* c is the cyclotron frequency with the effec
tive mass.~The results for the special caseC1250 can also
be found in Ref. 5.! The optical selection rules are the sam
as in the circular case, i.e., there are two possible type
excitations:

~Dn1561 and Dn250! or

~Dn2561 and Dn150! ~7!

leading to the excitation energiesDE5v1 and v2 . It is
easily seen that the form~5! reduces to the familiar formula
in the circular case, whereD50 andC1250. By inspection
of Eq. ~4! we find that asoft modev2(B)50 can only occur
if C11•C225C12

2 . For a diagonal C this means that
min(C11,C22)50. The last condition is of importance fo
interacting dots considered in the next sections.

In the limiting caseB50 we obtain from Eq.~4!

v6~B50!5A~C111C22!

2
6A~C112C22!

2

4
1C12

2 .

~8!

We see thatdegeneracyv1(B50)5v2(B50) can only
happen ifC1250 and C115C22. For a diagonal confinemen
tensor withC1250 we obtainv1(B50)5max(v1,v2) and
v2(B50)5min(v1,v2). As to be expected, we observe
of

gap between the two excitation curvesv1(B) andv2(B) at
B50, if the two confinement frequencies do not agree.

Alternatively we can introduce the quantum numbers

k5
~n11n2!2un11n2u

2
; mz5n12n2 , ~9!

wherek is the node number andmz turns in the circular limit
into the angular momentum quantum number.

For arbitraryN, the center of mass~c.m.! R5(1/N)( ir i
can be separatedH5Hc.m.1Hrel. with

Hc.m.5
1

N H 1

2m*
FP1

N

c
A~R!G2

1
N2

2
R•C•RJ , ~10!

whereP52 i¹R ~see the Appendix!. As well known,Hc.m.
does not contain the electron-electron interaction.Hc.m. can
be obtained from the one-electron Hamiltonian~2! by the
substitution: B→NB, C→N2C and H→(1/N)H. If we
make the same substitution in the eigenvalues~3!, we obtain

Ec.m.~n1 ,n2!5EN51~n1 ,n2!,

i.e., the eigenvalues of the c.m. Hamiltonian are independ
of N. In other words, inH there are excitations, in which th
pair-correlation function is not changed, or classically spe
ing, where the charge distribution oscillates rigidly. Becau
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8128 PRB 62M. TAUT
far-infrared ~FIR! radiation ~in the limit l→`) can excite
only the c.m. subspace, all we see in FIR spectra is the
modes.

III. DOT DIMER

We consider twoidentical elliptical dots centered ata1
5(2a/2,0) anda25(1a/2,0). We expand the Coulomb in
teraction between electrons indifferent dots in a multipole
series and restrict ourselves to the dipole approximation.
introduction of c.m. and relative coordinates within each d
the c.m. coordinates and the relative coordinates deco
~the tilde indicates that in this preliminary Hamiltonian
common gauge center for both dots is used!:

H̃5H̃c.m.~R1 ,R2!1(
a

1,2

H̃a~$r%a
(N21)!. ~11!

$r%a
(N21) symbolizes (N21) relative coordinates in theath

dot. This means, we have three decoupled Hamiltonians:
c.m. Hamiltonian and two Hamiltonians in the relative coo
dinates of either dot. This leads to two types of excitatio

~i! Collective excitationsfrom H̃c.m. which involve the
c.m. coordinates of both dots simultaneously. Because of
harmonic form~in the dipole approximation!, there are ex-
actly two modes per dot, thus a total of four. Each excitat
can be classically visualized as vibrations of rigidly movi
charge distributions of both dots.

~ii ! Intradot excitationswhich are doubly degenerate fo
two identical dots. BecauseH̃a($r%a

(N21)) is not harmonic~it
includes the exact Coulomb interaction between the elect
within each dot, which is not harmonic!, this spectrum is
very complex. It is the excitation spectrum of a single dotin
a modified confinement potentialwhere the c.m. coordinat
is fixed. The extra term in the modified confinement poten
comes from the dipole contribution of the interdot Coulom
interaction.

In this section we consider only the c.m. Hamiltonian a
focus our attention to the the effects of ellipticity in the d
confinement potential. The relative Hamiltonian forN52 is
explicitly given in the last section and solved for circul
dots. For the elliptical confinement potential considered
this section, the relative Hamiltonian cannot be solved eas
even if we restrict ourselves toN52, because the elliptic
confinement potential breaks the circular symmetry of
rest of the relative Hamiltonian.

A. Center-of-mass Hamiltonian of the dimer

The c.m. Hamiltonian in the dipole approximation read

H̃c.m.5
1

N H (
a

1,2
1

2m*
FPa1

N

c
A~Ua1aa!G2

1
N2

2 (
a,a8

Ua•Ca,a8•Ua8J ~12!

where the small elongationUa is defined byRa5aa1Ua
andP52 i¹R52 i¹U . The tensorC is
m.

y
t,
le

he
-
:

he

n

ns

l

n
y,

e

Ca,a5V1bN (
a8(Þa)

T~aa,a8!, ~13!

Ca,a852bNT~aa,a8! for aÞa8, ~14!

whereaa,a85aa2aa8 , and the dipole tensor is

T~a!5
1

a5
@3a+a2a2I # ~15!

containing a dyad product (+) and the unit tensorI . As in the
c.m. system of a single dot, the explicitN dependence in Eq
~12! cancels in the eigenvalues. What is left is only theN
dependence in the dipole contribution of the dot interact
appearing in Eqs.~13! and ~14!. This means that the c.m
spectrum of interacting dots is no longer independent ofN.

The termaa in the argument of the vector potential in E
~12! causes trouble in finding the eigenvalues. This shift i
consequence of the fact that we have to adopt a comm
gauge center for both dots~we chose the middle betwee
both dots!. This problem can be solved by applying the fo
lowing unitary transformation:

Hc.m.5Q21H̃c.m.Q; Q5)
a

1,2

Q5e2
1
2

N
c ~B3aa!•Ua .

~16!

In other words,Hc.m. agrees withH̃c.m. except for the miss-
ing shift in the argument of the vector potential.

The four modes inherent inHc.m. are not yet explicitly
known, because the four degrees of freedom are coup
Decoupling into two oscillator problems of type~2! can be
achieved by the following transformation:

U(1)5
1

2
~U21U1!; U(2)5U22U1 . ~17!

This results in

Hc.m.5
1

2
H (1)12H (2), ~18!

where

H (1)5
1

N H 1

2m*
FP(1)1

2N

c
A~U(1)!G2

1
N2

2
U(1)

•~4V!•U(1)J , ~19!

H (2)5
1

N H 1

2m*
FP(2)1

N

2c
A~U(2)!G2

1
N2

2
U(2)

•S 1

4
V1

N

2
bT~a! D •U(2)J , ~20!

anda is a vector pointing from one dot center to the oth
ThenT(a) has the following components:

T115
2

a3
; T2252

1

a3
; T125T2150. ~21!
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Now we assume that the principle axes of the confinem
potentials are inx1-x2 direction. This means

V115v1
2 ; V225v2

2 ; V125V2150. ~22!

The eigenvalues ofH (1) can be obtained from Eqs.~3! and
~4! with

ṽ0
25

1

2
~v1

21v2
2!; D5~v1

22v2
2! ~23!

and forH (2) with

ṽ0
25

1

2
~v1

21v2
2!1

1

2
p; D5~v1

22v2
2!13p, ~24!

where the interaction parameter is defined by

p5
2Nb

a3
. ~25!

Observe that the dependence onN cancels, except that in
cluded inp @see discussion following Eq.~10!#. It is impor-
tant that the dot interaction influences the result only throu
a single parameter. This conclusion agrees with the semi
nomenological theory in Ref. 2.

In all our figures we express frequencies in units of
average confinement frequencyv05 1

2 (v11v2), andD and
p in units v0

2. Then, all systems can be characterized by
two parameters:v1 /v2 and p. In other words, all system
having thev1 /v2 ratio indicated in the figures are repr
sented by the family of curves with thep values shown. The
only exception we made is the cyclotron frequencyvc* .
vc* /v0 would be a good parameter in this sense, but
chose to use the magnetic field in T instead for better ph
cal intuition. The conversion between both scales is giv
by vc* @a.u.* #5@(0.913431022)/m* #B@T# or, vc* @v0#
5$(0.913431022)/m* v0@a.u.* #%B@T#. In this paper we
usedv050.2 a.u.* 52.53 meV andm* of GaAs.~We want
to stress that this choice effects only the magnetic-field s
and not the qualitative features of the figures.! For easy com-
parison with experimental parameters we add the defini
of effective atomic units (a.u.* ) in GaAs (m* 50.067,b
51/12) for the energy: 1 a.u.* 54.6531024 double
Rydberg512.64 meV, and for the length: 1 a.u.* 51.791
3102 bohrs50.94773102 Å.

BecauseU(1) agrees with thetotal c.m. R5 1
2 (R11R2)

of the system,H (1) is the total c.m. Hamiltonian. ForB
50, the eigenmodes can be visualized by classical osc
tions. The two eigenmodes ofH (1) are ~rigid! in-phase os-
cillations of the dots inx1 and x2 direction, respectively.
Because of the Kohn theorem~see the Appendix!, the inde-
pendence ofH (1) on the Coulomb interaction does not on
hold in the dipole approximation, but it is rigorous. Th
shows also that the dipole approximation is consistent w
the Kohn theorem, which is not guaranteed for sing
particle approaches. Because FIR radiation excites~in the
dipole approximation! only the c.m. modes, it is only the
p-independent eigenmodes ofH (1) which are seen in FIR
absorption experiments.

This statement is in contradiction to Ref. 4. They p
formed numerical diagonalizations for a lateral pair of circ
nt
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lar dots confining the set of basis functions to the low
Landau level and considering parallel spin configuratio
only. This is justified in the limit of high magnetic fields
They found a splitting of the two dipole allowed modes
B50 due to dot interaction and some anticrossing structu
in the upper mode, whereas the lower mode is always c
to the single-particle mode. This fact is already a strong
dication that the missing higher Landau levels cause b
spurious effects.~Observe that the lifting of the degenerac
at B50 in the dipole allowed excitations in Fig. 1 is due
the ellipticity of the intrinsic confinement and not due to d
interaction.!

The eigenvalues ofH (2) do depend onp because the dots
oscillate ~rigidly! in its two eigenmodes in opposite phas
one mode inx1 and one mode inx2 direction. This leads to
a change in the Coulomb energy. The two eigenmodes
H (2) can also be described as a breathing mode~in x1 direc-
tion! and a shear mode~in x2 direction!.

FIG. 1. Excitation energiesDE6
(6)5v6

(6) for a dimer of ellipti-
cal dots as a function of the magnetic field for some discrete va
of the interaction parameterp (p values in the inset are in unitsv0

2).
The ratio of the oscillator frequencies in the direction of the cap
axesv1 /v2 is ~a! 3/2 and~b! 2/3. The dipole allowed excitations
DE(1) of H (1) ~thick full line! are not influenced by the dot inter
action and therefore independent ofp.
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B. Special features of the excitation spectrum

In Figs. 1~a! and~b! the four excitation frequencies of th
dimer are shown withp as a parameter. Forp50, the two
modesv6

(2) agree with the two modesv6
(1) . In all symbols,

the superscript sign refers to the systemH (1) andH (2) ~c.m.
or relative coordinate!, and the subscript sign discriminate
the two modes of the same system. The two modesv6

(1) are
independent ofp. There are two qualitatively different case
~Consider thatv1 is the oscillator frequency parallel to th
line, which connects the two dot centers, andv2 is the os-
cillator frequency perpendicular to this line.! If v1>v2 @Fig.
1~a!, the gap betweenv1

(2) and v2
(2) at B50 increases

steadily with increasingp until, for a criticalpcr5v2
2 ~in our

numerical case:pcr@v0
2#516/2550.64) the lower mode

v2
(2) becomes soft. This transition isindependentof B. For

v1<v2 the gap betweenv1
(2) and v2

(2) at B50 first de-
creases with increasingp until it vanishes for p5 1

3 (v2
2

2v1
2) ~in our numerical case:p@v0

2#54/1550.27). After-
wards, it increases until the lattice becomes soft atpcr5v2

2

~in our numerical case:pcr@v0
2#536/2551.44). The depen-

dence of the two excitation energiesv1
(2) andv2

(2) on p for
B50 in the second case is shown in Fig. 2. Comparison
Figs. 2~a! and ~b! demonstrates that the dot architecture
Fig. 2~a! is much more sensitive to interdot interaction th
that in Fig. 2~b!. Thus, if we want to observe or use th
instability, this event happens in case 2~a! for for smallerp
~or larger lattice constants! than in case 2~b!. Additionally,
the assumption of nonoverlapping dot wave functions~for a
given lattice constant! is better fulfilled in case 2~a! than in
case 2~b!.

For GaAs as a typical substance, Eq.~25! can be rewritten
in more convenient units as

p@v0
2#5

2.263107N

~a@Å # !3~v0@meV# !2
. ~26!

Obviously, we need large dots~large N, small v0, which
means large polarizability!, and a small dot distancea for a

FIG. 2. Excitation energiesDE6
(2)5v6

(2) of the Hamiltonian
H (2) for B50 and v1 /v252/3 as a function of the interactio
parameterp.
f

seizable interaction effect. On the other hand, the dot rad
for N51 is of order of the effective magnetic length1 l 0

5@(2v0)21(vc* )2#21/4, which reads for GaAs

l 0@Å #5
238

$~v0@meV# !210.739~B@T# !2%1/4
~27!

and we need small dots and high magnetic fields for sm
overlap. Consequently, a magnetic field helps avoiding ov
lap of the dots, although, e.g., the criticalp for soft modes is
independent ofB. The question is whether there exists
window between these two~partly! conflicting demands. For
an order-of-maigntude estimate, let us consider GaAs w
v0 as chosen above and the worst caseN51. Then Eq.~26!
with a typicalp@v0

2#50.1 ~which seems to be the minimum
for any observable effect! provides a dot distance ofa@Å #
5327 and Eq.~27! gives for B50 a radius ofl 0@Å #5150
and forB@T#510 a radius ofl 0@Å #580. Consequently, the
constraintl 0,a/2 for our model can be fulfilled. For obtain
ing larger interaction effects the parameters have to be o
mized.

The next question is what happens inmode softening
physically? First, it is the antisymmetric shear modev2

(2)

which has the lowest frequency and which becomes sof
the interaction parameter is strong enough (p.pcr), thede-
creasein interdot-Coulomb energy with increasing elong
tion of the dots becomes larger than theincreaseof confine-
ment potential energy. Becausein the harmonic modelboth
energies depend quadratically on elongation, the dim
would be ionized, i.e., stripped of the electrons. Clearly,
this case we have to go beyond the dipole approximation
the interdot interaction and beyond the harmonic approxim
tion for the confinement potential.

In order to obtain a hand-waving picture of what happe
the confinement potential of the system for shear mode
cillations is supplemented by a fourth-order term in the f

lowing way: Vcon f.52N@ 1
2 v2

2U22AU4# with (A.0), and
the Coulomb interaction in fourth order reads:Vint
52pNU21(3pN/a2)U4 where p52Nb/a3 as above.
Then, the stability condition reads

Vtot

N
5~v2

22p!U21S 3p

a2
22AD U4>0. ~28!

The condition for the existence of a bound state is that
U4 term is positive: 3p/a2.2A. For a positiveU2 term (p
,v2

2), the equilibrium position isU050. If the U2 term
becomes negative (p.v2

2), the system finds a new equilib
rium at a finite elongation

U056A ~p2v2
2!

2~3p/a222A!
. ~29!

This new ground state is doubly degenerate:U15(2a,
1U0), U25(1a,2U0) and U15(2a,2U0), U25(1a,
1U0) have the same energy. In short, atpcr5v2

2 there is an
electronic phase transition to a polarized state, where
equilibrium position of the c.m. is no more in the middle
the dots. At the end we want to stress that all these stab
considerations are only valid if the confinement potentia



on

o

t a

en

t-

-
de
m

ed

-

in
m

ll
y

f
om-
ex-

ed

q.

.
FIR
nd
t)

a
ase
nce
clu-
ork
er

PRB 62 8131SOLUTION OF THE SCHRO¨ DINGER EQUATION FOR . . .
not changed under elongation of the c.m. of the dots. Sec
it is not rigorous to include the fourth-order termsafter sepa-
ration of c.m. and relative coordinates, because in fourth
der these two coordinates do not decouple exactly.

IV. DOT LATTICE

We consider a periodic lattice ofequal quantum dots at
lattice sitesRn,a

(0) 5Rn
(0)1aa . The vectorsRn

(0) form a Bra-
vais lattice andaa runs over all sites within an unit cell. In
developing a theory for these lattices we have to repea
steps in Sec. II from Egs.~11! to ~16! just by supplementing
the indexa by the indexn for the unit cell.

A. Center-of-mass Hamiltonian of the dot lattice

The c.m. Hamiltonian in the dipole approximation th
reads

Hc.m.5
1

N H (
n,a

1

2m*
FPn,a1

N

c
A~Un,a!G2

1
N2

2 (
n,a

n8,a8

Un,a•Cn,a;n8,a8•Un8,a8J , ~30!

whereUn,a5Rn,a2Rn,a
(0) is the elongation of the c.m. at la

tice site (n,a) and the force constant tensorC is defined in
analogy to Eqs.~13! and ~14!.

The Hamiltonian~30! is a phonon Hamiltonian in an ad
ditional homogeneous magnetic field. The first stage of
coupling can be achieved by the usual phonon transfor
tion

Un,a5
1

ANc
(

q

BZ

e2 iq•Rn
(0)

Uq,a , ~31!

Pn,a5
1

ANc
(

q

BZ

e1 iq•Rn
(0)

Pq,a , ~32!

where Nc is the number of unit cells and the transform
coordinates have the following properties:U2q,a5Uq,a*
5Uq,a

† andP2q,a5Pq,a
† . The Hamiltonian in the new coor

dinates is a sum ofNc subsystems of dimension 23 number
of dots per unit cell:Hc.m.5(qHq , where

Hq5
1

N H (
a

1

2m*
FPq,a1

N

c
A~Uq,a* !G†

•FPq,a1
N

c
A~Uq,a* !G

1
N2

2 (
a,a8

Uq,a* •Cq;a,a8•Uq,a8J . ~33!

The dynamical matrix is defined by

Cq;a,a85(
n

eiq•Rn
(0)

Ca,a8~Rn
(0)!; Ca,a8~Rn

(0)!5Cn,a;0,a8

~34!

and it is HermiteanCq;a8,a5Cq;a,a8
* 5C2q;a,a8 .
d,

r-

ll

-
a-

Next we want to recover the limiting case considered
Sec. III. If the dots in a given unit cell are far away fro
those in neighboring cells, then in Eq.~34! only the term
with Rn

(0)50 contributes,C does not depend onq, conse-
quently the indexq is redundant, and Eq.~33! agrees with
Eq. ~12!.

Our preliminary result~33! is not yet diagonal ina,a8. In
some special cases~see, e.g., two identical dots per unit ce
considered in Sec. III! this can be achieved by an unitar
transformation

Uq,a5(
a8

Qq;a,a8•Ũq,a8 ; Qq;a8,a
* 5Qq;a,a8

21 ~35!

under which the one-particle term in Eq.~33! is invariant and
the transformed interaction term

1

2 (
a,a8

Ũq,a* •C̃q;a,a8•Ũq,a8 with

C̃q;a,a85 (
a1 ,a2

Qa,a1

21 Cq;a1 ,a2
Qa2 ,a8 ~36!

can be made diagonalC̃q;a,a85C̃q;ada,a8 by a proper choice
of Qa,a8 . Now, Eq.~33! readsHq5(aHq,a , where

Hq,a5
1

N H 1

2m*
F P̃q,a1

N

c
A~Ũq,a* !G†

•F P̃q,a1
N

c
A~Ũq,a* !G

1
N2

2
Ũq,a* •C̃q;a•Ũq,aJ . ~37!

The eigenvalues of Eq.~37! can be obtained from those o
Eq. ~2! because corresponding quantities have the same c
mutation rules. Such an unitary transformation does not
ist, e.g., for two different dots per cell~see Ref. 12!. Then
Eq. ~33! has to be solved directly using the method describ
in Ref. 6.

B. Dynamical matrix for Bravais lattices

From now on we considerBravais latticeswhat means
that we can forget the indicesa in the first part of this sec-
tion. Then the dynamical matrix

Cq5V1bN (
Rn

(0)Þ0

~12eiq•Rn
(0)

!T~Rn
(0)! ~38!

is real and symmetric, but generally not diagonal, even ifV
is diagonal. A very important conclusion is apparent in E
~38!. In the limit q→0, the interdot interaction~represented
by b) has no influence onCq and therefore on the spectrum
This means that the excitation spectrum observed by
spectroscopy is not influenced by interdot interaction a
agrees with the one-electron result (as in the single do.
This statement is rigorous for parabolic confinement~see the
Appendix!. It can also be understood intuitively, because
q50 excitation is connected with homogeneous in-ph
elongations of the dots which do not change the dista
between the electrons. We want to mention that this con
sion seems to be in contradiction with the experimental w
in Ref. 11. They found a splitting of the upper and low
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excitation branch atB50 and q50 for circular dots in a
rectangular lattice, which they interpreted within a pheno
enological model of interacting dipoles as a consequenc
lattice interaction. However, they use mesoscopic dots wi
diameter of 370 000 Å and lattice periods of 400 000 a
800 000 Å. These dots are clearly beyond our microsco
quantum mechanical model, which rests on a parabolic c
finement.

For the rectangular latticesconsidered in our numerica
examples we define R(0)5N1a1e11N2a2e2 and q
5q1(2p/a1)e11q2(2p/a2)e2 with the lattice constantsa1
and a2 and integersN1 and N2 characterizing the lattice
sites. The components ofq vary in the Brillouin zone~BZ! in
the range@21/2,11/2#. The dipole tensor~15! reads

T~N1 ,N2!5
1

~N1
2a1

21N2
2a2

2!5/2

3F ~2N1
2a1

22N2
2a2

2! 3N1N2a1a2

3N1N2a1a2 ~2N2
2a2

22N1
2a1

2!
G .

~39!

Although for all figures the exact dynamical matrix is used
is useful to consider the results withnearest-neighbor~NN!
lattice sums in Eq.~38! separately. This provides simple fo
mulas for order-of-magnitude estimates.

C115v1
212p1@12cos~2pq1!#2p2@12cos~2pq2!#,

C225v2
212p2@12cos~2pq2!#2p1@12cos~2pq1!#,

C125V12, ~40!

where we introduced the interaction parameterspi

52bN/ai
3 .

The convergence of the lattice sumsSik in the dynamical
matrix is shown Fig. 3.Sik is defined by

Cik5V ik1p2Sik ~41!

FIG. 3. Convergency of the lattice sumsSik as defined in Eq.
~41! with increasing number of cubic shellsNmax for q in the
middle of the irreducible Brillouin zone.
-
of
a
d
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n-

t

and depends only onq and the ratioa1 /a2. Apart from the
off-diagonal elements, which vanish in NN approximatio
the error of the NN approximation is less than 30%.

C. Special features of the magnetophonon spectrum

Figs. 4–6 show the magnetophonon spectrum for circu
dots on a rectangular lattice witha152a2. ~The termmag-
netophononis attributed to the fact that there is no exchan
and there are harmonic forces between the oscillating in
viduals. One could also call themmagnetoplasmons, if one
wants to emphasize that it is only electrons which oscilla
and no nuclei! Because the two interaction parameters hav
fixed ratio, it suffices to use one of them for characterizi
the interaction strength. We chose the larger onep25p. For
B50 and isolated dots (p50), the two excitation modes ar
degenerate. If we tune up the interaction strength represe
by p, a q-dependent splitting appears~see Fig. 4!.

FIG. 4. Magnetophonon dispersion atB50 for several interac-
tion parameter values andq on symmetry lines of the Brillouin
zone. (p5p2 values in the inset are in unitsv0

2.! Thick ~lower! and
thin ~upper! lines indicateDE2 andDE1 , respectively.

FIG. 5. The same as Fig. 4, but forp5pcr and several magnetic
fields.
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FIG. 6. Magnetophonon excitations as a fun
tion of B for the symmetry points in the Brillouin
zone. The upper abscissa is independent of
effective mass, the lower one applies to GaAs
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This splitting is a manifestation of the dot interaction. F
a certain criticalpcr the lower mode becomes soft. This fe
ture will be discussed below. There are points in the B
however, where thedegeneracyfor finite p remains. These
points will be investigated now. We demonstrated in Sec
after formula~8! that necessaryfor degeneracy isC1250,
i.e., the dynamical matrix must be diagonal. Then the po
with degeneracy are defined by the conditionC115C22. As
seen in Eq.~38!, for circular dotsv15v25v0 this happens
in the center of the BZq50. The next question to be dis
cussed is if there are other points with degeneracy. The
conditionC1250, is fulfilled for all points on the surface o
the BZ. The second condition must be investigated for s
cial cases. We find that for quadratic latticesa15a2 with
circular dotsv15v2 both modes are degenerate at the po
q5(1/2,1/2). In the case shown in Fig. 4 this point is som
where between (1/2,1/2) and (1/2,0). In NN approximat
~40!, however, this equation is even fulfilled on full curves
the BZ defined byp1@12cos(2pq1)#5p2@12cos(2pq2)#. In a
cubic lattice, this is the straight linesq256q1. The contri-
butions beyond NNs remove the exact degeneracy on
curve in the interior of the BZ, but leave a kind of anticros
ing behavior of the two branches.

An important parameter, which characterizes the infl
ence of the dot interaction in circular dots, is thebandwidth
at B50, i.e., the maximum splitting of the two branches d
to dot interaction.~Remember that this splitting vanishes f
noninteracting circular dots.! Assumea1.a2. Then the larg-
est splitting for circular dots in NN approximation appears
q5(0,1/2) and has the amount

W5max~DE12DE2!5max~v12v2!5Av0
214p2

2Av0
222p2. ~42!

For small dot interaction and in unitsv0, this is proportional
to the interaction parameterW/v0→3p2.
r

,

II
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e-

t
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-
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We next discuss the appearance ofsoft modes. The ques-
tion is, for whichq, B and interaction parameterp this hap-
pens. The general condition for vanishing of the lowest mo
is C11•C225C12

2 ~see Sec. II!. In this condition the magnetic
field does not appear. For circular dots and with the defi
tion ~41! this equation reads

@v0
21p2S11#@v0

21p2S11#5p2
2S12

2 . ~43!

After introducing a dimensionless critical interaction para
eterp@v0

2#5p2 /v0
2, we obtain a quadratic equation forp@0

2#
which has the solution

p@v0
2#52

1

2

Tr

Det
6AS 1

2

Tr

DetD
2

2
1

Det
, ~44!

where Det5S11S222S12
2 and Tr5S111S22. For our numeri-

cal casea152a2 and NN interaction forSik the lowest mode
becomes soft atq5(0,1/2) and the critical interaction pa
rameter isp@v0

2#51/2. Inclusion of lattice contributions be
yond NN shiftsp@v0

2# to 0.7543. The most important resu
of this paragraph is that lattice softening isindependentof B
~see also Figs. 5 and 6!. The latter conclusion isexactwithin
the range of validity of the Hamiltonian~30! and no conse-
quence of any subsequent approximation or specializatio

V. INTRADOT EXCITATIONS FOR NÄ2

Intradot excitations for circular dots in a cubic lattice a
for N52 can be calculated easily. We define the relat
coordinater5r22r1, and assume that all dots are equivale
~also with respect to their environment!. Then the indexes
(n,a) can be chosen as (0,0) and omitted. The relat
Hamiltonian reads

Hrel52H 1

2m*
Fp1

1

2c
A~r !G2

1
1

2
r•D•r1

b

2r J , ~45!

wherep52 i¹ r and
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D5
1

4
V1

b

2
T0 ; T05 (

n,a(Þ0,0)
T~Rn,a

(0) !. ~46!

It is worth emphasizing thatHrel contains a contribution
from neighboring dots, originating from the interdot Co
lomb interaction. A trivial angular dependent part can on
be decoupled fromHrel , or, the two-dimensional Schro¨-
dinger equation can be traced back to an ordinary ra
Schrödinger equation, if the termr•D•r has the same circu
lar symmetry as the intradot Coulomb termb/(2r ). There-
fore we confine ourselves to circular dots on a cubic latti
and we have

T05
1

a3 (
N1 ,N2Þ0,0

1

~N1
21N2

2!3/2
I'

4

a3
I , ~47!

where the simple result is in NN approximation. Using t
interaction parameterp52Nb/a3 ~with N52) defined
above, we obtain

D5
1

4
~v0

212p!I . ~48!

In this way, dot interaction defines an effective confinem
frequencyv0,e f f

2 5v0
212p. This means thatthe c.m. excita-

tions have to be calculated (or interpreted) with another co
finement potential then the relative excitations. In our figures
we present results forv0,e f f50.2 a.u.* , which agrees with
the bare confinement potential used in Sec. IV and the m
value in Sec. III. Because our results are presented in uni
v0, they depend onv0 only weakly through the differing
influence of electron-electron interaction. For the absol
values, however, the influence of the dot interaction can
tremendous.

In the relative motion there is a coupling between orb
and spin parts through the Pauli principle. ForN52 and a
circular effective confinement, Pauli principle demands t
orbital states with even and odd relative angular momen
mi must be combined with singlet and triplet spin stat
respectively~see, e.g., Ref. 7!. For the c.m. motion there is
no interrelation between orbital and spin part because
c.m. coordinate is fully symmetric with respect to partic
exchange. Consequently, any c.m. wave function can
combined with a given spin eigenfunction. The only sp
dependent term in the total energy considered here is
Zeeman term, which reads in our units

EB

v0
50.913431022gs

B@T#

v0@a.u.* #

Ms

2
, ~49!

where we usedgs520.44 for the gyro-magnetic factor o
GaAs from Ref. 8. The total spin quantum number isMs
50 for the singlet state and 0,61 for the triplet state. One o
the most interesting points in quantum dot physics is that
total orbital angular momentum of the ground state depe
on the magnetic field~see, e.g., Refs. 8 and 9!. This feature is
a consequence of electron-electron interaction. For our
rameter values, the relative orbital angular momentum of
ground statemi changes from 0 to21, from 21 to 22, and
from 22 to 23 atB51.250, 4.018, and 5.005 T. This co
al
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responds to a sequenceMs50,11,0,11 for the spin quan-
tum number. Figures 7~a!–~c! show the excitation frequen
cies for threeB values lying within the first three regions.mf
is the relative orbital angular momentum of the final sta

FIG. 7. Intradot excitation energies~in units of the effective
confinement frequency! for B50 ~a!, B53 T ~b!, andB54.5 T
~c!. The corresponding relative orbital angular momenta of
ground state aremi50 ~a!, 21 ~b!, and22 ~c! and the spin angular
momentaMs50 ~a!, 11 ~b!, and 0~c!.
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All excitations are included irrespective of selection rule
For dipole transitions only two of them would remain~the
lowest excitation withmf5mi61). For B50, the lowest
excitation energy~in units v0) for noninteracting electrons
would be 1. As seen in in Fig. 7~a!, electron-electron inter-
action decreases this value by at least a factor of 1/2.
same holds qualitatively for finiteB. This is connected to the
fact, that the ground state depends onB. Let us consider an
example. ForB51.250 T the ground state switches fro
mi50 to mi521. This implies that forB approaching this
transition field from below, the excitation energy for dio
allowed transition frommi50 to mf521 converges to 0. In
other words, there is a level crossing at the the transi
field. Therefore very small transition energies and switch
of the ground state are connected.

For a qualitative understanding, Figs. 7~a!–~c! can be
used together with Figs. 1~a!, ~b!, 4, and 5 to investigate th
relative position of collective and intradot excitations. T
conclusion is that for small dot interaction~for p well below
pcr), the lowest intradot excitation energies lie well belo
the lowest c.m. excitations. Apart from using a different t
minology, this conclusion agrees with the experimental fin
ings in Ref. 10.

Figures 7~b! and ~c!, which belong to finiteB, show the
Zeeman splitting. All transition energies to final states w
odd mf are triplets because the corresponding spin state
triplet state. The thin lines of a triplet belong to spin-fl
transitions.

In Fig. 8 theB dependence of the lowest excitation en
gies is shown. It is clearly seen that the curves exhibit a k
at those B values, where the ground-state configurati
changes. The size of the kink decreases with increasingB. If
this kink could be resolved experimentally~e.g., by elec-
tronic Raman spectroscopy!, it would be a direct indication
for the change of the ground-state configuration, and thu
experimentally observable consequence of electron-elec
interaction.

FIG. 8. Intradot excitation energies~in units of the effective
confinement frequency! as a function of the magnetic field. Th
small Zeeman splitting is neglected. TheB values, where the angu
lar momenta of the ground-state change, are indicated by ver
lines. The absolute value of the final-state orbital momentummf of
the curves atB50 grows from bottom to top by 1 starting with 0
.
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VI. SUMMARY

We solved the Schro¨dinger equation for a lattice ofiden-
tical parabolic ~but not necessarily circular! quantum dots
with Coulomb interaction~in dipole approximation! between
the dots. We provide an overview over the state of art
these systems which includes the results of former publ
tions. References can be found in the text.

• Similar to single dots, the center-of-mass coordinates o
dots can be separated from the relative coordinates. O
the c.m. coordinates of different dots are coupled to e
other. The relative coordinates of different dots are neit
coupled to each other nor to the c.m. coordinates.

• This gives rise to two types of excitations: two collectiv
c.m. modes per dot and and a complex spectrum of in
dot excitations. In periodic arrays only the collective c.
modes show dispersion. Intradot excitations are dispers
less.

• The c.m. system can be solved exactly and analytic
providing magnetophonon excitations characterized b
certain wave numberq within the Brillouin zone. Forq
50 and one dot per unit cell, interdot interaction does n
have any influence on the c.m. excitations.

• All dipole allowed excitations~seen in FIR experiments!
are not influenced by the dot interaction.

• Interdot interaction between two dots influences the sp
trum through a single parameterp52Nb/a3, wherea is
the distance between the dots,N the number of electrons
per dot andb the inverse background dielectric constan

• If p exceeds a certain critical valuepcr , the lowest c.m.
mode becomes soft leading to an instability. This transit
is independent of the magnetic field.

• For B50 and and one circular dot per unit cell, the tw
c.m. modes are not only degenerate in the middle of
Brillouin zone, but also at some points on the surface
we use the NN approximation for the lattice sums in t
dynamical matrix, degeneracy is maintained even on
curves in the Brillouin zone.

• Intradot excitations have to be calculated from an effect
confinement. In circular dots with a cubic environment
nearest-neighbor approximation the effective confinem
frequency readsv0,e f f

2 5v0
212p. This effective confine-

ment differs from that for the c.m. motion.
• For p well below pcr , the lowest intradot excitations ar

much smaller than the lowest collective excitations.
• The intradot excitation energies versus magnetic field

hibit kinks at those fields, where the angular momentum
the ground state changes.

In the Appendix we prove a Kohn theorem for dot arra
with Coulomb interaction between the dots without the
pole approximation. The individual confinement potentia
can be arbitrarily arranged and can carry different elect
numbers, but have to be described by identical confinem
tensors. This means that for breaking Kohn’s theorem in
arrays, we have to have at least two different confinem
species.
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APPENDIX

We are going to prove that for an arbitrary array~the dot
centers can be arranged arbitrarily! of identical parabolic
quantum dot potentials~the confinement tensorsV of all
dots must be equal! in an homogeneous magnetic field:~i!
the total c.m. degree of freedom can be separated from
rest,~ii ! the total c.m. Hamiltonian is not influenced by Co
lomb interaction, and~iii ! the eigenvalues of the total c.m
Hamiltonian are independent of the electron numberN in
each dot~the electron number in different dots can be diffe
ent!.

The HamiltonianH5H (0)1V consists of an one-particl
termH5H (0) and the Coulomb interaction between all ele
tronsV. The dot centers are located atRa

(0) and the electron
coordinates are denoted byr ia5Ra

(0)1uia . Then we have

H (0)5(
ia

H 1

2m*
Fpia1

1

c
A~Ra

(0)1uia!G2

1
1

2
uia•C•uiaJ .

~A1!

First of all, we shift the gauge center for each electron i
the middle of the corresponding dot using an unitary tra
formation similar to Eq.~16!. This transforms the shiftRa

(0)

in the argument of the vector potential away. Next we dr
the indexa in Eq. ~A1! so that the index ‘‘i ’’ runs over all
electrons in all dots. Now we perform a transformation
new coordinatesũi :

ui5(
k

Qik~AN ũk!; ~AN ũi !5(
k

Qki* uk , ~A2!

whereQik is an unitary matrix. This implies

pi5(
k

Qik* S p̃k

AN
D ; S p̃i

AN
D 5(

k
Qkipk . ~A3!
the
-

-

-

to
s-

p

o

It is possible to choose for the first columnQk151/AN. The
other columns need not be specified. Thenũ15(1/N)( iui
5U is the c.m. of all elongations, or, the c.m. of the electr
coordinates with respect to the weighted center of the
locationsR(0)5(1/N)(aNaRa

(0) , whereNa is the number of
electrons in dota. The corresponding canonical momentu
p̃15(1/i )¹ ũ1

5P is the c.m. momentum. Inserting our tran
formation into Eq.~A1! provides

H (0)5(
i

H 1

2m*
F 1

AN
p̃i1AN

c
A~ ũi !G 2

1
N

2
ũi•C•ũiJ

~A4!

The term i 51 in Eq. ~A4! is the ~separated! c.m. Hamil-
tonian

Hc.m.5
1

2m*
F 1

AN
P̃1AN

c
A~Ũ!G 2

1
N

2
Ũ•C•Ũ ~A5!

which agrees with Eq.~10!. Clearly, the Coulomb interaction
V in H is independent of the c.m., and does not contribute
Hc.m. . For the independence of the eigenvalues ofN see the
discussion following Eq.~10!.

This proof, in particular the step from Eqs.~A1! to ~A4!,
is not correct if the dot confinement tensorC depends ona
~or ‘‘ i ’’ in the changed notation!. Therefore all dots mus
have the sameC, but can have different electron numbe
Na . In other words, the total c.m. excitations in dot array
which are seen in FIR spectra, are not affected by thee e
interaction, if and only if all confinement tensorsC are
equal. On the other hand,if we want to observe e e interac-
tion in the FIR spectra and break Kohn’s theorem, we ha
to use dot lattices with at least two different confinem
tensors. The simplest way to implement this is using a latti
with two noncircular dots per cell, which are equal in sha
but rotated relative to each other by 90°~see Ref. 12!.
B
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