PHYSICAL REVIEW B VOLUME 62, NUMBER 12 15 SEPTEMBER 2000-II

Solution of the Schradinger equation for quantum-dot lattices
with Coulomb interaction between the dots

M. Taut*
Institute for Solid State and Materials Research Dresden, Postfach 270016, 01171 Dresden, Germany
(Received 10 January 2000

The Schrdinger equation for quantum-dot lattices with noncubic, non-Bravais lattices built up from ellip-
tical dots is investigated. The Coulomb interaction between the dots is considered in dipole approximation.
Then only the center of mags.m,) coordinates of different dots couple with each other. This c.m. subsystem
can be solved exactly and provides magnetophonomidttective excitationsThe interdot interaction is in-
volved only through a single interaction parameter. The relative coordinates of individual dots form decoupled
subsystems giving rise tmtradot excitationmodes. As an example, the latter are calculated exactly for
two-electron dots. Emphasis is layed quoalitative effects, like:(i) Influence of the magnetic field on the
lattice instability due to interdot interactiofii) closing of the gap between the lower and the upper c.m. mode
at B=0 for elliptical dots due to dot interaction; arii ) Kinks in the intradot excitation energiégersus
magnetic field due to change of ground-state angular momentum. It is shown that for obtaining striking
qualitative effects one should go beyond simple cubic lattices with circular dots. In particular, for observing
effects of electron-electron interaction between the dots in far-infrared sgbrtigking Kohn's Theorejrone
has to consider dot lattices with at least two dot species with different confinement tensors.

[. INTRODUCTION is neglectedno hopping. (iii) The Coulomb interaction of
the electrons in different dots is treated in dipole approxima-
Quantum dots have been in the focus of intensive researdion (second order in dot diameter over lattice congta@ur
already for at least a decade which lead to a countless nunmodel is similar to that in Ref. 3, but allows more compli-
ber of publications, therefore we will refer here only to pa-cated dots and lattice structures. Besides, we calculate also
pers which are directly connected to the scope of this workhe intradot excitationgapart from the collective center-of-
(for a recent book see Ref).1Although almost all experi- mass excitations for N=2 explicitly and discuss the
ments are performed at dot lattices, in the vast majority ofnstability? in this microscopic model. Our results on the lat-
theoretical investigations the interaction between dots is neeral dot dimer are compared with a former pabevhich
glected. This is for the following reasoné) Because the uses a high magnetic field approach, in Sec. Ill.
confinement frequency, is a parameter, which is mainly The plan of this paper is as follows. For further reference,
extracted from optical properties, it is difficult to tell the we briefly summarize in Sec. | some relevant results for one
influence of dot interaction apart from the intrinsic single dotsingle dot, or for dot lattices, where the distance between the
value. (Possibilities to overcome this problem are discussedliots is very large. This is important, because all exact solu-
in the present work(ii) The theory of Raman spectra, which tions in the center-of-mass subsystem are traced gk
can in principle monitor the dispersidwave-number depen- special transformationgo the solution of this one-electron
dence of excitation energies as a direct consequence of inHamiltonian. This is analogous to ordinary molecular and
terdot interaction, is not yet advanced enough to extract th&attice dynamics. After this, we consider a dot dimer, which
dispersion.(iii) The lattice constant of dot arrays produced mimics a lattice, where the dots are pairwise close to each
with current technologies is so large-@000 A) that large other. This model can give an idea of the effects expected in
electron numberdl per dot are necessary to obtain a seizabledot lattices with a basis. Next we consider a rectangular, but
amount of shift. For these N, however, reliable first-principleprimitive lattice in order to obtain the dispersion in the spec-
calculations are not possible. With the advent of self-tra. Finally, the intradot excitations of the Hamiltonian in the
assembled dot arrays the last item might change. relative coordinates are calculated numerically. The paper
The scope of this paper is to investigate conditions whichends with a summary. In the Appendix we give a short and
lead toqualitativeand observable effects of interdot interac- elementary proof for the fact that the Generalized Kohn
tion on excitation spectra and the phase transition found irheorem holds even for arbitrary arrays of identical noncir-
Ref. 2. Unlike in Ref. 2, a magnetic fieBlis eXp|ICIt|y taken cular quantum dots with Coulomb interacti(ﬂmtween the

into account and a microscopic theory is applied. Our apgoty in an homogeneous magnetic field.
proach is purely microscopic, i.e., we solve the Sdimger

equation of a model systemxactly Our model comprises
the following approximations{i) The dot confinement is
strictly parabolic in radial direction, but with anisotropic
confinement frequencies; (i=1,2) and independent afl The Hamiltonian considered here redds atomic units
andB. (ii) Overlap of wave functions between different dotsi=m=e=1)
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N 1 1 2 9 can be diagonalized exactly. Later on we will see that also
H=> (—* pi+=A(r;)| +5r;-C- rij the case of interacting dots can be traced back to the solution
=1 (2m ¢ 2 of type (2). (Therefore we kept the off diagonal elements of
1 B C in the results given below because the dynamical matrix,
+ ) m (1)  which also contributes t@, is generally nondiagonal and we

want to use the same coordinate system forgallalues)
wherem* is the effective masén units of the bare electron After transforming the operators; and p; to creation-
massm), A3 the inverse dielectric constant of the background,annihilation operatorgsee, e.g., Ref.)land using the proce-
andC a Symmetric tensor. In case of a Sing|e dbu’s given dure described by Tsa”%we obtain for the eigenvalues
by the confinement potential and we defi@e- Q. It is al-

ways possible to find a coordinate system wh@rg= 0,

=0 and Q;=w’=m*»*?. We use the symmetric gauge E _ 1 A
o n,n)=\n,+=|lo,+/n_+=|w_;
A=3BXr throughout.The Zeeman term khis disregarded (n.n-) SY e 2/¢
at the moment. FoN=1, the Hamiltonian n.—012 ... 3
+1A( ) 2+ ! C (2
= —A(r —r-C-r
om0 C 2 where
|
wéz ~2 (1):4 *x27 2 AZ 2
W= T+woi T+wc wO+Z+C12' (4)
2
1o, ., (A%+4CH) wf| (A?+4Ch)
= — w tdogt——mF—| ———, (5
2 wr? 2 Apt?
-, 1
wozz(C11+C22); A=C1;—Cyp (6)

and w} =B/m*c is the cyclotron frequency with the effec- gap between the two excitation curves (B) andw_(B) at

tive mass.(The results for the special ca€g,=0 can also B=0, if the two confinement frequencies do not agree.

be found in Ref. 5.The optical selection rules are the same  Alternatively we can introduce the quantum numbers

as in the circular case, i.e., there are two possible types of

excitations: K= (ny+n_)—[n.+n_|
> ;

m,=n,—n_, 9
(An,==*=1 and An_=0) or
wherek is the node number and, turns in the circular limit
(An_==1 and An,=0) (7)  into the angular momentum quantum number.
For arbitraryN, the center of mas&.m) R=(1/N)3;r;

leading to the excitation energiesE= and w_. Itis .
g g o o can be separatdd =H, ., + H,e with

easily seen that the forifb) reduces to the familiar formula
in the circular case, wher&=0 andC;,=0. By inspection

2 2
of Eq. (4) we find that asoft modew _(B) =0 can only occur _1 [ N

. 2 . . Hem=% +—5R-C:R
if Cyy-Cp=Cf,. For a diagonalC this means that N 2
min(C,,,C,,)=0. The last condition is of importance for
interacting dots considered in the next sections.

In the limiting caseB=0 we obtain from Eq(4)

N
P+EA(R) , (10

2m*

whereP= —iVy (see the Appendix As well known,H
does not contain the electron-electron interactidp,,, can
be obtained from the one-electron Hamiltonigt) by the

C..+C Cor_C)2 substitution: B—~NB, C—N?C and H—(1/N)H. If we
B=0)= (CutCed [(Cu~C2) c2 make the same substitution in the eigenval@swe obtain
w+(B=0)= 5 * 4 +C1,
(8) Ecm(ny,no)=En=1(ny,no),

We see thatdegeneracyw,(B=0)=w_(B=0) can only i.e., the eigenvalues of the c.m. Hamiltonian are independent
happen ifC,,=0 and C;;=C,,. For a diagonal confinement of N. In other words, irH there are excitations, in which the

tensor withC,,=0 we obtainw, (B=0)=max(w,,w,) and  pair-correlation function is not changed, or classically speak-
w_(B=0)=min(w,w,5). As to be expected, we observe a ing, where the charge distribution oscillates rigidly. Because
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far-infrared (FIR) radiation (in the limit A\ —o) can excite

only the c.m. subspace, all we see in FIR spectra is the c.m. Coa=Q+BN E T(ay,ar), (13
modes. @' (#a)
Ca,a’: _ﬁNT(aa‘a,/) fOI’ aF C!’, (14)
IIl. DOT DIMER

wherea, ,,=a,—a,, and the dipole tensor is
We consider twoidentical elliptical dots centered a;
=(—al/2,0) anda,=(+a/2,0). We expand the Coulomb in-
teraction between electrons differentdots in a multipole
series and restrict ourselves to the dipole approximation. By
introduction of c.m. and relative coordinates within each dotcontaining a dyad product) and the unit tensar. As in the
the c.m. coordinates and the relative coordinates decoupfeM. system of a single dot, the explititdependence in Eq.
(the tilde indicates that in this preliminary Hamiltonian a (12) cancels in the eigenvalues. What is left is only the

1
T(a)=—[3aa- a?l] (15)
a

common gauge center for both dots is used dependence in the dipole contribution of the dot interaction
appearing in Egs(13) and (14). This means that the c.m.
1,2 spectrum of interacting dots is no longer independeni.of
A=Hom(Ry,Ry)+ > A ({ryN-1), (11) The terma, in the argument of the vector potential in Eq.
a (12) causes trouble in finding the eigenvalues. This shift is a

consequence of the fact that we have to adopt a common
{r}"~" symbolizes N—1) relative coordinates in theth  gauge center for both dotsve chose the middle between
dot. This means, we have three decoupled Hamiltonians: thigoth dot3. This problem can be solved by applying the fol-
c.m. Hamiltonian and two Hamiltonians in the relative coor-lowing unitary transformation:
dinates of either dot. This leads to two types of excitations:

~ 1,2

(i) Collective excitationfrom H, ,, which involve the TS _ _ _ o tNgxa,-u,
c.m. coordinates of both dots simultaneously. Because of the Hem=Q "HemQ Q= EI Q=e 23 '
harmonic form(in the dipole approximation there are ex- (16)
actly two modes per dot, thus a total of four. Each excitation o~ _
can be classically visualized as vibrations of rigidly moving!n other wordsH, , agrees witH. , except for the miss-
charge distributions of both dots. ing shift in the argument of the vector potential.

(i) Intradot excitationswhich are doubly degenerate for ~ The four modes inherent ikl ,, are not yet explicitly
two identical dots. Becaus‘éa({r}(aNfl)) is not harmonidit known, because the four degrees of freedom are coupled.

includes the exact Coulomb interaction between the electronlgec.OuIOIIng Into two 0§C|Ilator p“’b'ems _Of tyde) can be
within each dot, which is not harmonicthis spectrum is achieved by the following transformation:

very complex. It is the excitation spectrum of a single ot 1

a modified confinement potentiahere the c.m. coordinate UM ==(U,+U,); UT)=U,—Uj,. 17
is fixed. The extra term in the modified confinement potential Z

comes from the dipole contribution of the interdot CoulombThis results in

interaction.
. . . . . 1
In this sectlon we consider only the c.m. H.am|lt.on|an and He == HO) 4 2HO), (19)
focus our attention to the the effects of ellipticity in the dot 2
confinement potential. The relative Hamiltonian fo=2 is h
explicitly given in the last section and solved for circular WNere
dots. For the elliptical confinement potential considered in 1( 1 N 2
this section, the relative Hamiltonian cannot be solved easily, HH) =—{ ——| P —AUM)
even if we restrict ourselves t=2, because the elliptic N | 2m* c
confinement potential breaks the circular symmetry of the 5
rest of the relative Hamiltonian. +7U(*)-(4Q)-U(+)], (19
A. Center-of-mass Hamiltonian of the dimer
2
The ¢.m. Hamiltonian in the dipole approximation reads H(’)=£ p(*)_g_EA(U(*))
N 2m* 2cC
1,2 2
~ 1 1 N 2
S i _ N 1 N
Hem =1 [ Ea) Py at AUt a,) +7U().(Zg+ S BT(@ -U()] . (20
N2 D anda is a vector pointing from one dot center to the other.
+ o &~ Ua:CaarUar (12) ThenT(a) has the following components:
where the small elongatiob,, is defined byR,=a,+U 2 L
g a y a (43 a Tll:_ T22: - T12: T2].: O (21)

andP=—iVg=—iVy. The tensocC is a®’ a®’
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Now we assume that the principle axes of the confinement 41 X
potentials are irx;-X, direction. This means

=0l Qp=o0j; Q=0y=0. (22

The eigenvalues dfi(*) can be obtained from Eq$3) and
(4) with

1 2
Z)z——(a)2+ wz)' A= (a)z— 2) (23 > —— AE” for pl,]=0 and AE™
R 2 Tl er - —_ AE"’forp ‘02
------ A=C] '
) wi T o
and forH'™) with or 0

e AE" fO116/25=0.64

- 1 1 _\
Giep(eitad iy A=(ei-adidp, @4 [

where the interaction parameter is defined by %0 o >0 30 w0 o
B [Tesla]
2NB
p= o (25 4. .

Observe that the dependence Micancels, except that in-
cluded inp [see discussion following Eq10)]. It is impor-
tant that the dot interaction influences the result only through i
a single parameter. This conclusion agrees with the semiphe
nomenological theory in Ref. 2.

In all our figures we express frequencies in units of the g, |

average confinement frequenay=3(w;+ w,), andA and =R —— AE" for plo,}=0 and AE"
p in units 3. Then, all systems can be characterized by the [~ _— ggz,;g; 4/15-0.2666
——- AE7for 14

two parametersw,/w, andp. In other words, all systems
having thew;/w, ratio indicated in the figures are repre- 1
sented by the family of curves with thevalues shown. The
only exception we made is the cyclotron frequeney .

w}lwy would be a good parameter in this sense, but we [T T T T T T T T o e e e o

e AEV fOF 36/25=1.44

chose to use the magnetic field in T instead for better physi- ¢ 10 20 & el 3.0 4.0 5.
cal intuition. The conversion between both scales is given [Testa
by wi[a.u*]=[(0.91834x107%)/m*]B[T] or, wg[w] FIG. 1. Excitation energieAE(") = ') for a dimer of ellipti-

={(0.9134x 10 ?)/m* wo[a.u*]}B[T]. In this paper we cal dots as a function of the magnetic field for some discrete values
usedwy=0.2 a.u* =2.53 meV andn* of GaAs.(We want  of the interaction parameter(p values in the inset are in units3).
to stress that this choice effects only the magnetic-field scal&he ratio of the oscillator frequencies in the direction of the capital
and not the qualitative features of the figuyé%r easy com- axesw;/w, is (a) 3/2 and(b) 2/3. The dipole allowed excitations
parison with experimental parameters we add the definitiodE‘") of H(*) (thick full line) are not influenced by the dot inter-
of effective atomic units (a.ti) in GaAs (m*=0.0673  action and therefore independentf
=1/12) for the energy: 1 at=4.65<10"% double
Rydberg=12.64 meV, and for the length: 1 a&uw1.791 lar dots confining the set of basis functions to the lowest
X 10?7 bohrs=0.9477< 10 A. Landau level and considering parallel spin configurations
BecauseU(") agrees with theotal c.m. R=3(R;+R,) only. This is justified in the limit of high magnetic fields.
of the systemH(") is the total c.m. Hamiltonian. FoB They found a splitting of the two dipole allowed modes at
=0, the eigenmodes can be visualized by classical oscillaB=0 due to dot interaction and some anticrossing structures
tions. The two eigenmodes &f(*) are (rigid) in-phase os- in the upper mode, whereas the lower mode is always close
cillations of the dots inx; and x, direction, respectively. to the single-particle mode. This fact is already a strong in-
Because of the Kohn theore(aee the Appendjx the inde-  dication that the missing higher Landau levels cause both
pendence oH (") on the Coulomb interaction does not only spurious effects(Observe that the lifting of the degeneracy
hold in the dipole approximation, but it is rigorous. This atB=0 in the dipole allowed excitations in Fig. 1 is due to
shows also that the dipole approximation is consistent wittihe ellipticity of the intrinsic confinement and not due to dot
the Kohn theorem, which is not guaranteed for single-interaction)
particle approaches. Because FIR radiation exditeshe The eigenvalues dfi~) do depend op because the dots
dipole approximationonly the c.m. modes, it is only the oscillate (rigidly) in its two eigenmodes in opposite phase,
p-independent eigenmodes bi™) which are seen in FIR one mode irx; and one mode i, direction. This leads to
absorption experiments. a change in the Coulomb energy. The two eigenmodes of
This statement is in contradiction to Ref. 4. They per-H(™) can also be described as a breathing m@de;, direc-
formed numerical diagonalizations for a lateral pair of circu-tion) and a shear modg@n x, direction.
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FIG. 2. Excitation energiedE{ )= of the Hamiltonian
H) for B=0 and w,/w,=2/3 as a function of the interaction
parametep.

B. Special features of the excitation spectrum

In Figs. 1@ and(b) the four excitation frequencies of the
dimer are shown witlp as a parameter. F@r=0, the two
modesw! ) agree with the two modes’" . In all symbols,
the superscript sign refers to the systelfi) andH(™) (c.m.
or relative coordinate and the subscript sign discriminates
the two modes of the same system. The two maal€s are
independent op. There are two qualitatively different cases.
(Consider thaiw, is the oscillator frequency parallel to the
line, which connects the two dot centers, anglis the os-
cillator frequency perpendicular to this lingf w,=w, [Fig.
1(a), the gap betweenn' ) and »'™) at B=0 increases
steadily with increasing until, for a critical p¢,= w3 (in our
numerical case:pcr[w3]= 16/25=0.64) the lower mode
") becomes soft. This transition isdependenbf B. For
w<w, the gap betweem ) and »') at B=0 first de-
creases with increasing until it vanishes forp=§(w§
— w?) (in our numerical casep[w3]=4/15=0.27). After-
wards, it increases until the lattice becomes sofp at= w%

(in our numerical casepcr[wé]:36/25= 1.44). The depen-
dence of the two excitation energied ) andw ™) onp for

M. TAUT
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seizable interaction effect. On the other hand, the dot radius
for N=1 is of order of the effective magnetic lendth,
=[(2wo)?+ (w¥)?]~ Y4 which reads for GaAs

238
{(wo[meV])?+0.739B[ T])2} 4

and we need small dots and high magnetic fields for small
overlap. Consequently, a magnetic field helps avoiding over-
lap of the dots, although, e.g., the critigafor soft modes is
independent oB. The question is whether there exists a
window between these twpartly) conflicting demands. For
an order-of-maigntude estimate, let us consider GaAs with
wq as chosen above and the worst chisel. Then Eq(26)

with a typical p[w3]=0.1 (which seems to be the minimum
for any observable effecprovides a dot distance @ffA ]
=327 and Eq(27) gives forB=0 a radius ofl([A]=150
and forB[T]=10 a radius of ;[ A]=80. Consequently, the
constraintl y<a/2 for our model can be fulfilled. For obtain-
ing larger interaction effects the parameters have to be opti-
mized.

The next question is what happens nimode softening
physically? First, it is the antisymmetric shear magde’
which has the lowest frequency and which becomes soft. If
the interaction parameter is strong enough~Q.,), the de-
creasein interdot-Coulomb energy with increasing elonga-
tion of the dots becomes larger than thereaseof confine-
ment potential energy. Becausethe harmonic modeboth
energies depend quadratically on elongation, the dimer
would be ionized, i.e., stripped of the electrons. Clearly, in
this case we have to go beyond the dipole approximation for
the interdot interaction and beyond the harmonic approxima-
tion for the confinement potential.

In order to obtain a hand-waving picture of what happens,
the confinement potential of the system for shear mode os-
cillations is supplemented by a fourth-order term in the fol-
lowing way: V¢ont =2N[ 2 w3U2—AU*] with (A>0), and
the Coulomb interaction in fourth order readd/;,;
=—pNU?+(3pN/a?)U* where p=2Ng/a® as above.
Then, the stability condition reads

lo[A]=

(27)

3p

Viot _ 3p
_ B

4=
N u*=0.

(w3—p)U2+ 2A (28

B=0 in the second case is shown in Fig. 2. Comparison of - _ _
Figs. 2a) and (b) demonstrates that the dot architecture inThe condition for the existence of a bound state is that the
Fig. 2@ is much more sensitive to interdot interaction thanU* term is positive: /a®>2A. For a positiveU? term (p

that in Fig. Zb). Thus, if we want to observe or use the
instability, this event happens in cas@)2for for smallerp
(or larger lattice constantghan in case @). Additionally,
the assumption of nonoverlapping dot wave functitfios a
given lattice constantis better fulfilled in case @) than in
case 2h).

For GaAs as a typical substance, E2p) can be rewritten
in more convenient units as

2.26X 10°'N
(a[A1)*(wo[meV])?’

Obviously, we need large dotgarge N, small wg, which
means large polarizabilifyand a small dot distancefor a

plwg]= (26)

<w3), the equilibrium position isU,=0. If the U? term
becomes negativept wg), the system finds a new equilib-
rium at a finite elongation

e s [ (p—w))
° 7 N 23p/a2-2a)

This new ground state is doubly degenerath:=(—a,
+Ug), Us=(+a,—Up) and U;=(—a,—Ugy), U,=(+a,
+Ug) have the same energy. In shortpat= w% there is an
electronic phase transition to a polarized state, where the
equilibrium position of the c.m. is no more in the middle of
the dots. At the end we want to stress that all these stability
considerations are only valid if the confinement potential is

(29
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not changed under elongation of the c.m. of the dots. Second, Next we want to recover the limiting case considered in

it is not rigorous to include the fourth-order termféer sepa-  Sec. lll. If the dots in a given unit cell are far away from
ration of c.m. and relative coordinates, because in fourth orthose in neighboring cells, then in E4) only the term
der these two coordinates do not decouple exactly. with Rg°)=0 contributes,C does not depend oqg, conse-
quently the indexg is redundant, and Eq33) agrees with
IV. DOT LATTICE Eq. (12.

. L . Our preliminary result33) is not yet diagonal inx,a’. In
We censmi(g)r a p(g)nodw lattice @fqual q(g)antum dots at  gome special casdsee, e.g., two identical dots per unit cell
lattice sitesRy,,=Ry"+a,. The vectorsRy” form a Bra-  considered in Sec. Nithis can be achieved by an unitary
vais lattice anda runs over all sites W|th|n an unit cell. In transformation
developing a theory for these lattices we have to repeat all
steps in Sec. Il from Eg$11) to (16) just by supplementing ~ _
the indexa by the indexn for the unit cell. Uq,azg Qgiava’Ygars Q;;a',a:Qq;i,a' (39

under which the one-particle term in E§3) is invariant and

o . o the transformed interaction term
The c.m. Hamiltonian in the dipole approximation then

A. Center-of-mass Hamiltonian of the dot lattice

reads ~
2 Uf o Coaa Uga with
1 N 2
Hem=11 2 {P ot =AU aﬂ _
cm TN me 2m* n, C n, q o E Qa o q ay. azQa2 o (36)
N2 can be made diagoné]q;a'a, =Cq;a5a,a, by a proper choice
+ 5 > UnaCranar-Unarf, (30  0f Q, .. Now, Eq.(33) readsH,==,H, ., where

n,a
n',a' 1 _ ~ T _ _
whereU, ,=R, ,— R is the elongation of the c.m. at lat- Hq,a:ﬁ[ﬁ[%'ﬁ EA(Ua“)} '[Pq'“+ AU
tice site f,a) and the force constant tens@ris defined in
analogy to Eqs(13) and (14). N

The Hamiltonian(30) is a phonon Hamiltonian in an ad- + 7U* Cqa’ Uq,a]
ditional homogeneous magnetic field. The first stage of de-

coupling can be achieved by the usual phonon transformarhe eigenvalues of E¢37) can be obtained from those of
tion Eq. (2) because corresponding quantities have the same com-

mutation rules. Such an unitary transformation does not ex-

(37

U = 2 e"q'REO)U (31) ist, e.g., for two different (_10ts per _Ceai;ee Ref. 12 Then_
ne N g Eq. (33) has to be solved directly using the method described
in Ref. 6.
1 3 L a® : . —
Pho=— 2 etia-Ry pq’a, (32 B. Dynamical matrix for Bravais lattices
\/N—C K From now on we consideBravais latticeswhat means

where N, is the number of unit cells and the transformedthat we can forget the indices in the first part of this sec-
coordinates have the following propertiesl_q,,=U},  tion. Then the dynamical matrix
—UT andP_, PJr . The Hamiltonian in the new coor-
dlnates is a sum dﬂ subsystems of dimension<2 number Cq=Q+pN > (1_eiQ-Rﬁo))T(R§10)) (39)
of dots per unit ceIIHC,m, 2qHq, where R0

is real and symmetric, but generally not diagonal, eve®l if

+
| Pgat EA(UE )} is diagonal. A very important conclusion is apparent in Eq.
@ C e

N *
Poat S AL

Hq=%(2

a 2m* (38). In the limit g— 0, the interdot interactior(represented
by 8) has no influence o€, and therefore on the spectrum.
L 2 U* .C U ] (33 This means that the excitation spectrum observed by FIR
2 , Qe ZGaa’ Egal spectroscopy is not influenced by interdot interaction and
“o agrees with the one-electron result (as in the single .dot)
The dynamical matrix is defined by This statement is rigorous for parabolic confinem@ee the

Appendix. It can also be understood intuitively, because a
_ iR ). 0)y _ g=0 excitation is connected with homogeneous in-phase
Coa,a’ ; €% Coar(Ry7); Caar(Ry)=Ch a0, elongations of the dots which do not change the distance
(34)  between the electrons. We want to mention that this conclu-

sion seems to be in contradiction with the experimental work

and it is Hermiteaqu;a/,,I:Cq wa = Cogaar in Ref. 11. They found a splitting of the upper and lower
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FIG. 3. Convergency of the lattice surg as defined in Eq.
(42) with increasing number of cubic shell,,,, for g in the
middle of the irreducible Brillouin zone.

excitation branch aB=0 andq=0 for circular dots in a
rectangular lattice, which they interpreted within a phenom
enological model of interacting dipoles as a consequence
lattice interaction. However, they use mesoscopic dots with
diameter of 370000 A and lattice periods of 400000 an

0]
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(112,172)

(9,9,

(()0,0) (1/5,0) (0,1/2) (0,0

FIG. 4. Magnetophonon dispersionBi=0 for several interac-
tion parameter values angl on symmetry lines of the Brillouin
zone. p=p, values in the inset are in units3.) Thick (lower and
thin (uppe) lines indicateAE _ andAE, , respectively.

z%nd depends only og and the ratioa; /a,. Apart from the
off-diagonal elements, which vanish in NN approximation,

Oﬂwe error of the NN approximation is less than 30%.

800000 A. These dots are clearly beyond our microscopic

guantum mechanical model, which rests on a parabolic con-

finement.

For therectangular latticesconsidered in our numerical
examples we define R®=N;ae;+N,ae, and q
= (27/a;)e +q,(27/ay)e, with the lattice constanta;
and a, and integersN; and N, characterizing the lattice
sites. The components gfvary in the Brillouin zongBZ) in
the rangd —1/2,+1/2]. The dipole tensof15) reads

1

2.2 2.2
(N7aZ+N3a3)®?

T(NliNZ):

(2Nfaf—N3a3)

3N;Nsaja,

3N;1N»,a;a,
(2NZa3—Nia?) |’
(39

Although for all figures the exact dynamical matrix is used, it
is useful to consider the results wittearest-neighbofNN)
lattice sums in Eq(38) separately. This provides simple for-
mulas for order-of-magnitude estimates.

Ci1= wi+2ps[1-cog27mqy)]—py[ 1 - cog 27q,)],
Cpp=w5+2p,[1-cog27q,) ]~ py[1-cog27qy)],

C1o=04o, (40

where we introduced the
=2BN/a?.
The convergence of the lattice sui@g in the dynamical

matrix is shown Fig. 3S;, is defined by

interaction parameteps

Cik= Qi+ p2Sik (41)

C. Special features of the magnetophonon spectrum

Figs. 4—6 show the magnetophonon spectrum for circular
dots on a rectangular lattice withy =2a,. (The termmag-
netophonoris attributed to the fact that there is no exchange
and there are harmonic forces between the oscillating indi-
viduals. One could also call themagnetoplasmonsf one
wants to emphasize that it is only electrons which oscillate,
and no nucleiBecause the two interaction parameters have a
fixed ratio, it suffices to use one of them for characterizing
the interaction strength. We chose the larger pge p. For
B=0 and isolated dotsp(=0), the two excitation modes are
degenerate. If we tune up the interaction strength represented

by p, ag-dependent splitting appeafsee Fig. 4.

4
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o ——— —
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(112,11 (0,1/2)
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FIG. 5. The same as Fig. 4, but fpe=p., and several magnetic
fields.
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®, [©]

3r p=pcr

FIG. 6. Magnetophonon excitations as a func-
tion of B for the symmetry points in the Brillouin
zone. The upper abscissa is independent of the
effective mass, the lower one applies to GaAs.
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This splitting is a manifestation of the dot interaction. For  We next discuss the appearancesoft modesThe ques-
a certain criticalp, the lower mode becomes soft. This fea- tion is, for whichqg, B and interaction parametgrthis hap-
ture will be discussed below. There are points in the BZpens. The general condition for vanishing of the lowest mode
however, where thelegeneracyor finite p remains. These is Cy;-Cy= Ciz (see Sec. ) In this condition the magnetic
points will be investigated now. We demonstrated in Sec. Iffield does not appear. For circular dots and with the defini-
after formula(8) that necessaryfor degeneracy i€,,=0, tion (41) this equation reads
i.e., the dynamical matrix must be diagonal. Then the points ) 2 202
with degeneracy are defined by the conditp=C,,. As [@o+ P2Sull wo+ P2Sia]=P2Si2: (43)
seen in Eq(38), for circular dotsw; = w,= w, this happens  After introducing a dimensionless critical interaction param-

in the C(_Eﬂlter of the BZ:]ZO The ne.Xt question to be d|S' eterp[wg]: pzlwg, we obtain a quadratic equation fp['(z)]
cussed is if there are other points with degeneracy. The firsthich has the solution
conditionC,,=0, is fulfilled for all points on the surface of
the BZ. The second condition must be investigated for spe- .y LTI N 1Tr\? 1
cial cases. We find that for quadratic lattices=a, with Plog]=— 2 Det™ 2 Detl Det (44)
circular dotsw;,= w, both modes are degenerate at the point 5 ,
g=(1/2,1/2). In the case shown in Fig. 4 this point is some-Where Det 5,38~ S, a_nd Tr= S,ll+ Sy For our numeri-
where between (1/2,1/2) and (1/2,0). In NN approximationc@! casea,=2a, and NN interaction fof5; the lowest mode
(40), however, this equation is even fulfilled on full curves in P&comes softzaq=(0,1/2) and the critical interaction pa-
the BZ defined byp,[ 1— cos(2rqy)]=p,[1—cos(2ma,)]. In a rameter isp[ wg]=1/2. Inclusion of lattice contributions be-
cubic lattice, this is the straight lineg,= +q,. The contri-  Yond NN shiftsp[ w§] to 0.7543. The most important result
butions beyond NNs remove the exact degeneracy on thigf this paragraph is that lattice softeningnslependenof B
curve in the interior of the BZ, but leave a kind of anticross-(see also Figs. 5 and.6The latter conclusion isxactwithin
ing behavior of the two branches. the range of validity of the Hamiltonia(80) and no conse-
An important parameter, which characterizes the influ-quence of any subsequent approximation or specialization.
ence of the dot interaction in circular dots, is thendwidth

atB=0, i.e., the maximum splitting of the two branches due V. INTRADOT EXCITATIONS FOR N=2

to dot interaction(Remember that this splitting vanishes for  |ntradot excitations for circular dots in a cubic lattice and
noninteracting circular dotsAssumea,>a,. Then the larg-  for N=2 can be calculated easily. We define the relative
est splitting for circular dots in NN approximation appears atcoordinater =r,—r,, and assume that all dots are equivalent

0=(0,1/2) and has the amount (also with respect to their environménfhen the indexes
(n,a) can be chosen as (0,0) and omitted. The relative
W= ma>(AE+—AE,):ma>(w+—w,)=\/woz+4p2 Hamiltonian reads
2
—JwZ=2p,. (42) 1 21
o Hre|=2[ —|p+ oA +§r-D-r+§ . (45
For small dot interaction and in units,, this is proportional 2m

to the interaction paramet&¥/ wqy— 3p,. wherep=—iV, and
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1 B 4.0 — —
D=-Q+_-Ty; To= > TR (46 —
4 2 n,a(#0,0) “
It is worth emphasizing thaH,,, contains a contribution 30t — E—

from neighboring dots, originating from the interdot Cou-
lomb interaction. A trivial angular dependent part can only
be decoupled fronH,, or, the two-dimensional Schro =
dinger equation can be traced back to an ordinary radialf 2ot
Schralinger equation, if the term-D-r has the same circu-
lar symmetry as the intradot Coulomb tem(2r). There-
fore we confine ourselves to circular dots on a cubic lattice, 14}
and we have

1 1

4
P, % S ]
0 a® N; 5200 (N3+N3)%2  ad (@) ? ? 1 n? 1 ? ’

where the simple result is in NN approximation. Using the
interaction parametep=2Ng/a® (with N=2) defined 40
above, we obtain

1 2
D=7 (w5+2p)l. (48) 30 —

In this way, dot interaction defines an effective confinement
frequencyw o ;= w3+ 2p. This means thathe c.m. excita-
tions have to be calculated (or interpreted) with another con-
finement potential then the relative excitatiohsour figures
we present results fapger=0.2 a.u*, which agrees with
the bare confinement potential used in Sec. IV and the mean
value in Sec. lll. Because our results are presented in units of —
wg, they depend onw, only weakly through the differing
influence of electron-electron interaction. For the absolute o0 ” > = 5 - 5
values, however, the influence of the dot interaction can be ) m,
tremendous.

In the relative motion there is a coupling between orbital
and spin parts through the Pauli principle. Fdé+=2 and a 40
circular effective confinement, Pauli principle demands that
orbital states with even and odd relative angular momentum
m; must be combined with singlet and triplet spin states,
respectively(see, e.g., Ref.)7 For the c.m. motion there is
no interrelation between orbital and spin part because the
c.m. coordinate is fully symmetric with respect to particle _
exchange. Consequently, any c.m. wave function can bes 2ot
combined with a given spin eigenfunction. The only spin- ~
dependent term in the total energy considered here is the
Zeeman termwhich reads in our units

20

AE [0,]

w

3.0

1.0

E B[T] M

—=0.9134x 10—295[—]* R (49 —

o wola.u*] 0.0 =

-5 -4 -3 -2

where we usedjs= —0.44 for the gyro-magnetic factor of © m
GaAs from Ref. 8. The total spin quantum numberMs FIG. 7. Intradot excitation energiggn units of the effective
=0 for the singlet state and®,1 for the triplet state. One of confinement frequengyfor B=0 (a), B=3 T (b), andB=4.5 T
the most interesting points in quantum dot physics is that théc)' The corresponding relative orbital angular momenta of the
total orbital angular momentum of the ground state depend2ound ts'atf/lte_a(;mi:0+(i‘)’l; 1 (b()j' g”d_z (c) and the spin angular
on the magnetic fieldsee, e.g., Refs. 8 and.This feature is  mementaM=0 (a), +1 (b), and 0(c).
a consequence of electron—ele_ctron interaction. For our pgesponds to a sequendé,=0,+1,0,+1 for the spin quan-
rameter values, the relative orbital angular momentum of thegum number. Figures(@—(c) show the excitation frequen-
ground staten; changes fromOte-1, from—1to—2,and cies for threeB values lying within the first three regionsy
from —2 to —3 atB=1.250, 4.018, and 5.005 T. This cor- is the relative orbital angular momentum of the final state.

-1

0 1
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VI. SUMMARY

We solved the Schabnger equation for a lattice aflen-
tical parabolic (but not necessarily circulaguantum dots
with Coulomb interactioriin dipole approximationbetween
the dots. We provide an overview over the state of art of
these systems which includes the results of former publica-
tions. References can be found in the text.

 Similar to single dots, the center-of-mass coordinates of all
dots can be separated from the relative coordinates. Only
the c.m. coordinates of different dots are coupled to each
other. The relative coordinates of different dots are neither
coupled to each other nor to the c.m. coordinates.

» This gives rise to two types of excitations: two collective
c.m. modes per dot and and a complex spectrum of intra-

_ ! y dot excitations. In periodic arrays only the collective c.m.
B [Tesla] modes show dispersion. Intradot excitations are dispersion-
less.

* The c.m. system can be solved exactly and analytically

providing magnetophonon excitations characterized by a

certain wave numbeq within the Brillouin zone. Forg

=0 and one dot per unit cell, interdot interaction does not

have any influence on the c.m. excitations.

« All dipole allowed excitationgseen in FIR experiments

are not influenced by the dot interaction.

Interdot interaction between two dots influences the spec-

trum through a single parametpre=2Np/a3, wherea is

the distance between the dobé,the number of electrons

FIG. 8. Intradot excitation energigdn units of the effective
confinement frequengyas a function of the magnetic field. The
small Zeeman splitting is neglected. TBevalues, where the angu-
lar momenta of the ground-state change, are indicated by vertical
lines. The absolute value of the final-state orbital momentynof
the curves aB=0 grows from bottom to top by 1 starting with O.

All excitations are included irrespective of selection rules.,
For dipole transitions only two of them would remdithe
lowest excitation withm;=m;£1). For B=0, the lowest

excnlgtltc))n 1en§rg>(|n ur_1|t§ “’I‘;). f?;) nopln:eract:ngteleqtr?ns per dot andB the inverse background dielectric constant.
would be 1. AS Seen In in Fig.(d), electron-electron nter-_ , ¢ p exceeds a certain critical valyg,,, the lowest c.m.

action hd?greasel.f,t tthis Ivafluef.b.);BatTlﬁas.t a factort OJ tll %h The mode becomes soft leading to an instability. This transition
same holds qualitatively for finitB. This is connected to the is independent of the magnetic field.

fact, that the ground state dependsBriet us consider an , 0. 58-0 and and one circular dot per unit cell, the two

exeirr(;ple. FSrB:llfs’.o T tPe grhour}dréstate SWitﬁ.heS Er_om c.m. modes are not only degenerate in the middle of the
m;=¢ 'to m=—=21. 1NIS Implies that Tofs approaching t IS Brillouin zone, but also at some points on the surface. If
transition field from below, the excitation energy for diole | " \ca the NN approximation for the lattice sums in the

allrc])wed trznsmr?n frc_)n'miTO t? me=—1 conv::rgis ©00.1n " qynamical matrix, degeneracy is maintained even on full
other words, there is a level crossing at the the transition . ac i the Brillouin zone.

field. Therefore very small transition energies and switching, |,¢radot excitations have to be calculated from an effective

of che groundl_sta_te are gonnec;e_zd. Fi b confinement. In circular dots with a cubic environment in

set;)rtoae?r?;ltq?;]/eF'ug (ae)rs(ts)n A:ng’r] d Iir??(oa?ﬁ(gstpaz;e t(:]e nearest-neighbor approximation the effective confinement
usea together with F1gs.(d), (b), 2, a investg frequency readsoj ;= wa+2p. This effective confine-
relative position of collective and intradot excitations. The ment differs from that for the c.m. motion
conclusion is that for small dot interactid¢for p well below « For b well below the low .t i.ntr d t.x itations ar
Pcr), the lowest intradot excitation energies lie well below 0 '; © IIe?h pc[d’] Ie 0 tes I te_l ote (; ? ons are
the lowest c.m. excitations. Apart from using a different ter- much smailer than Ihe lowest Collective excitations.

The intradot excitation energies versus magnetic field ex-

minology, this conclusion agrees with the experimental find-~ '€ IN .
ings in Ref. 10. hibit kinks at those fields, where the angular momentum of

Figures Tb) and (c), which belong to finiteB, show the the ground state changes.
Zeeman splitting. All transition energies to final states with
odd m; are triplets because the corresponding spin state is
triplet state. The thin lines of a triplet belong to spin-flip
transitions.

ln the Appendix we prove a Kohn theorem for dot arrays
with Coulomb interaction between the dots without the di-
pole approximation. The individual confinement potentials

In Fig. 8 theB dependence of the lowest excitation ener-€an be arbitrarily arranged and can carry different electron

gies is shown. It is clearly seen that the curves exhibit a kimpumbers, b.Ut have to be describeq by iden,tical confingment
at those B values, where the ground-state configurationtensors' This means that for breaking Kohn's theorem in dot

changes. The size of the kink decreases with increairty arrays, we have to have at least two different confinement
this kink could be resolved experimental(g.g., by elec- Species.
tronic Raman spectroscopyit would be a direct indication

for the change of the ground-state configuration, and thus an
experimentally observable consequence of electron-electron | am indebted to D. Heitmann, H. Eschrig, and E. Za-
interaction. remba and their groups for very helpful discussion and the
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other columns need not be specified. Ther= (1/N)=;u;
APPENDIX =U is the c.m. of all elongations, or, the c.m. of the electron

We are going to prove that for an arbitrary arf@ye dot coorqlinate(so)with respect t(zo)the Weighte_d center of the dot
centers can be arranged arbitrarilgf identical parabolic IocaﬂonsR = (IN)2ZN.R, ,thereNa IS the number of
quantum dot potentialéthe confinement tensor€ of all glectrons in dotw. The corresponding canonical momentum
dots must be equpin an homogeneous magnetic field ~ P1=(1/) Vg =P is the c.m. momentum. Inserting our trans-
the total c.m. degree of freedom can be separated from thiermation into Eq.(Al) provides
rest, (i) the total c.m. Hamiltonian is not influenced by Cou-
lomb interaction, andiii) the eigenvalues of the total c.m.

2
Hamiltonian are independent of the electron numhbiein H(O)ZE [ 1 i5i+ \ﬁA(Ei) +Eai.c.ﬁi}
each dof(the electron number in different dots can be differ- | 2m* \/ﬁ c 2
end. (A4)

The HamiltonianH=H+V consists of an one-particle S _ _
termH=H(® and the Coulomb interaction between all elec- The termi=1 in Eq. (A4) is the (separategc.m. Hamil-

tronsV. The dot centers are locatedR{) and the electron ~tonian
1. N
—P+\/=A®D)
Ve

coordinates are denoted by, = REIO)+ Ui, - Then we have
(A1) which agrees with Eq.10). Clearly, the Coulomb interaction

) ) ~Vin His independent of the c.m., and does not contribute to
First of all, we shift the gauge center for each electron intoy_ . For the independence of the eigenvaluedlafee the

the middle of the corresponding dot using an unitary transgiscussion following Eq(10).
formation similar to Eq(16). This transforms the shiﬁ?&o) This proof, in particular the step from Eqé1) to (A4),
in the argument of the vector potential away. Next we dropis not correct if the dot confinement tengdrdepends onx
the indexa in Eq. (A1) so that the index I”” runs over all  (or “i” in the changed notation Therefore all dots must
electrons in all dots. Now we perform a transformation tohave the same&, but can have different electron numbers
new coordinates; : N, . In other words, the total c.m. excitations in dot arrays,
which are seen in FIR spectra, are not affected byethe
_ ~\. ~. * interaction, if and only if all confinement tensofs are
ui_; Qu(WNUg: - (VN ui)_; Qiith,  (A2) equal. On the other ha)I{]d,WG want to obsem e e interac-
tion in the FIR spectra and break Kohn’s theorem, we have
to use dot lattices with at least two different confinement

2

Hc.m

1 =
+_uia‘C'uia . 2m*

1
pia+EA(R(aO)+uia) 5

1
H(O) =
» |2

ia m*

whereQ;, is an unitary matrix. This implies

3 5 tensors The simplest way to implement this is using a lattice
_ k. L - ith two noncircular dots per cell, which are equal in shape
=2 Qi =i | ==X Qubk. (A3 W \ per cefl a pe.
Pi= g Rk JIN NV kiPk but rotated relative to each other by 9@ee Ref. 12
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