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Diffusion Monte Carlo study of circular quantum dots
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We present ground- and excited-state energies obtained from diffusion Monte Carlo~DMC! calculations,
using accurate multiconfiguration wave functions, forN electrons (N<13) confined to a circular quantum dot.
We compare the density and correlation energies to the predictions of local spin density approximation~LSDA!
theory and Hartree-Fock~HF! theory, and analyze the electron-electron pair-correlation functions. The DMC
estimated change in electrochemical potential as a function of the number of electrons in the dot is compared
to that from LSDA and HF calculations. Hund’s first rule is found to be satisfied for all dots exceptN54 for
which there is a near degeneracy.
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I. INTRODUCTION

Modern microfabrication technology is capable of maki
quantum dots1,2 that are sufficiently small that they conta
only a small number of mobile electrons. There has b
much interest in studying the atomiclike properties of the
dots with tunnel conductance3 and capacitance4 experiments.
The ground states of clean circular dots exhibit shell str
ture and are believed to obey Hund’s first rule.5,6 The shell
structure is particularly evident in measurements of
change in electrochemical potential due to the addit
of one extra electron,DN5m(N11)2m(N), where N is
the number of electrons in the dot, andm(N)5E(N)
2E(N21) is the electrochemical potential of the syste
Theoretical predictions ofDN and the excitation energy spe
trum require accurate calculations ground-state and exc
state energies. Exact diagonalization studies7,8 are accurate
for a very small number of electrons, but the number of ba
functions needed to obtain a given accuracy and the com
tational cost grow very rapidly with electron number.
practice they have been used for up to eight electrons,7,8 but
the accuracy is very limited for all exceptN<3. Hartree,9

restricted Hartree-Fock~HF!, spin and/or space unrestricte
Hartree-Fock10–12 ~UHF!, and local spin-density approxima
tion ~LSDA! and current density functional methods13–15

give results that are satisfactory for a qualitative understa
ing of some systematic properties. However, comparis
with exact results show discrepancies in the energies tha
substantial on the scale of energy differences. An advan
of the approximate approaches is that no serious size
geometry constraints are imposed.

In this paper we employ the quantum Monte Ca
~QMC! method @both variational Monte Carlo~VMC! and
diffusion Monte Carlo~DMC! methods# because they yield
very accurate energies at a computational cost that gr
relatively modestly with the number of electrons. The sta
tical error of these calculations can be made small, even
PRB 620163-1829/2000/62~12!/8120~6!/$15.00
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dots with several tens of electrons, within a reasona
amount of computer time on a modern workstation. In ad
tion to the statistical error there is a systematic error due
using the fixed-node approximation. This error can be
duced by optimizing the trial wave functions. For the tri
wave functions used in the present work, the fixed-node
rors are small compared to the errors of other approxim
methods. This is demonstrated by performing internal che
within the method and by comparing to the few energi
available from exact diagonalization studies7,8 for small dots,
that are accurate enough to make a meaningful compari
Hence our results can be regarded as a benchmark to a
the accuracy of other approximate methods. In particular
find that, in contrast to the situation with atoms, the energ
obtained from the LSDA method are considerably more
curate than those from the HF method. The same is true
the spin densities in those cases where the LSDA wave fu
tions are eigenstates of the total spin operatorŜ2.

Earlier QMC calculations on quantum dots include VM
calculations for circular dots17 and DMC calculations for
three-dimensional dots.18 The fixed-phase DMC method ha
been applied to dots19 with N<4. Path integral Monte Carlo
calculations have been performed20 for dots with N<8 but
the results of these calculations bear no resemblance to e
our results or those from exact diagonalization.7,8

II. COMPUTATIONAL METHOD

A. Hamiltonian

The usual model2 for a disk-shaped vertical quantum d
is a two-dimensional system ofN electrons moving in thez
50 plane, confined by a parabolic lateral confining poten
Vcon(r ). The Hamiltonian is

H5(
i 51

N S 2
\2

2m*
¹ i

21Vcon~r i ! D1
e2

e (
i , j

N
1

ur i2r j u
. ~1!
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In Eq. ~1!, m* is the electron effective mass, ande is the
dielectric constant of the semiconductor. In the following~if
not explicitly specified otherwise! we will use effective
atomic units, defined by\5e2/e5m* 51. In this system of
units, the length unit is the Bohr radiusa0 times eme /m* ,
and the energy unit is the Hartree timesm* /(mee

2). For the
GaAs dots we consider here,e512.4 andm* 50.067me ,
and the effective Bohr radiusa0* and effective Hartree H*
are.97.93 Å and.11.86 meV, respectively. In this firs
application of the method, we will consider circular do
with N<13 and a parabolic potentialVcon(r )5m* v2r 2/2
(\v50.28 H* 53.32 meV), which should approximate th
experimental situation in Ref. 5. Extensions of the calcu
tion to N.13, magnetic fieldBÞ0, and a nonparabolic con
fining potential are in progress.

Comparison of energies and other quantities with thos
the literature are complicated by the fact that various auth
use different values for the parameters,m* ,e,v in the
Hamiltonian. Note, however, that two HamiltoniansH1 and
H2, characterized bym1* ,v1, and e1 and m2* ,v2, and e2,
respectively, must have the same energy spectrum aside
a multiplicative scale factor, i.e.,E1i /E2i5m2* /m1*
5v1 /v25e2 /e1, where i labels the energy states of
given Hamiltonian. An interesting aspect of quantum d
is that it is possible to tunel, the dimensionless ratio o
the Coulomb interaction strength to the confining poten
l5@e2/(e l 0)#/\v, wherel 05A\/(m* v), thereby allowing
one to study both weakly interacting and strongly interact
cases. Our present calculations are forl51.89.

B. Quantum Monte Carlo methods

One advantage of the QMC methods is that no restric
is placed on the form of the trial wave function. In the VM
method, Monte Carlo integration is used to calculate
many-dimensional integrals, and the parameters in the
wave function can be varied to minimize the energy or
fluctuations of the local energy. More accurate results can
obtained from the fixed-node diffusion Monte Carlo meth
which projects, from an antisymmetric trial wave functio
the lowest-energy state, consistent with the boundary co
tion of preserving the same nodal surface. In the limit t
the trial wave function has the correct nodes, the fixed-n
DMC method yields the exact energy with only a statisti
error that can be made arbitrarily small by increasing
number of Monte Carlo steps. A detailed description of o
implementation can be found in Ref. 21. The fixed-node
ror is usually small compared to errors from other metho
but it is unknown except in those cases where exact res
are available.

C. Trial wave functions

The errors of VMC and fixed-node DMC calculations d
pend on the quality of the trial wave functions. The tr
wave functions we use have the form

C~R!L,S5exp@f~R!# (
i 51

Nconf

a iJ i
L,S~R!, ~2!
-
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whereR5$r1•••rN% are the coordinates of theN electrons in
the dot, and thea i are variational parameters. Th
configuration-state functionsJL,S are eigenstates of the tota
angular momentumL̂[L̂z with eigenvalueL and of the total
spin Ŝ2 with eigenvalueS(S11), and have the following
form:

J i
L,S5(

j 51

mi

b jD j
↑D j

↓ , ~3!

where theD j
x are Slater determinants of spin-up and sp

down electrons, using orbitals from a local density appro
mation ~LDA ! calculation with the same confining potenti
and the same number of electrons. Themi are the number of
determinants in thei th configuration. In general theD j

↑D j
↓

are not eigenstates ofŜ2. The coefficientsb in the linear
combination of Eq.~3! are fixed by diagonalizingŜ2 in that
determinantal basis. ForN<13, the number of configura
tions, Nconf, and Slater determinantsNdet5S i 51

Nconf mi , ap-
pearing in Eqs.~2! and ~3!, are shown in Table I and wer
determined by limiting the basis space to spin-up and sp
down orbitals withun,l &5u0,0& for N<2 dots,un,l &5u0,0&
and u0,61& for 3<N<6 dots, un,l &5u0,0&, u0,61&, u0,
62&, and u1,0& for 7<N<12 dots, andun,l &5u0,0&, u0,
61&, u0,62&, u1,0&, u0,63&, andu1,61& for theN513 dot.
The noninteracting single-particle energy levels areen,l
5(2n1u l u11)v.22 Basis states are then built by consideri
all possible occupations of open-shell levels. For example
the case of theN59 dot, the first six electrons fill theu0,0&
and u0,61& orbitals and are considered to be core electro
in a closed shell. Then, the wave function for the st
uL50,S51/2& of the N59 dot has three open-shell ele
trons, and includes two (Nconf52) configuration-state func
tions which are linear combinations ofm152 and m253
Slater determinants, respectively.

The function exp@f# in Eq. ~2! is a generalized Jastrow
factor of the form used in Ref. 23,

f~R!5(
i 51

N F (
k51

6

gkJ0S kpr i

Rc
D G

1(
i , j

N
1

2 S ai j r i j

11b~r i !r i j
1

ai j r i j

11b~r j !r i j
D , ~4!

where

b~r !5b0
i j 1b1

i j tan21@~r 2Rc!
2/2RcD#. ~5!

It explicitly includes one- and two-body correlations and e
fective multibody correlations through the spatial depe
dence ofb(r ). The quantityRc represents an ‘‘effective’’
radius of the dot, and has been assumed to be equa
1.93AN. The b0 and b1 parameters depend only on th
relative spin configuration of the pairi j . The parametersai j
are fixed in order to satisfy the cusp conditions, that
the condition of finiteness of the local energyĤC/C for
r i j →0. For a two-dimensional system,ai j 51 if the electron
pair i j has antiparallel spin, andai j 51/3 otherwise. The de-
pendence ofai j on the relative spin orientation of the ele
tron pair introduces spin contamination into the wave fun
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tion. However, the magnitude of the spin contamination a
its effect on the energy has been shown to be totally ne
gible in the case of well-optimized atomic wave functions24

and we expect that to be true here as well.
The coefficientsgk in the one-body term, the coefficien

D, b0, andb1 in the two-body term, and the coefficientsa i
multiplying the configuration-state functions are optimiz
by minimizing the variance of the local energy.16 The result-
ing wave functions had rms fluctuations of local energy t
range from 0.021 H* for N52 to 0.255 H* for N513.

III. RESULTS

Using these optimized wave functions for importan
sampling, we perform fixed-node diffusion Monte Carlo c
culations. We attempt to establish the accuracy of the fix
node energies obtained with our trial wave functions by co
paring them to energies from exact diagonalization stud
and also by performing internal checks within our calcu
tions. Unfortunately, although there exist several papers
exact diagonalization,7,8 the results are usually presented
plots, rather than in tables. The only number we know o

TABLE I. Ground-state energies~in H* ! and low-lying excita-
tion energies~in mH* ) for N<13 dots. Also shown are the quan
tum numbers of the states and the number of configuration s
functions, Nconf , and the number of determinants,Ndet, used in
constructing them. The numbers in parentheses are the stati
uncertainties in the last digit.

N L S Nconf Ndet E(H* ), DE(mH* )

2 0 0 1 1 1.02162~7!

3 1 1/2 1 1 2.2339~3!

4 0 0 1 2 3.7135~4!

0 1 1 1 2.2~6!

2 0 1 1 41~1!

5 1 1/2 1 1 5.5336~3!

6 0 0 1 1 7.5996~8!

7 2 1/2 1 1 10.0361~8!

0 1/2 1 1 24~1!

8 0 1 1 1 12.6903~7!

2 1 1 2 22~1!

2 0 1 2 24~1!

4 0 1 1 32~1!

0 0 2 3 54~1!

9 0 3/2 1 1 15.5784~7!

0 1/2 2 5 43~1!

2 1/2 2 2 52~1!

4 1/2 1 1 67~1!

10 2 1 1 2 18.7244~5!

2 0 1 2 2~1!

0 1 1 1 22~1!

0 0 2 3 26~1!

4 0 1 1 45~1!

11 0 1/2 1 1 22.0750~4!

2 1/2 1 1 14~1!

12 0 0 1 1 25.6548~7!

13 3 1/2 1 1 29.4942~7!

1 1/2 1 1 40~1!
d
li-

t

-
d-
-
s

-
n

s

in Ref. 17, who give an energy of 26.82 meV forN53,
which they credit to Hawrylak and Pfannkuche.8 Starting
from a single Slater determinant of LDA orbitals~con-
structed from the spin-up and spin-downun,l &5u0,0& states
and the spin-upun,l .5u0,1& state!, we obtain a fixed-node
DMC energy of 26.8214~36! meV, using their model param
eters (m* 50.067me ,e512.4, and\v53.37 meV), which
is indistinguishable from the exact energy to the number
digits quoted. We attempted also to estimate the fixed-n
error by varying the orbitals in the determinants and by va
ing the number of determinants. ForN57, QMC calcula-
tions using LDA and LSDA orbitals were performed. Th
LSDA orbitals yielded better VMC results~the energy was
lowered by 57 mH* and the fluctuations of the local energ
by 7 mH* ) but the DMC energies were unchanged with
statistical uncertainty. We checked the dependence of
energy on the number of configuration-state functions for
first excited state of theN59 dot. Somewhat to our surprise
energies of the one-configuration~three-determinant! and the
two-configuration~five-determinant! wave functions agreed
to within 1 mH* , not only within the DMC method but also
within the VMC method.

A. Ground-state energies

The ground-state energies are listed in Table II and co
pared with results of HF and LSDA calculations using t
Tanatar-Ceperley parametrization for the correlat
energy.25 The HF energies are 0.12–0.97 H* higher than the
DMC energies whereas the LSDA energies are only 0.02
0.042 mH* ~0.25–0.50 meV! higher. In contrast, in atoms
and molecules the Hartree-Fock total energy is considera
better than the LSDA total energy. There are two likely re
sons for this difference. First, the Hartree-Fock treats
change energy exactly while completely ignoring correlatio
whereas in the LSDA both exchange and correlation are
proximated. In atoms and molecules, the exchange energEx
is much larger than the correlation energyEc , but for the
dots it is not, e.g.,Ex /Ec'30 for a neon atom butEx /Ec

te

cal

TABLE II. Comparison of ground-state energies~in H* ) for the
dots with 2<N<13 computed by the Hartree-Fock, LSDA, VMC
and DMC method. Also shown are the LSDA errors in the ener
DELSDA5ELSDA2EDMC , which are much smaller than the HF e
rors EHF2EDMC . The numbers in parentheses are the statist
uncertainties in the last digit.

N EHF ELSDA EVMC EDMC DELSDA

2 1.1420 1.04685 1.02205~7! 1.02162~7! 0.02523~7!

3 2.4048 2.2631 2.5022~3! 2.2339~3! 0.0292~3!

4 3.9033 3.6864 3.7252~4! 3.7135~5! 0.0276~7!

5 5.8700 5.5735 5.5473~5! 5.5336~3! 0.0263~7!

6 8.0359 7.6349 7.6214~3! 7.5996~8! 0.0353~8!

7 10.5085 10.0718 10.0587~9! 10.0361~8! 0.0357~8!

8 13.1887 12.7276 12.7119~7! 12.6903~7! 0.0373~7!

9 16.1544 15.6190 15.6039~9! 15.5784~7! 0.0406~7!

10 19.4243 18.7636 18.7568~9! 18.7244~5! 0.0392~5!

11 22.8733 22.1114 22.1128~9! 22.0750~4! 0.0364~4!

12 26.5490 25.6756 25.6792~11! 25.6548~7! 0.0208~7!

13 30.4648 29.5363 29.5430~14! 29.4942~7! 0.0421~7!
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'4 for anN510 dot. The second reason is that the dots
more homogeneous than atoms or molecules and so
local-density approximations toEx andEc work better. Note
also that the HF errors increase monotonically with elect
number but the LSDA errors do not show any obvious tre

B. Excited-state energies

In Table I we list the low-lying excitation energies for th
N54, . . . ,11dots. Koskinenet al.13 find that the lowest ex-
citation energies from LSDA calculations are 11.5 mH* and
2.31 mH* for N58 and 10 dots, respectively, whereas o
DMC calculations show that the corresponding lowest ex
tation energies are 22 mH* and 2 mH* . They claim that
these lowest excited states have a spin density wave
thoughS50, but in fact this is just an artifact due to the
LSDA wave functions not being eigenstates ofŜ2, as pointed
out by Hirose and Wingreen.14 For both theN58 and the
N510 dots, the first excited-state LSDA wave functions a
in fact linear combinations of (L,S)5(2,1) and the (L,S)
5(2,0) wave functions. In general, the single-determin
LSDA wave functions are eigenstates ofŜz , but they are
eigenstates ofŜ2 only when uŜzu has the maximum value
consistent with filling the lowestN/2 orbitals and the exclu
sion principle. In other cases it is necessary to have m
than one determinant in order to have the correct spin s
metry. Single-particle levels in a parabolic potential with t
same value of 2n1u l u11 are degenerate. However, the se
consistent LSDA potential is not parabolic, and conseque
of two levels with the same 2n1u l u11, the LSDA orbital
with the larger value ofu l u is lower than the other. This
serves to explain the ordering of levels for the dots wherN
differs from a closed shell by 1. For example, the (L,S)
5(2,1/2) state lies lower than the (L,S)5(0,1/2) state in the
N57 dot but the order is reversed in then511 dot because
the (n,l )5(0,62), LSDA single-particle level lies below
the (n,l )5(1,1) level.

C. Change in electrochemical potential

The DMC estimates for the change in electrochemical
tentialDN ~in meV! as a function ofN are reported in Fig. 1
together with those from LSDA and HF calculations. We s
structures and peaks at electron numbers 2, 4, 6, 9, and
agreement with the experiments of Ref. 5. In t
independent-particle model with a parabolic potential,DN
has peaks of magnitudev at N52,6,12,. . . , corresponding
to closed shells, and is 0 elsewhere. Additional features
due to the electron-electron interaction. It is difficult to ma
a more detailed comparison between experiments and th
because of uncertainties in the Hamiltonian. In particular,
external potential may not be strictly parabolic and our
sumption thatv is independent ofN may not be an accurat
description of the experimental situation.

D. Correlation energies

In Fig. 2 we plot the DMC correlation energy calculate
as the difference between the DMC energy and the
energy26 as a function of the electron numberN. The dashed
line indicates the LSDA correlation energy. From the figu
e
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one sees that the LSDA overestimates the correlation en
by 10%–15% almost independently ofN. The LSDA over-
estimate of the correlation energy is smaller than in ato
and jellium spheres, where it is as much as 100%~Ref. 27!
and 30%~Ref. 23!, respectively.

E. Hund’s first rule

From Table I we see that Hund’s first rule, according
which the total spin of the ground state takes the maxim
value consistent with electrons being in the same shell
the exclusion principle, is satisfied for all values ofN studied
in this work, except forN54. For N54 the uL,S&5u0,0&
state is just 2.2 mH* or 0.026 meV lower than theu0,1& state,
so a small change in the Hamiltonian, e.g., an increase in
spring constant of the confining potentialv, could alter the
ordering of these two states. Our result for theN54 dot is in
qualitative agreement with the QMC results of Bolton19 but
they find that the the singlet state is lower than the triplet
a larger amount~1.5 meV! than we do, for Hamiltonian pa
rameters that are close to, but not equal to, the the ones
use. However, our result disagrees with our LSDA calcu
tions which find no violations of Hund’s rule forN<13 as
well as the earlier LSDA calculations13 which found that, for
dots with evenN, Hund’s rule is satisfied forN<22, but
violated forN524. On the other hand, spin-and-space un

FIG. 1. Change in electrochemical potentialDN as a function of
the number of electrons,N, in the dot. The numbers in the plot ar
the DMC spin polarizations 2Sz5N↑2N↓. The LSDA and HF
spin polarization for theN54 dot is given in parentheses; for a
otherN they are the same as for the DMC method.

FIG. 2. Correlation energiesEc for circular dots computed with
the DMC ~solid squares! and LSDA ~open circles! methods.
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stricted Hartree Fock~sS-UHF! calculations12 predict that
Hund’s rule is violated not only forN54 but also for
N58 andN59. It should be noted that the sS-UHF calc
lations were performed for a smaller value,l51.48, of the
dimensionless ratio of the Coulomb interaction strength
the confining potential, defined in Sec. II A, than our calc
lations which were forl51.89. Since, according to Ref. 12
Hund’s rule violations are less likely for smaller values ofl,
it is clear that the difference is not due to the different va
of l. Experimental evidence indicates that Hund’s rule
satisfied forN54 circular dots5,6 but that a small elliptical
deformation is sufficient for the singlet and triplet energies
cross,6 thereby confirming our finding that the two states a
very close in energy. Given the uncertainty in the experim
tal Hamiltonian and the near degeneracy of the two state
is not surprising that we find that the the singlet state
lowest whereas the experimental finding is that the triple
lowest for the circular dot. The results of two exact diag
nalization studies are also relevant in this context: Eto7 found
that a small magnetic field is sufficient to switch the order
the states whereas Hirose and Wingreen14 find that a small
quartic term in the Hamiltonian has the same effect.

F. Spin densities

In Fig. 3 we compare the spin densitiesr↑ andr↓ and the
magnetizationm(r )5r↑(r )2r↓(r ) for the N59 ground
state obtained from the DMC and LSDA methods. In th
case the LSDA wave function is an eigenstate ofŜ2. The
agreement of the curves is impressive and extends to
whole region ofr, including the edge, where the densi
gradients are large. The same kind of agreement with
LSDA was also obtained in the case of variational Mon
Carlo densitites23 of jellium spheres. In general, it appea
that the LSDA gives accurate spin densities in those ca
that the Kohn-Sham wave function has the correct spin s
metry. In contrast the HF spin densities show much lar
oscillations than the DMC spin densities. The same beha
has previously been noticed for atoms, but to a much le
degree.28

FIG. 3. Spin densitiesr↑(r ),r↓(r ) and magnetizationm(r )
5r↑(r )2r↓(r ) as a function of distance from the center for t
ground state of theN59 dot. Solid lines, DMC; dotted-dashe
lines, LSDA, dashed line, HF. The LSDA spin densities for th
state agree well with the DMC spin densities but the HF spin d
sities have considerably larger oscillations.
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Yannouleas and Landman plot in Fig. 2 of Ref. 12 t
charge density of a closed-shellN56 dot obtained from a
sS-UHF calculation. They find that the charge density o
dot with a dimensionless interaction strength ofl51.48 has
a noncircular charge density that they refer to as a Wig
crystallized state, although the usual definition of Wign
crystallization refers to the occurrence of long-range orde
the two-body density rather than short-range order in
one-body density. Since the ground state of theN56 dot is
of 1S symmetry, it is apparent that the density must be c
cularly symmetric and their result is an artifact of their com
putational method. In this context it should be noted that
very large values ofl one cannot immediately rule out th
possibility that the single-particle picture breaks down co
pletely and that the ground state is not of1S symmetry. Also,
in the presence of a strong magnetic field the single-part
levels will reorder and the ground state need not have1S
symmetry. Finally, it should be noted that other author29

have considered models for dots in which the confining
tential itself can deform and therefore not be circularly sy
metric. In this case, of course, the ground state density of
N56 dot need not be circularly symmetric either.

G. Pair-correlation functions

In Fig. 4 we show the spherical average of the electr
electron pair-correlation functionsgs1 ,s2

(r1 ,r2) in the

N59 case. The different behavior for pairs with parallel a
antiparallel spin is due to the fact that the wave functi
vanishes when parallel-spin electrons coalesce but not w
antiparallel-spin electrons coalesce. ForN59, it follows
from Hund’s rule that there are twice as many up-spin el
trons as down-spin electrons. This is reflected in the shap
the g↑↑ andg↓↓ curves.

IV. CONCLUSIONS

In conclusion, we have calculated QMC ground-state
ergies, excitation energies, correlation energies, chang
electrochemical potential due to adding an electron, s
densities, and pair-correlation functions for circular quant
dots withN<13 electrons and compared them to the cor
sponding quantities obtained from HF and LSDA calcu

-

FIG. 4. Electron pair correlation functions, from the variation
MC method, of the ground state of theN59 dot. The first electron
is at the center of the dot. Open circles,g(r )↑↓ ; solid squares,
g(r )↑↑ ; crosses,g(r )↓↓ .
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tions. We find that HF energies are in error by 0.12–0.97*
but LSDA energies by only 0.021–0.042 H* . However, even
the LSDA energies are not sufficiently accurate to give r
able excitation energies or changes in the electrochem
potential. The LSDA correlation energies differ from th
DMC ones by. 10%–15%. Hund’s first rule is found to b
satisfied for all dots up toN<13, for the Hamiltonian param
eter values employed, except forN54 which has a nea
degeneracy. The LSDA spin densities are in remarka
good agreement with DMC spin densities for those ca
where the Kohn-Sham wave function is an eigenstate oŜ2

but the HF densities have oscillations that are too large.
nally, the pair-correlation functions may be of utility in con
G

J.

d L

,

m
,
.

a

ett
-
al

ly
s

i-

structing more accurate energy density functionals than
LSDA for two-dimensional systems.
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