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Diffusion Monte Carlo study of circular quantum dots
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We present ground- and excited-state energies obtained from diffusion Monte (D&{®) calculations,
using accurate multiconfiguration wave functions, Noelectrons =< 13) confined to a circular quantum dot.
We compare the density and correlation energies to the predictions of local spin density approXin&dian
theory and Hartree-FoctdF) theory, and analyze the electron-electron pair-correlation functions. The DMC
estimated change in electrochemical potential as a function of the number of electrons in the dot is compared
to that from LSDA and HF calculations. Hund’s first rule is found to be satisfied for all dots ekicegt for
which there is a near degeneracy.

I. INTRODUCTION dots with several tens of electrons, within a reasonable
amount of computer time on a modern workstation. In addi-
Modern microfabrication technology is capable of makingtion to the statistical error there is a systematic error due to
quantum dots? that are sufficiently small that they contain using the fixed-node approximation. This error can be re-
only a small number of mobile electrons. There has beefluced by optimizing the trial wave functions. For the trial
much interest in studying the atomiclike properties of thesavave functions used in the present work, the fixed-node er-
dots with tunnel conductantand capacitanéeexperiments. ~ fors are small compared to the errors of other approximate
The ground states of clean circular dots exhibit shell struciethods. This is demonstrated by performing internal checks
ture and are believed to obey Hund's first rafeThe shell ~ Within the method and by comparing to the few energies,
structure is particu|ar|y evident in measurements of th@Vﬂilable from exact diagonalization Studi’éﬁ)r small dOtS,
change in electrochemical potential due to the additiorfhat are accurate enough to make a meaningful comparison.
of one extra electronAy=u(N+1)—ux(N), whereN is Hence our results can be regarded as a benchmark to assess

the number of electrons in the dot, and(N)=E(N) the accuracy of other approximafte mgthods. In particular we
—E(N—-1) is the electrochemical potential of the system.f'”d ?hat, in contrast to the situation with atpms, the energies
Theoretical predictions aky and the excitation energy spec- obtained from the LSDA method are considerably more ac-
trum require accurate calculations ground-state and excitedurate than those from the HF method. The same is true for
state energies. Exact diagonalization stutfieare accurate the spin densities in those cases where theALSDA wave func-
for a very small number of electrons, but the number of basigions are eigenstates of the total spin oper&or

functions needed to obtain a given accuracy and the compu- Earlier QMC calculations on quantum dots include VMC
tational cost grow very rapidly with electron number. In calculations for circular dot§ and DMC calculations for
practice they have been used for up to eight electférmjt  three-dimensional dot$. The fixed-phase DMC method has
the accuracy is very limited for all except<3. Hartree’?  been applied to dot8with N<4. Path integral Monte Carlo
restricted Hartree-FockHF), spin and/or space unrestricted calculations have been perfornfdor dots withN<8 but
Hartree-Fock’~? (UHF), and local spin-density approxima- the results of these calculations bear no resemblance to either
tion (LSDA) and current density functional methddisl®  our results or those from exact diagonalizatién.

give results that are satisfactory for a qualitative understand-

ing of some systematic .properties.,. I-!owever, comparisons Il. COMPUTATIONAL METHOD

with exact results show discrepancies in the energies that are

substantial on the scale of energy differences. An advantage A. Hamiltonian

of the approximate approaches is that no serious size and The ysual mod@lfor a disk-shaped vertical quantum dot

geometry constraints are imposed. is a two-dimensional system of electrons moving in the

In this paper we employ the quantum Monte Carlo_q piane, confined by a parabolic lateral confining potential
(QMC) method[both variational Monte CarlgvVMC) and Voo(r). The Hamiltonian is

diffusion Monte Carlo(DMC) method$ because they yield

very accurate energies at a computational cost that grows N 52 o2 N 1
relatively modestly with the number of electrons. The statis- H= V2 Vo) |+ — >, .
tical error of these calculations can be made small, even for i=1 2m € i< Iri— rj|
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In Eg. (1), m* is the electron effective mass, ardis the  whereR={r;---ry} are the coordinates of th¢electrons in
dielectric constant of the semiconductor. In the followiifg the dot, and thew; are variational parameters. The
not explicitly specified otherwigewe will use effective configuration-state functiorig" 'S are eigenstates of the total

atomic units, defined by =e?/e=m*=1. In this system of  angular momenturh =L, with eigenvalueL and of the total

units, the length unit is the Bohr radias, times em,/m*, spin & with eigenvalueS(S+1). and have the followin
and the energy unit is the Hartree time$/(m.e?). For the f(frlm' W igenvalue( ), v Wing

GaAs dots we consider here=12.4 andm* =0.067n,,
and the effective Bohr radiuag and effective Hartree H m;
are=97.93 A and=11.86 meV, respectively. In this first EfS=2 B;D/D}, (3)
application of the method, we will consider circular dots =1
with N<13 and a parabolic potentiale,(r)=m*w?r?/2  \here theD) are Slater determinants of spin-up and spin-
(hw=0.28 H =332 meV), which should approximate the down electrons, using orbitals from a local density approxi-
experimental situation in Ref. 5. Extensions of the calculamation(LDA) calculation with the same confining potential
tion to N>13, magnetic field+0, and a nonparabolic con- and the same number of electrons. Theare the number of
fining potential are in progress. - . _determinants in théth configuration. In general thB|D/
Comparison of energies and other quantities with those in tei tates G2 Th Hicients in the i
the literature are complicated by the fact that various author&™® n_o qgens ates @ ) € coe |§|en sB_lr_1 Aze_ inear
use different values for the parameters* e, in the combln.atlon of Eq'(3) are fixed by diagonalizin®” in j[hat
Hamiltonian. Note, however, that two HamiltoniaHs and determinantal basis. FAN=<13, the numberNof configura-
H,, characterized byn* ,w;, and ; and m} ,w,, and e,,  tiONS, Neoyr, and Slater determinantye=;9"m;, ap-
respectively, must have the same energy spectrum aside fropearing in Eqs(2) and(3), are shown in Table | and were
a multiplicative scale factor, i.e.,Eq/Ey=m3/m} determined by limiting the basis space to spin-up and spin-
=w;/w,=€,/€e;, Where i labels the energy states of a down orbitals with|n,1)=10,0) for N<2 dots,|n,I)=|0,0)
given Hamiltonian. An interesting aspect of quantum dotsand [0,=1) for 3<N<6 dots, |n,1)=[0,0), [0,=1), |0,
is that it is possible to tuna, the dimensionless ratio of *2), and|1,00 for 7<N<12 dots, and|n,!)=|0,0, |0,
the Coulomb interaction strength to the confining potential= 1), [0,£2), [1,0), |0,=3), and|1,+ 1) for theN=13 dot.
N=[e?/(ely) /o, wherel,= VA/(m* w), thereby allowing The noninteracting single-particle energy levels ag
one to study both weakly interacting and strongly interacting=(2n+ !/ + 1)w.?” Basis states are then built by considering

cases. Our present calculations areXer 1.89. all possible occupations of open-shell levels. For example, in
the case of thé&\=9 dot, the first six electrons fill thg,0)

and|0,*= 1) orbitals and are considered to be core electrons
B. Quantum Monte Carlo methods in a closed shell. Then, the wave function for the state

One advantage of the QMC methods is that no restrictioALzo’S: 1/_2> of the N=9 dot has three qpen-shell elec-
is placed on the form of the trial wave function. In the VMC ons, and includes twoNon—=2) configuration-state func-
method, Monte Carlo integration is used to calculate thdions which are linear comb_|nat|ons of; =2 andm,=3
many-dimensional integrals, and the parameters in the triap/ater determinants, respectively. _
wave function can be varied to minimize the energy or the, 1n€ function expp] in Eq. (2) is a generalized Jastrow
fluctuations of the local energy. More accurate results can bctor of the form used in Ref. 23,
obtained from the fixed-node diffusion Monte Carlo method

6
which projects, from an antisymmetric trial wave function, ¢(R)=2 2 ykJO<k7Tr'>

the lowest-energy state, consistent with the boundary condi- i=1| k=1 Re

tion of preserving the same nodal surface. In the limit that N

the trial wave function has the correct nodes, the fixed-node +E 1 ajjrij ajjrij ) @
DMC method yields the exact energy with only a statistical <2\ 1+b(rpr;  1+b(rpry)’

error that can be made arbitrarily small by increasing the

number of Monte Carlo steps. A detailed description of ourwhere

implementation can be found in Ref. 21. The fixed-node er- TR JU— )

ror is usually small compared to errors from other methods b(r)=bg +by tan™“[(r —Rc)*/2R:A]. ®)

but it is unknown except in those cases where exact resulfg expjicitly includes one- and two-body correlations and ef-
are available. fective multibody correlations through the spatial depen-

dence ofb(r). The quantityR, represents an “effective”
radius of the dot, and has been assumed to be equal to

_ ) 1.93/N. The b, and b, parameters depend only on the
The errors of VMC and fixed-node DMC calculations de- re|ative spin configuration of the paij . The parametera;

pend on the quality of the trial wave functions. The trial gre fixed in order to satisfy the cusp conditions, that is,

wave functions we use have the form the condition of finiteness of the local energi¥/¥ for
rij— 0. For a two-dimensional system;; = 1 if the electron
Neonf pairij has antiparallel spin, araj; = 1/3 otherwise. The de-
W(R), s=exf (R)] E aiEiL,S(R), ) penden_ccnT ofy; on the relatwe spin orientation of the elec-
=1 tron pair introduces spin contamination into the wave func-

C. Trial wave functions
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TABLE I. Ground-state energigén H*) and low-lying excita- TABLE Il. Comparison of ground-state energi@s H*) for the
tion energieqin mH*) for N<13 dots. Also shown are the quan- dots with 2<N<13 computed by the Hartree-Fock, LSDA, VMC,
tum numbers of the states and the number of configuration statand DMC method. Also shown are the LSDA errors in the energy,
functions, N, and the number of determinant¥y., used in  AE gpa=E,spa— Epmc, Which are much smaller than the HF er-
constructing them. The numbers in parentheses are the statisticairs E,r— Epyc. The numbers in parentheses are the statistical

uncertainties in the last digit. uncertainties in the last digit.
N L S N:onf Ndet E(H*)v AE(mH*) N EHF ELSDA EVMC EDMC AELSDA
2 0 0 1 1 1.0216@) 2 1.1420 1.04685 1.0220 1.021627) 0.025237)
3 1 1/2 1 1 2.2331®) 3 24048 2.2631 2.5022 2.23393) 0.02923)
4 0 0 1 2 3.7138) 4 3.9033 3.6864 3.72%2) 3.71355) 0.02767)
0 1 1 1 2.26) 5 5.8700 5.5735 5.5418) 5.53363) 0.02637)
2 0 1 1 411) 6 8.0359  7.6349 7.6213) 7.59968) 0.03538)
5 1 1/2 1 1 5.533@) 7 10.5085 10.0718 10.058% 10.03618) 0.03578)
6 0 0 1 1 7.599(8) 8 13.1887 12.7276 12.71@M@ 12.69037) 0.03737)
7 2 1/2 1 1 10.036B) 9 16.1544 15.6190 15.60@» 15.57847) 0.04087)
0 1/2 1 1 241) 10 19.4243 18.7636 18.75@8 18.72445) 0.03925)
8 0 1 1 1 12.690@) 11 22.8733 22.1114 22.11@ 22.07504) 0.03644)
2 1 1 2 221) 12 26.5490 25.6756 25.6792) 25.65487) 0.02087)
2 0 1 2 241) 13 30.4648 29.5363 29.54Q01) 29.49427) 0.04217)
4 0 1 1 321)
0 0 2 3 541) _ .
9 0 3/2 1 1 15.5784) in Ref. 17, who give an energy of 26.82 meV fbr=3,
0 1/2 2 5 431) which they credit to Hawrylak and Pfannkuchétarting
2 1/2 2 2 521) from a single Slater determinant of LDA orbitalgon-
4 12 1 1 671) structed from the spin-up and spin-dowm!)=|0,0) states
10 5 1 1 5 18.7248) and the spin-upn,|>=10,1) state, we obtain a fixed-node
5 0 1 5 'Zl) DMC energy of 26.821@86) meV, using their model param-
0 1 1 1 221) eters M* =0.06M,,e=12.4, andiw=3.37 meV), which
0 0 5 3 261) is indistinguishable from the exact energy to the number of
4 0 1 1 451 digits quoted. We attempted also to estimate the fixed-node
1 0 12 1 1 - 57) a error by varying the orbitals in the determinants and by vary-
-075@) ing the number of determinants. Fbr=7, QMC calcula-
2 172 1 1 141) tions using LDA and LSDA orbitals were performed. The
12 0 0 1 1 25.654@) LSDA orbitals yielded better VMC resultéhe energy was
13 3 12 1 1 29.4942) lowered by 57 mH and the fluctuations of the local energy
112 1 1 401) by 7 mH*) but the DMC energies were unchanged within

statistical uncertainty. We checked the dependence of the
) ) ) o energy on the number of configuration-state functions for the
tion. However, the magnitude of the spin contamination anGst excited state of thil=9 dot. Somewhat to our surprise,
its effect on the energy has been shown to be totally neglignergies of the one-configuratigihree-determinaintnd the
gible in the case of well-optimized atomic wave functighs two-configuration(five-determinant wave functions agreed

and we expect that to be true here as well. o to within 1 mH*, not only within the DMC method but also
The coefficientsy, in the one-body term, the coefficients \ithin the VMC method.

A, by, andb; in the two-body term, and the coefficienis
multiplying the configuration-state functions are optimized
by minimizing the variance of the local enertfyThe result-
ing wave functions had rms fluctuations of local energy that The ground-state energies are listed in Table Il and com-
range from 0.021 M for N=2 to 0.255 H for N=13. pared with results of HF and LSDA calculations using the
Tanatar-Ceperley parametrization for the correlation
energy?® The HF energies are 0.12—0.97 Higher than the
DMC energies whereas the LSDA energies are only 0.021—
Using these optimized wave functions for importance0.042 mH (0.25-0.50 meV higher. In contrast, in atoms
sampling, we perform fixed-node diffusion Monte Carlo cal-and molecules the Hartree-Fock total energy is considerably
culations. We attempt to establish the accuracy of the fixedbetter than the LSDA total energy. There are two likely rea-
node energies obtained with our trial wave functions by comsons for this difference. First, the Hartree-Fock treats ex-
paring them to energies from exact diagonalization studieshange energy exactly while completely ignoring correlation,
and also by performing internal checks within our calcula-whereas in the LSDA both exchange and correlation are ap-
tions. Unfortunately, although there exist several papers oproximated. In atoms and molecules, the exchange ergrgy
exact diagonalizatioh® the results are usually presented inis much larger than the correlation enery, but for the
plots, rather than in tables. The only number we know of isdots it is not, e.g.E,/E.~30 for a neon atom buE, /E.

A. Ground-state energies

Ill. RESULTS
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~4 for anN=10 dot. The second reason is that the dots are L T ——
more homogeneous than atoms or molecules and so the \

local-density approximations t6, andE; work better. Note i
also that the HF errors increase monotonically with electron
number but the LSDA errors do not show any obvious trend.

Ay (meV)

B. Excited-state energies

In Table | we list the low-lying excitation energies for the
N=4,...,11dots. Koskineret al!?find that the lowest ex-
citation energies from LSDA calculations are 11.5 tn&hd
2.31 mH for N=8 and 10 dots, respectively, whereas our
DMC calculations show that the corresponding lowest exci-

tation energies are 22 nfHand 2 mH. They claim that FIG. 1. Change in electrochemical potentla| as a function of
these lowest excited states have a spin density wave evefle number of electrondy, in the dot. The numbers in the plot are
thoughS=0, but in fact this is just an artifact due to these the pMC spin polarizations 2=N7—N|. The LSDA and HF
LSDA wave functions not being eigenstates33f as pointed  spin polarization for the\=4 dot is given in parentheses; for all
out by Hirose and Wingree!f. For both theN=8 and the otherN they are the same as for the DMC method.

N=10 dots, the first excited-state LSDA wave functions are

in fact linear combinations ofl(,S)=(2,1) and the I,S) one sees that the LSDA overestimates the correlation energy
=(2,0) wave functions. In general, the single-determinanby 10%-15% almost independently Nf The LSDA over-
LSDA wave functions are eigenstates 8f, but they are estimate of the correlation energy is smaller than in atoms
eigenstates of? only when|3,| has the maximum value and jellium spheres, where it is as much as 106Réf. 27

consistent with filling the lowesl/2 orbitals and the exclu- and 30%(Ref. 23, respectively.

sion principle. In other cases it is necessary to have more

than one determinant in order to have the correct spin sym- E. Hund’s first rule
metry. Single-particle levels in a parabolic potential with the
same value of @+ |l|+ 1 are degenerate. However, the self-
consistent LSDA potential is not parabolic, and consequentl
of two levels with the samer2+|l|+1, the LSDA orbital
with the larger value ofll| is lower than the other. This
serves to explain the ordering of levels for the dots wii¢re
differs from a closed shell by 1. For example, the, %)
=(2,1/2) state lies lower than thé (S)=(0,1/2) state in the
N=7 dot but the order is reversed in the=11 dot because
the (n,1)=(0,£2), LSDA single-particle level lies below
the (n,1)=(1,1) level.

From Table | we see that Hund'’s first rule, according to
which the total spin of the ground state takes the maximum
Yalue consistent with electrons being in the same shell and
the exclusion principle, is satisfied for all valueshstudied
in this work, except foN=4. For N=4 the |L,S)=10,0)
state is just 2.2 mK or 0.026 meV lower than thi®,1) state,
so a small change in the Hamiltonian, e.g., an increase in the
spring constant of the confining potential could alter the
ordering of these two states. Our result for Me 4 dot is in
qualitative agreement with the QMC results of Boftdbut
they find that the the singlet state is lower than the triplet by
a larger amount1.5 me\j than we do, for Hamiltonian pa-

C. Change in electrochemical potential rameters that are close to, but not equal to, the the ones we

The DMC estimates for the change in electrochemical poYS€- However, our result disagrees Wi,th our LSDA calcula-
tential Ay, (in meV) as a function oN are reported in Fig. 1 tions which fmc_i no violations of_Hunds rule fdd<13 as
together with those from LSDA and HF calculations. We segVell @s the earlier LSDA Calc“"”_‘t'o}%’_"h_'(:h found that, for
structures and peaks at electron numbers 2, 4, 6, 9, and 12 fipts with evenN, Hund'’s rule is satisfied foN<22, but
agreement with the experiments of Ref. 5. In theViolated forN=24. On the other hand, spin-and-space unre-

independent-particle model with a parabolic potentigy,

has peaks of magnitude at N=2,6,12,. . ., corresponding 00— T T
to closed shells, and is 0 elsewhere. Additional features are I

due to the electron-electron interaction. It is difficult to make -0.25F

a more detailed comparison between experiments and theory i

because of uncertainties in the Hamiltonian. In particular, the .~ 050

external potential may not be strictly parabolic and our as- Eu

sumption thatw is independent oN may not be an accurate B 075+

description of the experimental situation.

D. Correlation energies

In Fig. 2 we plot the DMC correlation energy calculated 2 4 6 N8 1o 12 14
as the difference between the DMC energy and the HF
energy® as a function of the electron numbir The dashed FIG. 2. Correlation energiei, for circular dots computed with

line indicates the LSDA correlation energy. From the figurethe DMC (solid squargsand LSDA (open circley methods.
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FIG. 4. Electron pair correlation functions, from the variational
FIG. 3. Spin densitiesp(r),p,(r) and magnetizatiorm(r) MC method, of the ground state of tiNe=9 dot. The first electron
=p;(r)—p,(r) as a function of distance from the center for the is at the center of the dot. Open circleg(r), ; solid squares,
ground state of theN\=9 dot. Solid lines, DMC; dotted-dashed 9(r);;; crossesg(r), .
lines, LSDA, dashed line, HF. The LSDA spin densities for this
state agree well with the DMC spin densities but the HF spin den- Yannouleas and Landman plot in Fig. 2 of Ref. 12 the
sities have considerably larger oscillations. charge density of a closed-sh&ll=6 dot obtained from a
sS-UHF calculation. They find that the charge density of a
stricted Hartree FocksS-UHB calculationd? predict that —dot with a dimensionless interaction strength\af 1.48 has
Hund’s rule is violated not only foN=4 but also for a noncircular charge density that they refer to as a Wigner
N=8 andN=09. It should be noted that the sS-UHF calcu- crystallized state, although the usual definition of Wigner
lations were performed for a smaller value=1.48, of the ~ crystallization refers to the occurrence of long-range order in
dimensionless ratio of the Coulomb interaction strength tdhe two-body density rather than short-range order in the
the confining potential, defined in Sec. Il A, than our calcu-one-body density. Since the ground state of khe6 dot is
lations which were foi = 1.89. Since, according to Ref. 12, of 'S symmetry, it is apparent that the density must be cir-
Hund’s rule violations are less likely for smaller values\gf ~ cularly symmetric and their result is an artifact of their com-
it is clear that the difference is not due to the different valueputational method. In this context it should be noted that for
of \. Experimental evidence indicates that Hund’s rule isvery large values ok one cannot immediately rule out the
satisfied forN=4 circular dot3® but that a small elliptical ~possibility that the single-particle picture breaks down com-
deformation is sufficient for the singlet and triplet energies topletely and that the ground state is not'&symmetry. Also,
cross® thereby confirming our finding that the two states arein the presence of a strong magnetic field the single-particle
very close in energy. Given the uncertainty in the experimenlevels will reorder and the ground state need not hage
tal Hamiltonian and the near degeneracy of the two states, &ymmetry. Finally, it should be noted that other autfbrs
is not surprising that we find that the the singlet state id1ave considered models for dots in which the confining po-
lowest whereas the experimental finding is that the triplet igential itself can deform and therefore not be circularly sym-
lowest for the circular dot. The results of two exact diago-metric. In this case, of course, the ground state density of the
nalization studies are also relevant in this context’Eand ~ N=6 dot need not be circularly symmetric either.
that a small magnetic field is sufficient to switch the order of
the states whereas Hirose and Wingrédmd that a small

. . o G. Pair-correlation functions
quartic term in the Hamiltonian has the same effect.

In Fig. 4 we show the spherical average of the electron-
electron pair-correlation functionsg(,l,(,z(rl,rz) in the

N=9 case. The different behavior for pairs with parallel and
In Fig. 3 we compare the spin densitigsandp, and the  antiparallel spin is due to the fact that the wave function
magnetizationm(r)=p(r)—p,(r) for the N=9 ground vanishes when parallel-spin electrons coalesce but not when

state obtained from the DMC and LSDA methods. In thisantiparallel-spin electrons coalesce. Rgr=9, it follows

case the LSDA wave function is an eigenstateS3f The  from Hund's rule that there are twice as many up-spin elec-
agreement of the curves is impressive and extends to tHEONS as down-spin electrons. This is reflected in the shape of
whole region ofr, including the edge, where the density thed;; andg, curves.

gradients are large. The same kind of agreement with the

LSDA was.qlso obt_air!ed in the case of variatiqnal Monte IV. CONCLUSIONS

Carlo densitite€ of jellium spheres. In general, it appears

that the LSDA gives accurate spin densities in those cases In conclusion, we have calculated QMC ground-state en-
that the Kohn-Sham wave function has the correct spin symergies, excitation energies, correlation energies, change in
metry. In contrast the HF spin densities show much largeelectrochemical potential due to adding an electron, spin
oscillations than the DMC spin densities. The same behaviodensities, and pair-correlation functions for circular quantum

has previously been noticed for atoms, but to a much lessatots withN=<13 electrons and compared them to the corre-

degree?® sponding quantities obtained from HF and LSDA calcula-

F. Spin densities
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tions. We find that HF energies are in error by 0.12—0.97 H structing more accurate energy density functionals than the
but LSDA energies by only 0.021-0.04% HHowever, even LSDA for two-dimensional systems.

the LSDA energies are not sufficiently accurate to give reli-
able excitation energies or changes in the electrochemical
potential. The LSDA correlation energies differ from the
DMC ones by= 10%-15%. Hund’s first rule is found to be
satisfied for all dots up tbl=<13, for the Hamiltonian param-
eter values employed, except f&f=4 which has a near e thank LI. Serra for providing us with the HF code
degeneracy. The LSDA spin densities are in remarkablyynd M. Barranco for useful conversations. This work was
good agreement with DMC spin densities for those casepartially supported by INFM, MURST, and Sandia National
where the Kohn-Sham wave function is an eigenstatg?f Laboratory. The calculations were carried out on the
but the HF densities have oscillations that are too large. FitBM-SP2 at Cornell Theory Center and on the Cray-T3E at
nally, the pair-correlation functions may be of utility in con- CINECA with an ICP-INFM grant.
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