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Formation of Wigner molecules in small quantum dots
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It was recently argued that in small quantum dots the electrons could crystallize at much higher densities
than in the infinite two-dimensional electron gas. We compare predictions that the onset of spin polarization
and the formation of Wigner molecules occur at a density paramgtetaj to the results of a straightforward
diagonalization of the Hamiltonian matrix.

I. INTRODUCTION without translational invariance the critical density parameter
for a fluid-solid transition is shifted to a considerably smaller
If the number of electrons artificially confined on a quasi-value s ~7.5a5). Could this be important fofinite sys-
two-dimensional electron islan¢made, for example, in a tems such as the above mentioned lateral or vertical semi-
semiconductor heterostructiris very large, many proper- conductor quantum dot structures? This question was re-
ties of such a so-called quantum dot or artificial at@an be  cently posed'®2® and it was argued that in finite systems
described from what is known about the limit of the infinite confining only a few particles localization would indeed oc-
(two-dimensional electron gas(2DEG). Until now, most  cur at significantly higher densities than in the 2D bulk. In
experiment$ were performed at electron densities that arethe Wigner limit the few electrons in the trap would distrib-
slightly below the equilibrium density of the 2DEG. The ute such that their electrostatic repulsion is minimized. The
liquidlike properties then still dominate. For only a few internal structure of the wave function of the many-body
trapped particlegas experimentally realized in vertical quan- system should then have the symmetry of the corresponding
tum dots), pronounced addition energy maxima as a conseelassical charge distribution. The formation of Wigner mol-
quence of shell structure and aligned spins in the mid-shekcules, the finite-size counterpart of Wigner crystals, was
regions due to Hund’s rules were observed, in close analogfound to be particularly pronounced in quantum dots with
to atomic physics.Even the simplest picture & noninter- steep walls and polygonal geometfyEgger et al® have
acting particles in a two-dimensional harmonic trap couldperformed quantum Monte Carlo studies using a multilevel
explain many features of the conductance spectra. For larg@locking algorithn?’ For parabolic quantum dots with azi-
systems, mean field approaches like Hartree-fdck den-  muthal symmetry they reported that at a critical density of
sity functional methods*? have been applied. In the small- r .=4a* the formation of Wigner-molecule-like ground
N limit, much theoretical work has focused on exact diago-states should become energetically favorable. Hartree-Fock
nalization techniquet’** This approach was mostly used for (HF) calculations performed in an unrestricted scheme
dots in magnetic fields, where correlations become increasshowed spin polarization, spontaneous symmetry breaking,
ingly important with increasing field strength. It was particu- and localization in the spatial distribution of the electronic
larly successful in théinteger and fractionalquantum Hall  densities of quantum dots and lateral quantum dot molecules
regime where one can restrict the basis set to the Iowegtr5%3_5a* , which were attributed to the onset of Wigner
spin-polarized Landau levét:*® Quantum Monte Carfd™*° 1y stallization®
methods provide alternative approaches yielding energies ‘| the present article we report numerically exact configu-
whose accuracy reaches that of exact diagonalization.  ratjon interaction calculations. This method has a long his-
When the electron density is lowered and the Coulombkgry in quantum chemistry, and has been applied to quantum
energy increases relative to the kinetic energy, correlationgots py many author¥. Much of the previous work, how-
begin to strongly dominate the electronic structure in theayer, concentrated on the electronic structure in large mag-
absence of magnetic fields also. For densities smaller thangstic fields where the electron gas is polarized. Our purpose
certain critical value, a Wigner crystalwill be formed, in  here is a comparison of the exact diagonalization results to
which the Coulomb interaction distributes the single electhe above mentioned recent predictions of localized states in
trons classically on a lattice. For the homogeneous tWothe |ow-density limit and zero magnetic field. We first give a
dimensional electron gas, such crystallization is expected &ief outline of the configuration interaction method and then
very low densities. Monte Carlo calculations indicate that ingyrn to a discussion of the many-body spectra of a six-
the 2D bulk a transition to a Wigner-crystal-like state, pre-g|ectron quantum dot at zero angular momentum as a func
ceded by a transition to a polarized ph&%eccurs only at  tion of the average electron density in the dot. Calculations
densities corresponding to Wigner-Seitz r&tliirs,o  for differentr, values indicate that the ground state remains
>37ag [the densityn, and rs,, are related byn,  unpolarized. At values of; that are accessible to exact di-
=1/(mrZ,p)], whereas in 3D the classical limit lies as high agonalization techniques, for a dot confining six electrons
asrgsp=100a3 24 (In the following, for simplicity we write  clear signals of formation of a Wigner molecule could not be
rsap=rs.) Chui and Tanatd? found that in 2D systems observed. We conclude with a brief comparison to results of
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density functional theoryDFT) in the local spin density ap- — 8
proximation (LSDA) describing the electronic ground state
structures. — 5
Il. METHOD AND CONVERGENCE — 3 _<g 1
. . . . . — =0
ConsiderN interacting electrons trapped in a circularly =§'}, 1 _46 /6 1
symmetric harmonic welV(r)=m* w3r?/2, wherer?=x2 0 :ég ;4? — —/0
+y2. (In the quasi-two-dimensional limit one assumes that o Y E:z 55513
the confinement in the direction is much stronger than in 0 —/™p —2
the x-y plane. Thus only the lowest subband in thdirec- 14 16 18 20 29 oq O
ion i [ .We write for the Hamiltonian
tion is populated.We write for the Hamiltonia E, /(o) .
N N
2 e? 1 FIG. 1. Convergence of the many-body spectraNef6 elec-
= V() |+ < dmege |ri— rj| - @ trons in a harmonic trap at a density correspondingste4a as a

function of the cutoff energ¥. /(7 w). Shown are the six lowest

Here, m* and ¢ are the effective mass and the dielectric States withL =0, together with the spif§ of each state.
constant. The calculations are done for different values of the

density parameters, which determines the average particle jzation. One then has to make sure that convergence of the
density in the dot,ng=1/(wr3). The latter is apprOX|- spectra is reached with respect to the cutoff. As the required
mated by setting the oscillator parametapi=e*  matrix size increases rapidly with, computational expenses
(4megemrdN).” Throughout this paper we use effective severely restrict the calculations to only the smallest systems
atomic units in which the length uniét} is a factore/m* at not too large values afs. Thus, with increasing electron
times the Bohr radiusg, and the energy is given in effec- number orrg, the results become less accurate due to the
tive hartrees, Ha=(m*/£2) x 1 hartree(For GaAs, for ex-  restricted number of basis states that can be included in the
ample,m* =0.067m, ande =12.4, for which the length and calculations(The fact that the ground and excited states are
energy units then scale & =97.9 A and H4=11.9 meV)  closer in energy for larger particle numbhrimposes an
To diagonalize the Hamiltonian, E@l), the spatial single- additional difficulty)
particle states of the Fock space are chosen to be eigenstatesFor a quantum dot confininl=6 electrons at a density
of the two-dimensional harmonic oscillator with optimized corresponding tos=4ag (the largest value ofs we found
oscillator parametetw. In general, the electron-electron in- accessible within the calculational scheme used)hé&ig. 1
teraction tends to expand the system, and theswy. This  shows the convergence of the many-body spectra as a func-
effect becomes stronger with increasingand we used the tion of the cutoff energ{e.. The lowest possible Fock state
(empirica) relation w=wqy/\rs. The two-body matrix ele- for six electrons has two particles in the stéel)={0,0)
ments of the electron-electron interaction are calculated usand four particles if0,= 1). Thus, the configuration energy
ing the addition theorem for th—r,|.?8 To set up the Fock equals Z w+4Xx 2% w. This means that for the spectra with
states for diagonalization, we use eight lowest oscillatodifferent cutoff energies displayed in Fig. 1 all excitations up
shells containing 36 states and sample over the full spac® an energyE.—10hw and belonging to the eight lowest
with a fixed number of spin down and spin up electrons,shell$® are included. The many-body spectra forilAand
Nl+NT=N. From this sampling, only those Fock states with16% « differ drastically from the results obtained fdt.
a given total orbital angular momentum and a configuratiore=20% w. Looking at the relative ordering of the levels and
energy(corresponding to the sum of occupied single-particlethe spin sequence, it becomes clear that convergence is
energies less than or equal to a specified cutoff enelly reached only forE,>20hw. The ground state energy for
are includedsee Fig. 1 below for an examplérhe purpose zero angular momentum i§y=3.049 H& for 224w and
was to select only the most important Fock states from th@,=3.045 H& for 244 . An extrapolation to infinite cutoff
full basis, thereby reducing the matrix dimension to a sizeenergy can be made by plotting the total energy as a function
d=<10°. To obtain all the eigenstates we have to Bet  of (E.— 10k w) ¥23! This gives the estimate 3.043 Hdor
=N;=N/2 for even particle numbersS{=0; all states with  the fully converged results at=4a} . ForE.= 144 a too
different total spin have this compongnand analogously small number of Slater determinants was included to build
we would haveN| =N; =1 for odd numbers. Once the active yp the required correlations, such that the polarigee3
Fock states are obtained, the Hamiltonian matrix is calcustate appeared as the ground std#e identify a similar
lated. JFor Lanczos diagonalization we use tRRPACK  effect in unrestricted HF results mentioned abdwehere the
library.*® Finally, the total spin of each eigenvector is deter-single Slater determinant that is available incorrectly favors a
mined by calculating the expectation value of Sfeopera-  spin-polarized ground statd. While for E,=22% w the ma-
tor. trix dimension 44181 with 21448811 nonzero matrix ele-
As mentioned above, setting up the Hamiltonian matrixments is reasonably small, the valie =241 already
from chosen Fock states and subsequent diagonalization onfjjelds a matrix dimension 108 375 with 67521 121 nonzero
in principle yields an exact solution of the many-body prob-matrix elements. As for larger densities the states are less
lem. For reasons of numerical feasibility it is necessary tacorrelated, a smaller number of Slater determinants is needed
truncate the set of basis functions to be used in the diagonaler an accurate description. Density parameters larger than
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= = = = = = TABLE |. Energies (H&4) for the paramagneticS=0) and
] = = = = = ferromagnetic $=3) states in a six-electron quantum dot for dif-
= = = = = = = ferent densities. In the diagonalization we used=22%w for rg
= = — = = = = <3.5a% andE.=24%w for rg=4a} . For comparison the energies
’f 3 = ; — = - — obtained with the local spin density approximation are also shown.
’E 0 % = = = — — Paramagnetic Ferromagnetic
_1 Y = = _ — — re(as) Exact LSDA Exact LSDA
— _— ._ JE—
? — — ’: :: A 1.0 14.27 14.30 15.22 15.30
— - >— 15 8.983 8.988 9.363 9.409
T 2.0 6.508 6.503 6.695 6.724
70 1_5 ? 2_5 ? 3_5 a 25 5.084 5.073 5.188 5.204
3.0 4.162 4.148 4.225 4.233
rs [ap] > 3.5 3.519 3.502 3.559 3.560
4.0 3.045 3.027 3.071 3.068

FIG. 2. Spectra for angular momentum=0 and six electrons
in a harmonic trap at densities corresponding to Wigner-Seitz radii

betweenr=1lag andrs=4ag in steps of 0.85 . The square and 4yond state, we do not expect any crossing of the polarized
the triangle show the first excited singlet state and the lowest fuIIyState and the ground state unlessbecomesmuch larger

polarized state, respectively. The lowest state alwaysSka®. The * . . . .
energy axis is scaled such that the energy difference between tﬁ[han 48 - Estimating the decrease in energy of the polarized

ground states; and the 50th excited statg, equals 1, i.e., plotted s(:fate with respect to the ground stater gss '”C{Sased* our
are the dimensionless quantities= (¢, — e,)/( sy €1) data seem to support the result of Eggeral.”® that the
q &S (€~ €u)l(€so™ €1).- ground state of the six-electron dot is not polarized rfgr

values smaller than about§ .

Table | compares the total energies of the ground state
with spin zero and the lowest polarized state with sBin
=3 with the corresponding result obtained from DFT, where
the exchange-correlation part of the electron-electron inter-

IIll. MANY-BODY SPECTRA OF A SIX-ELECTRON actions is treated in the LSDA. For the DFT results we used
QUANTUM DOT an interpolation formula for the Tanatar-Cepeffey
exchange-correlation energy. We refer to Ref. 7 for further

We now analyze the many-body spectra and the sequenggtails concerning the numerical method. The configuration
of spins for the low-lying states as the two-dimensional deninteraction (Cl) energies of theS=0 ground states an8
sity parameter is varied. We choose the particle number =3 jsomer compare well with the LSDA results. For the
N=6 as it corresponds to the smallest dot size for whichparamagnetic case, the LSDA gives lower energies than the
classically two stable crystalline structures co-exist: & pengxact results, whens= 2a% . This might be mainly due to
tagonal ring with one electron at the center, and a slightlfthe fact that the Tanatar-Ceperley interpolation formula
distorted sixfold ring?*** We fix the angular momentum to gjightly overestimates the correlation energy. Nevertheless,
L=0 and show in Fig. 2 the 50 lowest states for a quantumne |SDA gives surprisingly accurately the energy difference
dot confiningN=6 particles at density parameters betweenpenyeen the fully polarizedS=3) and the paramagnetic
rs=1ag andrs=4ag (in steps of 0.83). To obtain a better (S=0) state, as seen in Fig. 8For comparison, we also
resolution of the spectra the energies of the eigens&@®  show the results for the infinite electron gas.
scaled such that the energy difference between the ground Figure 2 shows that for,=4a} there are only twol
state and the 50th excited state equals 1, i.e., plotted are theg states between the ferromagnet®=3) state and the
dimensionless quantities = (€;— €;)/(eso— €;1). (The total  paramagnetic§=0) ground state. However, if we consider
energies of the ground state wi+0 and the excited state all L values, there are several states within this energy range.
with S=3 are given in Table | belowAt a very large den- This is shown in Table Il where energies, spins, and angular
sity corresponding tos=1ag , the ground state has spfh  momenta of all levels up to the first ferromagnetic state are
=0 and is separated from the lowest excited state with spigiven. Indeed, the lowest excited state hasl andS=1. It
S=2 by a gap of 0.49 Ha This state is followed by a state is possible that at very large, this partially polarized state
with S=1 and again anothéexcited spin singlet. The low- might become the ground state instead of the fully polarized
est fully polarized state is found only at a fairly high energy, S=3 state*®
the energy difference from tig&=0 ground state being about
0.95 H& . (We note that foN=6 atr =1.735 we obtained
excellent agreement of tt&=0 ground state energy with the
result of Pederivat al®) As g is increased, the fully polar- Forrs=4aj the radial densities of th8=0 ground state
ized S=3 state moves down in energy. A{=2.5a% it has  and the third excited state &f=0, which is the lowest fully
passed the excited singlet, but is still far from competingpolarized state with spits=3, are shown in Fig. 4. The
with the nonpolarize®=0 ground state. From the evolution azimuthally symmetric charge density for the polarized case
of the energy difference between tl8=3 state and the shows a clear maximum at the center surrounded by an outer

r<=4ag or a higher number of particles th&h=6 would go
beyond the limits of numerical feasibility and accurate re-
sults could not be obtained.

IV. CHARGE DENSITIES AND PAIR CORRELATION
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0.3 et al1® who found for the ground state a density profile with
o a clear shoulder as in the polarized casehe azimuthal
infinite gas averages of the density profiles qualitatively have similarities
4 6&-dotexact with the broken symmetry solutionsf the unrestricted HF
¢ 6-dot LSDA which for the paramagnetic case results in a ring of six elec-
trons, and for the ferromagnetic caslee ground state in HF
a ring of five electrons with one electron in the center. How-
ever, the localization of the electrons is largely exaggerated
in the HF calculation. In contrast, the LSDA correctly gives
the paramagnetic state as the ground state, and its density
profile resembles the exact result. The LSDA does not break
the azimuthal symmetry until>8ag when spin or charge
density wave like states can occuPurely classical Monte
Carlg®3? computations have shown that fdd<6 the
charges are distributed on the perimeter of the dot, and none
of the particles occupies the dot center. This changefor
=6, where the charge distribution with lowest energy con-
sists of five electrons on a ring, with the remaining electron
occupying the center of the dot. This configuration is labeled
(5,1). If all six particles are arranged on the dot perimeter
0.0 e : i : . [labeled (6,0)], the classical state is stable but has a higher
0.0 0.2 0.4 0.6 energy than the (5,1) configuration.
1rg The classical charge distribution can be arbitrarily ori-
ented. The density from the CI solution, however, must be
FIG. 3. Energy between the fully polarize®<£3) and para- circularly Symmetric. For an azimuthal average of the (5,1)
magnetic states3=0) for six electrons as a function ofr}/ The  pentagon structure, one would expect a pronounced maxi-
result for the infinite 2D gasper six electronsis calculated using mum of the electron density in the center, and a less pro-
the interpolation formula of Tanatar and Ceper(&ef. 23. nounced maximum at the dot radius. Correspondingly, the
(6,0) configuration should correspond to a minimum of
ring of lower density. In the paramagnetic case, the densitgharge density in the center and a maximum at finite radius.
profile is smoother, the maximum density being at about A first comparison of exact diagonalization calculations with
~6a} . The LSDA result shows a clear minimum at the the results of the mean-field approximation was given by
origin, while the exact result has a larger density at the cenPfannkucheet al** for “quantum dot helium,” i.e., quantum
ter. For comparison with the results of Eggeral,'® we also ~ dots containing only two electrons. They found from a com-
show the density(r) multiplied by a factor 2 (cf. lower ~ Parison of exact diagonalizations with Hartree and Hartree-
panel of Fig. 4. For the polarized state, the maximum at the Fock results that the exchange and correlation contributions
center is now seen as a clear shoulder in the density profil@re crucial. While the triplet state showed a reasonable agree-
Note that this is missing in the paramagnetic ground stat&ent between the exact and HF results, the singlet could not
density. (This is in disagreement with the results of EggerPe well reproduced. As mentioned above, Yannouleas and
Landman reported that in geometrically unrestricted HF cal-

TABLE II. Energies (H4), spinsS and angular momentaof ~ culations at a density correspondingrtg=3.5a5 theN=6
all levels up to the lowest ferromagnetic staterfgr: 3a% (lefty and ~ ground state is polarized and shows enhanced localization in

0.2+

0.14

E(polarized)-E (paramagnetic)

re=4aj (right). the charge density. ThiS=3 state exhibits the same geom-
etry as the classical distribution of six electrons in a har-
rs=3aj rs=4ag monic well: five particles are equidistantly localized on the
E(Ha*) S L E(Ha*) S L perimeter of the dot, and the sixth particle is trapped in the
center of the harmonic well. The nonpolariz€¢0 state
4.162 0 0 3.046 0 0 corresponding to the (6,0) configuration is about 0.034 Ha
4.183 1 1 3.054 1 1 higher in energy. The exact diagonalization results described
4.194 1 3 3.060 2 0 above do not support these HF results. Although limited to
4.196 2 0 3.062 1 3 smallr values due to the necessary restrictions of the basis
4.201 1 1 3.063 1 1 set, the systematic evolution and energy sequence of CI en-
4.205 0 1 3.065 0 1 ergies and densities shown in Figs. 2 and 4 seems to indicate
4.209 1 0 3.066 1 0 that polarization as well as formation of Wigner molecules in
4.209 0 2 3.068 2 1 circularly symmetric, parabolic wells would be impossible at
4.209 0 3 3.068 0 2 densities as large as predicted by HF calculatiofike geo-
4.213 1 2 3.070 1 2 metrically unrestricted solution of the Kohn-Sham equations
4.216 2 1 3.070 0 3 of Ref. 7 tends to overestimate the value at which spon-
4.216 2 2 3.071 3 0 taneously broken spin or charge symmetries can occur in the
4.225 3 0 internal structure of the wave functidhAlthough calculated

in a geometrically unrestricted DFT scheme, the fully con-
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0.03 0.03
0.02 0.02
= <
c c
0.01 0.01 FIG. 4. Charge density of a dot
confiningN=6 electrons in a har-
monic trap atrg=4ay ; the exact
result (solid line) is compared to
0 4 8 12 16 the LSDA result (dashed ling
r (4] Shown is the density(r) (upper
6 pane) and n(r) multiplied by
X ~. 27rr (lower panel for the para-
0.8 , 08 . 11 magneticS=0 state(left, 1|) and
— 7 T 1 — \ the ferromagnetic S=3 state
%0'6 y %0-6 (right, 11). The S=3 state is
o 7 - separated from th&=0 ground
B 04 0.4
N p \ 5 state by 0.026 Ha
-—-— LSDA —-—— LSDA 3
02 —_ exact N 02 — exact \
N A
\w ~
0 4 8 12 16 0 4 8 12 16
r [ag] r [ag]

verged LSDA densities fors<4ag shown in Fig. 4 are geometry® and on the number of confined particles at fixed
azimuthally symmetric. Although the LSDA suffers from the average electron density in the dot. For the six-electron dot at
self-interaction problem, at the densities in question the rers~4aj} in questiorr, the “exact” ground state clearly pre-
sults are in better agreement with Cl studies than the unrefers S=0 and shows antiferromagnetic order in the pair cor-
stricted HF results. relation. The polarized state witBs, symmetry is clearly

It is finally of interest to study how the spin and spatial higher in energy even than ti&=1 state, which would also
symmetry in the internal structure of the wave function canbe a candidate for the classical (5,1) ground state

be recognized in the pair correlation function configuratior>3? In addition, for values belows=4a% we
. . did not find clear signals of rotational structure in the spectra
Jio(@) = (N (r,0ny(r,¢)), (2)  for nonzero angular momenta that would indicate a crystal-

which describes the probability of finding anottispin up or
down) particle if a particle with spin up is placed at,0).
Herer is the radius of maximum density angd the angle
between the electrons. Figure 5 shows(¢) and g;(¢)
for the ground statéower panel andg; () for the excited an 0,00 9mM
polarized state witt6=3 (upper panel From thee values - 09“

of the maxima ing;,(¢) one clearly concludes that tie
=0 state has sixfold symmetry with antiferromagetic spin
ordering, whereas the fully polarized case shows four O T o — 2n
maxima, corresponding to a fivefold symmetry. These intrin-
sic symmetries are in qualitative agreement with the unre-
stricted HF results, although the crystallization predicted by N 7N Oy
HF does not yet occur. / N - >~ /! \

V. CONCLUSIONS / \

We commented on the recent conjecture that Wigner mol- / S=0 Q::% arm \
ecules would form in quantum dots at rather large electron 2 ©

densitiesr ;= 3.5a} .>® Our results are essentially exact up '

to rs<4ag for six confined particles. The many-body spec- T

tra, densities, and pair correlations obtainedNer 6 clearly FIG. 5. Pair correlation functiong, ,(¢) calculated at the outer
illustrate that the onset of formation of Wigner moleculesmaxima of the density distributiofcf. upper panel in Fig. ¥as a
and, in particular, polarization of the ground state should bgunction of the angley between the electrons for the ground state
expected at much higheg values than anticipated from un- (lower panel and the excited polarized state wi=3 (upper
restricted HF resuft. The critical density at which such a pane). The insets show schematic pictures of the electron configu-
transition occurs does, in fact, also depend strongly omations.

¢ — 2n
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lized ground state. We note that the situation is different forthis comparison was restricted to a small particle humber
N<5, where for densities as large ms=2a§ the low-lying ~ where the accuracy of the local density approximation is
states can be well understood by assuming a square-shapgdestionable. This gives some confidence that the method is
(4,0) Wigner molecule for the internal structure of the wavewell suited for describing the ground state electronic struc-
function and analyzing its rotational structure. This also betures for larger sizes.

came clear when comparing the low-energy spectrum of a

Heisenberg mod_el V\_nth four_ electrons on a squérgor N ACKNOWLEDGMENTS
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