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Molecular-dynamics simulation of growth of nanocrystals in an amorphous matrix

J. K. Bording* and J. Taftø
Department of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway

~Received 9 December 1999; revised manuscript received 17 May 2000!

Using germanium as an example we study the growth of crystalline nuclei by molecular dynamics. Starting
with crystalline nuclei of different sizes embedded in an amorphous matrix we follow the evolution of the
system at the atomic level. At a temperature about halfway between absolute zero and the melting temperature,
we observe that crystallites of diameter larger than 2.0 nm grow, while smaller crystals disappear.
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I. INTRODUCTION

Classical theory of nucleation and growth of crystallites
a supercooled or amorphous matrix relies on the concep
surface tension, or Gibbs free energy to be more precise.
interface is, in this phenomenological theory, a mathemat
concept that is not easily accessible for experimental ob
vations. Contrary to the interface energy between a liq
and a smooth surface of a bulk solid, it is extremely diffic
to measure the interface free energy between a crysta
nucleus and an amorphous matrix. Furthermore, while
atomic arrangement at a planar interface between two s
phases can be studied in great detail with a state-of-the
high-resolution transmission electron microscope, this ch
lenge awaits realization for the curved interface aroun
small nucleus. The dynamic nature, in addition to comp
cated geometry, not only calls for high spatial resolution a
sensitivity, but also for high temporal resolution.

Nucleation and growth can be addressed by molecu
dynamics simulations using powerful computers. Several
vestigators have used the simple Lennard-Jones pair po
tial to study nucleation and growth.1–3 In order to simulate
most systems accurately, more elaborate potentials invol
many-body interactions are needed. For the semiconduc
silicon and germanium, accurate interatomic potentials
available in the literature.4–6 One of these, the Stillinger an
Weber potential,6 has previously been used to study the
netics of dissolution of silicon crystals.7 We use the potentia
of Tersoff4,5 and study the early stage of crystallization
germanium at high supercooling. The reason for choos
germanium as the material to simulate is that we8 have al-
ready shown by molecular-dynamics simulation with t
Tersoff potential that the simulated structure of amorph
germanium is in excellent agreement with high-quality d
fraction experiments.9 A penalty for using this accurate, bu
unfortunately rather complex potential is the increasing co
putation time. Thus even with the most powerful comput
we are able to scan only a very small volume in space-ti
making it extremely unlikely to observe the creation of
nucleus that grows to the critical size. We circumvent t
problem by embedding crystallites of different sizes in t
amorphous matrix and study their development with tim
For crystallites smaller than the critical size we mostly o
serve annihilation, which is the time reversal of the ‘‘flu
tuation’’ causing the creation of a nucleus.

After a brief introduction to classical theory of nucleatio
PRB 620163-1829/2000/62~12!/8098~6!/$15.00
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we will in this paper present details about the molecul
dynamics simulations we have undertaken. We calculate
spatial variations in energy, and we present results for
local structure of the crystalline/amorphous boundary as w
as the evolution of the embedded nuclei.

Classical nucleation theory

We will now briefly review the classical theory of nucle
ation that we later will use to put the result of our simul
tions into perspective. According to this theory the addition
free energy related to the formation of a crystalline nucle
with radiusr in an amorphous matrix can be written as

DGtotal5
4

3
pr 3DGphase14pr 2g. ~1!

HereDGphaseis the difference in free energy between t
nucleus phase and the matrix phase. This is a driving fo
for crystallization when the crystalline nucleus phase h
lower free energy than the amorphous matrix phase.g is the
surface tension, or additional free energy per unit area a
ciated with the boundary between the two different phas
This energy is positive and will act as a barrier to the form
tion and growth of the nucleus. IfDGphaseis negative we see
from Eq. ~1! that there exists a critical size

r * 5
22g

DGphase
. ~2!

For nuclei smaller thanr * , a reduction in size will also
give a reduction in the total free energy. Such nuclei, of
called embryos, will reduce in size and vanish. However,
nuclei larger thanr * , the size must increase to reduce t
total free energy.r * cannot often, however, be calculate
from Eq. ~2! because of the difficulty of obtaining reliabl
values forg.

II. SIMULATION PROCEDURE

The amorphous phase prior to the insertion of the nu
was a cubic simulation cell with 4096 atoms and perio
boundary conditions. Its structure was a typical continuo
random network, with a radial distribution function in ver
good agreement with diffraction experiments on amorph
germanium.9 Details about the preparation and structure
the amorphous material were reported in a previous pap8
8098 ©2000 The American Physical Society
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Spherical crystalline nuclei were embedded in this matrix
replacing the atoms inside a sphere in the center of the s
lation cell with a perfect spherical crystal with the diamo
structure. Prior to insertion, both the amorphous matrix a
the crystal were heated to 2000 K* at zero external pressur
using molecular dynamics. Notice the asterisk on the te
perature unit. We use this symbol to distinguish the simu
tion temperature scale from the Kelvin scale~see Ref. 8 for
further details!. This is done because germanium simula
with the Tersoff4,5 potential has a melting temperature
3200 K* , much higher than real germanium.

We made 15 simulation cells with varying nuclei siz
Because of the varying nuclei size and local density in
amorphous matrix, the number of atoms in the inser
spherical crystallite was not necessarily exactly the sam
the number of atoms taken out. Thus the new simulation
contained a total number of atoms that could deviate slig
from the original 4096. The cubic computation cells h
sides of about 4.5 nm, large enough to prohibit the crys
line nucleus to interact with itself.

The insertion of the spherical crystal produced an int
face with many unfortunate configurations and thus a h
internal potential energy. This energy was initially remov
by relaxing the system with a steepest-descent method
the nearest local energy minimum. This was done to av
the sudden release of large amounts of energy, which wo
cause the entire system to melt. The new simulation ce
with an amorphous matrix and a crystalline nucleus, w
then simulated at 2000 K* with zero external pressure in
molecular-dynamics simulation. This is above1

2 Tm , where
Tm is about 3200 K* using the Tersoff potential, so the a
oms have significant mobility. At the same time, the te
perature is low enough to give a critical size so small tha
can be probed in a simulation. The systems were initia
kept at this temperature and pressure for 5000 time step
order to reach steady state, and then another 350 000
steps to study the evolution of the nuclei. A simulation li
this, at this temperature, is effectively an annealing. E
time step is 2.0310215 s, giving a total simulation time for
each of the configurations of 0.7 ns. All simulations we
done with constant number of atoms, pressure, and temp
ture (NPT) using the velocity Verlet algorithm.

As for most analytical potentials, the Tersoff potentia4,5

calculates the potential energy of an ensemble of atoms
sum overN individual single atomic energies:

F5(
i 51

N

f i . ~3!

Although it is only the total potential energy that is a we
defined quantity, we will in this paper utilize the sing
atomic energies,f i . By doing so we are able to map th
energy with large spatial resolution that is particularly int
esting in the boundary region between the amorphous
crystalline phases. Notice that in order to obtain thetotal
internal energy, the kinetic energy for the ensemble of ato

must be added (( i 51
N 1

2 miv i
2). This provides, however, no

new information in our simulations.
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III. RESULTS

A. Internal energy across the interface

In Fig. 1 we have plotted the energy profile at three d
ferent times at the initial stage of the simulation. With t
energy profile we mean the average single atomic energyf i

as a function of the distance from the center of the nucle
The insertion of the spherical crystal resulted in atoms in
boundary region with very unfavorable configurations, a
thus high energy. After the steepest-descent relaxation m
of this energy was removed, but the atoms still had an
evated energy compared to the adjacent bulk phases. Th
seen by the peak, or barrier, in the energy profile of Fig
right at the position of the original boundary. After som
annealing at 2000 K* the barrier reduced its height, an
eventually after about 5000 time steps, or 10 ps, it was co
pletely removed. Although the peak did not last very long
lasted long enough to indicate that the rearrangement in
boundary region was more than just a minute movemen
some of the atoms. The rearrangement in the crystal
phase was rather gradual, while in the amorphous phas
was more varying. Some atoms moved as far as 0.1
while others were nearly stationary.

Notice from Fig. 1 that the potential energy of both th
crystalline and the amorphous phase away from the bou
ary is constant and equals the energy of the respective
phases. The barrier close to the boundary vanished a
about 5000 time steps, and thus there is no indication o
barrier in the internal energy. However, the barrier may s
be present in the free energy. In order to obtain the f
energy we need to know the entropy.

B. Atomic order across the interface

In principle, the entropy can be extracted from molecu
dynamics simulations, and Ma,10 for instance, has proposed
procedure to do so. However, in practice this is a very tim
consuming procedure, where an enormous number of st
has to be probed. Lacking a better alternative, we cons
the crystalline order across the interface to assess the en
as a function of the distance from the center of the nuc

FIG. 1. Energy profile at 500, 2000, and 5000 time steps. T
radius of the inserted crystalline nucleus in this case is 1.5 nm,
the system was kept at 2000 K* .
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More precisely, we calculate the average structure fa
from the atoms lying in a shell, of thickness 0.1 nm, arou
the center of the nuclei:

F~g,R!5
1

NR
U(

j 51

NR

e2p ig•r jU, ~4!

whereR is the radius of the shell,r j is the position of atom
j, NR is the number of atoms in the shell, andg is the recip-
rocal @111# vector. Other choices forg were tested, but no
important difference was found.

FIG. 2. A snap shot of a typical boundary between a spher
crystal of 3 nm and the amorphous matrix~a!. ~b! and~c! are inter-
nal potential energy and order profiles, respectively, across
boundary. The vertical lines in~b! and ~c! indicate the position of
the intermediate value of the internal energy and normalized st
ture factor, respectively. We chose the vertical line in~c! as the
boundary position. The temperature of the system was 2000 K* . ~d!
is, as explained in the text, an estimate for the free energy acros
boundary at two arbitrary temperatures.
or
d

The normalized structure factor is plotted in Fig. 2~c!. The
normalization is done by dividing the structure factor fro
the shell of simulated atoms,F(R), with the structure factor
from a shell of perfect crystal,Fc(R), at the same tempera
ture. Thus, for a shell of perfect crystal the normalized str
ture factor is unity. Due to strain this does not happen cl
to the interface. For crystals smaller than about 2.0 nm, h
ever, we see from Fig. 2~c! that the entire crystal will to
some degree be deformed. If the matrix were polycrystall
rather than a continuous random network, the stress co
probably be larger, deforming even larger crystals.

al

is

c-

the

FIG. 3. Snapshots of an embedded nucleuslarger than the criti-
cal size, at 2000 K* . The time interval between the snapshots a
0.5 ns. The size of the squares are 4.5 nm34.5 nm.
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C. Free energy on an atomic scale

By comparing Figs. 2~b! and 2~c! we note that the orde
as expressed by the normalized structure factor extends
ther away from the center of the nucleus than does the
internal energy of the crystalline nucleus. As indicated by
vertical lines in Figs. 2~b! and 2~c! this shift is about 0.3 nm
The line in Fig. 2~b! is drawn at the position where the a
erage internal energy is halfway between the crystalline
amorphous phase@U5 1

2 (Uc1Ua)#, and the line in Fig. 2~c!
is drawn at the position where the normalized structure fa
is one-half@F(R)/Fc(R)5 1

2 #. This shift may be the origin
of the interface free energy. We illustrate this by consider

FIG. 4. Snapshots of an embedded nucleus slightlysmallerthan
the critical size, at 2000 K* . The time interval between the snap
shots is 0.3 ns. The size of the squares are 4.5 nm34.5 nm.
ar-
w
e

d

r

g

Helmholtz free energyA5U2TS. Let us for the sake of
indicating the effect of this shift assume that

S5kF12
F~R!

Fc~R!G , ~5!

wherek is a constant. In Fig. 2~d! we have calculated the
Helmholtz free energy for two different values ofk at a cer-
tain temperatureT, which effectively corresponds to two dif
ferent values of temperature. We note from Fig. 2~d! that an
energy barrier is formed and that the height of this barr
depends onk. The area of this barrier represents the boun
ary energyg. We also see from Fig. 2~d! that with the largest
k, corresponding to the largest temperature, the free en
of the amorphous matrix is only slightly higher than the fr
energy of the crystalline nucleus. This is what we expec
temperatures slightly below the melting temperature. Exa
at the melting temperature the energy difference should v
ish.

The relationship we have proposed between the entr
and the structure factor is certainly only qualitative. Still w
are confident that the shift between the vertical lines in F
2~b! and 2~c! is the origin of the boundary energyg. To
make this point it is sufficient to assume that the entro
increases monotonically with decreasing structure factor.

Figures 2–4 indicate an interface that is sometimes
ferred to as atomically diffuse. Because silicon and germ
nium have strong covalent bonding, these materials usu
exhibit relatively sharp, or facetted, surfaces between a s
and liquid phase.11 Due to the smallness of the nuclei, how
ever, we find a diffuse interface with no apparent facets
the crystals. This effect, which might lead to a surface t
sion depending on the size of the crystal, is observed in o
simulated systems2,7 as well as a high-resolution electron m
croscopy experiment.12

FIG. 5. Size development of the 15 nuclei at 2000 K* . This plot
clearly shows the critical diameter to be about 2.0 nm. All the lar
nuclei grew, while those smaller disintegrated.
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D. Evolution of the nuclei

Uttormark and Thompson7 discussed different criteria to
distinguish crystalline and liquid regions. They utilized loc
configuration parameters such as coordination numb
which work well when comparing liquid and crystallin
semiconductors that have distinctly different local ord
However, in our case where we need to distinguish betw
amorphous and crystalline semiconductors these criteria
less useful. In our situation we have the choice of, for
stance, using the vertical line in Figs. 2~b! and 2~c!, or the
maximum of the curve in Fig. 2~d!. These are shifted by 0.
nm, but for our purpose of monitoring the growth of th
nuclei this is not crucial. We choose to use the vertical line
Fig. 2~c!.

In Fig. 5 we have plotted the size of the 15 nuclei as
function of time. From this figure we can determine the cr
cal size. All nuclei larger than about 2.0 nm in diame
grew, while those smaller disappeared. Notice, however,
one nucleus at 2.0 nm lingering for a long period of tim
This is due to the low driving force for crystals close to t
critical size. Because the small nuclei had fewer atoms,
because some of them moved slightly off center, the s
determination of the small nuclei was not as accurate a
was for the larger nuclei. The relative fluctuations in t
diameter for these nuclei were also larger, causing the
for small crystals to be somewhat more noisy.

Figures 3 and 4 show explicitly that a nucleus larger th
the critical size grows upon annealing, while a smal
nucleus disappears. This is in agreement with classical nu
ation theory. The atoms close to the boundary slowly cha
their configuration, joining either the central crystallin
nucleus or the surrounding amorphous matrix. In the cas
a subcritical nucleus, the entire nucleus will eventually
assimilated in the amorphous phase. If the nucleus is la
than the critical size, however, it will grow to fill the entir
simulation cell.

From Fig. 5 we were able to calculate the velocity of t
boundary as a function of the nucleus size. After averag
over all 15 nuclei, we plotted this curve in Fig. 6. From th
figure we see a transition from negative growth to posit
growth at about 2.0 nm. For larger nuclei the velocity see
to reach a maximum at about 0.5 m/s, while for increasin
smaller nuclei the negative velocity increases. T
asymptotic velocity is in fairly good agreement wi
experiments13 and other simulations on the velocity of th
boundary.14 It is, however, important to realize that becau
of the extremely small surface of the embedded nuclei,
growth mechanisms are somewhat different from sin
plane growth. All planes, and thus both lateral and k
growth, are in a way present, each with a different grow
rate. We observed no twin boundaries, vacancies, or s
interstitials in the grown crystals.

IV. SUMMARY

We have studied the interface between crystalline
amorphous germanium during the nucleation and gro
l
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process by molecular-dynamics simulations. We have sho
that molecular-dynamics simulation is a powerful method
gain insight into the rearrangement taking place at the ato
level when the interface propagates. The profile of the in
nal energy across the interface is rather easily accessible
ing molecular-dynamics simulations for systems like germ
nium and silicon where reliable interatomic potentials a
available. However, when it comes to the free energy
encounter problems because of the difficulties in extract
the entropy. We were in this study able to infer the prese
of a barrier in the free energy associated with the interf
tension, by realizing from the simulation that the out
atomic layer of the crystal was heavily strained. In this lay
the entropy is low relative to the amorphous phase e
though the internal energy is large relative to the crystal.

The fact that relevant thermodynamic properties such
entropy, and thus free energy, are not easily revealed f
these simulations makes it difficult to compare our resu
directly with the classical macroscopic theory of nucleatio
The simulations rather serve as a microscope with high s
tial and temporal resolution to follow the evolution of th
system at the atomic level. Based on this study of the evo
tion of the system we determine a critical size of the nuc
that are in good agreement with what has been derived f
various experiments.12,15–17
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FIG. 6. Velocity of the crystalline/amorphous boundary as
function of the nuclei size simulated at 2000 K* . At about 2.0 nm
the velocity is zero, while for large sizes the velocity approach
about 0.5 m/s.
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