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Real-space, real-time method for the dielectric function
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We present an algorithm to calculate the linear response of periodic systems in the time-dependent density
functional theory, using a real-space representation of the electron wave functions and calculating the dynamics
in real time. The real-space formulation increases the efficiency for calculating the interaction, and the real-
time treatment decreases storage requirements and allows the entire frequency-dependent dielectric function to
be calculated at once. We give as examples the dielectric functions of a simple metal, lithium, and an elemental
insulator, diamond.
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I. INTRODUCTION

Real-space methods have proven their utility in calcu
ing the linear response of finite systems in time-depend
density functional theory.1,2 However, there has been the pe
ception that real-space methods are unsuitable for infi
periodic systems. The problem is that the long range po
ization currents are important but are dynamically indep
dent of the local state of the electrons within the unit ce
Stated differently, the polarization gives rise to a surfa
charge at the surface of any finite sample, but the resul
electric field is independent of the charge density within a
cell in the interior. The necessity to introduce the polariz
tion as an independent degree of freedom has been well
ognized in the literature of the density functional theory.3–6

We will show here that in fact it is straightforward to tre
infinite systems in the real-time formulation of time
dependent density functional theory, simply by adding as
additional dynamic variable the surface charge. Forma
this is conveniently done adding a gauge field within a L
grangian. A gauge formalism has also been very rece
applied by Kootskraet al.,7 however using a frequency rep
resentation rather than solving real-time equations. In
formulation, we derive the dynamic equations from the L
grangian:
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Here thef i are the Bloch wave functions of the electron
normalized so thatn(r )5( i uf i(r )u2 is the electron density
The volume of the unit cell isV. The electromagnetic inter
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action is separated into a Coulomb fieldV(r ) that satisfies
periodic boundary conditions in the unit cell and a vec
gauge fieldẑA(t). Note that the gauge field is uniform, with
out any dependence onr . The electric field is then given by

EW52¹W V2 ẑ
dA

dt
.

In these formal equations, we use units with\5c51.
The other pieces of the first integral are the usual term

the Kohn-Sham energy functional. The termen(r )V(r )
gives the direct Coulomb interaction of the electrons, exc
for the surface charging. The ionic interaction is separa
into a long-range part that can be associated with an io
charge densitynion(r ) and a short-range partVion . The sepa-
ration is somewhat arbitrary, but is useful because the p
odicity of V then takes the ionic lattice into account aut
matically. The latter depends on the orbital angu
momentum of the electrons in typicalab initio pseudopoten-
tials. It therefore depends on the full one-electron dens
matrix r(r ,r 8)5( if i* (r )f i(r 8). We have emphasized thi
point because nonlocal interactions do not respect gauge
variance. The invariance is of course restored if the den
matrix is gauged. This will be described in more detail b
low. Finally, theVxc is the usual exchange-correlation ener
density of density functional theory.

Requiring the Lagrangian action to be stationary giv
equations of motion forf i and A and the Poisson equatio
for V. The dynamic equation forf i is the time-dependen
Kohn-Sham equation,
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The equation forA is
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where Ne5*Vd3rn(r ) is the number of electrons per un
cell.

II. LINEAR RESPONSE, SUM RULE
AND SIMPLE MODELS

The calculation of the dielectric function using the abo
real-time dynamic equations is very similar to the cor
sponding calculation of dynamic polarizability of finit
systems.2 We first solve the static equations~with A50) to
get the ground-state electron orbitals and the periodic C
lomb potentialV. The system is then perturbed by making
sudden change inA, A(t501)5A0. This corresponds to ap
plying a short duration electric field att50, E(t)
52A0d(t). In the linear response regime, the perturbed s
tem contains all the excitations in proportion to their exci
tion strength. One can then determine the entire freque
dependence response in a single time-dependent calcula
which would not be the case if the system were perturbe
the usual way with an oscillatory external field. From t
time-dependent evolution, we find the polarization elec
field E(t)52dA(t)/dt, corresponding to a surface charg
densitys(t)5dA(t)/4pdt. The dielectric functione(v) is
just the ratio of the Fourier components of the external a
the total fields; it is given by

1

e~v!
215

1

A0
E

01

`

eivt2ht
dA~ t !

dt
dt. ~4!

Hereh is a small quantity to establish the imaginary part
the response. In principle the resulting theory automatic
respects the Kramers-Kronig relation.

The linear energy-weighted sum rule is easily derived
this formalism. The sum rule may be expressed as9

E
0

`

v Im e21~v!dv52
2p2e2Ne

mV
. ~5!

To calculate the sum rule with our Lagrangian, we write t
integral using Eq.~4!
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ImE
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2A0
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D
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. ~6!

The second derivative in the last expression is obtained f
Eq. ~3!. At t501 , the wave functions have not yet had tim
to change,A(01)5A0 and^¹z&50. Then if the last term in
Eq. ~3! can be neglected,

d2A

dt2
52

4pe2NeA0

mV
~7!

and Eq.~5! follows immediately. Thus the time-depende
treatment satisfies the sum rules automatically to the ex
permitted by the last term. That term is only nonzero
nonlocal pseudopotentials, and in fact it may improve
accuracy of the theory by incorporating effects of the c
electrons on the dynamic properties.8
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Let us now see how the gauge field treatment works i
simple analytically solvable model, namely the electron g
As mentioned before, when the fieldA0 is applied, there is
no immediate response to the operator¹, since the wave
function does not change instantaneously. However, in
Fermi gas, the single-particle states are eigenstates of
mentum so the response remains^¹&50 for all time. Putting
this in Eq. ~3!, and dropping the pseudopotential term, t
equation forA becomes simple harmonic motion, with th
solution

A~ t !5A0 cosvplt, ~8!

wherevpl is the plasmon frequency,

vpl
2 5

4pe2Ne

mV
5

4pe2n

m
. ~9!

The dielectric function may now be calculated from the tim
integral Eq.~4!. One obtains the familiar electron gas resu

e~v!512
vpl

2

v2
. ~10!

One sees that the derivation here is much simpler than
usual one using the Coulomb gauge. There one formul
the response in a particle-hole representation, and takes
external field to be of the formeiq•r with q finite. The di-
electric function is then found by taking theq→0 limit.

We can make another simple model for the opposite
treme of a tightly bound electron in the unit cell. Assum
that the ion potentialeVion(r )1dVion /dn can be approxi-
mated by a harmonic oscillator potential in the region ov
which the electron wave function is appreciable. Accordi
to Kohn’s theorem,10 the response is just the same as for
isolated electron in the same ionic potential. This comes
of Eqs.~2! and~3! in the following way. The initial impulse
A0 starts the electron moving, and as a result bothV(r ) and
dVxc /dn(r ) become time-dependent. Together with t
changingA, the electron in the unit cell drags its self-induce
field with it, and the accelerations associated with these th
terms in Eq.~2! exactly cancel. The remaining ionic term
then produce simple harmonic motion forf.

III. NUMERICAL DETAILS

The computational algorithm we employ is identical
the ones we used for clusters and molecules, which
based on a method introduced in nuclear physics.11 The
Kohn-Sham operator is represented on a real space grid
Ref. 12. There are a number of technical details associ
with the periodicity and with the gauge potential that did n
arise for the finite-system calculations. In the new code,
potentialV(r ) is calculated by Fourier transformation of th
Poisson equation rather than a relaxation method. This g
automatically the required periodicity toV(r ). The wave
functions f i represent Bloch states of the periodic lattic
and they are constructed with the corresponding perio
boundary conditions labeled by the Bloch momentak. The
periodic boundary condition on the Bloch wave functio
fk(r 1a)5exp(iak)fk(r ) is easily implemented in the relax
ation method used to find eigenstates. In practice, m
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Bloch states are needed to obtain smooth dielectric functi
However, constructing the states takes much less time
for the same number of electrons in a finite system, beca
the Bloch states in a given band are automatically ortho
nal.

We use here the same energy density functional that
used previously for finite systems. Only the valence electr
are included explicitly; core electrons are treated by
pseudopotential.13,14 The exchange-correlation energy of th
electrons is calculated in the local density approximation
lowing the prescription of Ref. 15.

The presence of a vector gauge potential requires a m
fication in the pseudopotential calculation, as indicated in
introduction. In particular, theA-dependence of theVion term
in Eq. ~2! must be consistent with the last term in Eq.~3! in
order to have the algorithm conserve energy. We implem
theA-dependence ofVion simply by gauging the density ma
trix directly,

Vion,A~r~r ,r 8!!5Vion~eiA(z2z8)r~r ,r 8!!.

As in the finite systems calculations, energy is conserved
very high accuracy with the algorithm,11 provided the time
step is less than the inverse energy span of the Kohn-S
operator.

IV. LITHIUM

In this section we demonstrate the feasibility of t
method with lithium as an example of a simple metal.
other alkali metals, lithium has a Fermi surface which
nearly spherical. However, unlike sodium and potassium,
effective mass of the electrons at the Fermi surface is sig
cantly enhanced over the free-Fermi gas value (m*
'1.6me).

The Kohn-Sham operator is represented in coordin
space with a uniform spatial mesh. The lattice spacing of
bcc unit cell of Li metal isa53.49 Å, and we take a mes
spacing ofDx50.58 to subdivide the cell into a 63 lattice of
mesh points. We use a time step ofDt50.01 eV21 which is

FIG. 1. The induced polarization field (1/A0)dA/dt in lithium
metal is shown as a function of time~solid!. In this calculation, the
occupied states were represented by points on a 163 mesh in
k-space. The dashed line show the early-time behavior require
the sum rule.
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sufficient to conserve energy to 1024 eV over the time inte-
gration interval,T518 eV21.

We sample the occupied states with a uniform mesh
momentum space. With a finite set of occupied orbitals,
allowed excitation energies will be discrete, and the meta
behavior,e(v)→`, is only reached in the limit of an infi-
nitely dense momentum space lattice. However, it is
view that the TDLDA loses validity at long times when oth
degrees of freedom can be excited. This is the case for
low frequency response of metals, where the imaginary p
of the dielectric responses is dominated by phonons and
elastic electron scattering.

In Fig. 1 we show the normalized time-dependent pol
ization field, A0

21dA/dt over the time interval t
5@0,18# eV21. The inset shows an expanded view of t
initial response in the interval@0,1# eV21. The dashed line is
the comparison with the linear behavior deduced from
sum rule, A0

21dA/dt524pe2Net/mV. The agreement
shows that the local sum rule is nearly satisfied, despite
fairly large optical effective mass.

In Fig. 2 we show the inverse dielectric function com
puted from Eq.~4! for various meshes in the Brillouin zone
We employh50.2 eV to smooth the response in the Four
transformation. We see that the response becomes smoo
the more finely the Fermi sea is sampled. With a 323 lattice
of Bloch states, we get results smooth enough to be c
pared with measurement.

In Fig. 3 we show the real and imaginary parts of t
inverse dielectric function in the frequency interval
220 eV/\. The dashed lines show the empirical functio
from Ref. 16. There is also another theoretical calculation
the literature.17 The agreement is quite good, especially co

by

FIG. 2. Real and imaginary parts of the inverse dielectric fu
tion in lithium, shown for various meshes on the Brillouin zone.
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sidering that the calculation isab initio with an energy den-
sity functional that much simpler than more recent ones. T
main feature in the absorptive response is the plasmon
eV and its width. The peak position is significantly dow
shift from the naive plasmon frequency,vpl5A4pe2n/m
'8 eV. The width is associated with interband transitio
and is also well reproduced.

V. DIAMOND

In this section we compute the dielectric response o
typical elemental insulator, diamond. The diamond lattice
represented in our calculation by the conventional unit c
which contains 8 carbon atoms. The wave functions of
four valence electrons of each carbon are calculated ex
itly in Eq. ~2! while the core electrons are only treated im
plicitly by the pseudopotential. We found in earlier studies
carbon structures that the Kohn-Sham Hamiltonian requir
mesh spacingDx50.3 Å to get orbital energies to an acc
racy of 0.1 eV; in the calculation here we take a 123 lattice in
the unit cell which impliesDx53.56/12 Å50.297 Å. With a
smaller mesh spacing than for lithium, the span the Ko
Sham operator is increased and the time stepDt must be
reduced accordingly. We use hereDt50.002 eV21.

With a cubical unit cell and 8 carbon atoms, there a
834/2516 occupied bands. The bands are actually two-f
degenerate because we have not exploited the symmetry
allows a smaller unit cell with two carbons. In each band
take a lattice of up to 163 points to represent the Bloch state

For an insulator, a reference point of the vector poten
A(t) should be irrelevant. However, in our numerical imp
mentation of the equations, we found that at the energy

FIG. 3. Real and imaginary parts of the responsee21(v) as a
function of frequency. Here the orbitals of the valence band w
presented by Bloch states on a 323 mesh ink-space. The empirica
response from Ref. 16 is shown with the dashed lines.
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FIG. 4. Real and imaginary parts of the responsee21(v) for

diamond. Here the orbitals of the valence band were represente
Bloch states on a 163 mesh ink-space.

FIG. 5. Real and imaginary parts of the dielectric functione(v)
for diamond. The spurious plasmon has been excluded by using
Kramers-Kronig relation to determine the real part of the dielec
function, integrating over the imaginary response from 4 eV. T
dashed curve shows the experimental dielectric function, ta
from Ref. 16.
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the static solution has a still dependence onA. This gives rise
to a spurious low frequency mode of oscillation.

This may be seen in the plots of the response in Fig
The spurious adiabatic evolution gives an unphysical p
mon at'1.2 eV, which dominates the dielectric response
lower frequencies. Though the amount of strength associ
with this spurious plasmon is very small, 0.007 electrons
of the total of 32, it has a qualitative effect on the respons
very low frequency. The frequency and strength decrease
finer the spatial mesh, showing that it is an artifact of t
discrete mesh representation of the coordinate space.

To infer the dielectric function nearv50, we apply the
Kramers-Kronig relation to the imaginary part of the r
sponse, but excluding the spurious plasmon peak. This g
the predicted dielectric function shown in Fig. 5. The emp
cal dielectric function is shown as the dashed line. T
agreement is good, as indeed was found solving the TDL
equations by other methods,18 but one can also see the effe
of the well-known shortcoming of TDLDA, that the pre
dicted band gaps are too small.19,20 The theoretical absorp
tion strength become significant starting at about 5 eV e
tation, while the empirical absorption begins at around 7
Nevertheless, the dielectric constant comes out in g
agreement with the empirical,18 being within a percent of the
empirical value ofe(0)55.67.

VI. CONCLUSIONS

We see that the method not only works in principle, b
produces fairly accurate dielectric functions in the cases
simple metal and a simple insulator. In lithium, the theo
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describes the metallicity as well as the interband transitio
In diamond, there is a spurious plasmon at low frequen
due to the discrete mesh representation in coordinate
momentum spaces. However, it can be easily dealt with
then the dielectric function has an excellent quality exc
for a small band gap region. We find that two benefits of
real-space, real-time formulation of the TDLDA in finit
systems21 are preserved in our implementation here. T
real-space method allows the Kohn-Sham operator
electron-electron interactions to be evaluated efficiently12

Computational efficiency is also gained by calculating t
response in real time in that all frequencies are calculate
once. Finally, the method requires much less storage t
methods using a particle-hole representation of the tim
varying wave function.
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