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Real-space, real-time method for the dielectric function
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We present an algorithm to calculate the linear response of periodic systems in the time-dependent density
functional theory, using a real-space representation of the electron wave functions and calculating the dynamics
in real time. The real-space formulation increases the efficiency for calculating the interaction, and the real-
time treatment decreases storage requirements and allows the entire frequency-dependent dielectric function to
be calculated at once. We give as examples the dielectric functions of a simple metal, lithium, and an elemental
insulator, diamond.

. INTRODUCTION action is separated into a Coulomb fiak{r) that satisfies
periodic boundary conditions in the unit cell and a vector
Real-space methods have proven their utility in calculatyayge fieldzA(t). Note that the gauge field is uniform, with-

ing the linear response of finite systems in time-dependerjut any dependence an The electric field is then given by

density functional theory2 However, there has been the per-
ception that real-space methods are unsuitable for infinite §:_V~V_2d_A
periodic systems. The problem is that the long range polar- dt’
ization currents are important but are dynamically indepeni

dent of the local state of th? elgctrorjs W'ﬂ,"n the unit cell. The other pieces of the first integral are the usual terms in
Stated differently, the polanzgtl_on gives rise to a surfa_ce[he Kohn-Sham energy functional. The terem(r)V(r)
charge at the surface of any finite sample, but the resulting;yes the direct Coulomb interaction of the electrons, except
electric field is independent of the charge density within anyfoy the surface charging. The ionic interaction is separated
cell in the interior. The necessity to introduce the polariza-into a long-range part that can be associated with an ionic
tion as an independent degree of freedom has been well regharge density,(r) and a short-range pav,,. The sepa-
ognized in the literature of the density functional thed®.  ration is somewhat arbitrary, but is useful because the peri-
We will show here that in fact it is straightforward to treat odicity of V then takes the ionic lattice into account auto-
infinite systems in the real-time formulation of time- matically. The latter depends on the orbital angular
dependent density functional theory, simply by adding as onenomentum of the electrons in typicab initio pseudopoten-
additional dynamic variable the surface charge. Formallytials. It therefore depends on the full one-electron density
this is conveniently done adding a gauge field within a La-matrix p(r,r')==;¢7 (r)¢i(r'). We have emphasized this
grangian. A gauge formalism has also been very recentlpoint because nonlocal interactions do not respect gauge in-
applied by Kootskrat al,” however using a frequency rep- variance. The invariance is of course restored if the density
resentation rather than solving real-time equations. In oumatrix is gauged. This will be described in more detail be-
formulation, we derive the dynamic equations from the La-low. Finally, the),. is the usual exchange-correlation energy
grangian: density of density functional theory.
Requiring the Lagrangian action to be stationary gives
equations of motion foky; and A and the Poisson equation

n these formal equations, we use units witkc=1.

Z |V->¢i/i —eAAZ¢i|2 1 for V. The dynamic equation fogp; is the time-dependent
sz d3r ———VV(r)-VV(r) Kohn-Sham equation,
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Here theg; are the Bloch wave functions of the electrons, 77 4z m EI ($ilV2lil i)+ —ANe+ 5_Afnviond r

normalized so than(r)=3;|¢;(r)|? is the electron density.

The volume of the unit cell i§). The electromagnetic inter- =0, (3)

The equation foA is
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where N.= [,d3rn(r) is the number of electrons per unit  Let us now see how the gauge field treatment works in a

cell. simple analytically solvable model, namely the electron gas.
As mentioned before, when the field, is applied, there is
Il. LINEAR RESPONSE, SUM RULE no immediate response to the opera¥or since the wave

AND SIMPLE MODELS function does not change instantaneously. However, in the

) _ _ ) ) Fermi gas, the single-particle states are eigenstates of mo-
The calculation of the dielectric function using the abovementum so the response remafi¥g =0 for all time. Putting
real-time dynamic equations is very similar to the corre-ihis in Eq. (3), and dropping the pseudopotential term, the

systemg. We first solve the static equationith A=0) to  sojution

get the ground-state electron orbitals and the periodic Cou-

lomb potentialV. The system is then perturbed by making a A(t)=Aqgcoswpt, (8)
sudden change iA, A(t=0,)=A,. This corresponds to ap- )

plying a short duration electric field at=0, &t)  Wheréwp is the plasmon frequency,

= —Ay8(t). In the linear response regime, the perturbed sys-

tem contains all the excitations in proportion to their excita- w?, 9)
tion strength. One can then determine the entire frequency . mQ m

dependence response in a single time-dependent calculatiofyg giglectric function may now be calculated from the time

which would not be the case if the system were perturbed ifyyiaqra| Eq.(4). One obtains the familiar electron gas result,
the usual way with an oscillatory external field. From the

47me®N, 4me’n

time-dependent evolution, we find the polarization electric w2
field £(t)=—dA(t)/dt, corresponding to a surface charge e(w)=1— _p2I (10)
density o(t) =dA(t)/4mdt. The dielectric functione(w) is @

just the ratio of the Fourier components of the external an

the total fields: it is given by q}ne sees that the derivation here is much simpler than the

usual one using the Coulomb gauge. There one formulates
1 1 (= dA(t) the response in a particle-hole representation, and takes the

1= fot=nt d (4)  external field to be of the forne'd"" with q finite. The di-

é(w) AoJo, electric function is then found by taking tlie—0 limit.

Here 7 is a small quantity to establish the imaginary part of W€ can make another simple model for the opposite ex-
the response. In principle the resulting theory automaticalljfféme of a tightly bound electron in the unit cell. Assume

respects the Kramers-Kronig relation. that the ion potentigb\/ion(r)JréVion/&r) can be approxi-
The linear energy-weighted sum rule is easily derived inmated by a harmonic oscillator potential in the region over
this formalism. The sum rule may be expressed as which the electron wave function is _appremable. According
to Kohn's theorent? the response is just the same as for an
o L 27m2e?N, isolated electron in the same ionic potential. This comes out

JO wime Hw)do=——"c—. (5)  of Egs.(2) and(3) in the following way. The initial impulse

A, starts the electron moving, and as a result Both) and
To calculate the sum rule with our Lagrangian, we write theéVxc/on(r) become time-dependent. Together with the
integral using Eq(4) changingA, the electron in the unit cell drags its self-induced
field with it, and the accelerations associated with these three

o 4 1 (> dA o ot pt terms in Eq.(2) exactly cancel. The remaining ionic terms
0 “ Ime™(w)do= Aolo dtalm o dowe then produce simple harmonic motion fer
. d?A ©) Ill. NUMERICAL DETAILS
2Ao | dt? t:0+. The computational algorithm we employ is identical to

the ones we used for clusters and molecules, which was
The second derivative in the last expression is obtained frorhased on a method introduced in nuclear phySicShe
Eq.(3). Att=0, , the wave functions have not yet had time Kohn-Sham operator is represented on a real space grid as in
to changeA(0,)=Aq and(V,)=0. Then if the last term in Ref. 12. There are a number of technical details associated

Eq. (3) can be neglected, with the periodicity and with the gauge potential that did not
arise for the finite-system calculations. In the new code, the

d?A 4me’NA, potentialV/(r) is calculated by Fourier transformation of the
ar T TTma (?) Ppoisson equation rather than a relaxation method. This gives

automatically the required periodicity td(r). The wave
and Eq.(5) follows immediately. Thus the time-dependent functions ¢; represent Bloch states of the periodic lattice,
treatment satisfies the sum rules automatically to the exter@nd they are constructed with the corresponding periodic
permitted by the last term. That term is only nonzero forboundary conditions labeled by the Bloch momekta he
nonlocal pseudopotentials, and in fact it may improve theperiodic boundary condition on the Bloch wave function
accuracy of the theory by incorporating effects of the coreg,(r +a)=exp(ak)¢(r) is easily implemented in the relax-
electrons on the dynamic propertfes. ation method used to find eigenstates. In practice, many
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FIG. 1. The induced polarization field @g)dA/dt in lithium 2 . 6T il
metal is shown as a function of tin{solid). In this calculation, the 0 s ] ; i ]
occupied states were represented by points on % résh in 2r L INk=8l i 0 A
k-space. The dashed line show the early-time behavior required by 4 0 5 10 15 20 25
the sum rule.
4 8
Bloch states are needed to obtain smooth dielectric functions. ﬁ 2
However, constructing the states takes much less time than 2 Nk=4* | 2
for the same number of electrons in a finite system, because -4 S 0

0 5 10 15 20 25 0 5 10 15 20 25

the Bloch states in a given band are automatically orthogo-
Lo (eV) ho (eV)

nal.
We use here the same energy density functional that we FiG. 2. Real and imaginary parts of the inverse dielectric func-

used previously for finite systems. Only the valence electrongon in lithium, shown for various meshes on the Brillouin zone.
are included explicitly; core electrons are treated by a

pseudopotentid®!* The exchange-correlation energy of the
electrons is calculated in the local density approximation fol
lowing the prescription of Ref. 15.

The presence of a vector gauge potential requires a modh—1
fication in the pseudopotential calculation, as indicated in th%l
@ntroduction. In particulqr, thé\—d_ependence of th.EiO” term behavior,e(w)—oe, is only reached in the limit of an infi-
in Eq. (2) must be consistent with the last term in &8) in nitely dense momentum space lattice. However, it is our

?hrdi\réo havg the algorlthm (I;ort;serve e_ner?g. \éVe w_r;plemeq}iew that the TDLDA loses validity at long times when other
eA-dependence okio, SImply Dy gauging the density ma- - yo 1605 of freedom can be excited. This is the case for the

trix directly, low frequency response of metals, where the imaginary part
of the dielectric responses is dominated by phonons and in-
Viena(p(r,r')) =Vien(€4FZp(r,r")). elastic electron scattering.
In Fig. 1 we show the normalized time-dependent polar-
As in the finite systems calculations, energy is conserved to iation field, AgldA/dt over the time interval t
very high accuracy with the algoritht,provided the time =[0,18 eV . The inset shows an expanded view of the
step is less than the inverse energy span of the Kohn-Shamitial response in the interv@D,1] eV~ . The dashed line is
operator. the comparison with the linear behavior deduced from the
sum rule, AgldA/dtz —47e®Nt/mQ. The agreement
V. LITHIUM shows that the local sum rule is nearly satisfied, despite the
' fairly large optical effective mass.

In this section we demonstrate the feasibility of the In Fig. 2 we show the inverse dielectric function com-
method with lithium as an example of a simple metal. Asputed from Eq(4) for various meshes in the Brillouin zone.
other alkali metals, lithium has a Fermi surface which isWe employzn=0.2 eV to smooth the response in the Fourier
nearly spherical. However, unlike sodium and potassium, thé&ransformation. We see that the response becomes smoother,
effective mass of the electrons at the Fermi surface is signifithe more finely the Fermi sea is sampled. With & Bitice
cantly enhanced over the free-Fermi gas value* (  of Bloch states, we get results smooth enough to be com-
~1.6m,). pared with measurement.

The Kohn-Sham operator is represented in coordinate In Fig. 3 we show the real and imaginary parts of the
space with a uniform spatial mesh. The lattice spacing of thénverse dielectric function in the frequency interval 0
bce unit cell of Li metal isa=3.49 A, and we take a mesh —20eV/. The dashed lines show the empirical function
spacing ofAx=0.58 to subdivide the cell into a*@attice of ~ from Ref. 16. There is also another theoretical calculation in
mesh points. We use a time step&if=0.01eV * which is  the literaturet’ The agreement is quite good, especially con-

sufficient to conserve energy to 19eV over the time inte-
‘gration interval T=18eV 1.

We sample the occupied states with a uniform mesh in
omentum space. With a finite set of occupied orbitals, the
lowed excitation energies will be discrete, and the metallic
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FIG. 3. Real and imaginary parts of the respoasé(w) as a FIG. 4. Real and imaginary parts of the respoesé(w) for

function of frequency. Here the orbitals of the valence band weraliamond. Here the orbitals of the valence band were represented by
presented by Bloch states on a3flesh ink-space. The empirical Bloch states on a famesh ink-space.
response from Ref. 16 is shown with the dashed lines.

sidering that the calculation &b initio with an energy den-
sity functional that much simpler than more recent ones. The
main feature in the absorptive response is the plasmon at 7
eV and its width. The peak position is significantly down-
shift from the naive plasmon frequency,, = Jame>n/m
~8eV. The width is associated with interband transitions
and is also well reproduced.

Re[ &(w) ]

V. DIAMOND

In this section we compute the dielectric response of a
typical elemental insulator, diamond. The diamond lattice is
represented in our calculation by the conventional unit cell
which contains 8 carbon atoms. The wave functions of the
four valence electrons of each carbon are calculated explic-
itly in Eq. (2) while the core electrons are only treated im-
plicitly by the pseudopotential. We found in earlier studies of
carbon structures that the Kohn-Sham Hamiltonian requires a
mesh spacingsx=0.3 A to get orbital energies to an accu-
racy of 0.1 eV; in the calculation here we take & Igtice in
the unit cell which implies\x=3.56/12 A=0.297 A. With a
smaller mesh spacing than for lithium, the span the Kohn-
Sham operator is increased and the time siépmust be }
reduced accordingly. We use hek¢=0.002eV 1. . - s - -

With a cubical unit cell and 8 carbon atoms, there are 0 5 10 5 20 25 80
8X 4/2=16 occupied bands. The bands are actually two-fold ho(ev)
degenerate because we have not exploited the symmetry that £ 5. Real and imaginary parts of the dielectric functigm)
allows a smaller unit cell with two carbons. In each band Wefor diamond. The spurious plasmon has been excluded by using the
take a lattice of up to fepoints to represent the Bloch states. kramers-Kronig relation to determine the real part of the dielectric

For an insulator, a reference point of the vector potentiatunction, integrating over the imaginary response from 4 eV. The
A(t) should be irrelevant. However, in our numerical imple- dashed curve shows the experimental dielectric function, taken
mentation of the equations, we found that at the energy ofrom Ref. 16.

Im[ e(w) ]
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the static solution has a still dependencefoiThis gives rise  describes the metallicity as well as the interband transitions.
to a spurious low frequency mode of oscillation. In diamond, there is a spurious plasmon at low frequency
This may be seen in the plots of the response in Fig. 4due to the discrete mesh representation in coordinate and
The spurious adiabatic evolution gives an unphysical plasmomentum spaces. However, it can be easily dealt with and
mon at~ 1.2 eV, which dominates the dielectric response athen the dielectric function has an excellent quality except
lower frequencies. Though the amount of strength associatddr a small band gap region. We find that two benefits of the
with this spurious plasmon is very small, 0.007 electrons outeal-space, real-time formulation of the TDLDA in finite
of the total of 32, it has a qualitative effect on the response asystem$' are preserved in our implementation here. The
very low frequency. The frequency and strength decrease theal-space method allows the Kohn-Sham operator and
finer the spatial mesh, showing that it is an artifact of theelectron-electron interactions to be evaluated efficietitly.
discrete mesh representation of the coordinate space. Computational efficiency is also gained by calculating the
To infer the dielectric function neab=0, we apply the response in real time in that all frequencies are calculated at
Kramers-Kronig relation to the imaginary part of the re-once. Finally, the method requires much less storage than
sponse, but excluding the spurious plasmon peak. This givemethods using a particle-hole representation of the time-
the predicted dielectric function shown in Fig. 5. The empiri-varying wave function.
cal dielectric function is shown as the dashed line. The
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