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We develop a new theoretical framework for describing and analyzing exotic phases of strongly correlated
electrons which support excitations with fractional quantum numbers. Starting with a class of microscopic
models believed to capture much of the essential physics of the cuprate superconductors, we derive a new
gauge theory—based upordiscretelsing or Z, symmetry—which interpolates naturally between an antifer-
romagnetic Mott insulator and a conventiodalvave superconductor. We explore the intervening regime, and
demonstrate the possible existence of an exotic fractionalized insulator, the nodal liquid, as well as various
more conventional insulating phases exhibiting broken lattice symmetries. A crucial role is played by vortex
configurations in th&, gauge field. Fractionalization is obtained if they are uncondensed. Within the insulat-
ing phases, the dynamics of thegvortices in two dimensions is described, after a duality transformation, by
an Ising model in a transverse field, the Ising spins representing.thvertices. The presence of an unusual
Berry’s phase term in the gauge theory leads to a doping-dependent “frustration” in the dual Ising model,
being fully frustrated at half filling. TheZ, gauge theory is readily generalized to a variety of different
situations, in particular, it can also describe three-dimensional insulators with fractional quantum numbers. We
point out that the mechanism of fractionalization fbr1 is distinct from the well-known one-dimensional
spin—charge separation. Other interesting results include a description of an exotic fractionalized supercon-
ductor in two or higher dimensions.

[. INTRODUCTION spin model or theé-J model. Slave boson/fermion represen-
Strongly interacting many-electron systems in low dimen-tations of the spin and electron operators were employed to
sions can exhibit exotic properties, most notably the presencgbtain a mean field “saddlepoint” exhibiting spin-charge
of excitations with fractional quantum numbers. In these inseparation. The slave boson/fermion representation intro-
stances the electron is “fractionalized,” effectively splin- duces a gauge symmetty(1) in the simplest formulations,
tered into consituents which essentially behave as free pagnd requires inclusion of a corresponding gauge field. Fluc-
ticles. The classic example is the one-dimensiof®D)  yations about the mean field theory lead to a strongly inter-
interacting electron gaswhich .exh|b|ts many anomalous acting gauge theory about which very litlle is reliably
properties such as the separation of the spin and the chargg, ., ‘it is then quite difficult to reach any definitive con-
of the electron. Electron “fractionalization” is also predicted clusions about the true low energy behavior, in particular

to occur in two-d|men5|ona_\(2D) systems in very strong whether spin-charge separation survives beyond the mean
magnetic fields that exhibit the fractional quantum Hall, .
field level. An alternate more recent approdcAdescribes

effect” Recent experiments have given strong supportingstron ly correlated electron systems in 2D in a dual language
evidence of fractionalization both in quantum Hall systdms gly . . y inguag
where the vortices in the many-electron wave function are

and in carbon nanotubé&sViotivated by these examples, sev- . .
eral authors have proposed the possibility of electron fractN€ fundamental degrees of freedom. In this approach, insu-
tionalization in various other experimental systems. Perhap@ting phases can be obtained by condensing vortices. Frac-

the most tantalizing was the suggestion by Andetsoh tionalizgd insulator§ arise upon condenspagrs of vortices.
“spin-charge separation” in cuprate high: materials. In this work we introduce a new gauge theory approach
However, this suggestion is currently surrounded by considwhich enables us to reliably address issues of fractionaliza-
erable controversy, in part because the 1D electron gas aritpn. In contrast to the slave boson/fermion representation,
the fractional quantum Hall effect appear to be rather speciagdur gauge symmetry idiscrete in fact, an Ising oZ, gauge
situations which do not readily generalize. Indeed, in 1D thesymmetry. This has several advantages. First, gauge theories
Fermi liquid breaks down even at weak coupling and in thewith discrete symmetry are much simpler to analyze than
quantum Hall regime the kinetic energy is strongly quenchedhose with continuous symmetrigsso it is possible for us to
by a time reversal breaking magnetic field. make definitive statements about low energy physics. But in
In this paper, we will explore theoretically the possibility addition, the pureZ, gauge theory in 2 1 space-time di-
of electron fractionalization in strongly correlated systems inmensions is dual to the three-dimensionaD(3classical
spatial dimensiongi>1 in the presence of time reversal Ising model, which implies the existence ofo distinct
symmetry. Our primary motivation is the cuprates, althoughquantum phasé.In one of these two phases “charges” are
we expect our results to be of significance to a variety ofdeconfinedin marked contrast to the puret2l dimensional
other strongly interacting systems. Early atterfiptsto  U(1) gauge theory which is always in a confining phase.
implement theoretically Anderson’s suggestion of 2D spin-The presence of deconfinement allows us to demonstrate the
charge separation typically started with either a quantunexistence of insulating phases exhibiting electron fractional-
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ization, and to describe their basic properties. Remarkablys=1/3 state three vortices bind to each electron forming a
fractionalization in ourZ, gauge theory approach is physi- “composite boson” with total circulationQ,=3(hc/e),
cally equivalent to vortex pairing in the earlier dual which then condenses. The above identity implies the exis-
formulation®'°We demonstrate this equivalence by combin-tence of topological excitations in this condensate with elec-
ing the standard boson-vortex duatityith the Ising duality  trical chargete the celebrated Laughlin quasiparticles.
mentioned above. The route to electron fractionalization that we explore in

In addition to the fractionalized phases, our approach althis paper isphysically equivalent to apairing of vortices
lows us to readily access the more conventional confineghrecisely as in earlier work by Balergs al®1° But the math-
phases and the concomitant confinement transitions. Furthegmatical implementation is rather different. Baleetsl. ar-
more, theZ, gauge theory can be readily generalized to degued that a pairing and condensation of conventidal
scribe a variety of different situations, arbitrary spatial di-=hc/2e BCS vortices in a singlet superconductor results in
mensions, spin-rotation noninvariant systems, etc. Some &fn exotic fractionalized insulator. As Eq1l) demonstrates,
these generalizations are explored towards the end of thiis insulator should support spinless chamyexcitations.
paper. For the most part, we concentrate on spin-rotatio®ur analysis begins by noting that such an excitation can be
invariant electronic systems in 2D. An overview and sum-thought of as “one half’ of a Cooper pair. We implement
mary of our main results may be found at the end of Sec. Ithis fractionalization by formally re-expressing the Cooper

In the context offrustrated quantum spin models, Read pair creation operator as thgoductof two “chargon” op-
and SachdeV have demonstrated the possibility of disor- erators,b’, each creating a spinless, chargdoson. This
dered phases with fractionalization of spin. Specifically, anchange of variables introducedaxal Z, symmetry, since it
Sp(2N) antiferromagnet at larghl and the related quantum is possible to change the sign Iof on any given lattice site
dimer modet®” were shown to reduce toz, gauge theory  while leaving the Cooper pair operator invariant. This is the
when frustration was present. In the deconfined phase of therigin of a local Ising, orZ,, gauge symmetry, described
gauge theory free propagating spindspin 1/2 excitations  mathematically in terms of @, gauge field. In the exotic
would be possible. Somewhat similarly, in the slave-fermionfractionalized insulator, there are strange gapped excitations
representation of the conventional Heisenberg magnet whicihich are vortices in th&, gauge field. These excitations,
introduces ar8U(2) gauge invariance, Wé&hproposed ob-  which we refer to as “visons” because they can be repre-
taining fractionalization of spin by pairing and condensingsented in terms of Ising spins, are the remnant of uhe
pairs of spinons. This reduces the gauge symmetry down tpaired hd2e BCS vortices, which survive in the fractional-
Z,. In contrast, we show explicitly that the conventionalized insulator. As we shall see, when the visons condense
Heisenberg spin model can beectly written as aZ, gauge  they drive “confinement,” thereby destroying fractionaliza-
theory coupled to fermionic spinons, even in the absence afon. These visons will play an absolutely central role
any frustration. The key observation is that, with fermionicthroughout this paper, since any insulator with gapped visons
spinons, the local constraint of single occupancy is equivais necessarilyfractionalized.
lent to the constraint of andd number of fermions per site. Motivated by the cuprate superconductors, we will focus
This latter constraint can be implemented with a discigte on a particular class of microscopic lattice models designed
gauge field. Such &, gauge description may also be ob- to capture much of the physics believed essential to these
tained with the Majorona fermion representation of Heisen-materials.(Our description of fractionalization is, however,
berg sping? more general and is not restricted to these moyd&tse mod-

The basic physics underlying our description of electronels describe electrons hopping on a lattice with inclusion of
fractionalization is perhaps most readily understooddin strong spinand pairing fluctuations, and are quite similar to
=2. At the heart of quantum mechanics is wave-particlemodels introduced and analyzed numerically by Assaad
dualism. For a many-body system of interacting bod@rith et al?° and to models considered more recently by Balents
chargeQ,, for example this dualism implies that in addition et al? Many microscopic models of the cuprates, such as the
to the conventional “particle” framework, a description de- t—J model, incorporate spin fluctuations from the outset. Our
veloped in terms of wave functions is possible. In 2D thisreasons for similarly incorporating “microscopic” pairing
dual wave description focuses on point like singularities influctuations are twofold. First, as the superconducting phase
the phase of the complex wave function—the familiar vorti-is a well-established and reasonably well-understood part of
ces with circulation quantized in units @, . A fundamental the highT; phase diagram, just like the antiferromagnet, it
property of such vortices is that the product of their quantunserves as a useful point of departure to access more puzzling

of circulation and the particle charge is a constant, regions of the phase diagram. This point of view was also
advocated in Ref. 21. But there are also more microscopic
Q.Q,=H.c. (1) reasons to include pairing fluctuations from the outset. In

particular, as emphasized, for instance in Ref. 6, a spin—spin
It is this simple identity which underlies the two known ex- interaction term as in thé-J model can be suggestively
amples of fractionalization in two dimensions, and is at therewritten in terms of electron operators as
heart of theZ, gauge theory developed in this paper. In a
(BCS superconductor, the pairing of electrons to form a
Cooper pair with charg®.=2e, implies a “halving” of the
flux quantumQ, = 3 (hc/e), which is tantamount to “vortex
fractionalization.” The second example of 2D fractionaliza- with p,:cfcr. For antiferromagnetic exchange the first term
tion occurs in the fractional quantum Hall effécin the v is anattractivepairing interaction in thel,2_ 2 (or extended-

T T
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s) wave channel. As in BCS theory, this interaction may betion. With this choice, the operatgr; destroys al,2_2 pair
decoupledin a functional integralwith a complex auxillary  of electronscentered at the site
pair field 7;; as As discussed above, this anomalous term can be obtained
by decoupling a local spin exchange interaction—which is
2 _ attractive in thed-wave pairing channel—with a complex
<§> I2necr|*+ [ merr8r 1 (CrCrr =€ Crrp) +C.C] () Hubbard—Stratanovich field. Here, we keep the amplithde
fixed, but include(quantum fluctuations of the local pair
field phase,p,. This phase is canonically conjugate to the
Cooper pair number operatan, :

Herea, .= +1 for bonds along th& direction, and equals
—1 for bonds along thg direction. With{#)+0, this cor-
responds to a superconducting phase wlith > symmetry.
But more generallyy can be decomposed into an amplitude —i
—Agl ; : : . [er N/ ]=1000. (10

and a phasey= Ae'?. Ignoring fluctuations in the amplitude
leads to a model of the type we consider below, iitbal ~ Due to the anomalous term K, , the two densitiep, and
fluctuatingd-wave pairing correlations. n, are not separately conserved. Thmnservedelectrical

Further motivation for inclusion of such pairing fluctua- charge density is simply the sum of the Cooper pair and
tions is provided by resonating valence borRVB) electron densities,
ideas>?? The wave function for a RVB Mott insulator can be
obtained from the wave function of a superconductor by N,=2n,+p,. (12)
Gutzwiller projecting into a subspace with exactly one elec-
tron per site. Some mean field theories of the RVB state ar# is this total density that enters into the local on-site Hub-
equivalent to starting out with just the superconducting wavedard interaction term. The numberN, plays the role of a
function. Gauge field fluctuations about the mean field soluchemical potential, determining the overall electrical density.
tion are supposed to carry out this highly nontrivial projec- This Hamiltonian describes interacting electrons in a sys-
tion and destroy the superconductivity. A natural physicaltem with strong local pairing and spin fluctuations. Sigge
route to achieve this end is to include stropigasefluctua-  is a dynamicalquantum field, these pairing fluctuations do
tions of the mean field order parameter. Indeed, in a recentot necessarily lead to a superconducting ground state. In
preprint® it was argued that fluctuations about the mean fieldaddition to the pairing interaction terms, the above Hamil-
theory of thed-wave RVB stat& are formallyequivalentto  tonian includes interactions in the spin singlat and spin

a theory of a phase-fluctuatirywave superconductor. triplet (J) particle/hole channels. The Hamiltonian retains the
With these motivations, we consider generalized Hubbardmportant global symmetries, corresponding to conservation
type models of the form of spin and electrical charge. It is worth emphasizing that the
theoretical description of electron fractionalization that we

H=Ho+H;+H,+H,, (49 develop below iotin the least restricted to this particular

with Hamiltonian.
Ho=—t >, ¢l ¢ tHC., (5) A. Overview
(rr’) Due to the length of this paper, we first provide a brief
synopsis of our approach and of the key results. We start
Hy=d> S-S, (6)  With the observation of Kivelson and Rokh&athat, in an
e’y appropriate sense, ésingle) superconductor already has

separation of spin and charge. If one imagines inserting an
H :2 U(N—Ng)2 @ electron into the bulk of a superconductor, its _charge gets
u < ool screened out by the condensate to leave behind a neutral
spin-carrying excitation—a ‘“spinon.” A mathematical
implementation of this idéa essentially amounts to binding

Ha=2> (e"p,+H.c), (8)  half of a Cooper pair to an electron to produce a neutral
' spinon. Following these ideas, we first split the Cooper pair
with the locald-wave pair field defined as operator into two pieces, each piece creating an excitation

with chargee but spin zero. These are the same quantum
- 2 A (CorCor =€y G ) nur_nbers as the_ “holon.” But _since this objec; seems to be
e LA defined rather differently, and in any evennist directly tied

to the doping of a Mott insulator, we prefer to refer to it as a
Here,c,, denotes an electron operator at sitef (say) a 2D “chargon.” The squareof the chargon operator creates the
square lattice with spin polarization=1,|. The electron Cooper pair. Next, we define a neutral spinon operator by
density and spin operators are the usual bilinegrs: multiplying the chargon and electron operators. Changing
=c! c, andS = 3cloc, with o a vector of Pauli matrices. variables from the electrons and Cooper pairs to chargons
The termH,, is an on-site repulsion. Strong local tendenciesand spinons introduces a degree of redundancy in the de-
for dy2_2 pairing are incorporated through the teky . In scription. Specifically, all physical observables are invariant
the definition ofp, in Eq. (9), the summation is over the four under alocal change in thesign of the spinon and chargon
nearest neighbors of the siteandA,,,=A for bonds along operators. This implies that the resulting theory must have a
the x direction andA,,=—A for bonds along the direc- local Z, gauge invariance.
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In Sec. Il, we carefully re-express the above model incoupling,t., which represents the degree of charge fluctua-
terms of the chargon and spinon operators, paying specigions, and for simplicity specializing to half filling wit,
attention to the local, gauge symmetry. Following tech- =1. Surprisingly, in the limit of vanishing chargon coupling,
niques familiar from slave boson/fermion theories, we derivet.=0, the full Z, gauge theory action can be shown to be
an action in terms of the chargon and spinon fields coupledormally equivalent(see Sec. IYto the Heisenberg antifer-

to a fluctuatingZ, gauge field. This takes the form romagnetic spin model. Increasing from zero introduces
charge fluctuations into the Heisenberg model. In the limit of
S=Sc+ S+ Sg, (12 larget., the chargons will condense, resulting in a conven-
tional d,2_,2 superconductor. Thus, the abovg gauge
Sc:_tcE o (b¥bj+c.c), (13) theory action has the remarkable property of interpolating
) between the Heisenberg antiferromagnet in one limit and a

dy2_,2 superconductor in the opposite limit. Determining the
properties of this model in the intervening regifwéth t. of
order J) is an extremely interesting question in the context of
(14)  the cuprate materials, and will be one of the prime focuses of
our analysis. Specifically, within the preseit gauge theory
chargon field defined on @+ 1 dimensional space-time lat- we Wi” _explorg the different possible routes t_)etween t_hese
. labeled bvi i Th . ied by th two limits (which depend on the parameters in the agtion
tice labeled Dbyli.j,...,. The spin is caried by the qqimportant, for certain parameter regimes we will dem-
(Grassmann-valugdspinon fields,f; andf;, also living on  onstrate the possibility of obtaining an exotic fractionalized
the lattice sites. The chargon and spinon fields are “miniinsylating phase, dubbed the nodal liquid in previous v#ork,
mally coupled” to an IsingZ; gauge fieldr; = =1 living on  intervening between the antiferromagnet and dge 2 su-
thelinks of the Space-time lattice. The form of the Charge an%erconductor_ For other parameter regimes] a number of con-
spin actions,S; and Ss, could have been guessed on sym-yentional insulating phase@.e., with no fractionalization
metry grounds[the global chargeU(1), the global spin  are accessible, including various phases with spin Peierls
SU(2) and thelocal Z, gauge symmetry but the derivation  and/or charge order.
in Sec. Il shows the presence of an additional t&gm This To gain a simple understanding of these results it is ex-
is a “Berry phase” term that takes the form tremely convenient to integrate out the chargons to give an
effective action depending only on the spinons and Zbe
(15) gauge fieldo. This is legitimate provided the chargons are
gapped as they will be inall of the insulating phase@vith
No=1). The most important effect of this integration will be
to generate a “kinetic” term for th&, gauge fieldo:

Ssz _% (Tij(tisjf_iafja—’_tﬁfmfjL+C'C')_Ei f_ia/fia'

Here S, describes the charge dynamics whh=e ' the

) a
SB:_l E A NO[ZWIij_E(l_Uij)

ij=i—7

Here 7 refers to the time direction, anlg is an integer on
each temporal link defined in terms of tigeand o fields as

o 1
lj=Int 2—;+§ , (16) Sﬁ—K% 1;[ i |- (20)
with @;; the gauge invariant phase difference across the tenHere, the product is of th&, gauge fields around an elemen-
poral link, tary plaquette of the space-time lattice, and this product is
then summed over all plaquettes. Cleai$, is the direct
D= h— i+ z(l—a--). (17) Ising analog of theFfw term which enters the Lagrangian of
e 2 . ordinaryU(1) electromagnetism. The value of the parameter

The symbol Int refers to the integer part. The Berry phasé< i$ determined by the chargqn coupling, increa}sing mono-
term simplifies considerably for integBly. For even integer fnonlcal!y witht. The f_uII effective action appropriate to the
N, we simply havee™S8=1, while for odd integeN, insulating phases is simply

S=S+S,+S;. (21)
e %= [ oy, N odd. (18)
ij=i-7 Since the onset of superconductivity will occur at some criti-
A rough estimate of the dimensionless couplingg®,t* cal value of order onet; ~1, the validity of the effective
in terms of the parametensu,J,A of the original miéro- action requireg.<tg . Near this limit, but on the insulating
scopic Hamiltonian may be obtained in the physically inter-Side,K will also be of order one.

esting limit of largeu and smallt near half filling: There are several limits in which the properties of this
effective action may be reliably analyzed. A schematic phase
Ji\¥® J A diagram is shown in Fig. 1. As mentioned above, with
tCN(T) \[G; ts’v(f) s IANTIC- (19  =t,=0 the action describes the Heisenberg antiferromagnet,

which in 2D exhibits Nel long-ranged order at zero tem-
We will, however, regard these coupling strengths as pheperature. The opposite limit of larg€ is far more interest-
nomenological input parameters for the gauge theory. ing, though. Indeed, whei =, fluctuations of theZ,

A great deal of physics is contained in the simple-lookinggauge fieldo;; are frozen, and one can sef~1 on all the
action, Eq.(12). Consider varying the dimensionless chargonlinks. This results in a phase with deconfined spinons propa-
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ascertain which of these two scenarios will be realized. The

? precise phase diagram interpolating between the antiferoma-

gent and superconductor will likely depend sensitively on

tots ? various microscopic details.

AF \ NL Considerable further insight is provided into the mecha-
SP nism of electron fractionalization in an alternate dual formu-

o " lation in which we trade the chargon fields for the/2e

vortices which occur in a conventional superconductor. In

FIG. 1. Schematic zero temperature phase diagram of the insd:PPendix B, we show how this may be done following stan-
lating phases showing the three limits mentioned in the text. Théj,ard O_'Uﬁ"ty transformatlon_s for. the classical three-
horizontal axis measures the strength of the cougiraptained by ~ dimensional XY model. Starting with the fullz, gauge
integrating out the chargons. The vertical axis is a measure of thi€ory in Eq.(12), the resulting dual theory is a lattice action
spinon couplings®,t*. Here AF denotes the Heisenberg antiferro- for the hc/2e vortices coupled to the spinons. The vortices
magnet, SP denotes an insulator with broken translational and rot&€€ a fluctuating) (1) gauge fielda whose circulation is the
tional invariances such as a spin-Peierls state, and NL denotes tiietal electrical three current. Further, the/2e vortices have
nodal liquid with fractionalized excitations a long-ranged statistical interaction with the spinons: When a

spinon encircles such a vortex, its wave function acquires a

gating freely with the gaplessd-wave” dispersion, the phase ofs. In the present formulation, & flux of the Z,
“nodal liquid.” Similarly, the chargons are also deconfined, gauge fieldo is effectively attached to each vortex. As the
and exist as gapped excitations in this insulating phase. Thepinons are minimally coupled to, they acquire the ex-
nodal liquid is thus a genuinely “fractionalized” insulator, pected phase ofr upon encircling each vortex. Mathemati-
within which the electron has splintered into two pieces thatcally, this flux attachment is implemented by an analog of a
propagate independently. On reducikgrrom o, the nodal  Chern—Simons term for the Ising group. Quite remarkably,
liquid continues to be stable until a certain critical valig  this Ising Chern—Simons term emerges automatically from
of order one, where the gauge field undergoes a confinemettie duality transformation in Appendix D.
transition. FolK <K the chargons and spinons are no longer This dual representation of ti#, gauge theory is in fact
legitimate excitations, but rather are confined together tessentially identical to the vortex field theory introduced in
form the electrorfor other composites built from the electron Ref. 9 on a phenomenological basis starting with a BCS
such as magnons or Cooper pairshis corresponds to a superconductor. In that work, the statistical interaction be-
conventional insulating phase. As we argue in Sec. IV, thaween spinons and vortices was put in by hand, employing a
confinement transition is accompanied by breaking of transt(1) Chern—Simons terms to attach flux to t@n of the
lational symmetry leading to spin-Peierls order, at least fospinons. An advantage of the Ising Chern—Simons terms is
small spinon couplings®,t*. This may be understood from that it does not break spin-rotational invariance, and in fact is
the limit whent®,t*=0. Then, as we show in Sec. IV, we are possible even for spinless electrons. Moreover, it enables the
left with a pureZ, gauge theory with the Berry phase term description of an exotic superconducing phase in which the
Sg which isexactlydual to the fully frustrated Ising model in Ising flux de-attaches from the vorticésee below. In this
a transverse magnetic field. Ordering the Ising spins in thiglual description, superconducting phases correspond to vor-
dual global Ising model leads to confinement. Physically, théex vacuua, while insulating phases correspond to vortex
Ising spins represent vortices in tlg gauge field, namely, condensates. Simply condensing th&2e vortices leads to
the vison excitations mentioned in the previous subsection.confined insulating phases. Accessing deconfined insulating
This same model also arose in the studies of Sachdev amhases requires condensation mdired vortices, without
co-workers®’ on frustrated largé\ quantum antiferromag- condensation of single ones. In this way one obtains an al-
nets. Numerical studié$show that the ordering in the Ising ternate dual description of the fractionalized nodal liquid.
model is accompanied by breaking of translational symmeThe Z, gauge theory formulation suggests a mechanism for
try. The nature of the confined ph#&seat large spinon cou- such vortex pairing: Since the chargons also have a long-
pling remains uncertain at present. ranged statistical interaction withc/2e vortices, their mo-

These results demonstrate the possibility of two alternatéion is “frustrated” in the presence of such vortices. Pairing
routes between an antiferromagnet and-aave supercon- the vortices reduces this frustration, allowing the charge to
ductor. In one instance, as the chargon hoppinds in-  propagate more easily, and lowering the kinetic energy.
creased towards the critical value for the onset of supercon- Superconducting phases are readily accessed in either the
ductivity t¥ , the value of the parameté&rstays smaller than Z, gauge theory “particle” formulation of Eq(12) or its
the critical value for deconfinemeri,.. In this case, all of dual vortex counterpart. In the particle formulation, wtign
the insulating phases preceding the superconductor are “coipecomes large and the chamgehargons condense, the result
ventional,” with confinement of chargons and spinons. Al-is a d,2_y2 superconductor, denotediSC. This supercon-
ternately, ifK exceedsK. beforethe transition into the su- ductor is conventional, perhaps surprising since BCS theory
perconductor, the fractionalized nodal liquid phase willinvolves the condensate of a charge Qooper pair. But as
occur, sandwiched between tievave superconductor and a we demonstrate in Sec. Ill, the chargon condensate supports
conventional insulator. Since both the superconducting antic/2e vortices, and shares all other properties with a conven-
the deconfinement transitions occur whgitand hencék) is  tional BCS superconductor. It is interesting to ask if it is
of order one, the deconfinement boundary is expected to hgossible to have a superconductor where the chapgirs
“near” the onset of superconductity. It is thus difficult to have condensed, while the single chargons have not. Such a

-
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superconductor, which we labelSC*, can be readily de- to other symmetries such @swave (see the end of Sec. II,
scribed with the preserif, gauge theory formulation. As and Appendix B. Of course, with strong local on-site repul-
detailed in Sec. VIIdSC* is a truly exotic superconducting Sion (positive u above d-wave pairing fluctuations are pre-
phase with many unusual properties. sumably more energetically viable, and also of central inter-

The Z, gauge theory is readily generalized to a wide va-est in the context of cuprate superconductivity.
riety of other situations. In particular, the particle formula- ~ Consider then a generalized Hubbard type model,
tion of Eqg.(12) is valid inanyspatial dimension. InB there
again exist fractionalized insulating phadesd, of course, H=Ho+Hy+H;+H,, (22)
confined oneswhich can be accessed by the theory. Re'with
markably, as we argue in Sec. VIII B, in contrast to the 2D
case, a fractionalized insulator iD3exists as a distindinite
temperature phase, separated by a classical phase transition Ho=—t 2 CrTaCr'aJr H.c., (23
from the high temperature limit. For an anisotropic layered (rr'"y
three-dimensional material, it is also possible to have another
3D fractionalized phase consisting of weakly coupled 2D 5
phases, but this phase is destroyed by thermal fluctuations. It HUZZ U(N;—No)*,
is also of note that th&, gauge theory formulation seems
incapable of describing fractionalization in 1D. This indi- 1
cates that the “solitonic” mechanism of fractionalization in Hy,=J >, [Sr‘SrrJf Zprp"}’ (25)
d=1 is qualitatively different than “vortex pairing” which (rr'’y
describes fractionalization in higher dimensions.

We conclude Sec. | with an outline of the rest of the
paper. Section Il contains the formal derivation of the
gauge theory from the microscopic models. For ease of pre-
sentation, and as it is simpler, we will first provide the tech-As earlier,c,, denotes an electron operator at siteith spin
nical details of the derivation for situations with localvave  « and the electron density and spin operators are the usual
pairing. (In Appendix B, we show how situations with bilinears:p,=c/ c,, andS =%cloc,. This Hamiltonian is
d.2_y2 pairing, the case of interest for the cuprates, can bessentially the same as E@) in Sec. |, except that it has
readily handlefl We next describe, in Sec. lll, the physics of local sswave pairing rather thad wave, and we have added
fractionalization and confinement in the simplest possiblea term proportional te, p,, in H;. These modifications have
context, that os-wave pairing with an even number of elec- been made to simplify both the derivation and the subsequent
trons per unit cell. We then consider in Sec. IV the moreanalysis of theZ, gauge theory. We return later to the more
interesting situation ofl-wave pairing with an odd number physically interesting case of locdiwave pairing.
of electrons per unit cell. In Sec. V we formulate and de- Here, ¢, is the phase of a locawave Cooper pair field
velop the dual description in terms of vortices. The results otand is canonically conjugate to the Cooper pair number op-
Sec. IV are reobtained in this representation. We then moverator,n, : [ ¢, ,n,.]=id,,, . As before, since, is adynami-
on in Sec. VI to show how doping away from half filling cal quantum field, these pairing fluctuations miat necessar-
may be incorporated into the formalism. In Sec. VII, weily lead to a superconducting ground state. Tdmmserved
discuss the possibility of other exotic fractionalized phasesglectrical charge density is the sum of the Cooper pair and
in particular the superconductdC* mentioned above, in electron densities,
both the particle and vortex formulations. In Sec. VIII we
discuss various generalizations of the theory, including spa- N;=2n,+p,. (27)
tial dimensions other than two, finite temperature, and situa-
tions with no spin rotational invariance. We also briefly dis-
cuss a useful analogy witZ, lattice gauge theories of
classicalnematic systems. In Sec. IX, we discuss the rela- We now proceed to split the Cooper pair into two pieces.
tionship between this work and several other previous apConsider an operatdy, defined as
proaches to fractionalization in strongly correlated systems. _ _

Contact will be made, when possible, with the earlier dual bl=s,e¢?=glr, (29)
vortex descriptions of the nodal liquid, and with the slave ) ) ) ) ) o
boson/fermion approaches. Section X contains a discussiofith Sr==*1 an Ising “spin” variable. With this definition
of the experimental signatures of the various novel phased'e new field,

described in earlier sections. We conclude with a summary

of our main results. Various appendices contain technical b =ﬁ+z(1—s) (29)
details not presented in the main text. 2 2 e

(24)

Hy=AY, (e'*c,c, +H.c). (26)
r

A. Split the Cooper pair

can be treated as a phase lying in the interval zero#o 2
Il. MODELS AND  Z; GAUGE THEORY with b, invariant under the transformatiop; — ¢, + 27 and

+ .
To describe our techniques in the simplest possible cons— ~Sr- Thesquareof by creates a Cooper pair,

text, we will start with a microscopic model that has local : o

swave pairing correlations. This can be readily generalized e'“r=(b,)", (30)
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so thatb! creates a spinless excitation with chaggessen-  (or difference of the number of chargong\¢) and spinons
tially one half of a Cooper pair. We refer to this operator as(przf;rafm) on each site is an even integer:
a chargon operator.

In order to separate out the charge and spin degrees of (—)NrFrr=1, 37
freedom it will be extremely useful to define an electrically

neutral but spin carrying fermion operatar spinoi: This implies, for example, that a site with a single chargon

but no spinon is unphysical and forbidden, whereas a spinon
it —pcf (31) and chargon togethéan electronis allowed.
ra ~ra-

This operator carries the spin of the electron, but is electri- B. Path integral and Z, gauge theory
cally neutral as verified by noting that it commutes with the
total electrical charge densiti,. On the other hand, the
chargon is electrically charged, and its phase is canonicall
conjugate to the total electrical charge density,

(& Ny ]=i06:. (32

At this stage it is legitimate to implement an operator
change of variables in the full Hamiltonian, replacing the
electron and Cooper pair operators,(i,c,c’) by chargons
and spinons ¢,N, f,f") This gives

The most convenient way to implement the constraint on

e spinon and chargon Hilbert space is ifEaclidian path
ntegral representation of the partition function. To this end
we define a projection operator,

=1 7., (38)
r
with

1 1 _
=— +(— Nyt+tpr1= Z i(m/2)(1=o)(Ne+pp)
Pr=5ll+ (-1 r]=2 > e :

H:H0+Hu+ HJ+ HA! (33) o=*1
. 39
with 39
which projects into the physical Hilbert space. Hetg=
_ t ot +1 is an Ising-like field anqbrzf;ra fro. AS can be verified
Ho= t<§> byby frafrrathec., (34 directly from Eq. (33), this projection operator commutes
with the chargon—spinon Hamiltonian,
Hy=AY (ff, +H.c), (35) [P,H]=0, (40)
r

) ) so that the Hamiltonian does not cause transitions out of the
with H, unchanged and#li; of the same form as in Eq25) physical Hilbert space.
but with spinon operators replacing the electron operators: The partition function can be written as
pr= f:afra andS = %f:a'fr .

There are several extremely important points to stress Z=Tr[e A"P], (41

about this seemingly inoccuous change of variables. First, ) .
one can change the sign of both the chargon and Spino\p{here the trace is over the full Hilbert space spanned by the

operators on any given site chargon and spinon operatorg,(\,f,f"). A Euclidian path
integral representation can be obtained as usual by splitting
by——b,, fro— =T, (36)  the exponential,
without affecting the original Cooper pair or electron opera- Z=Tr (e "P)M], (42

tors. This implies that quite generally the transformed Hamil- - — )
tonianmustalso be invariant under thiscal Ising Z, sym-  With M “time slices” and e= /M. Here, we have inserted
metry, as can be readily checked in E¢®4) and (35). As prpjectlon operators into ea}ch time slice. Working with fer-
we shall shortly see, in a path integral formulation this localMon coherent states and eigenstates of the chargon ghase
Z, symmetry will be manifest in terms of &, gauge field. 2 path mte_gral representation can be readily derived, detailed
Second, because of this redundancy introduced into th& APPendix A, giving
change of variables, aonstraintmust be imposed on the w
Hilbert space spanned by the spinon and chargon operators. _ TRPT] . -s

To understand the origin of this constraint, consider first z 1.;[ df'“df'“dd)'mz 2, " 43
the Hilbert space of the original Hamiltonian. In a number- _
diagonal basis, the Hilbert space on each siie a direct where the integration is over Grassman numtfensd f and
product of states with an arbitrary integer number of Cooper c-number phasep in the interval zero to 2. Here, i
pairs (n,) and the four electron states consistent with Pauli=(r,7) runs over the 2 1-dimensional space time lattice
empty, doubly occupied or singly occupied with an electronwith 7=1,2, ... M time slices. The Euclidian action takes
of either spin. Since the chargon has only one half the chargthe form,
of the Cooper pair, the full Hilbert space spanned by the
chargon and spinon operators is actually twice as large, and f L b —
it is essential to project down into the physical Hilbert space S=S,+S7+ 6721 H(N., ¢,.f.f,), (44)
of electrons and Cooper pairs. From Eg7), it is clear that
this can be achieved by imposing a constraint thatsiine  with

i=—* oj==*1

M
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M
SfTZ 2 [f_T(O',.+1fT+1—f,.)], (45 SX:EZ 2‘]|er’|2_[er’(th:rbr'l"]frafr’a)+C-C-]-
r,r=1 (rr'’)
(54)
M . . .
b B . The terms inS, correspond to the hopping of spinons and
Sr= 'r;:l N b7 brat 2(1 o)) (46) chargons in the presence of a common fluctuating gauge
. . field, x, on the near neighbor links.
Here, we have suppressed the explicind a subscripts on Up to this stage, all of the formal manipulations that we

the fields, displaying only the time-slice dependencies. Ajave performed have be@xact so that the full Euclidian
usual, the bosonic phase field and the Ising field both havgction gives a faithful representation of the original micro-
the expected periodic boundary conditions, whereas the fekcopic electron Hamiltonian. But now, following standard
mions are antiperiodic: slave fermion/boson techniques, we perform an approxima-
& — o =0 f — 47) tion, treating the functional integral over the Hubbard—
=MALT V=1 EMALTEL IMEL L Stratanovich field,y, within a saddlepoint approximation.
Notice that the Ising variables live on the links connecting(While it might be possible to find an appropriate “lartye-
adjacent time slices, and can thus be correctly interpreted generalization of the model for which this approximation
a gauge field. In fact, the Ising field is minimally coupled ~ Pecomes exact, we do not pursue this tack hefee sim-
to both spinons and chargons as the time component of plest saddlep_omt corresponds to setting all of the link f|elds
gauge field. Moreover, the locdl, symmetry of the Hamil- €dual to a single real constang; = xo. The saddlepoint
tonian in Eq.(33), is manifest in the path integral as a full Value forxo can(in principle) be obtained by integrating out
fledged IsingZ, gauge symmetry: the splnons(_whlch are Qausmamnd the (_:hargonSNm_ch
are noj. This saddlepoint respects two important discrete
_ — T symmetries of the model, translational and time-reversal in-
fia—eifia,  fia—mefia, di—dit 5(1_60’ variance. But the saddlepoint doest respect theZ, gauge
(48) symmetry in Egqs(48) and (49). This serious flaw can be
i i i easily remedied though by retaining a particular setiud-
togetherwith a transformation of the gauge field, tuations about the saddlepoint. The simplest choice consis-
L tent with theZ, gauge symmetry corresponds to allowing the
Tij— €0 €] . (49 X ) . , .
signof x,,, to change, keeping the magnitude fixed, putting
Here, ¢,==1, and oy; lives on the link connecting two
“nearest neighbor” space-time lattice points, differing by Xrr' =0 Xo- (55
one “m‘? slice. . . . Here,o,,(7)==*=1 is a set of Ising fields living on the spa-
. Ourfinal goal is to beat the model into a form which alsOyj5| jinks of the space-time lattice. Within this restricted
includesZ, gauge fields on thepatial links, so that space anitold the theory consists of chargons and spinons hop-
and time end up on more equal footing. Our approach fo"ping on a space-time lattice, minimally coupled to &p
lO\.NS closely the standard methﬁasm_ployed in slave fer—_ auge field. Note that the fluctuations in timagnitudey, of
mion or slave boson treatments of Heisenberg magnets. FII:% e saddlepoint value of have been ignored in E455)—

we perfprm a Hul:')bard—Stra.ta'nowch' decoupling of the SPMhese “massive” fluctuations are expected to be unimportant
interaction terms in the Euclidian action: for the issues we address in this paper
Hereafter we work under this fixed-magnitude approxima-
e o= | TI II dx,(ndx’,(ne Ss,  (50)  tion. Within this approximation the full partition function can
e’y 7 be expressed as a functional integral,

oo

Shszfz E [2‘]|er’|2_(J)(rr’f_rafr’a+c-c-)]- 7= H dTiadfiadd’i 2 H 2 e S, (56)
(re’y T ia Nj=— (ij) ojj==1
(51)
) ) o with Z, gauge fieldsy;; living on the near neighbor links of
Here, x,-(7) is a set of complex fields which live on each the space-time lattice, and
of the nearest neighbor spatial links. Next, a simple change
of variables can be performed which eliminates the remain- S=ST+58+S,+S,+Ss, (57)
ing quartic spinon—chargon interactionhty in Eq. (34):

with
tb*b (52
Xrer = Xrr' = 30 Brry sz:”z ) [f_m(o-ijf].a—fi)], (58
where b =e€'%. The full Euclidian action then takes the R
form, S= SfT+ SerSr , with the spatial interactions given by . T
Si==i 2 N|d—d+5(1-0y)|, (59
ij=i—7
S=eX (HytHy)+S,, (53
Sy=eu2 (Ni—No)% (60

with
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Sy=eA (figfi +fifiy), (61

So=—€ X oy(tehf b+ Iofi,fj.+cCC),

=i+

(62

where we have defineigy=2ty, andJg=Jx,.
Notice that the full action is local in the integels, so

the summation can be performed independently at eac
space-time point. A straightforward Poisson resummatiorf

gives

> V()

ij=i—7

: (63)

E e_(su'*'si)) = exr{

Nj

where @;; = ¢ — ¢+ (7/2)(1—-0y;) is the gauge invariant

phase difference along a temporal link. Here, the periodi

potential V(®P) is given by

eV(®) — 2 e—(1/4eu)[fl)—27-rl]2+iN0(27-rI —®),

|=—

(64)
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e_SB: H R O'ij, NQ Odd
ij=i—71
As we shall see, the Berry’s phase term will lead to subtle
yet important differences between Mott insulators with odd
integerNy and band insulators with eveMy.

The Euclidian path integral is only identical to the Hamil-
tonian formulation in the strice—0 limit. But since the
friginal lattice Hamiltonian is already an effective low en-
rgy theory, the time continuum limit which involves arbi-
trarily high energies is not actually of interest. For these
reasons, hereafter we keeginite, viewing it as an inverse
“high energy” cutoff in the theory. Since the kinetit) and
interaction(u) energy scales are the largest in the theory, it is
convenient to choose the value ©60 that the charge sector
of the theory is isotropic on the 21-dimensional space-

(72)

dime lattice. To this end, we require that the spatial chargon

hopping strength equals the temporal one:elif22et,
which implies

1
;ZZ\ItQU.

(73

and we have dropped an overall multiplicative constant. Inyote that the choice of the value efonly modifies slightly

the limit of small eu, the sum ovet will be dominated by
precisely one term which minimizd® —2|. This occurs
for integerl satisfying|® — 21 |<r or, equvalently,

d 1
I=intl >—+5/. (65
Moreover, for smalleu we may approximate
ef(l/4fu)(il>72ﬂ'|)2~e(l/Zeu)[lchS@fZTrl)], (66)
= g(1/2eu)[1~cos(@)] (67)

Within this approximation the sum ovébecomes simply

eV(®) < g+ (1/2eu)cos(®) +iNg(27l — @) (68)

with | given by Eq.(65). We have again dropped an overall

multiplicative constant.
The full N sum in the action then leads to

D o (SutS)) — g% i 7 (2eu)oj cos(é;— )~ Sg_ (69)
N;j
with the Berry phase terr8g given by
Se= —iNOi E: (27l —dy)), (70)
—=iNo X |27l o(1-0y)|. (7)

ij=i—-7

In obtaining the last line, we have re-expresdggin terms

of ¢ ando, and used th@-periodic boundary conditions on

¢ to drop the term involvingp;— ¢; . The Berry phase term
is theonly term in the action which depends on ttaverage
occupation number per unit cely. It simplifies consider-
ably for integerN,. For eveninteger Ny, we simply have
e Se=1, while for odd integeN,,

the physics at the highest energy scales, sdtdydu. The
details of the model at these high energy scales will not
significantly affect the low energy physiés.

With this choice ofe the full Euclidian action reduces to
a much simpler and more compact form,

S=S.+S.+Sg, (74)
with
Scz—tCZ> oij(bfbj+H.0), (75)
1)
ssziEj> — (85 oy fifj+ )+ 8 (13, i +cc— i),
(76)

and Sz as defined above. Here, the dimensionless chargon
coupling strength is given in terms of the microscopic pa-
rameters, u, andy, to be

[txo
tczeto: E

The dimensionless spinon coupling along the nearest neigh-
bor spatial links is

(77

Xo

8tu’ (78

tISJ = 6J0: J
Whereastisj = —1 along the neighboring temporal links. Simi-
larly, the coupling constant for the spinon pairing is

th= - (79)
\/8t)(ou.
As will be shown in Sec. IV, for the physically interesting
case ofd-wave pairing near half filling, the parametgp
may be roughly estimated to be
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tu
X0~

7 (80)

Here in Sec. Il we will analyze some of the phases which
are described by thg, gauge theory model derived in Sec.
This can be used to obtain rough estimates of the three dif. While the Z, gauge formulation is valid in general dimen-
mensionless coupling constarttg, tS, andt®. For the most sion, for concreteness and simplicity we specialize to two
part, however, we will treat these couplings as phenomenadimensions, generalizing briefly to other dimensions in Sec.
logical parameters. VIII A. Moreover, for illustrative purposes we focus first on

The partition function involves an integration over the the simplest case with an even number of electrons per site
on-site chargon phaseg() and spinon Grassman fields (unit cell), and presume the presence of losabave pairing
(f;,f)), as well as a summation over ti® gauge fields corr_ellations. As we shall see, in this case .the quel can
(o7;=*1) which live on the nearest neighbor links of the exhlblt a convenuonallband msullator.. More interesting, for
Euclidian space time lattice. This “final” form for the theory certain parameter regimes, fractionalized insulating phases
is exceedingly simple, consisting of chargons and spinondlso become possible. Note that the microscopic Hamiltonian
field. This form could have essentially been guessed just ug:harge per site is even. In models of interacting electrons in
ing knowledge of the field conterithargons and spinops theidealizedlimit of a single band, an even charge per site
and the required symmetrie&d(1) charge conservation, impliesnocharge fluctuations, and is trivial. However, away
SU(2) spin conservation and the locgj gauge symmetry. from this idealized limit, even occupation does not imply no
Perhaps the only subtlety is the presence of the tggnn  charge fluctuations, and may be nontrivial.

)1/3 Ill. FRACTIONALIZATION AND CONFINEMENT

the action when the filling factoN, is not an even integer. _ N Sec. IV we will turn to the more physically interesting
Among the additional terms which are allowed by these symSituation with anodd number of electrons per site. At that
metries is a field strength term for ti gauge field: stage we will focus on locatl-wave pairing correlations,

which are more tenable in the presence of a large positive
on-site Hubbarai as well as being of direct relevance to the
H aij |- (81 cuprates. Doping away from half filling will be discussed in
= Sec. VI.
Here, the product denotes the gauge invariant product of the With even mtegeﬂ\lo aqd locals-wave pairing correla-
dions the full action consists of two contributionS= S,

Ising fields around an elementary plaquette. This Ising fiel A 4ing to the ch d spi ;
strength is then summed over all space-time plaquettes. S;, corresponding to the charge and spin sectors, respec-

S,=—K>,
]

Clearly, S, is the direct Ising analog of thléiy term which vely,

enters the Lagrangian of ordinaky(1) electromagnetism.

Even though not present in the derivation presented here, this S=—t (b*b. +c.c 84
field strength term will be generated upon integrating out the ¢ Ci2j> oy(brb*e.c), ®4

chargon or spinon matter fields, as discussed below.

In Appendix B we show how the above analysis can be o o
generalized to the case in which lochivave pairing corre- Se=—>, t5; oy (fif; +ecc)— > fif; (85)
lations are incorporated from the outset as in the Hamiltonian 0l i
Eq. (4), rather thars-wave as assumed above. The derivation
of the effectiveZ, gauge theory proceeds in much the same A
fashion, and one arrives at the same model except with the +t Z (fisfi tc.c). (86)
spinon action given instead by

The first term, which describes the dynamics of the chargons,
S=-> Uij(tisjf_iafjaﬂﬁfmfjﬁc-c)—E T fi b* =e'¢?, minimally coupled to arZ, gauge field, exhib_its
i i the globalU(1) charge conservation symmetry. The spinons
(82 also carry theZ, Ising “charge.” Due to thesswave form of
the anomalous “pairing” term, the spinons, which are paired

Here,tﬁ denotes ad-wave pairing amplitude living on the .+ singlets, should be gapped out.

nearest neighbor spatial bonds, with amplitugée® on the
x-axis bonds and-t* along they-axis bonds. Notice that the .
Z, gauge fields;; enters here because ttievave pair field A. Correlated “band” insulators
lives on thelinks. This form exhibits the required Ising, We first consider electrically insulating states. When the
gauge symmetry, being invariant under the transformation ilimensionless chargon coupling is much smaller than
Eq. (48). As shown in Sec. IV, a rough estimate of the vari- unity, the chargons cannot propagate at low energies and a
ous coupling constants in this case is charge gap results. In this case, with both spinons and char-
A theory, leaving theZ, gauge fieldo as the only remaining
ot ”th- 83 field. This integration will generate additional terms in the
Heret® andt” refer only to the spatial couplings. But we will time and must also be gauge invariant. The most important
once again regard these as phenomenological parameters.such terri is simply,

gons gapped out, it is possible to integrate them out from the
\/m Uz J
=7 Vg Uit
Lagrangian, depending om, which will be local in space
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particles. These particles can scatter and can anihillate in
H Tij |» (87) pairs, but since their number is conserved modulo 2 they
] , .
carry a conserved, ‘“charge.” We will refer to these

which describes a purg, gauge theory. particle-likeZ, vortices as “visons.” One can define a vison

Remarkably, this simple gauge theory exhibits a phaséthree current,” j,, a field which lives on the links of the
transition as the coupling is varied. Indeed, as shown origi- dual lattice and takes one of two values, zero or one, which
nally by Wegner?>*'the pureZ, gauge theory in 3D islual ~ satisfies,
to the familiar three-dimensional Ising model:

S,=—K>,

O

(~k=]I] oy, (90)
Stua™ — Kd<i2,> vivj, (88) .
: with the plaquette pierced by the dual link. In the deconfined

with Ising spins,v;=*1, living on the sites of the dual phaseZ*, these vison particles exist as gapped excitations,
lattice. The dimensionless Ising model coupliig,, is sim-  in addition to the spinons and chargons. In terms of the dual
ply related toK: tanh(K 4) =e~ 2. This form shows that the Ising model,Sy,,, the Ising spins; are essentially vison
high and low “temperature” phases are exchanged under thereation operators. With the Ising model being disordered for
duality transformation. The details of this duality transforma-large K, the visons(Ising sping are gapped. Thus, the dis-
tion are given in Appendix C. tinct gapped excitations if* are (i) the chargons(ii) the

As emphasized originally by Wilsofl,a direct character- spinons andiii) the visons. An important property of these
ization of the two phases of the pure gauge theory is given iexcitations is the existence of long-ranged ‘“statistical” in-

terms of the correlator, teractions between them. Specifically, when a chargora
spinon is adiabatically transported around a vison, it ac-
G.— < 1—[ > 89) quires a geometrical phase factor®f(because the chargon
¢ ’ Tij | is minimally coupled to theZ, gauge field. Similarly, a

vison picks up amr phase factor upon encircling either a

where the average is for the pure gauge theory and the progdhargon or a spinon. Evidently, visons and chargéms
uct is taken around a closed loop in space time, den6ted spinong are ‘“relative semions.”
For K<K, the Wilson loop satisfies an “area law,” with As K is reduced further the gauge theory undergoes a
Ge~exp(—c.A), with loop areaA, andc aK-dependent con- phase transition aK. into its “area-law” phase. This im-
stant. WherK >K.., G, decays more slowly, only exponen- plies that the energy to separate two spinons or chargons,
tially with the perimeterof the loop. inserted as “test” charges at spatial separatiBn,grows

What do these two phases correspond to in physicdinearly with R. In this “confined” insulating phase, denoted
terms? Consider first the larg€ limit, which is the high  Z, free chargons and spinons do not exist in the spectrum.
temperature phase of the dual Ising model.Kds:~ all of  The only allowed particle excitations are those that are
the gauge field plaquette sums will be equahtd. In this  “charge neutral,” that is, invariant under th® gauge trans-
case it is possible to choose a gauge in which all of the Isindormation. Any bound state with an even number of char-
link variables are also unityr;j=1. In this phase the char- gons plus spinons is neutral. In addition to the electron, this
gons and spinons cgropagateat energies above their re- includes any composite built from electrons, such as a Coo-
spective gaps. Apparently, the Hamiltonian contains gappeger pair or a magnon. In the pha%ehese electron-like ex-
excitations which carry the quantum numbers of spinons anditations will be gapped. This phase is the familiar “band
chargons. The electron has effectively been fractionalizedinsulator” with an even number of electrons per unit cell.
We denote this exotic insulating state with deconfined char- Note that withK <K, the dual Ising model orders;)
gons and spinons &8 . It is exceedingly important to em- #0. This corresponds to a “condensation” of the visons.
phasize that the splintering of the electron into spin andRemarkably,Z, vortex condensation leads directly to a
charge carrying constituents is conceptually unrelated to théconfinement” for the chargons and spinons. To understand
presence or absence of spin order. Indeed, electron fractiogenfinement directly in terms of the dual Ising model, con-
alization can occur even in the presence of strong spin—orb#ider the effect of inserting two static “test” chargons, sepa-
interactions which destroys spin-rotational invariance—inrated by a distanc&k. Each chargon lives on éspatia)
that case the states of the fermiorigarticles cannot be plaquette of the dual Ising model. Due to the geometrical
labeled by spin. phase factor between visons and chargons, the presence of a

As the couplingK is reduced, so long as the gauge theorychargon corresponds to a “frustrated plaquette” in the dual
is in its perimeter phase, the energy to separate particldsing model, that is, a plagquette with an odd number of nega-
carrying theZ, charge remains finite, even for infinite sepa- tive Ising couplings. To frustratievo plaquettes, it suffices to
ration. The chargons and spinons are deconfined. Furthentroduce an interconnecting string of negative Ising bonds.
with K<, configurations of theZ, gauge theory with In the ordered phase of the dual Ising model, the energy of
plaquette products equal te 1 will become possible. One this string will clearly be linear in its length, thereby confin-
can think of such plaquettes as being “pierced” by nonzeroing the two chargons.
“Z, flux” or Z, vorticity. Because the number of such It is worth drawing a very important distiction between
plaquettes on any given elementary space-time cube is evethe Ising gauge theory considered here, and the gauge theo-
the fluxes form “tubes,” analogous to Abrikosov vortices in ries introduced by Baskaran and AnderSand generalized
a type Il superconductor, which propagate in space time aand extensively studied by several authbts.the simplest
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version of these theories, the spin itself is effectively frac- o
tionalized, decomposed into a bilinear of spinfabmplex

fermion operators, rather than splitting the Cooper pair into

two chargons as discussed above. These spinful fermion op- te
erators, the spinons, are minimally coupled to a compact .
U(1) gauge field. But in contrast to ti® gauge field which
exhibits both a confined and deconfined phase, Ul{é) 0 o
theory has only asingle phase® In this phase, point-like
monopole excitations in-21-dimensional space time always  FIG. 2. Schematic zero temperature phase diagram it tHe
proliferate, and drive spinon confineméhtThe electron is,  plane for local-wave pairing with an even number of electrons per
then, ultimatelynot expected to be fractionalized in these unit cell.

theories.

sC

aparttwo Z, vortices also grows linearly with separation. To
see this, introduce two visons by changing the sign ofzhe
gauge field along an interconnecting “line.” Due to the
We now turn to a description of superconductivity within chargon condensate which breaks #he gauge symmetry
the Z, gauge theory. Since the spinons will be gapped intanaking the gauge field “massive gachnegative bond costs
singlets within the superconducting phase, it is legitimate t@&an energy 4., implying linear confinement.
integrate them out, generating once again a field strength Thus the distinct massive excitatiofjgpart from the
term for the gauge field as in E(B7). When the dimenson- Anderson—Higgs plasma mode necessitated by Ulié&)
less chargon “hopping” amplitudet,, increases and be- symmetry breaking in the chargon condensate are the
comes much larger than unity, one expects the chargons &pinons and the BC8&c/2e vortices. This is exactly that is
condense(e'?)#0. For largeK so that the gauge field is required in a conventional superconducting phase. Further,
effectively frozen, this chargon condensation transition issince the spinons are minimally coupled to thg gauge
simply a 3D classicaKY transition. Since the chargon car- field, there is a long range statistical interaction between the
ries electric charge, in this phase the chardé¢(1) summe- spinons and the BCS vortices. In effect, a spinon “sees” the
try is broken, and a Meissner effect results. But the chargo, vortex, which is bound to thkec/2e vortex, as a source of
also carrieZ, charge, so that thgé, gauge symmetry is also “Ising flux.” This too is what is required in a conventional
spontaneously broken. Within a conventional BCS descripsuperconductor. Thus, the chargon condensate does in fact
tion of superconductivity, the order parametére Cooper describe a conventional superconducting phase, denoted
pair carries charge € so one might be tempted to conclude hereafter asSC.
that this “chargon condensate” is perhaps some sort of ex- A schematic phase diagram is shown in kKt plane in
otic unconventional superconducting phase. In particular, iFig. 2. The transition from the fractionalized insulatst
is nota priori clear that the chargon condensate can suppoiinto SC is essentially a superconductor-insulator transition
a conventionahc/2e BCS vortex. for the chargee chargons. These exist as finite energy exci-
To highlight the confusion, it is instructive to focus on the tations inZ*, superconducting order is obtained if they con-
regime with largeK, where a good description of the ground dense. On the other hand, the transition from the conven-
state can be obtained by settiog =1 on every link, and tional insulator Z into SC can be viewed as a
taking the chargon phase; as a space-time independent superconductor—insulator transition for charge Cooper
constant. Consider placing dnc/2e vortex at the(spatia) pairs. This can be seen by considering ikve 0 limit, where
origin. Upon encircling thidJ(1) vortex at a large distance, it is possible to integrate out th®, gauge field and arrive at
the phase of the chargon wave function must wind7ay an effective theory of Cooper pair hopping:
This is of course not possible with a smoothly varying phase
field, but requires the introduction of a “cut” running from _ _
the vortex to spatial infinity across which the phase jumps by Spair= 2t2<i2j> Co42(¢i~ ¢j)]. (%)
7. The energy of this cut is, however, linear in its length
with a line tension proportional t|(e'#)|2. It thus appears
thathc/2e vortices are themselves confined, and not allowed
in the superconducting chargon condensate. But imagine
changing the sign of all th&, gauge fields,o;, which Having explored the physics of electron fractionalization
“cross” the cut. This corresponds to placingZa vortex at  which follows from theZ, gauge theory in the simplest of
the origin. These sign changes “unfrustrate” tH&' cou-  cases with an even number of particles per site in the pres-
plings across the cut, so that the line tension vanishes. It isnce ofs-wave pairing correlations, we turn now to a much
thus apparent that a bound state af,avortex and thénc/2e  more interesting and challenging situation: correlated Mott
U(1) vortex(in the phase of the chargpean exist within  insulators with one electron per unit cell in the presence of
the chargon condensate. It is this bound state which corrdecal d-wave pairing correlations. As we shall see, in this
sponds to the elementary BCS vortex in the conventionatase theZ, gauge theory has two simple limiting regimes—
description of a superconductor. one describing @-wave superconductor and the other a con-
It is worth emphasizing that both the “nakedfic/2e  ventional antiferromagnetic insulator. But in the interesting
U(1) vortex and the&, vortex, the vison, are confined in the crossover regime between these two limits, a number of
superconducting phase. For example, the energy cost to pudther phases can be readily described within Zhegauge

B. Superconducting phases

IV. ODD NUMBER OF ELECTRONS PER UNIT CELL
WITH d-WAVE PAIRING
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theory. Besides a spin-Peierls ordered phase, the theory givese spinon per site. This Hamiltonian consists of a sum of
a simple description of thaodal liquid an exotic fraction- terms for each nearest neighbor spatial link. With the addi-
alized insulator with gapless fermionic quasiparticles. Withtional requirement of spin rotation symmetry, the Hamil-
one electron per unit celgonfinementransitions out of the tonian must take the form of the Heisenberg spin Hamil-
d-wave superconductor or nodal liquid are inextricablytonian,
linked to breaking of translational symmetry.
The full theory of interest can be written as H=3J 2 S-S (100

S= S+ S+ Sg, (92) )

This can be verified directly fron$, by expanding out the

In cosh term, and re-expressing the spinon operators in terms

Se= _Ztcan) 0ij COS i~ &), (93 of the spin operatorsS,=f'of, . This leads to an explicit
expression for the exchange interaction:
re re A2
€ 4 )

As shown in Eqgs(70) and(72), with oddintegerN there is

an extra Berry’s phase term in the action, wheree is the discrete time slice defined in EF.3).

A few comments are in order on this result. It is certainly
- obvious from the Hamiltonian in Eq4) that killing the su-
Sg=—i 5 2 (1—-o0y)). (95) perconductor at half filling by letting— oo will lead to an-
ij=i-r tiferromagnetism. Our point here is, however, different. It is
interesting(and reassuringto see this emerge directly from
“the Z, gauge theory action itself, especially as some approxi-
mation has gone into deriving tt#, action from the micro-
scopic Hamiltoniarji.e., ignoring the amplitude flucutations
about the saddlepoint, as discussed below (B§)]. Also,
Yhis gives us an alternate way of motivating the gauge
SEheory starting directly with the Heisenberg magnet
Recovering the Heisenberg antiferromagnet in the limit
t.—0 also provides a way to obtain a rough estimate for the
saddlepoint parametgf,. First, we note that® andt® can be
re-expressed in terms of the parametersl, J, A, andy,

It is instructive to consider various limiting cases de
scribed by the above action. First consider the litgit 0.
ThenS,=0, and theg fields may be trivially integrated out.
Surprisingly, the partition function for the remaining spin
sector of the theory is formally equivalent to the Heisenber
antiferromagnetic spin model. To demonstrate this we fir:
trace over the two allowed values of tdg gauge fieldo;;
on each link. Consider first thepatial links, which enter the
action in the form,

S.= E 2 a”,ArTr, , (96) using Eqs(78) and(79). Although these relations are strictly
(") 7 valid for sswave pairing, they suffice to give rough estimates
_ even for thed-wave case. It is, however, necessary to modify
AT ==t (Ff +ce)—to (f f —(T—])+c.c). the equation fot* due to the slightly different decoupling in

(97  thed-wave casdsee Appendix B Assuming that the saddle

For notational simplicity we have suppressed thiedex on point value 7o xo, We get

the fermion fields. Tracing over the,, fields for each(in-
dependentspatial link and exponentiating the result gener- tA~ jts. (102
ates a term in the action of the form,

Combining Eqs(78) and(102) with Eqg.(101) and assuming
S=-— E 2 Incosh AT ). (98) A<, leads to an estimate fofr,
(rr’y 7T tu 1/3
Since A is bilinear in the fermion fields, upon expanding in Xo~ —2) , (103
powers of A one generates a series of terms that involve J

multiples of four spinons.

Now consider the trace of;; along the temporal links.
Recall that the effect of the gauge fieid ;_;_; along the
temporal links is precisely to impose the constraint &7)
on the Hilbert space in a Hamiltonian formulation. With the
¢ fields integrated out, at,=0, this constraint reduces to
requiring

which is appropriate in the limit of larga/t. Having esti-
mated yo, one can use Eq$77), (78) and (102 to obtain
estimates for the three dimensionless coupling constants,
tS, andt®, respectively. The resulting estimates are given in
Eqg. (19.
Having established the equivalence of the action in Eq.
(92) to the Heisenberg antiferromagnet in the lilit-0, we
(—D)M=-1 (99) briefly consider the opposite largg limit. With sufficiently
larget. the chargons will condense and, as argued in Sec. lll,
at each site of the spatial lattice. Due to Pauli exclusion thighis describes a conventional superconducting phase. But due
is equivalent to the constraint that=1 at each site. Thus, to the assumed form of the pairing correlations, the pairing
after tracing out ther field, the Hamiltonian obtained from symmetry here will bedl,2 2. Thus, theZ, gauge theory in
S, is constrained to operate on a Hilbert space with exacthEq. (92) has the remarkable property that it describes a con-
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ventional antiferromagnet for small chargon coupling, and are left with a pureZ, gauge theory described Br=S,
conventionald,2_ 2 superc;onductor in the opposite_ extreme. +Sg. To explore the effects of the Berry’s phase te3gon
We now turn our attention to the exceedingly interestingine gauge theory, it is useful to pass to the dual representa-

regime between these two limits. tion. Recall that forSz=0 the dual theory is simply the
2+1-dimensional Ising model, with the Ising spin operators
A. Correlated Mott insulators (vi==1) creating the vison excitations. To implement the

duality transformation with the Berry’s phase term present, it

When the chargon coupling strendthis small, the char- . X X S
§ convenient to first rewrite it as

gons will be gapped out, and the system in an insulatin
phase. In this case, it is appropriate to integrate out the char-

gon fields to obtain an effective action for the spinons and T oxt

the gauge fieldr. The main result of this integration will be Sg=i 4 % (1=0y) 1_1;[ Mij ] (108
to generate a plaquette product term of the form

ext

Here wij” can be viewed as an “externalZ, gauge field
S,= —KE H aij |- (104 living on the links of the dual lattice, which satisfies

oLt o= —1 through everyspatial plaquette. In this form
The full remaining action which is valid within the insulating ©ne can readily generalize the duality transformation in Ap-
phases is then simply pendix C to give

S=S5.+S,+Sg. (105
, . Sua= —KaXy i), (107)

The parameteK depends on the couplingg, vanishing at (D)

t.=0 and increasing monotonically witty. The transition
to superconductivity will occur whet,~1. Near this limit, ~ with dual coupling satisfying; tank(;)=e?<. Due to the
but on the insulating side, the valuekofwill also be of order  Berry's phase term, every spatial plaquettéith normals
1. Keeping this in mind, we first find it convenient to analyze along the time directionin the dual Ising model idrus-
the phase diagram of the above actionddvitrary K, incor-  trated In the time continuum limit this becomes a 2D quan-
porating later the superconducting phase. tum transverse-field Ising model whichfislly frustrated

The action in Eq(105 has three dimensionless coupling  The quantum Ising model on a fully frustrated square lat-
constantst®, t*, andK. Considerable progress can be madetice has been studied extensively by several auttfofSin
in determining the phase diagram by focusing on three difparticular, Jalabert and Sachd@studied the model numeri-
ferent limits. The first, considered above Kis=0 where the cally (not coincidentally in the context of frustrated quan-
model reduces to the Heisenberg spin model. The secoridm Heisenberg spin models. For smigl} the Ising model
tractable limit is largeK. If K=« the gauge field is frozen exhibits the usual paramagnetic phase, in which the visons
out and it is possible to choose a gauge wdth=1 on every ~ are gappeduncondensedwith (v;)=0. This corresponds to
link. Then, the only remaining piece of the action describeghe “low temperature” phase of the gauge theory. Deep
noninteracting spinons with a gapledsvave dispersion at within this phase one can setj=1 on all the links, which
four points in the Brillouin zone. This is the “nodal liquid” implies (for t5,t*+0) that the chargons and spinons dee
phase obtained in earlier wark! by vortex pairing within a  confined This is the nodal liquid phase discussed earlier. It is
dual vortex formulation. The nodal liquid is a fractionalized noteworthy that the frustration in the Ising model, which is a
insulator with deconfined, gapless spinons and gapped chaglirect consequence of being in a Mott insulator with one
gons. For large but finit& and in the absence &;, theZ, electron per siteenhanceghe stability of the fractionalized
gauge theory is in its perimeter law phase. As we show benodal liquid phase(the paramagnetic phase of the Ising
low, this continues to hold even in the presenceSgf in mode).
fact, the region of stability of the perimeter phaseeis- As Kg4 is increased, it has been fodfidhat the Ising
hancedby the Sg term. Thus, the chargons and spinons re-model orders, breaking the glolaj spin flip symmetry. But
main deconfined and the nodal liquid phase survives fodue to the frustration, this ordering is accompanied by a
large but finiteK. spontaneous breaking of translational symmetry. It is conve-

As with the fractionalized insulator discussed in Sec. lIl, nient to characterize this symmetry breaking in terms of the
apart from the chargons and the spinons there is anothgauge-invariant energy densities of the near-neighbor bonds:
distinct excitation in the nodal liquid phase, t#g vortex  &;=—(viu{ v;). It is found that some of the bonds are
configuration in ther field, dubbed the vison. The vison is a “frustrated” with positive &;, while the remaining are
gapped excitation in the nodal liquid. As before, due to the'happy” with negative bond energies. In the spatially bro-
minimal coupling of the chargons and the spinons toZhe ken ordered phases, it is found that these frustrated bonds
gauge fieldo, they each acquire a phase ofupon encir- form lines(see Fig. 3, which run along the principal axis of
cling a vison. There is thus a long-ranged statistical interacthe square latticécolumns or rows There are four favored
tion between a chargofor a spinon and a vison. configurations, corresponding to frustrated bonds along ev-

The third tractable limit of the action E¢LO5) is smallt>  ery other column or along every other row. Within each of
andt®. [Estimates appropriate to the cuprates obtained fronthese phases, a particular gauge choice can be made with
Eqg. (19 suggest that these couplings will most likely be ,uiej"‘=—1 on each frustrated bond. With this choice of
much smaller than 1In the extreme limit oft>=t*=0, we  gauge, the Ising sping, , exhibit global ferromagnetic or-
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AF Sp dSC

- - - - - - te

FIG. 4. Schematic zero temperature phase diagram showing one
possible scenario for the evolution from the antiferromagAg&} to
the d-wave superconductatSC In this scenario, all the insulating
phases are conventional. The thick lines indicate confinement of the
chargons and spinons. For concreteness, we have chosen to display
a particular sequence of confined phases, namely, a transition from
AF to a spin-Peierl$SP insulator, and a further transition t65C

(89). In the dual frustrated Ising model, this corresponds to
changing the sign of all the Ising couplings on bonds which
- = e e pierce throught the loop. Being ferromagnetically ordered,
this will cost an energyaction proportional to the area of
the loop, the signature of confinement. Thus, as expected, the
-1- -1 i spin-Peierls state is a conventional insulator, with confined
spinons and chargons. The gapped spin-one excitations made
by breaking the singlet bonds can then be thought of as a
FIG. 3. One possible ordered low temperature phase of the fu"Xconfined pair of spinons.

frustrated transverse field Ising model in two spatial dimensions. The three limiting cases discussed above suggest the
The thick Ii_nes represent the'frustrated bonds. The d_ash“e(_j IinegrIase diagram shown in Fig. 1 for the action in ELD5).
gizgt:’ tlrilveellnks of the dual lattice where the corresponding “single onsider first the regime with smaf andt®. At very small

) K a conventional antiferromagnetic insulator is expected.

dering. Altogether, the ground state is thus eightfold degenWith increasingK there is presumably a phase transition into
erate and breaks th&, spin flip, translational and rotational & conventional spin-Peierls insulator with confined chargons
symmetries. and spinons. Upon further increasirg the spin-Peierls

In general, several other ordered phases of the fully frusPhase undergoesdeconfinemertransition into the fraction-
trated Ising model are possible; some of these are explored @lized nodal liquid phase. For larggandt®, the antiferro-
the Landau theory of the first reference in Ref. 30. Thesénagnet and nodal liquid phases will still be present in the
phases may perhaps be stabilized by very lage and/or limit of very small and largeK, respectively. But it is not
longer ranged interactions beyond the simplest nearest neighlear which phases will be present when all three of the
bor model studied in Ref. 16. We will not consider thesecoupling constants are of order 1. In particular, it is unclear
other possibile phases in the present paper. whether it is possible to have a direct second order phase

What are the effects of a small nonzdfoandt® which  transition from the antiferromagnet into the nodal liquid or
couple the spinons to th&, gauge field? In the context of Whether there will always be an intervenirtgpin-Peierls
quantum antiferromagnets, Sachdev and co-wotkéfsave  phase.
suggested that thgpatial ordering of the Ising model corre- We now discuss the implications of these results for the
sponds to a spin-Peierls ordering. This interpretation appeaf¥ase diagram of the fulZ, gauge theory in which the
to be consistent within our present framework. Specifically,charge degrees of freedom are present and superconductivity
associated with each frustrated bond in the Ising model, is & Possible. Of primary interest is the evolution from the
corresponding frustrated plaquette on the dual lattice@ntiferromagnet to the-wave superconductor upon increas-
“pierced” by that bond. The expectation value of the ing the chargon couplind.. A transition into the supercon-
plaquette product in the gauge theory will therefore beductor is expected to occur at some critical chargon cou-
modulated in these ordered phases, Withyoij)~—¢&;. pling, t5, of order one. For smallet. in the insulating
Upon including the coupling to the spinons, this modulationregime, the dimensionless couplikgwill at most be of or-
of the energy density will, in general, induce a modulation inder 1. One can imagine two qualitatively distinct possibilities
various other physical quantities. In particular, the quantunupon tuning towards the superconductor from the insulating
expectation valués; - S,/) evaluated for each bond will be phases. First, it may be that even whgincreases to; , the
spatially modulated—bonds which “cross” the frustrated value ofK will remain smallerthan the critical value needed
lines of the dual lattice will have a different value for this for deconfinementK.. In this case, all the intermediate
expectation value from other bonds. Presuming the spin rophases between the antiferromagnet and the superconductor
tation invariance remains unbroken, this state corresponds twill be conventional confined phases. This is illustrated in
a spin-Peierls phase which we denoteSk& The “singlet  Fig. 4. Alternately, it may be tha exceedK. beforethe
bonds” in this phase are arranged in a columnar fashionpnset of superconductivity. This would imply the existence
running perpendicular to the lines of frustrated bonds in theof the deconfined nodal liquid phase intervening between the

dual Ising model as depicted in Fig. 3. d-wave superconductor and a conventional insulator. This is
Since the Ising spins in the fully frustrated Ising modelillustrated in Fig. 5.
order ferromagnetically in these modulated phasgth an Which one of these two possibilities is realized will pre-

appropriate gauge choice fprﬁ-“) implying a vison conden- sumably depend sensitively on microscopic details. Indeed,
sation, (v;)#0, confinement is expected. To see this, con-sinceK is of order 1 whert, approaches; , it seems likely
sider evaluating the Wilson loop correlator defined in Eg.that the onset of superconductivity will occur close to the
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AF SP NL dsc original Z, gauge theory with matter fields, but is dual to it.
0 t, To obtain a dual representation of the system of chargons
and spinons coupled to th®, gauge fieldo;;, we need to
combine the dual representation of the gauge theory with

the standard duality transformation of th€Y model. As
shown in detail in Appendix D, this is readily done. For the
time being, we will only consider the situation with local
d-wave pairing and an odd number of electrons per unit cell.
phases. But in any event, our analysis h.as _firmly establisheghich are minimally coupled to a fluctuating(1) gauge

the possibility of the deconfined nodal liquid phase. It re- fig|g a whose circulation is the total electrical current. In
mains a challenge to determine whether this exotic fractionaqgition, thehc/2e vortices are minimally coupled to 2,

FIG. 5. The other qualitatively different scenario for the evolu-
tion from the antiferromagnet to tllewave superconductor. In this
case, upon increasing, a transition to the fractionalized nodal
liquid (NL) phase occurs before the onset of superconductivity.

alized insulator is realized in the cuprates. auge field;; . The full action is given by
In Sec. V, we will describe much of the physics discussedg :
here in a dual formalism in terms of vortices rather than the S=S,+S,+ S+ Scst Sg, (109

chargons. This will provide considerable further insight, and
make connections with earlier approaches.

a..
SU:_tU(E'> Mij COS{ Gi—01+% , (109)
1]
V. DUAL VORTEX REPRESENTATION
For a system of interacting bosons in two spatial dimen- _K 2
sions, it is well known that the insulating phases can be Sa g2 % (Axayj)%, (119

described as a condensate of vortices in the many particle
wave function. More formally, it is possible to set up a dual o o
description where the vortices, rather than the part_icles, are Si= —Z aij[tisjfifj+tﬁfmfu]—2 fif,, (111
the fundamental degrees of freedom such that the insulating (i) :
phase is a vortex condensate while the superfluid phase is the
vortex vacuum. For the electronic systems considered in this T
paper, it is natural to attempt to do the same, and work with SCS:E 'Z( 1_1;[ 7
a dual description in terms of vortices in the Cooper pair
phase,e, and the spinons. Since the Cooper pair has chargelere e'? creates thenc/2e vortex, andf; is the spinon as
2e, these are théc/2e vortices which occur in a conven- before. The first term represents single vortex hopping, while
tional superconductor. Besides providing additional insighthe second is a kinetic term for thé&(1) gauge fieldy;; . The
into the mechanism and nature of electron fractionalizationflux of a is the total electrical current, in particular a flux of
passing to a dual vortex description enables us to make cors through a spatial plaquette adds an electric charge of 1 a
tact with earlier work which describes fractionalization in chargon Together these two terms comprise the usual dual
terms of vortex pairing. vortex representation of a set of charge €ooper pairs,
We will start with the full chargon—spinon actid®= S, except that here the vortices are minimally coupled to an
+ S+ Sg discussed in Sec. IV, and perform a duality trans-additional Z, gauge fieldu;; . This leads to a vortex—spinon
formation to trade the chargon fields for the/2e vortices.  coupling mediated bys-s. This term has a structure very
This differs somewhat from the conventional duality similar to a Chern-Simons tergalthough it is for the group
transformatiof’ from bosons to vortices due to the coupling Z,) and, as discussed below, plays a similar role. The Ber-
of the chargons to th&, gauge field. ry’s phase tern$g is the same as before.
To understand how to deal with the chargon coupling to  The full dual action is invariant under a lodd(1) gauge
the o field, it is useful to first review the well-known self- transformation,
duality of theZ, gauge theory with Ising matter fields in 2

(1= pij)- (112

+1 dimensions. This is done in detail in Appendix C. The 0;— 6+ A, (113
duality proceeds by first rewriting the partition function in

terms of aZ, currentfor the Ising matter fields and th&, A=A,

gauge field,oj;. The Z, current lives on the links of the aj;—aj— — (114

lattice and can take one of two values, 0 or 1. It is conserved

can be implemented by writing th&, current as the flux of jn three dimensions. The corresponding conserved charge is

a dualZ, gauge field, denoted as;; . (This is completely  the vorticity. The action has an additiory gauge symme-
analogous to the duality of the three-dimensional classicaky under which

XY model) Eliminating theZ, current in favor of the dual

gauge field_ gives an action wrlitten entirely in terms of two el eelf, Wij— €ifLij €] (115

Z, gauge fields ¢;; and ;) which are duals of each other.

The originalZ, gauge field,oj; may be eliminated by ex- with =*1. We emphasize that this gauge symmetry is
pressing its flux as the current of a dual Ising matter field, thelistinct from the localZz, gauge symmetry of the spinon—
vison v;. The resulting theory has the same form as thechargon action, but in fact is dual to it.
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To get some intuition about the terS g, it is instructive  mode of the superconduct@apped when long-ranged Cou-
to replace the vortex hopping term in the action by a Villainlomb interactions are includedand the spinon piec&;.
potential, With ;=1 the spinons can freely propagate and describe
the gapless nodal quasiparticles. A correct description of a
conventionald-wave superconductor is thereby recovered.

Consider next the opposite limit withy—o. In this re-
gime thehc/2e vortices will condense(e'%)#0. The dual
where ©;;=60;— 0;+ (&;;/2)+ (m/2)(1—- w;;) is the gauge Anderson—Higgs mechanism leads to a mass term for the
invariant phase difference. Here the integer figJdhat lives  gauge fielda;; , indicative of a charge gap. With one electron
on the links of the lattice represents the three current of th@er unit cell the resulting phase is thus a Mott insulator. In
hc/2e vortices. After this replacement it is possible to explic- the absence of any gapped charge excitatidng §=0), it
itly perform the summation over the gauge figld . For s possible to choose a gauge withi=0 on every link. The
each link of the lattice this contributes a term to the partitionyortex hopping term become; = — h=;; wij with a nonzero
function of the form, & (— 1)%II50, which vanishes unless “fijg|d:” h=t,|(e'%)|2. When this field is large one can set

wij=1 on each link, so that the Chern—Simons terms van-
(—1)%=[] o. (117  ishes. The full action then reduces $gy=S;+Sp . At this
] stage the summation over thegauge field can be performed
explicitly. As detailed in Sec. 1V, the resulting model re-
duces to a simple 2D near-neighbor Heisenberg antiferro-
magnet. Thus, we readily recover the simple antiferromagnet
from the dual representation by condensing2e vortices.
Finally, here in Sec. V we wish to recover a dual descrip-
n of the fractionalized nodal liquid. Since the nodal liquid
is electrically insulating it requires vortex condensation. But
as established in Sec. 1V, the nodal liquid supports gapped
Z, vortices, the vison excitations. Since the Chern—Simons
term attaches a vison to eable/2e vortex, it is clear that to
obtain the nodal liquid thdénc/2e vortices cannot be con-
densed. But since thequareof the vison operator is unity
(vi2= 1), apair of hc/2e BCS vortices does not carry a vison
(—1)Jf=H M, (118  with it. As we now show, the nodal liquid can be obtained
= from the d-wave superconductor bgairing BCS vortices,

with J; the spinon three current. &, flux in the gauge field and then condensing thec/e vortex composite.

« has thereby been attached to each spinon. More precisely, 10 this end, we add an extra vortex pair hopping term to

since the spinon number is only conserved modulo 2 due t§1€ action,

the anomalous pairing term, t&g flux is attached whenever

an odd number of spinons propagates. The net effect of this B

Z, Chern—Simons term is to implement mathematically the S20= _tZU% COS 01— Oz F ). (119

long-ranged statistical interaction between BCS vortices and

spinons. This kind of flux attachment may be familiar to Here, e'%2i= ('%)?, thus creating a pair of BCS vortices.

many readers for thel(1) group from theories of the quan- Notice that thenc/e vortex is also minimally coupled to the

tum Hall effect. But since the spinon number itself is noty(1) gauge field, as required by the dus{1) symmetry of

conserved, implementing this statistical interaction with athe action, but isnot coupled to theZ, gauge field, ui; ,

U(1) Chern—Simons term is problematic. It is a remarkablepecause it carries no vison charge. We now consider taking

aspect of the duality transformation in Appendix D, that thist, |arge and condensing thec/e vortex, (e'?2i)+#0, keep-

Ising-like Chern—Simons terms emerges so naturally. ing the hc/2e vortex uncondensed. Before doing this it is
convenient to re-express tle/2e vortex as

2 .
etUCOSGij*) z e_‘]UIZtuelJv@ij' (116)
J,=—

Thus, the Chern—Simons term has effectively attach&d a
flux of the gauge fieldr—a vison—to eaclmc/2e vortex. As
discussed in Sec. lll, this composite comprised oharle
vortex bound to th&, vison is nothing but the familiar BCS
vortex. Due to the attached vison, when a spinon is takerﬂO
around the BCS vortex it acquires the expectedphase
factor.

Alternatively, it is possible to perform an “integration by
parts” on S5 which effectively exchanges the role efand
u, and then perform a summation ower This leads to the
additional constraint,

A. Phases

We now analyze the phases in this dual vortex descrip- e'li=y;e' %, (120
tion, focusing on the most interesting case of an odd number
of electrons per site with local-wave pairing correlations. With vi==1 the vison operator. Notice that with this iden-
In the vortex description the superconducting phase correlification the field6, can be treated as an angular variable,
Sponds to a vortex vacuum, and the insu|ating phases af:‘énce the rlght side is invariant under the combined transfor-
vortex condensates. We consider first two simple limitingmation, 6,— 6>+ 27 andv;— —v;. We finally find it con-
cases, first the superconductor with vanishingly small vortevenient to absorb the field,; into the gauge field; by the

hoppingt,—0, and then the insulator withy— . gauge transformation,
Whent, is zero the summation over the gauge figldan
be performed, giving the constraifityo=1. It is then pos- ajj—ajjt 0 — 0. (121

sible to pick a gauge withrj;=1 on every link. The resulting
action has two piece$§, which describes the gapless soundIn this gauge, the vortex hopping terms become
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E % cH ) VI. DOPING
S= b o Uik €372 ) (122 Our analysis has so far focused only on situations with an
integer numberN,, of electrons per unit cell. Finite doping
leading to nonintegeN, does not crucially modify our dis-
Sy, =1, > coday)). (123 cussion of fractionalization issues. Indeed, both confined and
! fractionalized insulating phases can exist for nonzero doping.
) ) ) ) ) At a qualitative level, in both kinds of insulating phases, the
In the insulating phase with larde, there will again be a  y5in effect of nonintege, will be to induce charge order,
charge gap due to the dual Anderson—Higgs mechanismccompanied by translational symmetry breaking. The pre-
coming from thehc/e vortex condensate. Above the gap will ise nature of this charge order presumably depends on the

be chargee chargons, corresponding to arZlux tube inaj; . getails of the system, and may be sensitive to the presence of
In the absence of any charged excitations one caraget |ong-ranged Coulomb interactions.
=0, and the single vortex hopping term becomes Formally, noninteger values dfl, can be incorporated

into either the particle or vortex representations as follows.
In the particle representation, as discussed in Sec. Il, the
main effect of nonintegeN, is to modify the Berry phase
term to

SU:_tU<iEj> Ui,lLijl)j. (124)

The full effective action iSy4=S, + Ss+ Scst Sg. Whent,

is small the visons will be uncondens@d)=0. In this limit

the summation over the gauge field can be performed, and
due to the Chern—Simons term leads to the constraint, _ _ _ _ _
I[Io=1. One can then choose a gauge with=1 on each Here,l;; is an integer defined on each temporal link given by
link, which setsSg=0. The only remaining term i de-
scribes free propagating spinons. These are the gapless
nodons in the insulating nodal liquid.

We thereby recover a decription of the nodal liquid from ) _ )
the dual vortex formulation. In addition to the gaplessWhere ®ij=ai—¢;+(7/2)(1-oy) is the gauge-invariant
nodons, the nodal liquid supports two gapped excitations, thBn@se difference between two sites. Witgnis not an inte-
chargon and the vison. As is clear from the above analysiJ€l, this Berry phase term leads mplex Boltzmann
the vison is simply a remnant of thee/2e BCS vortex which yvelghts in _the partition function sum. This is not too surpris-
survives into the nodal liquid upon condensation of lilvée Ing: even n t_he abse_nce of any gauge field coupling, the
vortex pair. Physically, since the vorticity is only conservedPartition function for simple Boson—Hubbard models at ar-
modulo 2 (in units of hc/2e) once the fielde'%2 has con- bitrary chemical potential involves complex weights.
densed, only a conserveth remains from thehc/2e BCS The presence of such complex weights does not pose a

vortex. As before, the vison picks upraphase change when problem for the existence of the fractionalized insulator. We

it is transported around either a spinon or a chargon. To Seréracall that thg frac_uonah.zed phase is Obta".‘ed yvhen the
this, note that a chargon corresponds te #ux in a;;/2 and gauge fieldor; is in its perimeter phase. Deep in this phase,

the nodon(spinon a flux in su;; . As seen in Eq(122), the we may setrj;~1 on each space-time link so that the Berry

vison is minimally coupled tdoth of these gauge fields, thus phase termS; becomes independent of; . The resulting

acquiring a sign change upon encircling the spinon or charaction then describes a lattice model of bosonic chargons at

gon. filling Ny and the fermionic spinons, decoupled from one

It is worth emphasizing that a clear mechanism for vortex@1Other. Thus the chargons and spinons will still be decon-

pairing can be found from the analysis in Sec. IV. Since theﬁned' Howe\_/er, the grou_nd state will genera_lly e’?“‘b“_
chargons and vison®r vortices have a long-ranged statis- charge ordering accompanied by broken translational invari-

tical interaction, motion of the charge is greatly impeded b nce. Confined conventional insulating phases at noninteger

the presence of unpaired visons. On the other hand, once ko clearly_ also_ eX'St'_ )
hc/2e vortices are paired, the charge can move coherently. Numerical simulations of th#, gauge theory at arbitrary

Thus, the presence of a large kinetic energy makes vorteo {0 determine the precise nature of the charge ordering in
pairing energetically favorable. these insulating phases will be seriously hampered by the

It is finally worth mentioning that in the limi§,=0 one presence of _these complex weights in the. partition function.
readily recovers the fully frustrated Ising model considered™0rtunately, in the dual vortex representation, nonintéger
in Sec. IV. To see this, note first th& can be rewritten in enters in a more innocuous manner. To generalize the duality
the form of a Chern—Simons term wifla replaced by ® tr_ansformauon to grbltrarwo is stralghtforwarq, becau;e the
wherell .= —1 through all spatial plaquettes. Witk Villain representation of the chargon hopping term in Eq.

=0, one can then perform the summation over ¢ghgauge (D4) is simply modified to read
field, and this setg; =,uﬁ"‘. The remaining term irBy is

. (126

] T
SB:_l E A No(ZWlij_E(l_Uij)

ij=i—r

Pij 1
27 2

, (127)

|ij:|nt

the fully frustrated Ising model, g% (Jij—2mN;)2. (128
1]
_ ext ere,N;; =N for temporal links, and is zero otherwise. Pro-
S, tElLtvlv, (125  Here.N;; Ng f [ link di herwise. P
v ij .

{ ceeding with the duality transformation gives the action,
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S=S,+Ss+Scst Sa, (129 1
where the first three terms are the same as before in Eq. Higgs
(108. The last term, which was equal 8+ Sg for integer ¢ -
Ng, becomes instead ¢
Déébnfined
~ K 5 \\\
S=g 2 % (Axay—2mN;))>. (130 o | Confined
0 K o

Notice that in this dual representatiddg acts like an exter-

nal “magnetic field” piercing each spatial plaquette. FIG. 6. Schematic zero temperature phase diagram foZhe

. . o . h I fiel i h i f Eq.
For the particular case of odd integdp, it is instructive gauge theory coupled to matter fields described by the action of Eq

137).
to see how the tern$g may be recovered. To that end, we (137
define a new “external” gauge field®" on the links of the A. Particle description

dual lattice such that
We have already argued that when the chagbargons

Axaiegxtzszij (131) condense,.th.e resulting phas.ells a _convgnnonal supercon-
J ductor. This is perhaps surprising, since in a conventional
We now absorba® into a by the shifta—a—a®" This B_CS description the_ o_rder parameter carries chagehe _
might ask whether it is possible to have a superconducting
phase in which the chargopairs (i.e., the Cooper paijs
have condensed, while single chargons have not. As we now
L ge demonstrate, such a superconducting phase, which we denote
aij T ajj asSC*, can exist and has a surprisingly simple description in
=— i —0i+——]. ' 9
Sy t”% Hij COS( 0~ 9, 2 ) (132 terms of ourZ, gauge theory. For simplicity, we will initially
present the discussion fefwave pairing with an even num-

eliminatesa®! so thatS,—S,, but modifies the vortex hop-
ping term which becomes

For odd integeiNg (say,No=1) one may choose ber of electrons per unit cell.
The appropriate action from Eq&4) and(87) in Sec. llI
aﬁ.*‘:zwnij , (133 takes the formS=S.+S;+ S . As discussed there, the ki-

netic term for the gauge fiel§,, although not present in the
with integer n;, which satisfiesA xn;;=Ny=1 for every  original action, will in any case be generated upon integrat-
spatial plaquette and is zero for all other plaquettes. Withing out high-energy modes. To access the chargon pair con-
this choice we may write densate phase, it is extremely convenient to add an explicit
pair hopping term to the actioS,,; from Eq.(91). For large
pair-hopping amplitudet,, the chargon pairs will condense,

a..
=1, (134  leaving the single chargons uncondensed,

S,= _tu% MijMﬁXtC(){ 0= 0+

. . _ (e?)+0, (e?=0. (135
where = (—1)"i. Notice that the fluigu is —1 for

every spatial plaguette and zero for other plaquettes. If wd his still breaks the global (1) charge symmetry, and so
now perform the shiftu— uu® the field x®is eliminated de;crlbes a supercoqductor, put one with rather exoyc prop-
from S, but reappears iBeo( u ). But upon noting the erties. To examine this phase it sufflc_es to tajegw which
form of the Berry’s phase term in E¢L06), one can easily allows one to set &; equal to 27 times an integer or,
demonstrate thae(uu®) = Scg() + Ss. We thereby re-  €quivalently,
cover the earlier Berry's phase form for the case with odd o
integerNo. di==(1-s), (136)

The dual representation for arbitralg, is simpler look- 2
ing than t.he one i.n the particle formulation, and is probably,ith the value of the Ising spins; = = 1, arbitrary. In this
better suited to discuss issues such as the nature of chargﬁ,it’ the chargon creation operator equals the Ising spin,

ordering at finite doping. In particular, if we ignore the cou- ei“i=s . After integrating out the massive spinons, this

pling to the spinons and sl =1, the remaining partition |gaves an effective theory of the form
function sum involves onlyeal weights, and can presum-

ably be evaluated numerically.

. (137

5|—gauge:—2tcz SiUiij_KE [H Tij
(ij) ] ]

VIl. OTHER EXOTIC FRACTIONALIZED PHASES with t, the chargon “hopping” strength.

Here in Sec. VII we will briefly explore the possibility of ~ This theory, which describes Ising spins “minimally
obtaining other fractionalized phases different from the onesoupled” to aZ, gauge field, has been extensively studied
discussed so far. The most interesting phase that emerges iy Fradkin and Shenk&ras a toy model of confinement.
novel fractionalizedsuperconductgr we will describe its The phase diagram in thg—K plane is shown in Fig. 6. In
properties in both the particle and vortex formulations. theK— < limit the model reduces to a global Ising model for



PRB 62 Z, GAUGE THEORY OF ELECTRON. .. 7869

the spins. With increasing. there is an Ising transition into
a phase with(s;)#0 (the Higgs phase which corresponds sC sc"
to the chargon-condenséd phase. Along thé.=0 axis the
pure Z, gauge field exhibits a confinement transition with
decreasing. Fradkin and Shenker argued that the Higgs and
confined phases could be continuously connected by noting I I
the absence of a phase transition alongttlex andK=0
lines. Moreover, as detailed in Appendix C, this model is in FIG. 7. Schematic zero temperature phase diagram displavin
fact self-dual, and maps into an equivalent model with new, fou.r hase SC SC* T and ZE P 9 playing
parameters reflected across the dashed line. P ' T '

The phase with larg& but smallt. corresponds to the
exotic new superconducting phas¥*. In this phase there
are four deconfined massive excitatiofis: the spinon(ii)
anhc/2e U(1) vortex, (i) the Ising spins; and(iv) the Z,
vortex in the gauge field, the vison. In striking constrast to
a conventional superconducting phasesitt theU(1) and
Z, vortices can exist aseparateexcitations, and araot
confined to one another. In order to distinguish thig2e
vortex from the BCS vortex, we will refer to it as drc/2e
vorton The Ising spin excitatios is a remnant of the char-
gon. In the paired-chargon condensé&t® phase, the global

grgilggar‘gfhzyrgfpgt%rlr?e?rOt gjlIy_bsrgk(e::gr;r;ge;en:jgnantéjn-hCIZG vorton and the visofi.e., theZ, vorteX. The result is
2 9 y Y &i— =S P Ing the BCShc/2e vortex, as discussed earlier in Sec. lll.

2ﬂr:2nauatr;1cee ;223 icmUS '(glr)] iﬁ?ﬂ?g: 8; :22 gﬂg:gg?] ?Sp(re]roattor. The transition fronZ* into SC* upon increasing, can be
9 9 g understood as a superconductor—insulator transition of

conserved, the chargon number is conserved modulo 2, 3 . .
. ; : charge 2 chargon(or Coopey pairs. Note that a direct tran-
reflection of this unbroken Ising symmetry. Indeed, one can

define a conserved Ising charge@g=(—1)N==1, where sition from the conventional insulat@rto SC* is not generi-

N is the chargon number operator. Since the Ising spin o cally possible.
g . P : . _'SIng spin op Figure 7 is a schematic phase diagram exhibiting the four
erator changes the sign €J,, the massive spin excitation

* 1 I -
carries the conservef}, electrical charge of the chargon. We p.h .asesSC, o€, 1, gngl*, as _vveII as the |n.terven|ng tran
. o . sitions. Of the four, it is only in the band insulat@rthat
refer to this excitation as an “ison.

. SO . . . spinons are confined. In the other three phase&heortex
To gain some physical insight into this strange ison par- -
. . : is gapped out and uncondensed. These three phases exhibit
ticle, consider what happens when an electron is added to 8 2. ™" o . S .
. excitations with “fractionalized” quantum numbers. It is the
superconductor. The electron creation operator can be de- ) ; :
. : condensation of th&, vortex which leads to confinement,

composed into the product of a spinon and a chargon,

leaving only the electron in the spectrum.

tical interactions between any two members of a pair. All
other pairs of excitations do not acquire any geometrical
phase factors. Note in particular titae hd2e vorton, being
unbound from the Zvison, does not have a long-range sta-
tistical interaction with the spinon i&6C* . This distinguish-

ing feature will have several important consequences in the
dual vortex description developed in the next section.

The transition fromSC* to SC occurs on condensing the
ison so that single chargons are themselves condensed. Note
that ison condensation leads to confinement of the excita-
tions; it has long-ranged statistical interactions with the

C;-a:bi-rframsifra' (138)

1. Odd number of electrons per unit cell

The second equality is valid within the two superconducting We now briefly consider the superconducting phases with
phases. In the conventional supercondudi6r the ison is  odd integer filling, but still presumingwave pairing. Since
also condenseds;)#0, so that the electron is essentially chargon pairs are condensed in béthand SC*, it suffices
equal to the spinon. Thus the spin of the added electron iggain to consider very large pair hopping amplitudg,
carried away by the spinon, the conventional BCS quasiparMoreover, with condensed chargon pairs, the chargon opera-
ticle, whereas the electrical charge is carried by the condertor can be replaced by the Ising spb{,= s;==*1, the ison,
sate. On the other hand, 8*, adding an electron not only as discussed above. After integrating out the gapped spinons,
increases the conserved spin by 1/2, but changes the cothe effective theory again reduces to the Ising matter-plus-
servedZ, “electrical charge.” The spin and, charge are gauge theory as in Eq137), but with the addition of the
carried away by twoseparate massive excitations—the Berry’'s phase termS$g,
spinon and ison. Thus, th&* phase exhibits an exotic form
of spin-charge separation.

It is again important to ask about geometric phase factors Seft= _2t°<i21> Si‘TiJSi_Ké [1;[ ‘Tii}*"SB[‘TiJ]'
acquired when any of the four massive excitationsSirf (139
encircle another. First, note that both the ison and the spinon
are minimally coupled to the gauge fietel Consequently, Note that theSC* phase is realized only for largk, as
they both acquire a phase factor #fon encircling thezZ, discussed above. In this limit, as we have emphasized several
vortex, namely, the vison. The ison, being a remnant of aimes, the effects of the Berry phase teBgare expected to
chargon, also acquires a phasembn encircling arhc/2e  be innocuous. ThussC* will continue to exist even in the
vorton. Thus the pairs(spinon, visom, (ison, vison, and  presence of5;. To see this in more detail, it is once again
(ison, hc/2e vorton) acquire phase factors af upon encir- illuminating to pass to a dual representation, which ex-
cling one another. Equivalently, there are long-ranged statisshanges the isons for the visons,
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In the presence of finite doping with nonintegep, in
either thesswave or thed-wave case, th&C* phase is ex-
pected to survive, since th8g term is innocuous in this
phase. The conventional superconducting phases will be
more sensitive to the value ®f,: several additional super-
conducting phases with broken lattice symmetries are pre-
sumably possible.

B. Vortex description

FIG. 8. Schematic zero temperature phase diagram for the su- .
perconducting phases with an odd number of electrons per unit cell. W€ now show how the superconduct* may be de-
The SC—SP phase is discussed in the text. The precise topology ofcribed in the dual vortex formulation. The discussion in Sec.

the phase diagram when the couplinggandK are both of order 1
is not firmly established.

Sua= — Koy vimijvj—ta 11 [ wil, (140
(i]) o o
with tanhy) =e~*'c and tanhK 4) =e~?¥. Here; is a dy-
namicalZ, gauge field and, as befor;a,-ejXt is an “applied”
field with H\Z\Miert: —1 through all spatial plaquettes. This
theory is a direcZ, analog of aJ(1) superconductor in the
presence of an applied magnetic field.
Consider briefly the phase diagram in theK plane. A

V was based on the action in EGLO8) for the spinons and
hc/2e vortices. The symmetries of the action allow the ad-
dition of “kinetic” terms for both Z, gauge fieldsr and w.
Once again, although not present in the original action, these
terms will be generated upon integrating out high energy
modes,

(141)

Srr:_Krrz H aij,
o O

S,=— (142

Ko I i
O O

schematic phase diagram is shown in Fig. 8. Progress can beis of interest to explore the phase diagram for arbitrary

made in various limiting regimes. F&ty=0 the theory re-
duces to a pureZ, gauge theory with gauge fieldﬂij

= puwij . Sincenf plays no role in this limit, the resulting
phases are identical to that with even intelygranalyzed in
Sec. VIIA. In particular, for large., we have a conven-
tional superconductoC with brokenZ, gauge symmetry,
while for smallt,, we get the exotic superconductS€* .
These phases survive for smil}. It is easy to establish the
absence of phase transitions fiy=o and K=0. For tg4

=0, on the other hand, one can szuﬁ“, and the model

reduces to the fully frustrated Ising model. As discussed ex-

positive values of the couplings, andK, . We will show
that the superconductoSC* emerges quite naturally for
large K, andK,. As shown below, an important physical
consequence of the addition of théég andK , terms is that
the Chern—Simons teri®.s is no longer effective in attach-
ing flux to the vortices and the spinons. Note that, in the
absence of flux attachment, the fieddi creates a “naked”
hc/2e vortex, i.e., anhc/2e vorton Attaching flux of the
field o, i.e., a vison, converts this into a regutac/2e BCS
vortex.

For ease of presentation, we specialize on the case of

tensively in Sec. IV, the results of Ref. 16 show the existenc&Wave pairing and an even number of electrons per unit cell.
of an ordered phase for lardg, where translational symme- [N that case, the terrg may be dropped from the action.
try is spontaneously broken. In general, this is expected tgUrther, the spinons are gapped and can be integrated out.
lead to spin-Peierls order. In this case, though, the spinlhis will lead to an innoccuous renormalization of the value

Peierls order coexists with superconductivity. We will de-of K.

note this phase aSC—SP. Several other ordered phases are

In the vortex description, superconducting phases corre-

presumably also possible although we will not discuss thes@Pond to vortex vacuua. To analyze these, it is then appro-

here.

In the SC—SP phase the external gauge field “pen-

ext

etrates” with u;;~ i, and the Ising model is frustrated.

But asty is reduced, it eventually becomes favorable to
“screen” out this external field, and enter a Meissner phase

priate to imagine integrating out the vortices. This will renor-
malize the value ofK, (or generate it if not present
originally). The resulting action has only the terms,

S=S,+8S,+S,+Scs. (143

with (IIoui;)~1. When this happens the broken transla- The termS, leads to a gapless Iineardis_persing_ excitafion
tional symmetry disappears, along with the frustration, andhe absence of long-ranged Coulomb interactipasd cor-

one enters int&C.

2. d-wave pairing and doping

The discussion above generalizes readily to the case
d-wave pairing. In particular, dSC* phase where chargon

pairs, but not single chargons, have condensed is an allow
phase in the model. Its properties are the same as those f
thes-wave case above, except that the spinons have a gaple

d-wave dispersion. Also possible isd&C phase coexisting
with spin-Peierls order, just as in tlsavave case.

responds physically to the sound modes of the supercon-
ductor. The remaining three terms only involve the tfp
gauge fieldsr and . As shown in Appendix C, this action is
equivalent to that of th&, gauge theory with Ising matter

Helds. If we choose to integrate out the it is exactly the

same as the Ising effective action derived in Sec. VII A to
scuss the superconducting phases. Alternatively, we can
Rggrate out ther field to obtain the dual theory as in Eq.
0,

S=Sst+S,, (144)
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1.d=3

_
Svis= K(TiEj Vikijuj- (145 In 3D and in the absence &g, the Z, gauge theory
g ok d ) again has two phases distinguished by the behavior of the
Here tanhK;)=e "¢, so thatK, is the coupling dual to  ilson loop correlatofarea law versus perimeter [avAs in
K. Once againp; creates a vison, whosg, current is 2D, the presence dbz will enhance the stability of the pe-
equal to the flux of ther field. On the other hand, the vortex rimeter phase’ but the area law phase will still be present_
configurations of the gauge field correspond to théson  The presence of the perimeter law phase implies the exis-
excitations. tence of 3D insulators with electron fractionalization. But in

As discussed earlier, thé, gauge theory with matter constrast to 2D, the flux tubes in ti#® gauge field, the
fields has two phases: a Higgs-confined phase and a decofisons, are not pointlike excitations, but become extended
fined phase. The Higgs-confined phase describes the convestring-like excitations in 3D. The area law phase again de-
tional superconductoC, and is perhaps easiest to under-scribes various confined insulating phases. Whether the pres-
stand in the limit in which bottK , andK¢ are small. With  ence ofS; leads to broken translational symmetry as in 2D is
smallK , the gauge field is in its confining phase, so that testan interesting unanswered question. Note, however, that in
charges coupling to the gauge figldare confined. There are 3D it is not possible to pass to a dual global Ising model. In
actually two different particles minimally coupled fo—the  fact, the pureZ, gauge theoryin the absence 08g) is in
hc/2e vorton and the vison, with creation opera®fi and  fact self-dual? in three spatial dimensions.

v;, respectively. As before, the confined vorton—vison To discuss the superconducting phas€sand SC*, it is
bound state is the conventionat/2e BCS vortex. necessary to understand the properties oZthgauge theory

The deconfined phase describes the exotic superconductooupled to Ising matter fields. In the absenceSgf, it is
SC*. In this phase, test charges that coupleutare decon- knowr! that in three spatial dimensions, there are again two
fined. This implies that théac/2e vorton and the vison are phases, the Higgs-confined phase and the deconfined phase.
not bound together, and can propagate as independefhese correspond t8C and SC*, respectively. Their distin-
gapped excitations, in agreement with the earlier discussiomguishing properties will be qualitatively similar to the 2D
In effect, within SC* the Chern—Simons term has been ren-case. As in 2D, we expect that the main effeciSgfwould
dered ineffective and does not attach flux. Also, configuraonly be to make possible the existence of&hphase with
tions with 7 flux in the gauge fielgw, corresponding to the broken translational symmetry.
ison, exist as finite energy excitations. Thus, as before, we In layered quasitwo dimensional systems, fractionalized
conclude that there afeur gapped excitations i8C*—the insulating phases in which each layer is decoupled from the
hc/2e vorton, the spinon, the vison, and the ison. others are possible, and exist as distinct phases from the

Note that a transition fronC* to an insulator obtained isotropic ones discussed above. Such phases are currently
by condensing thlac/2e vortons[which are the fundamental under further investigation.

U(1) vortices in this phagdeads naturally to the fraction- Finally, it is worth emphasizing that while the extension
alized insulatorZ*. This is because the vison is unboundto 3D is straightforward in the particle representation, the
from the hc/2e vorton in SC*, so that condensation of the dual vortex representation necessarily involves string-like
latter leaves the former uncondensed. Indeed, the distinct exortex degrees of freedom.

citations in the resulting insulator are the chargons, the

spinons, and the visons, as appropriaté’fo Thus, the ex- 2.d=1

otic insulatorZ* may either be reached froC by condens-
ing hc/e vortices or fromSC* by condensing h@e vortons
In either case, the vison remains uncondensed.

This completes the dual description 8€*. Complica-
tions such asgl-wave pairing or arbitrary filling\Ny can be
handled straightforwardly in this dual formulation as wel
although we shall not do so here.

In one spatial dimensiofilD), the Z, gauge theory is
always in its area law phase, with or without tBg term.
Thus, our formulation is incapable of describing electron
fractionalization in one dimension. Evidently, fractionaliza-
I tion in d=1 must have different physical origins than fibr
’>1. To highlight this point, note that 1D fractionalization

can becontinuous as exemplified by the spinless Luttinger

liquid which supports charge-carrying excitations with es-
Vill. EXTENSION AND GENERALIZATIONS sentially arbitrary(even irrationgl charge. Fod>1, on the

A. General spatial dimension other hand, fractionalization isliscrete—the fractionally

charged excitations carry a definite rational fraction of the
electron charge. As in the fractional quantum Hall effect, this
discreteness can be traced to the bindisgd condensatign

f a discrete number of vortices. These physics appear to be

The Z, gauge theory formulatiofin the particle represen-
tation) is readily generalized to arbitrary spatial dimension.
The cases of physical interest are 3D and 1D, which w
disc_uss .in turn_. Fc_)r S‘mp”.C‘FV’ we will .restrict our attent_ion qualitatively different from the “solitonic” mechanism re-
to situations with integer _f|II|ng per unit cell. The most im- sponsible for fractionalization in 1D.
portant effect of spatial dimensionality enters into the prop-
erties of the pur&Z, gauge theory with action,

B. Finite temperature
S=S,;+Sg. (146) . : T
In our formulation there is a sharp distinction between

with Sy included when there is an odd number of electrondractionalized and confined phases at zero temperature,
per unit cell. which is independent of whether or not the phases in ques-
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tion have any sort of conventional long-ranged order. It is o

extremely interesting to ask whether this sharp distiction sur-

vives at finite temperature. Consider first the deconfined

phases in 2D. In these phases, the point-like vison excitations

are gapped at zero temperature. However, since the energy T .

cost to create a vison is finite, at any nonzero temperature Electric Magnetic

there will be a nonvanishing density of thermally excited Confinement Confinement

visons. In the absence of other kinds of orderg., mag-

netic), this low temperature regime will be smoothly con-

nected to the high temperature limit, without an intervening 0

finite temperature transition. Thus, in 2D the sharp distinc- 0 K¢ K ©

tion between fractionalized and confined insulators du#s

survive at finite temperature. FIG. 9. Schematic finite temperature phase diagram for the pure
But in 3D, the vison excitations in the deconfined phaseZ2 9auge theory in three spatial dimensions. Upon including the

arestring-like extended objects, with an energy cost propor_coupl_lrlg to the char_gons and the spinons, the finite temperature

tional to their length. Consequently, at low temperatures arlransition forkK<K. is smeared and becomes a crossover only,

bitarily large vison loops will not be thermally excited—the While the one fork>K, continues to exist.

vison loops will be “bound.” As the temperature increases, = = _ .

there will be a transition at which the vison loops unbind and"€tic”) vison loops are bound as their energy cost is propor-

proliferate. Thusthe fractionalized insulator in three spatial tional to their length. Similarly, fokK <K, at low tempera-

dimensions undergoes a finite temperature phase transitiof/"€S, 1arge electric flux loops are bound. At high
associated with the unbinding of vison loops defining temperature, for anif, both kinds of loops are unbound. The

characteristic of the low temperature phase is that visoffansition from the low temperature to the high temperature
loops will cost afree energylinear in their length. Equiva- Phase is therefore associated with the unbindingteictrio
lently, hc/2e (or Z,) magnetic monopole “test charges” are Magnetic vison loops foK (lessef greater thark.
confined even at finite temperature, with an infinite free en- N the low temperature phase fi<K., the free energy
ergy cost to separate them. A confinement of monopoles ief an isolated static test electric _charge diverges so that'test
also one of the characteristics of a 3D superconductor, biharges are confined. In the high temperature deconfined
quite remarkably the confinement here is occuring in a “nor-Phase, the free energy cost is finite. Formally, the ptye
mal” nonsuperconducting phase. The conventional insulatd@uge theory has global Ising symmetry at finite tempera-
ing phases with confinement at zero temperature, on thil'e¢ which is brokezn in thenigh temperature phaseAs
other hand, will not exhibit finite temperature transitions ShOWn by_Ponako@, a convenient characterization of this
(other than those associated with the loss of conventiondl@nsition is through the following operator:
long-ranged order, e.g., magnetic
To understand the origin of these results, we briefly dis- L= H o . (147
cuss the properties of the pu, gauge theory(with no 1= AL Irennrs(nen)r
matter field$ in 3+ 1 space-time dimensions in more detail.
At zero temperature the theory is self-dé&lthe duality  for each siter of the spatial lattice. Here is a vector along
transformation interchanges the “electric” and “magnetic” the (imaginary time direction of length the time slice. The
fields of the gauge theory. F&> K when the gauge theory product is over all the temporal links at that site, &nds the
is in its deconfining phase, the theory has string-like visomumber of time slices. This operatoy is often referred to as
excitations(which arez, magnetic flux tubeswith a finite  the Polyakov loop. The free ener@yr,r’) to introduce two
energy cost per unit length. Fd¢ <K, the gauge theory test charges at sitesr’ is directly related? to the correlator
confines with area law Wilson loops, but there are nevertheof |, through
less string-like excitations in this phase as well. These can be
u_nderstood via duality, Wh_ich i_ntercha_ng_es th_e area and pe- efF(r,r’)/T:<LrLr,>. (148
rimeter law phases; the string-like excitations in the area law
phase are simply flux tubes of tdeial Z, gauge field. Physi- Thus, test charges will be confined if this correlator goes to
cally, these dual tubes are “electric flux tubes” responsiblezero at large distances; on the other hand, if this correlator
for the confinement of electric charge in the area law phasegoes to a constant, the test charges will be deconfined. Fur-
Specifically, when two test, electric charges separated by a thermore, consider the following transformation on the
distanceRr are introduced into the system, the resulting elec-gauge fields:
tric flux is concentrated in a tube that extends from one test
charge to the other with an energy cost proportiond,tthe OFngrf +(ng+1)7 €07+ ng 7.+ (ng+1)7 (149
linear confinement. Similarly, in the perimeter phase, dual
test charges4, monopolegthat act as sources for the visons wheree= + 1 independentf r, andn, is fixed. The action
are confined. of the pure gauge theory is invariant under this transforma-
Now consider the properties of the gauge theory at finiteion, implying a global Ising symmetry of the theory. The
temperature. The phase diagram is well kndwand is  operatorL,, however, transforms as
shown in Fig. 9. There are three finite temperature phases.
ForK>K_, at small but nonzero temperatures, lafgmag- L,—elL,. (150

Plasma

M-1
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ThusL, is an order parameter for this global Ising symmetry. The analogy is closest if we considewave pairing with
In the low temperature phase f&r<K., L, has no expec- an even number of electrons per unit cell and, further, inte-
tation value, the global Ising symmetry is unbroken, and tesgrate out the spinons to work with just the chargons and the
charges are confined. At high temperatures, howdveac- o field. The action describing the system is then
quires an expectation value breaking the global Ising sym-
metry, and the test charges are deconfined. S= —2tcz gij Cog i — @) — Kz H ojj. (151
For K>K_, the self-duality of theZ, gauge theory im- i _ 0ou
plies the existence of a dual global Ising symmetry, with anAS formulated, this describes guantumproblem of char-
order parameter that is the dual analog of the Polyakov loogJons coupled to a fluctuating, gauge field in two spatial
In the low temperature phase, this dual global symetry iglimensions. But alternately, we may view it aclassical
unbroken: in this phase dual test charges, Z, monopoles Hamiltonian for a three-dimension&lY nematic. Indeed, an
are confined. At high temperatures this dual global symmetr{?(3) version of the same model was introduced a few years
is broken and the dual test charges are deconfined. ago by Lammert, Rokhsar, and Toffeto describe nematic
Consider next the effects of coupling matter fielse ~ ©ordering in three dimensions. Further, they argued that their
chargons and the spinonto the Z, gauge field. As these lattice gauge nematic model a_dmlts t_hree distinct phases, an
carryZ, gauge electric charge, it is easy to see that the actiofrdered nematic phase, atwlo isotropic phases. The nem-
is no longer invariant under the transformation in Erg9).  atic phase breaks the rotational symmetry andzhgauge
Indeed, this transformation is equivalent to changing theSymmetry. For arXY system, this is the direct analog of the
boundary conditions on the chargon fields frog) (periodic ~ Superconducting phase. Moreover, the physiuzPe vorti-
to antiperiodic, and vice versa for the spinons. Moreover, ifc€S Of the superconductor correspond directly to the “discli-
the matter coupling is weak, the matter fields may formallynations™ in the nematic fluid.
be integrated odt to leave behind a “magnetic field” term  The two isotropic phases in the nematic are
that couples linearly to the Polyakov loop order parameter offistinguished’ by the free energy cost per unit length to
the global Ising symmetry. There is then no longer any tranexternally impose a disclination line through the system. In
sition separating the low and high temperature regimesc_)artlcular, in the_ convent_|onal isotropic phase, the freg en-
Physically, this is exactly as expected: KK, the elec- €'y cost per unit length is zefas the length goes to infin-
tronic system is in @onventionalconfined insulating phase ity). The disclinations are condensed. But, in the unconven-
at zero temperature. tional isotropic phas¥, the free energy cost per unit length
On the other hand, since the chargons and spinonmetio is_a constantas th_e Ieng'Fh goes to infinityln the context of _
carry anydual Z, magnetic charge, the dual global Ising this paper, the isotropic phases correspond to |nsu|gt|ng
symmetry remains even in their presence. The finite temperdhases. As we have elaborated at length, there are two insu-
ture transition fork >K_ should thus remain in tact. Conse- 1ating phases and 7* which are distinguished by whether
quently, we arrive at the striking conclusion that the three-Or not the visongwhich are the relics of thac/2e vortices
dimensional fractionalized insulator undergoes a finiteln the insulating phasgsare condensed. Thus, the conven-
temperature transition associated with the unbinding of visofional insulator corresponds, in the nematic analogy, to the
loops. This conclusion will not be affected by the Berry’s conventional isotropic phase. Note that the energy cost of a

phase termSg, which is quite innocuous in the fractional- Vison (which is the action cost per unit length of the world-
ized insulator. line) is zero in this phase. Similarly, the fractionalized insu-

lator 7* corresponds to the unconventional isotropic phase of
the XY nematic. InZ* the visons have finite energy cost,
again just like the disclination lines in the unconventional
The Z, gauge theory formulatiofin either the particle or jsotropic fluid.

vortex representatiopsvorks equally well in the absence of  The phase transition betwee$C and either insulating
spin rotation invariance. In particular, fractionalized phasegphase is second order. In contrast, for @) nematic sys-
continue to exist even when spin is not a good quantumem considered in Ref. 34, the transition between the nem-
number.(Spinless fermion systems can also be handled withtically ordered phase and the conventional isotropic phase is
no fundamental modificationsFor these reasons, we have first order, while that to the other isotropic phase is second
avoided the term Spin-Charge Separation, in favor of the MOrgrder. This difference is due to th€Y Symmetry of the

C. Spin-rotation noninvariant systems

general term electron fractionalization. Superconducting System, as opposed to(]ﬁ@) Symmetry
of the nematic.
D. Analogies with nematics For the more general situation, with coupling to the

Certain aspects of our formulation might be familiar from spinons or with an odd nymber of elec';rons per unit cell, a
direct correspondence with the nematic system no longer

the classicalstatistical mechanics of nematics. The order pa-

rameter for a nematic is a headless three component vectd?.c’lds' Nevertheless, we believe that the dis_cus_si.on in this
Lattice models of nematics are usually formulated in termssut_)secyon may hel@ome readers get further intuition and

of an ordinary three component vector, the headless nrcltw‘QS'ght into our formulation.

being incorporated through a local, gauge symmetry

which inverts the local vector order parameter. Here, we IX. RELATION TO PREVIOUS APPROACHES

briefly explore the analogies between ttiassicalphases of

nematic systems and thguantumphases discussed in this  We now comment on the connection between #e
paper. gauge theory and earlier approaches to electron fractionaliza-
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tion. We begin by making contact with earlier papers on thewhich are minimally coupled ta”’“=a' +a!, respectively.
nodal liquid. Earlier formulations of the nodal liquidn  The action can be re-expressed in terms of these composite
Refs. 9 and 1pfocused on the importance of “vortex pair- phase fields using the relation

ing” as a means to describe charge fractionalization in two
dimensions. In Ref9 a theory was formulated in terms of
vortices in a local superconducting pair field, and it shares
many features with the approach taken here, particularly the. .
dual formulation detailed in Sec. V. In Ref. 10, Chern—9"V'"9

Simons theory was used to convert spinful electrons into

bosons, and a dual formulation was developed in terms oS=—tUZ vivjcog (6 — 6f +afj)/2]cog (67 — 6] +aj})/2].
vortices in these bosonic fields. TEg gauge theory and its Ik

dual Ising Chern—Simons vortex theory developed in this (159
paper not only ties together both earlier approaches into Bere, the Ising sping;=*1 are the visons. The primary
unified framework, but allows for a more direct quantitative emphasis of Ref. 10 was an analysis of fractionalized phases,
analysis of “microscopic” models. We now describe this such as the nodal liquid. It was emphasized that fractional-
connection in a bit more detalil. ization occurs whekv;)=0, and breaking the Ising symme-

In Ref. 9 a spinon operator was defined as an electrotry with (v;)#0 corresponds to confinement. Deep within
with its charge screened by “one half” of a Cooper pair. Thethe deconfined phase it is possible to integrate out the mas-
latter coincides precisely with the chargon introduced in Egsive visons, which generates local terms such as
(28), showing the equivalence of the spinons as well. The
importance of the long-ranged interaction between the Shee= —to, COL O — 0 +af)), (156)
spinon andhc/2e \_/o_rtex was emphasizeq in Ref. 9. It was which describes the hopping of thec/e vortex pair,® ,,
suggested that this interaction could be implemented by eming P
ploying aU(1) Chern—Simons term to attach flux to both
species of particles. But since the spinon number is not con- Sspinor= — tsCOS 6 — 67 +ay). (157
served, it was suggested that the flux could be attached to the ] .

(conserveyl z component of the spin. Moreover, it was ar- Due to the Chern—Simons terms above, this corresponds to
gued in Ref. 9 that due to the statistical interactions, conderth€ hopping of fermionic spinons which cargy=1/2.

sation of hc/2e vortices should lead to confinement of ~ The relationship between this formulation, in terms of
spinons. In the dual vortex formulation presented in this pa-€lectron” vortices, and the dual vortex theory of Sec. V
per the statistical interaction between vortex and spinon i§onstructed in terms of BC8&c/2e vortices is at first not
described in terms of a novel Ising-like Chern—Simons termapparent. But consider introducing a vortex operatbr,

It is important to stress that thitoes notrequire the spin of =€'’, whosesquareequals thehc/e vortex pair operator,
the spinon to be conserved, in contrast tolthd ) approach, ®?=®,,. This requires that

since the Ising-flux is attached to the conserZedaharge of

the spinons. M_oreover, the Ising_ formulation _clearly shows o= 30 + f(l_v), (158
that condensation of thiec/2e vortices, or the visons, leads 2772

to confinement.of spinqns and chargpns. In thg global ',Singvhich implies

model for the visons witifv;) # 0, the linear confinement is

1 T
Gwzz(ﬁpi 00)+ 51), (154)

due to the required line of negative Ising couplings connect- d=pelt? (159
ing the two spinons. In th&, gauge theory formulation, it ] ) o )
follows from the area law for the Wilson loop. As definedd carries vorticityhc/2e, and can tentatively be

electrons into spinful bosons, using Chern—Simons to attach IS necessary to show that there is a long-ranged statistical

flux to the electronspin and then passing to a dual repre- interaction between thiac/2e vortex and the spinon. Evi-

sentation of vortices in these bosonic fields, dendiedvith ~ dence for this is provided by the following argument. We

spin labela=1,|. A lattice version of this theory can be first imagine explicitly adding the vortex hopping term

written in terms of the phases,,, of the vortex field opera- Sspinont0 the action in Eq(155). We then absorb the field”

tors, d,,= e'«, with effective Euclidian action, into a“. fWe may now re-express the action of E§55) in
terms of; :

S=—t,> cog6,— 0 ,+a%)+S.(a%). (152

'6T ! ! Y °s S= _tv% wij €O 6;— 0;+ 3a;;) + Sspinons ~ (160)
Here,i,j are label sites of the-21 space-time latticd,, is a
dimensionless vortex hopping term a8l is a Chern—

Simons terms involving the field”=a'—a'. The curl ofa® 1
Mij= CO{

with

corresponds to the conserved electrical current of the elec- iaﬁ . (161

trons with spina. In Ref. 9, two different composite “pair”

vortex operators were considered: Here, we have defineal; = afj . In the presence of the vortex
hopping termS;i,o, above, if we specialize to the limit of

D, =0, > =€% &,=0 0=¢€', (153 Jlargets, it is legitimate to restrici] to be 2 times an
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integer. With that restriction the gauge figigf = =1, reduc-  capture the physics essential to the cuprates, although our
ing to an IsingZ, gauge field. Now, imagine putting a sta- decription of fractionalization is more general. Starting from
tionary spinon on one site of the original spatial lattice. Inthese models, we developed a new gauge theory of strongly
this dual vortex representation this corresponds to a plaquett®rrelated systems consisting of chaegespin-zero bosons
with AXa”=2 or, equivalently to a produdiujj=—1  (the chargons and charge zero, spin 1/2 fermiorithe

for all plaquettes pierced by the spinon “world line.” Since spinong, both minimally coupled to a fluctuating, gauge

the hc/2e vortex is minimally coupled touj;, this estab- field. Remarkably, the spin sector of the theory at half filling
lishes that it does indeed acquire a minus sign upon beingnd in the absence of charge fluctuations is formalgnti-
transported around a spinon. In the dual vortex formulatiorcal to a spin one-half Heisenberg antiferromagnet. In this
in Sec. V, an-flux tube inw;; is attached to each spinon by limit the Z, gauge field enforces the constraint that the
the Ising-like Chern—Simons term. To complete the mappingpinon number on each site agld, physically equivalent to
between these two formulations requires, finally, re-the single occupancy constraint, imposed with additional un-

fermionization of the spinon creation operatet! [fermi-  needed redundancy in earlier(1) gauge theory formula-
onic due to the Chern—Simons teSa(a’)] effectively re-  tions of the Heisenberg model. _
placing it with spinful fermionsf;,, . Charge fluctuations, however, are naturally incorporated

Finally we comment briefly on the relationship with theo- INto our Z, gauge theory, and when they become large the
ries based on slave boson/fermion approaches to electrdf€ory describes a,. > superconductor. Analysis of the
fractionalization. A number of authors have examined insufheory in the intermediate region reveals that there are two
lating Heisenberg antiferromagnetic spin models in the hopguahtatlvely different routes for the evolution f(om the anti-
of finding phases with deconfined spinon excitations througfiérromagnet to the superconductor. One route is through con-
these approaches. However this program has generally be¥gntional insulating phases in which fluctuations of e
quite unsuccessful—the (1) or SU(2) gauge symmetry in- 9auge field confines toggther the chargon and the spinon,
troduced in the slave-boson or fermion representations uliil€aving only the electron in the spectrum. But a more inter-
mately leads only to confined phases. A notable exceptiofSting possibility takes one through phases in which the elec-
however is the work of Read and Sachtfeen largeN tron is _fractlona_llze_d, and .the chargqns and spinons exist as
Sp(2N) frustrated antiferromagnets and related quammﬂeeonflned excitations. With,2_ 2 pairing, this fractional-
dimer models? Under certain special conditions, these au-ized insulator is the nodal liqui?* with gapless spinon ex-
thors demonstrated the existence of quantum disorderegitations at four points of the Brillouin zone. It seems likely
phases with deconfined spinons in their theory. It is worththat the ultimate transition from the insulating phases to the
pointing out that fractionalization is achieved when thgl)  dy2_2 superconductor occurs close to the boundary between
gauge symmetryintroduced by the Schwinger boson repre-the confined and deconfined insulating phases. Thus, which
sentation of theSp(2N) sping is broken down toZ, by  of these two qualitatively different routes is realized in any
condensation of pairs of bosons. The fully frustrated transparticular experimental system could depend sensitively on
verse field Ising model appears in that description as ¥ell. microscopic details.

Slave boson representations of electron operators have In addition to the chargons and spinons, the 2D nodal
been used extensively to discuss spin-charge separation kguid supports Ising-like point excitations, the visons, which
sues in doped-J models. However, the resultant compact correspond to vortices in the, gauge field. These gapped
U(1) or SU(2) gauge theories presumably always lead tovison excitations play a central role in our analysis of frac-
confinement, unless the gauge symmetry is broken down tbonalization, as becomes clear upon passing to a dual de-
Z,. This may be achieved by pairing the spindfisndeed,  scription in terms ohc/2e BCS vortices(of a conventional
the slave-boson mean field treatments of tlemodel do  superconductgrand the spinons. In this dual framework, the
find pairing of spinons below a finite temperature at lownodal liquid can be accessed by a pairing and condensation
doping. As we have emphasized in this paper though, even i@f the hc/2e vortices, as emphasized in ealier wS.This
the undoped limit and without frustration, the Heisenbergreveals that the vison excitations are simply the remnant of
spin model may be rewritten in terms of fermionic spinonthe unpairechc/2e vortices which survive in the insulating
operators coupled to a fluctuatigy gauge field. Equiva- nodal liquid.
lently spinon pairing terms may be added to the Hamiltonian The utility of the vison excitations goes far beyond giving
describing the Heisenberg magnet without altering any of th@ simple description of the nodal liquid. Indeed, the pZige
physical symmetries. We have shown that electron fractiongauge theory in 21 space-time dimensions is dual to the
alization is definitely possible once charge fluctuations arglobal 2+ 1 dimensional Ising model, and the Ising spins are
incorporated into the description. simply the vison creation operators. Remarkably, an unusual

Berry’'s phase term in the gauge theory corresponds simply
to frustration in the dual Ising model, with full frustration at
X. CONCLUSION AND DISCUSSION half filling. The fully frustrated quantum Ising model arose
in earlier work by Sachdev and co-work&$’ in their
analysis of frustrated magnets. Ordering the dual Ising model

The primary focus of this paper was to explore the possiby condensation of the visons generally will break transla-
bility of electron fractionalization in strongly correlated elec- tional symmetry and lead to conventional confined insulating
tron systems in spatial dimension greater than 1, and in thphases such as the spin-Peierls phase. In three spatial dimen-
presence of time reversal symmetry. We based our discusions(3D), the visons become loop-like excitations, and are
sion on a particular class of microscopic models designed tolosely related to vortex-line excitations which occur in a

A. Summary
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conventional superconductor. Surprisingly, this implies thathe structure of the core states in such a vorton would be
a 3D fractionalized insulator “survives” at finite tempera- qualitatively different from that of ahc/2e vortex in a con-
ture, being separated from the high temperature regime by ¥entional superconductor.
finite temperature phase transition. As in a conventional su- The experiments on the cuprates mostly do see a sharp
perconductor, the 3D fractionalized insulator confihei2e ~ quasiparticle peaR inside the superconducting statal-
monopole excitations even at nonzero temperature. though there is some recent controvePsys to what extent
Within the Z, gauge theory approach, a conventional sy-this is true along the nodal directionsGiven .the c;urrent
perconductor is described as a condensate of crengar- experlmental status, we therefore guardedly identify the su-
gons. A superconducting phase involving condensation oP€rconducting phase in the cuprates wdisC and not
chargon pairs(i.e., Cooper paijswithout condensation of d_SC*. However_dSG is nevertheless interesting to con-
single chargons was shown to exist, this has several exot®ider on theoretical and conceptual grounds.

properties distinguishing it from the conventional supercon-
ductor. 3. Three-dimensional effects

In striking contrast to a two-dimensional nodal liquid, a

_ genuinely three-dimensional nodal liquid has a finite tem-

B. Experiments perature phase transition associated with the unbinding of

We close with a very brief discussion of some of theVison loops. This phase transition could lead to observable
experimental signatures of electron fractionalization. As wesingularities in the measured properties of the system. But

will see, experimental detection of fractionalization may bedue to the highly anisotropic nature of the cuprates, it is
quite subtle. Further theoretical understanding of fractionalPerhaps more natural to speculate that a fractionalized phase
ized phases leading to detailed experimental predictions amould consist of decoupled 2D systems, with a confinement

clearly called for. Our discussion will necessarily be brief. of spinons within each layer. Clarification of such interlayer
confinement physics will be necessary in order to disentangle
1. Two-dimensional nodal liquid the subtle interlayer behavior of the cuprate materials, both
‘ in the normal and superconducting phases.
Earlier work on the nodal liquitP* outlined a number of
experimental signatures of the two-dimensional nodal liquid,
and we have little to add here. As pointed out in the earlier
papers, perhaps the most telling indication will be in angle The authors are grateful to Phil Anderson, Leon Balents,
resolved photoemissiofARPES which directly measures Tom Banks, Eduardo Fradkin, Doug Scalapino, and R. Shan-
the electron spectral function as a function of the momentunkar for insightful discussions, and Ashvin Vishwanath and
k, and frequency». As the electron is fractionalized into the Tony Zee for useful comments on the manuscript. They
chargon and the spinon in the nodal liquid, its spectral funcwould particularly like to thank Subir Sachdev for many
tion will not have a sharp quasiparticle peak even at zergelpful comments and his explanationsZf gauge theories
temperature. Note that bound states of the chargon and thg the context of frustrated large magnets. Thanks are due
spinon(which could lead to sharp spectral featyrege not  the Aspen Center of Physics where some of this work was
expected here at low energies as the spinons are gapless. carried out. This research was generously supported by the
NSF under Grant Nos. DMR-97-04005, DMR95-28578, and
2. SC* PHY94-07194.
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We have discussed the basic physics of the exotic super-
conductorSC* obtained by condensing chargon pairs in Sec. APPENDIX A: PATH INTEGRAL
VII. There are several qualitative experimental distinctions
between this phase and the conventional superconduct%
which we now briefly discuss. The most striking is again in
e e ot o Y MUcdlces a7 gauge fld. |

; Lo . o To this end, we work with fermionic coherent states built

an Ising part of the charge, the ison excitation. Thus, we ) - ot , ) ,
expect that the electron spectral function doms have a  [Tom the spinon operators,, andf,, which are defined in
sharp quasiparticle peak in ti&* phase. Again, since the Standard fashion,
isons are massive excitations while the spinons are gapless, i
bound states of the two are generally not expected at low |fa>:e—fafl|o>, (A1)
energies. The presence of gapped ison excitations would also
affect the thermodynamics, and contribute to the thermal _ -
conductivity at some intermediate temperatures. However, (fol=(0le'a"e, (A2)
these signatures are likely to be quite subtle. A striking the- o
oretical feature ofSC* is that the conventional BCBc/2e ~ where the spinooperatorsare denoted with “hats,” and,,
vortices are splintered into pieces, tb€1) “vorton” car- and f , are Grassman numbers. The bra and ket states de-
rying the circulating electrical currents, and tlg vison.  noted with a “0,” are fermionic Fock states with no spinons
Since the spinons do not have a long-ranged statistical intepresent. Here we have suppressed the dependence of the fer-
action with thehc/2e vorton, it is tempting to speculate that mion operators and Grassman fields on the spatial coordi-

We now derive a path integral expression for the partition
nction of the spinon—chargon Hamiltonian. A crucial role
is played by the constraint on the Hilbert space, which natu-
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nate,r. In the charge sector of the theory we choose a basis
of states diagonal in the phage of the chargon field, de-
noted| ¢).

The partition function in Eq(42) can then be expressed

APPENDIX B: Z, GAUGE THEORY WITH Dy2_,2
PAIRING

We will now provide an outline of a microscopic deriva-
tion of theZ, gauge theory in the presencedyt 2 pairing
correlations. We begin with the Hubbard-type Hamiltonian,

_ 27 Eq. (4), discussed in Sec. I
:f dfadfafo dgpefala(—T,: pl (e HPM|f ;)

(A3)

with e=B/M andP the projection operator defined in Eq.
(38). Inserting the resolution of the identity between each
time slice gives

H:H0+HJ+HA+HU. (Bl)

The crucial difference with the-wave case is in the structure
of the “pairing” term H, .

We now follow exactly the same strategy as in gheave
case, defining chargon and spinon operators. A path integral
representation of the partition function is readily set up with

M
7= H ddefmd ¢Te*iff—1MT, (A4) the main difference being in the pairing term which becomes
=1
with matrix elements Sy=¢€ 2 Ay (bFb, +c.c)By, (B2)
o (rr'y, 7
M. =(f, ¢, le”"PIf ;p, 1), (A5) o
and appropriate boundary conditions on the fielfis,, ; B =Ap (Tryfr =(1=1)+e.c). (B3)
=—f,and o=y . We have suppressed theindex on all fields. It will be

The matrix elements can be readily evaluated for small convenient to use a slightly different decoupling of tHe
by inserting a complete set of states diagonal in the chargoterm. We write
number,N. Using the definition of the projection operator in

Eq. (38) gives

e %= [ [y dm o e (B4

1 S -
— IN o, —¢,_1+72(1—0 )] af ;o f,
M=3,2, 2. erE. Shs=Shd X1+ Shd 7], (B5)
(A6)
with Sdxl=e E A2l —(xrr frafrratec)],
o (rr'’)

ET:e_EH(NT‘¢T’fT’UTfT). (A?) (BG)
Upon making the change of variables in the Grassman _ 2 2 B7
functional integral, Snd 71= E<rr2 2} B7
ot =1, (A8) + (v (Fri o = Fr Fro) +e0)]. (B8)

the full partition function can finally be re-expressed as

fﬂdfdfdd)TE Ees, (A9)

with
M JR—
S=s+S¢+e> H(N,,¢,.ff), (A10)
=1
with
M
S=2, [forafra=f], (A11)
and
=—|2 N, b= b, 1t <1 o] (A12)

Throughout, we have suppressed the explicitnd « sub-

Herea, .= +1 for bonds along th& direction, and equals
—1 for bonds along thg direction. Note thaS, x] is the
same as before. This decoupling of the spin—spin interaction
is standardly used in theU(2) gauge theory formulations of
the t-J model. We emphasize though that our formulation
has, as we will show, only ai, gauge symmetry. We now
shift the two Hubbard-Stratonovich terms:

t
er’ﬂ)(rr’_jbrbr’v (B9)

A
77rr/—>77rr/+ (b br,+C C) (BlO)
The shift of y is as before, and eliminates the spinon—
chargon interaction coming from rewriting the electron hop-
ping term. The shift ofy eliminates the pairing term. The net

spatial part of the action is then

SrZGE 2J(|er’|2+|77rr’|2)_|'S +Sl +S§r!

scripts on the fields, displaying only the time-slice depen- ('

dences.

(B11)
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HereA.n is the lattice divergence of the link varialbte We

— * *
Ser= 6(;) {[2txrr +2A(me o+ 7107 by +CC, now notice that the cosine can be written as
(B12)
ﬂ' . . - - - -
COS(E(A-n))=(—1)<A'”’2)5[(—1)A'”,1], ()
sgr——eZ Ixee Frafrrate.c., (B13) _ _ _
(r’y where 6(m,n) is the Kronecker delta function for two inte-
gersm,n. The term multiplying the delta function is a total
S2= Do Ao (e =1 ) +c.c (B14)  derivative that contributes zero on summing over all sites,

we will therefore drop it. Note that the delta function im-

The shift in 7 also generates a Cooper pair hopping termy,,qeq conservation modulo 2 of the link variabjeat every
COZS(2¢r 2¢) with a negative hopping amplitude of order S|te This conservation can be made more explicit by defin-
A“/J. This is not expected to be important for the issues of ing aZ, currenta:

fractionalization that we primarily wish to discuss. So we
will for the most part drop it. ajj=(—1)"i. (C9

The x, 7 integrals may be done by saddlepoint—a uni- : . "
form, real saddlepoint solutiorx, Y= xo, (7= 10 We now solve the current conservation condition by writing
) rr’ ’ rr

breaks theZ, gauge symmetry. Parametrizing the fluctua-tN€ Z2 currenta on any link as the flux of a dual, gauge

tions about it byx, = xooi;» 7= 00 as before, we f|e_ld M t.hrough the plaquette of the dual lattice pierced by
arrive at the Ising gauge theory appropriate for the 2 this link:
superconductor.
=(-1mi=I] w;. (C10
APPENDIX C: ISING SELF-DUALITY =
The w;; are understood to be defined on the links of the dual
lattice, and the plaquette product for theis around the
appropriate plaquette of the dual lattice. Note that this is
directly analogous to the standard duality transformation of
Cthe XY model.

We next solve for they;; in terms of thew;; :

1-11 Mij
m

2

We will now review the self-duality of theZ, gauge
theory with matter fields in 21 dimensions. As a limiting
case, we recover the duality of the puge gauge theory to
the global Ising model. The theory is defined by the lattice
action

Ss,0]1=S+S,, (Cy

S=-J2 sioys;, (C2) nij = (C1Y)
ij
The n;; may now be eliminated from the action in favor of
S =—K2 H o (C3) the w;;. The result(after dropping overall multiplicative
7 N constantsis the following identity:

The constantd,K are assumed to be positive. The indices S-S <
i,j label the sites of a three-dimensional cubic lattice. It is > el s =~ ex =S, Scs) (€12
convenient to first rewrite thejo;;s; term on each bond Si
using the following identity:
8,==302 11 m, (C13
eSvisi=A > exf —2Jgn;; (C4)
n”-:O,l

a
Ses=2 i (1 11 M) 1-oy).  (C14
T ij
+i5nij(si_Sj+1_0'ij)]. (CS) o )
The last term has a structure similar to a Chern—Simons
Here tanh{,) =e~2’, andA=coshJ. From now on, we will term, but for the grou@,. Its exponential is actually invari-
drop the constanf since it just contributes to an overall ant undero« u. This can be seen as follows. Write

multiplicative constant to the partition function. Thg take

(1-0y:/2)
the values 0,1. Upon using this identity for every bond, and e*Scszl_[ (H M) j , 15
doing the sum oves;, we get () \ o
exp(—S)=Tr,, Try, [H cos(% E.ﬁ)) (C6) =<H> e(lm/4) Zaplax@=mld-oy),
ij
(C16
LT In the last equationA X w is the lattice curl ofu on the
Xexp —2J n;; + i=n;(1—0y) .
F{ diEj . Z 2 il U')> plaquette of the dual lattice pierced kij). If we now per-

(C7)  form a lattice integration by parts, we get
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T Consider the partition function obtained by integrating
exp% i (- um[AX(1-0)] (C17  over the chargon fields in the above action:

2
Znolo =f dee . (D3)
=exp{—i21> ig(l—];[ a)(1—uij) . (C19 ol 1= [I'do
As with the duality transformation of th&Y model, it will

where now the sum is over linksj) of the dual lattice. be convenient to work with the Villain form of the action
The full partition function can then be written as

aa
bi— i+ 5 (1-oy) |,

The duality of the full action is now apparent. In particu- (D4)
lar, the action is invariant under the exchange u, J4—K.  whereJ;; are integer valued fields that live on the links of the
To make the duality even more explicit, we again use thdattice, and are to be summed over in the partition function.

Z=Tr, ,exp—S,~S,~Sco). (€19 S[<!>,J,<r]=%_)> kG241,

identity, Eq.(C12), to write As usual, this is strictly justified only in the limit<<1 when
te=exp(—«/2), although we do not expect any modifications
e _ _ I to the physics by relaxing this assumption. Thehave the
; XN~ S~ Scd) UE, ex Kdizj Vit ) interpretation of being the total conserved electrical current

(C20 on any link. This can be made more explicit by performing
the integrals ovet; which imposes the current conservation

B o - .
wherev;=*1 and tanhKy)=e™“". The partition function condition

now becomes
A-J=0. (D5)

o ) _ . The symbol on the left-hand side is the lattice divergence of
which is exactly of the same form as in terms of the originalihe |ink variableJ;; . We proceed, as usual, by solving the

variables §; ,0;;), but with the dual couplingsJg,Kg), thus  cyrrent conservation condition by writing
establishing the self-duality of the theory.

As a special case, consider the limit whin 0. Then the 2m;=Axa. (D6)
action in Eq.(CY) is that of the pur&Z, gauge theory. Under .
the duality transformation, we now get the form of EG21)  The quantitya lives on the links of the dual lattice, and is
but with the dual couplingly=c. This means that the fluc- constrained to be 2 times an integer. The right-hand side is
tuations of the dual gauge field are frozen; we may choose the lattice curl of this variable on the plaquette of the dual
a gauge in whichu;; =1 on every link. The dual action then |attice pierced by the linkij ). The chargon action now takes
simply reduces to that of a global Ising model for thewith  the form
the dual couplingKy.

Z:TrTMeKdEijUiMijUj"'JdEDHDﬂij, (C21

K i
APPENDIX D: DUALITY OF THE MODEL WITH S[a"’]zé Q(Axa)z’LZ <|Z,> (Axa)(1-aj).
COMBINED U(1) AND Z, INVARIANCES (D7)

We will now perform a duality transformation on the Here the first term is a sum over plaquettes of the dual lat-
chargon—spinon actioB=S.+ Ss+ Sg derived in Sec. Il to tice, and the lattice curl in the second term is on the plaguette
work instead with vortex variables instead of the chargonspierced by the link(ij). Now note that asojj==*1, the
For simplicity, we will restrict ourselves to situations with an exponential of the second term can be written
integer number of electrons per unit cell. In this case, the
Berry phase terng is independent of the chargon phase H (= 1)@xazmi-a;/2)
field ¢;. In Sec. VI, we provided the generalization neces- () '
sary to handle a noninteger number of electrons per unit cell. , .

All of our transformations focused entirely on the term in the!t IS useful now to separate the integg into its even and
action involving the chargon variables. This is simply a char-0dd part by writing

gon hopping term: a=2m(2A+s), (D8)

whereA is an integer ang=0,1. Then, we have

H (_1)(A><a/2ﬂ')(l*0'ij/2):]i[ (H (_1)5
T (1) (i) \ O

:_% 2tc005<¢i—¢j+§(1—0ij) . (D2) (D9)

where the product inside the brackets denotes the product

Note that in the absence of; , this is just the action for the  gver the links of the plaquette of the dual lattice pierced by
three-dimensionakY model. The duality transformation for (jj). we now define

the 3D XY model is standard; here we will generalize it to
include theZ, gauge fieldoy; . mij=(—1)°=1-2s. (D10

Se=—2 oj(tcbFbj+c.c), (D1)
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Note thatu;; lives on the links of the dual lattice and takes It is convenient to extract a “matter field” from tha;; by
values*1. The product above can then be written letting

exr{ig(l—l;[ ,u)(l—Uij)

Note thatu satisfies

. (D11) aj—a;+2(6,—6)). (D19)

This changes, to

: (D20)

__ - ]
1;[ pw=(—1)%, (D12 S,= tU(iEj) Mij CO{ 0;—0,+ >

where the plaguette product on the left-hand side is on thiut leaves all the other terms unchanged. The #fdmay
plaguette of the dual lattice penetrated by the [iijk. Thus, be interpreted as anc/2e vortex creation operator. Several

the conserved@, charge current determines the flux of symmetries of the action above are apparent. It is invariant
The action now becomes under a localJ(1) gauge transformation,
K 1—u\]? 6,— 0+ A;, (D21)
s=> “ax|2a+—E]| 5, (D13 I
O 82 2
Ai—A;
. T aijﬂaij — 2 . (D22)
Ses=i 2 7| 1-11 u)(l—aiu. (D14)
(j) ]

This is standard in the dual vortex descriptionXdof models
At this stageA is constrained to be integer valued. We im- in three dimensions. However the action has an additidpal

pose this integer constraint gnsoftly by adding a term gauge symmetry under which
—t,>, cog2mA;). (D15) eli— e, (D23)
(j)
Here the sum is over the links of the dual lattice. The action Mij = €€ Mij (D24)

can now be rewritten in terms @f=2m{ 2A+ (1= u/2)]: with ;== 1. ThisZ, gauge symmetry is actually dual to the

S=S,+S,+ Scs, (D16)  one in the chargon-spinon action. Note that the action de-
scribes the vortices'? minimally coupledo the fluctuating

aj U(1) gauge fieldh, and also to the fluctuating, gauge field
S,= —tv% Mij CO§ (D17) 4. The field x is in turn coupled to the field- by the term
Scs-
This completes the duality transformation to the vortex
S,= 2 L(A X a)2. (D18) description. Adging together the spi_non action and the Berry
O 87 phase ternBg gives the full dual action of Sec. V.
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