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Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations
using the Douglas-Kroll-Hess transformation

J. C. Boettger
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 21 April 2000!

A simple approximation is developed for the two-electron spin-orbit coupling terms generated by the
Douglas-Kroll-Hess transformation, in the context of density-functional theory~DFT!. For the special case of
an isolated atom, the two-electron spin-orbit matrix element for each pair of basis functions of typel is
replaced with the spin-orbit matrix element for a point charge2Q( l ) placed at the origin; whereQ( l )
50,2,10,28, . . . . Application of this screened-nuclear-spin-orbit~SNSO! approximation to linear combination
of Gaussian-type orbital~LCGTO! DFT calculations on Ce, Ta, and Pu atoms yields spin-orbit splittings that
agree with results from a numerical solution of the Dirac-Kohn-Sham equations to within about 6%. This is a
marked improvement over the nuclear-only spin-orbit approximation, which systematically overestimates spin-
orbit splittings; in some cases by as much as 100%. Crystalline LCGTO DFT calculations on the fcc phases of
the light-actinide metals Th→Pu, using a multiatom generalization of the SNSO approximation, yield atomic
volumes that are in excellent agreement with results from full-potential linear-augmented-plane-wave
calculations.
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I. INTRODUCTION

The linear combinations of Gaussian type orbit
~LCGTO! method is the most widely used electronic stru
ture technique in existence today, due largely to its rang
applicability. At this time, the LCGTO method is routine
used to study such diverse systems as isolated cluste
atoms, one-dimensional~1D! periodic polymer chains, 2D
periodic films, and 3D periodic crystals using bothab initio
and density-functional theory~DFT! models. Until quite re-
cently, however, all-electron LCGTO calculations were ge
erally restricted to the first three rows of the Periodic Ta
due to the lack of a stable technique for incorporating re
tivistic effects.1 That barrier has been overcome during t
last decade through the use of ‘‘no pair’’ equations genera
with the Douglas-Kroll-Hess ~DKH! transformation.2–4

In particular, an incomplete ~nuclear-only! DKH
transformation5 can be used to generate a set of sca
relativistic equations that are no more demanding comp
tionally than their nonrelativistic counterparts, yet produ
DFT results for atoms,6,7 molecules,8,9 and solids10–14 that
are comparable to results obtained with numerical metho

Less attention has been paid to the fully relativistic~spin-
orbit coupled! DKH equations, largely because the nucle
only DKH equations seriously overestimate spin-orbit sp
tings, especially forf states, while inclusion of the two
electron spin-orbit terms would place a prohibitive burden
the computational resources required for calculations.
spite of these serious limitations, several fully relativis
crystalline LCGTO DFT calculations have been carried
for the light-actinide metals13 (Th→Pu) and their oxides,14

within the nuclear-only approximation. In fact, those stud
explicitly relied on the nuclear-only approximation to pr
vide an upper bound on the effects of spin-orbit coupling.
addition, a few fully relativistic calculations have been ca
ried out with the two-electron spin-orbit coupling terms i
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cluded within a one-center mean-field approximation, b
only for relatively small molecules.15–17 There remains a
need for some intermediate approximation that is more ac
rate than the nuclear-only approximation, but less demand
than a full DKH calculation.

In this paper, a screened-nuclear-spin-orbit~SNSO! ap-
proximation is developed to replace the two-electron sp
orbit coupling terms in the DKH equations; initially for th
special case of LCGTO DFT calculations on isolated atom
The SNSO equations are no more computationally dema
ing than the fully relativistic nuclear-only DKH equation
and are easily generalized to multiatom systems. Crystal
LCGTO DFT calculations using the SNSO approximati
are carried out for the atomic volumes and bulk moduli
the fcc phases of the light-actinide metals Th→Pu, a subject
that has recently become controversial.13,18

II. DOUGLAS-KROLL-HESS APPROXIMATION

The development of the relativistic LCGTO DFT metho
used here begins with the four-component Dirac-Kohn-Sh
~DKS! equations19

hDKS
(4) c i5@~ca•p1bmc2!1ve f f#c i5e ic i , ~1!

where

ve f f5vn1ve1vxc ~2!

is the effective one-electron potential formed from t
nuclear potentialvn , the classical electronic Coulomb pote
tial ve , and the DFT exchange-correlation~XC! potential
vxc . The eigenvalues of the DKS equations are unbound
above and below, since they include both electron and p
tron degrees of freedom. Therefore, any attempt to dire
solve the DKS equations variationally will lead to the we
7809 ©2000 The American Physical Society
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7810 PRB 62J. C. BOETTGER
known ‘‘variational collapse’’ problem, unless the basis s
used is restricted in an appropriate fashion.1 This difficulty
can be circumvented by performing a unitary transformat
on the DKS equations that approximately decouples the e
tron and positron states. For example, the DKS equations
be decoupled to arbitrary order in (p/mc)2 through a series
of Foldy-Wouthuysen20 transformations. Unfortunately, th
Foldy-Wouthuysen procedure produces operators that
highly singular at the nucleus, hence, not amenable to
all-electron variational solution.

An alternative approach, which does not generate sing
operators, uses the Douglas-Kroll-Hess transformation2–4 to
decouple the DKS equations to second-order inve f f . This
procedure yields the two-component DKH equation

hDKH
(2) f i5e if i ,

hDKH
(2) 5Ep1Ap@ve f f1Rpve f fRp#Ap

2
1

2
~EpW21W2Ep12WEpW!, ~3!

where

Ep5c~p21m2c2!1/2, ~4!

Ap5FEp1mc2

2Ep
G1/2

, ~5!

Rp5Kps•p, ~6!

Kp5c/~Ep1mc2!, ~7!

andW can be expressed in momentum space as

Wp,p85Ap~Rp2Rp8!Ap8Fve f f~p,p8!

Ep1Ep8
G , ~8!

with ve f f(p,p8) being the momentum-space representat
of ve f f .

As expressed, the DKH equations are fully relativistic,
the sense that they include mass-velocity, Darwin, and s
orbit coupling corrections. If desired, the spin-orbit coupli
terms can be separated from the scalar-relativistic terms
of the spin-orbit coupling effects at first-order inve f f are
contained in the termApRpve f fRpAp . Using the standard
properties of the Pauli matrices (s), this term can be rewrit-
ten as

ApRpve f fRpAp5ApKp~p•ve f fp1 i s•p3ve f fp!KpAp .
~9!

The first term on the right-hand side is scalar relativis
while the second term is a spin-orbit coupling term. T
second-order terms in Eq.~3! are somewhat more compl
cated, but can be decomposed into scalar and spin-o
terms in a similar fashion.7

Analytical evaluation of the GTO matrix elements for th
momentum-space operators in Eq.~3! has not proven to be
practical thus far. This difficulty can be circumvented
employing a basis set composed ofp2 eigenfunctions.21

First, the matrix elements ofp•ve f fp andp3ve f fp are evalu-
ated along with the traditional nonrelativistic matrix el
t
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ments. Next the nonrelativistic kinetic-energy matrix is d
agonalized to obtain approximate eigenfunctions ofp2 and
all of the matrices are transformed to this basis. Since
operatorsEp , Ap , andKp are diagonal inp2 space, they can
be obtained trivially from thep2 eigenvalues. These bas
components are then used to construct the more complic
matrix elements needed, such asApRpvRpAp . Finally, all of
the matrices are back-transformed to the original GTO r
resentation.

The most serious drawback to the procedure descri
above is that the transformations for the two-electron in
grals are computationally intensive. In the case of sca
relativistic calculations, this difficulty can be avoide
through use of a nuclear-only DKH approximation,5 in which
ve f f is replaced byvn in all of the scalar-relativistic correc
tion terms in Eq.~3!. Unfortunately, as discussed above, t
nuclear-only DKH approximation severely overestima
spin-orbit coupling because it fails to account for the scre
ing effect of the electrons. The remainder of this work w
therefore focus on approximately incorporating the tw
electron spin-orbit terms in Eq.~3!.

III. FULLY RELATIVISTIC LCGTO DFT
CALCULATIONS FOR ATOMS

Isolated atoms provide a natural starting point for a
investigation of spin-orbit coupling effects, because the h
symmetry~and small size! of an atom makes it possible t
calculate DFT atomic spin-orbit splittings either by solvin
the four-component DKS equations numerically22 or by solv-
ing the complete DKH equations using a relatively lar
GTO basis set. In both cases, the spherical symmetry ofve f f
allows the spin-orbit matrix elements to be simplified usi
the standard relationship

i s•p3ve f fp52L•S
1

r

dve f f

dr
. ~10!

For this work, an existing scalar-relativistic LCGTO DF
atom code7 was extended to include spin-orbit coupling. Th
resulting code~SOATOM! is specifically designed to carry ou
DKH calculations with each term in the one-electron pote
tial (vn ,ve , andvxc! treated at a different level of approx
mation.~The highest level of approximation currently imple
mented inSOATOM neglects only a few small terms; th
scalar terms of the formvevxc , all second-order spin-orbi
coupling terms involvingvxc , and spin-orbit terms that scal
as ve

2 .! In addition, SOATOM can use several DFT models
including the Hedin-Lundqvist23 local density approximation
~LDA ! and the Perdew-Wang24 generalized gradient approx
mation ~GGA!.

SOATOM was first used here to calculate LDA spin-orb
splittings for the occupied states of Ce, Ta, and Pu atoms
two levels of approximation; the second-order nuclear-o
spin-orbit~nSO! approximation and the second-order nucle
plus electronic spin-orbit~neSO! approximation. In both sets
of calculations, all significant scalar-relativistic terms we
included and all spin-orbit coupling terms involvingvxc were
neglected. Basis set effects were minimized by using an
ceptionally large (40s40p33d28f ) GTO basis set, derived
from the universal basis set of Malliet al.25 by removing the
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PRB 62 7811APPROXIMATE TWO-ELECTRON SPIN-ORBIT . . .
seven largestd exponents and 12 largestf exponents. The
value of the largest exponent used for thes andp basis sets
~roughly 3.43108) implies that thej 51/2 states should be
accurately represented to a distance of roughly 10214 m from
the nucleus. Test calculations using substantially smaller
sis sets indicated that the representation of thej 51/2 states
near the nucleus should not be an issue for any reason
basis set selection.

The spin-orbit splittings obtained here for Ce, Ta, and
atoms, using the nSO and neSO approximations, are c
pared with results from numerical DKS calculations22 in
Tables I, II, and III, respectively. As noted earlier, the nS
approximation systematically overestimates all of the sp
orbit splittings, with the Ce 4f splitting being overestimated
by nearly 100%. When the screening effects ofve are in-
cluded, the agreement with the numerical results is impro
dramatically, with the maximum error being reduced to le
than 6%.~Adding in the first-order spin-orbit coupling term
involving vxc only slightly reduces this maximum erro
which appears to be intrinsic to the DKH approximation!
These results confirm that accurate fully relativistic LCGT
DFT calculations on large systems will require the devel
ment of some computationally tractable scheme for appr
mately incorporating the two-electron spin-orbit coupli
terms.

TABLE I. Spin-orbit splittings~Ry! obtained for the orbitals of
a Ce atom using the nuclear plus electronic~neSO! and nuclear-
only ~nSO! DKH approximations are compared with results fro
numerical Dirac calculations. An estimated effective point cha
Qest( i ) ~defined in the text! is listed for each orbital. The spin-orb
splittings obtained here using the SNSO approximation, and t
percentage errors relative to the numerical Dirac results, are g
in the last two columns.

Orbital Dirac neSO nSO Qest( i ) SNSO Error

2p 32.7859 33.3094 34.6792 2.29 33.401211.9%
3p 6.4409 6.5507 6.8353 2.41 6.583712.2%
4p 1.3841 1.4084 1.4710 2.47 1.417012.4%
5p 0.1906 0.1940 0.2028 2.52 0.195512.6%

3d 1.3852 1.3682 1.6586 10.16 1.371121.0%
4d 0.2405 0.2378 0.2906 10.54 0.240320.1%
5d 0.0113 0.0111 0.0138 11.35 0.011511.8%

4 f 0.0205 0.0198 0.0387 28.33 0.020022.4%

TABLE II. Same as Table I, but for Ta.

Orbital Dirac neSO nSO Qest( i ) SNSO Error

2p 93.2619 96.0127 99.2563 2.39 96.192013.1%
3p 20.0717 20.6843 21.4073 2.47 20.748913.4%
4p 4.6390 4.7837 4.9572 2.55 4.804113.6%
5p 0.6476 0.6682 0.6937 2.68 0.672313.8%

3d 4.3752 4.3409 5.0594 10.37 4.360020.3%
4d 0.8521 0.8459 0.9956 10.98 0.857810.7%
5d 0.0424 0.0422 0.0505 12.00 0.043612.8%

4 f 0.1459 0.1427 0.2335 28.39 0.143721.5%
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In the early 1960s, Blume and Watson26,27 demonstrated
that the full spin-orbit operator for the many-electron~ab
initio! Hamiltonian could be rigorously divided into an e
fective one-electron operator and a residual two-electron
erator, which depends on the particular orbital under con
eration. Although this rigorous result is more interesting th
useful in the context of large-scale calculations, it led to
commonly used technique for approximately incorporat
spin-orbit coupling effects into calculations using effecti
core potentials. In that approach, the effect of spin-orbit c
pling on a given valence shell is approximated by the sp
orbit coupling due to an effective nuclear chargeZe f f , which
is simply adjusted to match experimental spin-or
splittings.28 An approach of this type is particularly appea
ing within the context of DFT, since the DKS equations a
themselves effective one-electron equations. It is in this sp
that the present work will proceed.

Using Eqs.~9! and ~10!, ignoring vxc , and dropping all
second-order terms, which can be shown to have little ef
on the atomic spin-orbit splittings, the spin-orbit couplin
operator for a spherical potential can be written in the fo

hSO5ApKp~2L•S!F Z

r 3
2

Q~r !

r 3 GKpAp , ~11!

where

Q~r !5E
0

r

r~x!x2dx ~12!

is the electronic charge contained inside of a sphere of ra
r centered on the nucleus. For any given atomic orbitalf i ,
the spin-orbit operator of Eq.~11! could be replaced with an
orbital dependent operator of the form

hSO~ i !5ApKp~2L•S!F Z

r 3
2

Q~ i !

r 3 GKpAp , ~13!

where

Q~ i !5
^ i uQ~r !r 23u i &

^ i ur 23u i &
~14!

e

ir
en

TABLE III. Same as Table I, but for Pu.

Orbital Dirac neSO nSO Qest( i ) SNSO Error

2p 313.1508 330.4677 339.7566 2.57 330.447815.5%
3p 72.5603 76.5642 78.1398 2.57 76.584815.5%
4p 19.1427 20.2126 20.7957 2.64 20.232815.7%
5p 4.6761 4.9400 5.0845 2.67 4.948115.8%
6p 0.7264 0.7689 0.7904 2.57 0.770516.1%

3d 14.5424 14.4913 16.3997 10.94 14.626610.6%
4d 3.4939 3.4833 3.9681 11.48 3.538811.3%
5d 0.6930 0.6911 0.7909 11.86 0.705911.9%
6d 0.0298 0.0298 0.0342 12.11 0.030813.4%

4 f 0.9276 0.9143 1.3088 28.33 0.917821.1%
5 f 0.0728 0.0718 0.1064 28.55 0.075213.3%
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7812 PRB 62J. C. BOETTGER
is an effective point charge that screens the nuclear ch
seen byf i .

Up to this point, no additional approximations have be
made and no time saving has been achieved, sinceQ( i ) must
still be calculated for all orbitals at each iteration. Neverth
less, an analysis of the values ofQ( i ) for Ce, Ta, and Pu
may be educational. AlthoughQ( i ) could be exactly calcu-
lated for any given atomic orbital, such a calculation is n
required for the present purpose. Instead, for each ato
orbital listed in Tables I, II, and III, the value ofQ( i ) is
roughly estimated here using the expression

Qest~ i !5ZFDenSO~ i !2DeneSO~ i !

DenSO~ i ! G , ~15!

whereDenSO( i ) and DeneSO( i ) are the spin-orbit splittings
obtained for orbitali in the nSO and neSO approximation
@Note thatQest( i ) would be exact iff i was identical for the
two approximations.# Values ofQest( i ) are given for each
atomic orbital in Tables I, II, and III.

Inspection of theQest( i ) in the tables reveals a strongl
dependence, withQest( i ) ranging from 2.29→2.68 for p
states, 10.16→12.11 for d states, and 28.33→28.55 for f
states. This result suggests that the orbital dependent s
orbit operator in Eq.~11! could be replaced with an effectiv
l-dependent operator of the form

hSO~ l !5ApKp~2L•S!F Z

r 3
2

Q~ l !

r 3 GKpAp , ~16!

where

Q~ l !50,2,10,28, . . . ~17!

is the total number of electrons contained in all filled she
with n< l . Given the values ofQest( i ) listed in the tables,
this model should at least provide a reasonable lower bo
to the exactQ( i ) and has a rather transparent interpretati
Henceforth, this approximation will be referred to as t
SNSO approximation, since the primary effect ofQ( l ) is to
screen the nuclear charge.

Atomic spin-orbit splittings obtained for Ce, Ta, and P
using the SNSO approximation are listed in Tables I, II, a
III. Close inspection of the tables reveals that the SN
approximation produces results that only differ from t
neSO results by a few percent. For example, the SNSO
proximation overestimates the splitting of the Ce 4f orbital
by 1%, relative to the neSO approximation, versus the ne
100% overestimate produced by the nSO approximat
Comparison of the SNSO results with the nearly exact
merical Dirac results~see the errors listed in the tables! in-
dicates that the maximum error is 6.1%~for the 6p orbital of
Pu!, most of which is actually due to the DKH approxim
tion, not the SNSO approximation. These results suggest
the SNSO approximation should, at least, be reliable for
oms ranging from Ce (Z558) to Pu (Z594), and may prove
useful for lighter atoms as well, since the errors appea
shrink asZ is reduced.
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IV. EXTENSION TO CRYSTALLINE SOLIDS

In order to develop a computationally tractable meth
for extending the SNSO approximation to multi-atom sy
tems, it will now be assumed that intersite spin-orbit co
pling can be neglected. This assumption is consistent w
results from recent DKH calculations on molecules29 and is
no more severe than the spin-orbit coupling approximat
that is most commonly used in crystalline calculations,
which the spin-orbit operator is spherically averaged ins
of a muffin-tin sphere and is set to zero outside.30 With this
assumption, the SNSO approximation can be implemente
any fully relativistic nuclear-only DKH code by replacin
the nuclear-only spin-orbit operatorhnSO with a basis-
function-dependent operator of the form

hSNSO~ i , j !5hnSO2AQ~ l i !

Zi
hnSOAQ~ l j !

Zj
, ~18!

whereZi is the nuclear charge of the site on which the ba
function f i is centered. It is trivial to show that Eq.~18!
reduces to Eq.~16! for an isolated atom. This form of the
SNSO approximation has been implemented in the prog
GTOFF,31 which is designed to carry out DFT calculations o
thin films and crystalline solids using the all-electron line
combinations of Gaussian-type orbital–fitting-functio
~LCGTO-FF! technique.32

The light-actinide metals Th→Pu, in their fcc phases
provide an ideal test for the multi-atomic SNSO approxim
tion, since GTOFF has already been used to study those
tems with scalar relativistic and fully relativistic nuclear-on
DKH calculations.13 Moreover, the atomic volumes of th
light-actinide metals have recently become controversial.13,18

The basic issues involved can be illustrated with the cas
fully-relativistic GGA calculations on fcc Th. A series o
calculations18 using the full-potential linear muffin-tin orbita
~FLMTO! method yielded an atomic volume for Th that
roughly 10% smaller than the experimental volume, an
usually large contraction for a GGA calculation. Subsequ
calculations using two distinctly different methods, th
LCGTO-FF method in the nuclear-only DKH approximatio
and the full-potential linear-augmented-plane-wa
~FLAPW! method,13 instead found atomic volumes tha
agreed with experiment to within about 3%. For the series
metals, Th→Pu, this general outcome was consistently
peated with the LCGTO-FF and FLAPW atomic volum
being in good qualitative agreement with each other~al-
though the spin-orbit induced shifts are larger for t
LCGTO-FF method, as expected! and the FLMTO volumes
being 3→10% smaller. In each case, the former results w
closer to experiment than the latter.13 Tables IV and V list
the atomic volumes and bulk moduli found in those stud
for the fcc light-actinide metals using the GGA model.

The large discrepancy between the FLAPW and FLMT
results was particularly perplexing, since those methods
nearly identical approximations. Numerous test calculatio
on fcc Th ~Ref. 33 and 34! ultimately revealed that the
source of this discrepancy is an unfortunate coupling
tween the muffin-tin radius~used in both methods! and the
spin-orbit coupling of the 6p state. In the FLAPW calcula-
tions, the muffin-tin radius was held fixed at a relative
small value throughout each series of calculations, wher



us
ce
m

W
th
e
u

ce
es
n

W
he
y
m
th
hi
la

a
pi
ar
he
r
n
n
ar
al
to
n
id
ou

are
tes,
st

.
te
he
en-

sis
d

tic
la-

r to
ns.
eri-
ar-

the
he
ts,

a-
H

g

-
c

tic

the

lk

on-
u-
c
en.

PRB 62 7813APPROXIMATE TWO-ELECTRON SPIN-ORBIT . . .
the FLMTO calculations used a variable muffin-tin radi
constrained to keep the ratio of the sphere volume to the
volume constant. If the muffin-tin radii were treated the sa
in both methods, they produced similar results.

Although the reasonable agreement between the FLAP
LCGTO-FF, and experimental atomic volumes suggests
the fixed-radius method is preferable to the fixed-volum
ratio method, this conclusion is not entirely beyond arg
ment. One difficulty is that there are systematic differen
between the LCGTO-FF and FLAPW results. The larg
disagreement is for fcc Pu, where the atomic volume fou
with the LCGTO-FF method is 6% larger than the FLAP
result. While the most likely source for this difference is t
nuclear-only DKH approximation, the muffin-tin instabilit
associated with the FLAPW method may also have so
residual impact. Thus a significant uncertainty remains in
calculated atomic volumes of the light-actinide metals. T
uncertainty can now be reduced with LCGTO-FF calcu
tions using the SNSO approximation.

Since the differences between the various calculations
pear to be rooted in the approximations being used for s
orbit coupling, a brief comparison of the methods is w
ranted at this time. In the FLAPW and FLMTO methods, t
spin-orbit coupling of the core states is treated with a nea
exact numerical method. The spin-orbit coupling of the ba
states is included via a variational method. First basis fu
tions are obtained by numerically solving the scal
relativistic one-electron equations for a muffin-tin potenti
Those ‘‘scalar-relativistic’’ basis functions are then used
variationally solve the full-potential one-electron equatio
with a spin-orbit operator that is spherically averaged ins
the muffin-tin sphere, and is set to zero outside. A seri

TABLE IV. Atomic volumes~atomic units! for the fcc phases of
the light-actinide metals Th→Pu obtained with the LCGTO-FF
method using three DKH approximations@the nuclear-only scalar
relativistic ~nSR! approximation, the nuclear-only fully-relativisti
~nFR! approximation, and the screened-nuclear spin-orbit~SNSO!
approximation# are compared with results from scalar-relativis
~SR! and fully relativistic ~FR! FLAPW calculations, and FR-
FLMTO calculations. All results are taken from Ref. 13, except
present SNSO results and the FR-FLMTO results~Ref. 18!.

nSR SR-FLAPW nFR SNSO FR-FLAPW FR-FLMTO

Th 216.9 219.3 214.8 214.3 218.1 199.9
Pa 171.5 172.3 173.9 173.2 172.8 160.2
U 146.1 147.5 151.5 148.8 148.7 138.6
Np 131.6 131.4 142.2 137.2 137.9 125.8
Pu 121.2 122.3 141.4 133.4 133.4 119.2

TABLE V. Same as Table IV, except the entries are bu
moduli ~GPa!.

nSR SR-FLAPW nFR SNSO FR-FLAPW FR-FLMTO

Th 59 57 63 64 73 62
Pa 102 100 94 93 96 122
U 101 125 110 120 99 148
Np 142 137 112 132 140 161
Pu 170 153 97 85 121 143
ll
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drawback to this approach is that the basis functions
forced to be orthogonal to the scalar-relativistic core sta
not the fully relativistic core states. This problem is mo
significant for thep states, because thej 51/2 states are very
different from the scalar-relativisticp states near the nucleus
This means that thep basis set used is far from comple
inside of the muffin-tin sphere, and any small variation in t
basis functions can therefore produce large shifts in the
ergy, and hence the muffin-tin instability.

To assess the impact of using scalar-relativistic ba
functions during fully relativistic linearized-augmente
Slater-type-orbital ~LASTO! calculations on fcc Pu,
Fernandoet al.35 calculated LDA spin-orbit splittings for the
6p and 5f states of a Pu atom using a scalar-relativis
LASTO basis set similar to that used for their bulk calcu
tions. To allow a direct comparison,GTOFF has been used to
calculate the same splittings with basis sets that are simila
those used in the earlier crystalline LCGTO-FF calculatio
These sets of spin-orbit splittings are compared with num
cal DKS results in Table VI. The large impact that the scal
relativistic basis functions used in the LASTO method~and
the FLMTO and FLAPW methods! have on the splittings of
p states is clearly evidenced in the 26% underestimate of
6p splitting. The excellent agreement between t
LCGTO-FF spin-orbit splittings and the numerical resul

FIG. 1. Atomic volumes for the light-actinide metals Th→Pu
obtained with the LCGTO-FF method within the SNSO approxim
tion ~solid line! are compared with results from nuclear-only DK
calculations~dotted line; Ref. 13!, FLAPW calculations~dashed
line; Ref. 13!, and FLMTO calculations~dash-dotted line; Ref. 18!.
An atomic volume for Th obtained with the LCAO method usin
ZORA is also shown~diamond; Ref. 36!.

TABLE VI. Atomic spin-orbit splittings~eV! obtained for the
6p and 5f orbitals of Pu using approximations and basis sets c
sistent with crystalline LCGTO-FF calculations and LASTO calc
lations~Ref. 35! are compared with splittings from numerical Dira
calculations. Errors relative to the Dirac calculations are also giv

Dirac LASTO Error LCGTO-FF Error

6p 9.88 7.3 226% 10.20 13%
5 f 0.99 0.98 21% 0.98 21%
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and the absence of any muffin-tin instability in th
LCGTO-FF method, suggests that fully relativist
LCGTO-FF results using the SNSO approximation should
substantially more reliable than results from FLMTO
FLAPW calculations.

Atomic volumes and bulk moduli for the fcc phases of t
light-actinide metals Th→Pu were calculated here withGT-

OFF in the SNSO approximation, with the GGA, using th
same basis sets as were used in the earlier LCGTO
calculations.13 Those atomic volumes and bulk moduli a
compared in Tables IV and V, and in Fig. 1, with the earl
GGA results13,18 discussed above. Figure 1 also shows
atomic volume for Th calculated quite recently by Philips
and Baerends36 using a linear combinations of atomic orbi
als ~LCAO! method, with relativistic effects~including spin-
orbit coupling! incorporated using the zeroth-order regu
approximation~ZORA!.37 The atomic volumes obtained he
for Pa→Pu using the SNSO approximation agree with t
FLAPW results to within about 0.5%; see Fig. 1. For Th, t
difference is somewhat larger~1.8%!. Most of that differ-
ence, however, also appears in the scalar-relativistic ato
volumes, and cannot be attributed to spin-orbit coupling
fects. This excellent agreement clearly indicates that the
ferences between the earlier LCGTO-FF results and
FLAPW results were due to the use of the nuclear-only DK
approximation, not the muffin-tin instability. It also is cle
that the fixed-radius method used in the FLAPW calculatio
should be preferred to the fixed-volume-ratio method use
the FLMTO calculations. The various theoretical bu
na

um

y

m

.
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tt
e
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r
n

r

ic
f-
if-
e
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moduli in Table V agree to the extent that can be expec
for a derivative quantity determined from a fit to a rath
small number of points; typically five or six.

V. SUMMARY

A screened-nuclear-spin-orbit~SNSO! approximation has
been developed for the two-electron spin-orbit terms gen
ated by the DKH transformation of the DFT one-electr
equations. This approximation is no more computationa
demanding than the nuclear-only DKH approximation, and
applicable both to isolated atoms and extended systems
atoms ranging from Ce through Pu, the SNSO approxima
yields spin-orbit splittings that agree with numerical calcu
tions to within about 6%. For the fcc phases of the ligh
actinide metals, Th→Pu, the SNSO approximation produce
atomic volumes that are in excellent agreement with res
from recent FLAPW calculations.13
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9N. Rösch, S. Kru¨ger, M. Mayer, and V. A. Nasluzov, inRecent

Developments and Applications of Modern Density Functio
Theory, edited by J. M. Seminario~Elsevier, Amsterdam, 1996!,
p. 497, and references therein.

10J.C. Boettger, Phys. Rev. B57, 8743~1998!.
11J.C. Boettger, J. Phys.: Condens. Matter11, 3237 ~1999!; J.C.

Boettger, Int. J. Quantum Chem.70, 825 ~1998!.
12J.C. Boettger, M.D. Jones, and R.C. Albers, Int. J. Quant

Chem.75, 911 ~1999!.
13M.D. Jones, J.C. Boettger, R.C. Albers, and D.J. Singh, Ph

Rev. B61, 4644~2000!.
14J. C. Boettger and A. K. Ray~unpublished!.
15B.A. Hess, C.M. Marian, U. Wahlgren, and O. Gropen, Che

Phys. Lett.251, 365 ~1996!.
16R. Polly, D. Gruber, L. Windholz, M.M. Gleichmann, and B.A

Hess, J. Chem. Phys.109, 9463~1996!.
17O.L. Malkina, B. Schimmelpfennig, M. Kaupp, B.A. Hess,

Chandra, U. Wahlgren, and V.G. Malkin, Chem. Phys. Le
296, 93 ~1998!.
l

s.

.

.
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