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Exact solution of the strong couplingt-V model with twisted boundary conditions

R. G. Dias
Departamento de Fı´sica, Universidade de Aveiro, 3810 Aveiro, Portugal

~Received 13 December 1999!

We present the solution of the one-dimensionalt-V model with twisted boundary conditions in the strong
coupling limit, t!V and show that this model can be mapped onto the strong coupling Hubbard chain threaded
by a fictitious flux proportional to the total momentum of the charge carriers. The high-energy eigenstates are
characterized by a factorization of degrees of freedom associated with configurations of soliton and antisoliton
domains and degrees of freedom associated with the movement of ‘‘holes’’ through these domains. The
coexistence of solitons and antisolitons leads to a strange flux dependence of the eigenvalues. We illustrate the
use of this solution, deriving the full frequency dependence of the optical conductivity at half-filling and zero
temperature.
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I. INTRODUCTION

The extended Hubbard model and its spinless version,
t-V model, have been extensively studied due to their
evance in the comprehension of the behavior of strongly c
related compounds such as cuprates1–3 and organic
conductors.4,5 Much of the present understanding of the
models has been a consequence of the exact solution in
dimension by the Bethe ansatz~BA! technique.6,7 The evalu-
ation of the correlations remains however a hard task wit
the Bethe ansatz framework. For the Hubbard model, fur
progress was possible in the strong coupling limit due to
simpler form of the solution.8–12 The eigenfunctions in this
limit factorize as a product of a wave function of noninte
acting spinless fermions and a wave function of a squee
spin chain.8,13 This spin-charge factorization simplifies th
calculation of correlations and in particular, it has been u
to determine the momentum distribution function,8 the spec-
tral function,9,10 the sum rules of the upper and lower Hu
bard bands,11 and the Green’s function12 of this model. An
alternative solution to that of the Bethe ansatz was also p
sible in this limit.13–15

The t-V model is apparently simpler than the Hubba
model due to the absence of spin degrees of freedom.
model can be mapped onto the anisotropic Heisenberg m
~more precisely, the XXZ or Heisenberg-Ising model! by the
Jordan-Wigner transformation,16 whose Bethe ansatz solu
tion has long been known.17 In the strong coupling limit, the
t-V model, despite its apparent simplicity, remains somew
foggier than the Hubbard model. For instance, the Bethe
satz solution18–20 presents us with eigenvalues expressio
with phase terms whose physical meaning is not clear.
other curious fact is that the Luttinger liquid exponent21 that
characterizes the low-energy excitations of the strong c
pling t-V model is density dependent22 in contrast to the
strong coupling Hubbard model where it is a constant.2 Since
this exponent is closely related to Fermi surface phase s
~a holon Fermi surface in the case of the Hubbard model!,2 it
is worthwhile to investigate how these phase shifts will
modified. In this paper, we present a non-Bethe-ansatz s
tion for the strong coupling one-dimensionalt-V model that
is closely related to the solution of the strong coupling Hu
PRB 620163-1829/2000/62~12!/7791~11!/$15.00
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bard model14 and that clarifies the previous issues. T
simple factorized form of this solution~and the low degen-
eracy of the eigenvalues! will, we believe, allow an easy
calculation of correlations.

The t-V Hamiltonian for a ring withL sites is

H52t(
i

~ci
†ci 111ci 11

† ci!1V(
i

nini 11 , ~1!

where ci
† is the fermion creation operator on sitei, ni

5ci
†ci , andV is the nearest-neighbor Coulomb interactio

The one-dimensional strong couplingt-V model~as the Hub-
bard model! is a classic example of a system that exhibits
metal-insulator transition upon doping. Ift50, the fermions
are localized and all states with the same number of pair
nearest-neighbor occupied sites,( inini 11, are degenerate
This degeneracy is lifted ift/V is finite and up to first order
in t, the eigenvalues are obtained diagonalizing the Ham
tonian within each of the degenerate subspaces. In the st
coupling limit t!V, we obtain therefore the projecte
Hamiltonian

H52t(
i

@~12ni 12!ci 11
† ci~12ni 21!1hc#

2t(
i

@ni 12ci 11
† cini 211hc#1V(

i
nini 11 . ~2!

This limit corresponds to theJx5Jy!Jz limit of the aniso-
tropic Heisenberg model. The set of eigenstates and eig
values of this model can be obtained without having to res
to the Bethe ansatz, as we will show below.

The behavior of thet-V model in the strong coupling limit
has provided support for a recent conjecture by Zotos
Prelovsek.23–25 According to these authors, thet-V model
and the Hubbard model at half-filling are perfect insulato
this meaning that the Drude weight (Dc) in the thermody-
namic limit remains zero even at finite temperature. In p
ticular, in the strong coupling limit, they argue thatDc50
even for finite systems. Such behavior was confirmed
Pereset al.,18 applying the Bethe ansatz method to solve t
t-V model in the strong coupling limit. Here, we present
7791 ©2000 The American Physical Society
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different solution that allows an easy confirmation of t
previous results and makes clearer the physical picture in
limit.

The remaining part of this paper is organized in the f
lowing way. In Sec. II, the low-energy eigenstates of t
model are found. First, we study the one-particle probl
and present a new path for its solution. Then, we show
this solution can be extended to the case withN particles. We
also find the flux dependence of the eigenvalues. In Sec
the general solution is presented both for periodic a
twisted boundary conditions~finite flux!. We also comment
on the higher-order corrections. In Sec. IV, we compare
results with those obtained with the Bethe ansatz techniq
The transport properties of the model are studied in Sec
Finally, we conclude in Sec. VI.

II. LOW-ENERGY SUBSPACE

Let us consider two consecutive sites and therefore, n
est neighbors of each other. There are four different confi
rations for this pair of sites, which we will call links and the
are

~•• !;~2• !;~•2 !;~22 !, ~3!

where a dot stands for an occupied site and a dash fo
empty one. The total number of these links in the chain
equal to the number of sitesL,

N••1N2•1N•21N225L ~4!

andN2•5N•2 . Further conditions result from counting th
number of holes or particles,

N2•1N225Nh ,

N••1N2•5Ne . ~5!

In the limit V/t→`, the number of links(••) is aconserved
quantity and consequently also areN2• andN22 . So, in the
strong coupling limit, the model merely exchanges the po
tions of these links. Note that( inini 115N••.

A. One particle

Let us start with the simple case of a single particle in o
periodic chain. In this case, the interaction term is zero
we have a one-particle tight-binding model, whose solut
is trivial. We are going to solve this model in a differe
fashion, considering as our mobile particle the link (2•).
This link moves exchanging its position with a link (22).
Note that we have one link (2•) andL22 links (22), and
therefore, the total number of these links isL̃5L21.

First, let us define our states in terms of the position
this link,

u ĩ &5ci 11
† u0& ~6!

with 1< ĩ <L21. Note that there is a statec1
†u0&, which is

not included in the previous set of states, but this state ca
written as

T̂21u1̃&5T̂21c2
†u0&, ~7!
is
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whereT̂ is the one-site translation operator. The single p
ticle Hamiltonian rewritten using this new notation becom

H/~2t !5 (
ĩ ÞL̃

u ĩ 11&^ ĩ u1T̂21u1̃&^L̃u1H.c., ~8!

with L̃5L21. We now introduce an over-complete set
states, constructing from a stateu ĩ &, a state invariant by
translation with momentumk,

u ĩ ,k&5
1

AL
(
j 51

L

eik j T̂ j 21u ĩ &. ~9!

These states diagonalize the Hamiltonian, but we are go
to proceed as if they did not and as if they were an ortho
nal set of states. The Hamiltonian becomes

H/~2t !5(
k S (

ĩ ÞL̃

u ĩ 11,k&^ ĩ ,ku1eiku1̃,k&^L̃,ku1H.c.D .

~10!

The Hamiltonian in a givenk subspace has become that of
tight-binding model in a chain ofL21 sites with a fictitious
flux eik. The eigenvalues are given by

E~ k̃,k!522t cosS k̃2
k

L̃
D ~11!

with k̃5ñ(2p/L̃), ñ50, . . .L̃21, and k5n(2p/L), n

50, . . .L21. But clearly, not all combinations ofk̃ and k
correspond to real eigenstates of the Hamiltonian. The eig
states will be of the form

uk̃,k&5
1

AL̃
(
j 51

L̃

ei ( k̃2
k

L̃
) j u j̃ ,k&, ~12!

but obviously, this is a combination of states that are
same state except for a phase, that is,

u j̃ ,k&5eiku j̃ 11,k& ~13!

and the linear combination will be zero unless the followi
condition is satisfied

k̃2
k

L̃
2k50 ~mod 2p!, ~14!

which impliesk̃5kL/L̃ (mod 2p). This condition is equiva-
lent to stating that the final state must obviously have a m
mentumk. Note that the previous equation has preciselyL
solutions and therefore, the usual set of tight-binding eig
values is recovered.

Let us make a few remarks concerning the above pro
dure. Let$u i &%, i 51, . . .L, be an orthogonal set of state
which constitutes a basis for the states of a given system
let Hi j be the matrix elements of the system Hamiltoni
between the statesu i & and u j &. The set of eigenstates$uf i&%,
i 51, . . .L, of the Hamiltonian can be written in this basis
uf&5( jaj u j &. Assume now that two or more states of th
basis were in fact the same state. This would lead to a
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duced matrixH̃ i j , which would have the same elemen
except for the transitions to and from the state that remai
from the set of equivalent states. These transitions are m
tiplied by the total number of equivalent states. The eig
states ofH remaineigenstates ofH̃, but now they constitute
an over-complete basis of the Hilbert space, that is, they
not all linearly independent. They may however remain
orthogonal set if the states in excess are identically zero a
the case studied above.

B. Several particles

Let us consider now the case ofNe particles in a chain of
L sites, but distributed so that there are no links(••). These
states are of the form

ua1 , . . . ,aNe
&5)

i 51

Ne

~12nai21!cai

† u0& ~15!

with $ai% an ordered set of nonconsecutive numbersa1

.1). The total number of (22) and (2•) links is L̃5L
2Ne . This state can be mapped onto the following state o
chain withL2Ne sites,

uã1 , . . . ,ãNe
&5)

i 51

Ne

c̃ãi

† u0̃& ~16!

such that if the first site of this pseudochain is empty, the fi
link of the L sites chain is (22), if it is occupied, the first
link is (2•). The same reasoning applies to the other si
Note that as in the previous case, there are a few states
are not included in the above set, namely, states where a
(2•) is divided between sitesL and 1. These states have
particle at site 1 and one should note that starting from
state as above, these states appear when a link (2•) is at site
L̃, or equivalently, a particle is at siteL and hops to site 1
However, this hopping term can written as

T̂21c̃ 1̃
†

c̃L̃uã1 , . . . ,ãNe21 ,L̃&, ~17!

whereT̂ is the one-site translation operator in the chain oL
sites. Note that this translation operator also insures that
other pseudoparticles remain in the same sites in the red
chain. Given a stateuã1 , . . . ,ãNe

&, we build as previously
the state invariant by translation with momentumP,

uã1 , . . . ,ãNe
,P&5

1

AL
(
j 51

L

eiP j T̂ j 21uã1 , . . . ,ãNe
&.

~18!

The mapped Hamiltonian in the subspace of states with
mentumP becomes

H~P!52tS (
ĩ ÞL̃

c̃ ĩ 11
†

c̃ ĩ 1eiPc̃ 1̃
†

c̃L̃D 1H.c. ~19!

So, we have mapped the Hamiltonian onto a tight-bind
chain withL2N sites threaded by a fluxP with Ne particles.
The eigenvalues are given by
,
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E~$k̃%,P!522t(
i 51

Ne

cosS k̃i2
P

L̃
D ~20!

with k̃5ñ(2p/L̃), and P5n(2p/L), with ñ50, . . . ,L̃21
andn50, . . . ,L21. Again, not all combinations of pseudo
momenta$k̃% andP are possible and applying the same pr
cedure as before, we arrive at the following condition

(
i 51

Ne S k̃i2
P

L̃
D 2P50 ~mod 2p!, ~21!

which implies

P
L

L̃
5(

i 51

Ne

k̃ ~mod 2p!. ~22!

The factorL/L̃ converts the total momentum of our chain
L sites in the total momentum of the pseudochain. Note t
the set of pseudomomenta$k̃% is not enough to define the
total momentumP since there may be two values ofP such
thatPL/L̃ ~mod 2p) is the same. In fact, ifP5n2p/L, with
n50, . . . ,L21, the statesu$k̃%,P& with n in the interval

@0,L212L̃# have the same energy as the statesu$k̃%,P
1(2pL̃)/L&. In the particular case ofL̃5L/2, given a state
with momentumP, one always has a state with momentu
P1p with the same set of wave numbers. TheL̃5L/2 case
corresponds to the half-filling and indeed one knows that
ground state is doubly degenerate, one state having zero
mentum, the otherp, excited states~with N••Þ0), as we
shall see in the next section.

An external magnetic fluxf can be introduced in the
problem with the transformationt→teif/L. The Hamiltonian
remains invariant by translation and all the previous st
can be repeated, leading to the following modification in t
eigenvalue expression

E~$k̃%!→ES H k̃2
f

L J D . ~23!

The ground-state energy is given by Eq.~20!. If Ne is odd,
all single-particle states with pseudomomentumk̃ between
6(2p/L̃)(Ne21)/2 are occupied and( k̃50. Therefore,

Egs
odd522t (

i 52
Ne21

2

Ne21

2

cosS 2p

L̃
i D 522t

sinS pNe

L̃
D

sinS p

L̃
D .

~24!

If Ne is even, all states withk̃ between2~2p/L̃ !(Ne22)/2
and (2p/L̃)Ne/2 or between2(2p/L̃)Ne/2 and (2p/L̃)
3(Ne22)/2 are occupied and( k̃56(p/L̃)•Ne /L. So,
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Egs
even522t (

i 52
Ne22

2

Ne/2

cosS 2p

L̃
i 2

p

L̃

Ne

L D

522t

sinS pNe

L̃
D

sinS p

L̃
D cosS p

L D . ~25!

This slight energy difference between the two cases had
ready been pointed out by Kusmartsev.20 In the presence of a
small fluxf, theNe odd expression should be multiplied b
a factor of cos(f/L), while for Ne even, a2f/L term should
be summed to the argument of the cosine.

This phase shift between the wave numbers of the gro
states withN and N11 particles, should be responsible f
the orthogonality catastrophe in the thermodynamic lim
which, for example, leads to a zero renormalization cons
Z characteristic of a Luttinger liquid21 ~see Ref. 2 for a de-
tailed calculation in the case of the strong coupling Hubb
model!. The renormalization constantZ is given by the over-
lap between the ground state withN11 particles and the
ground state withN particles plus a particle at Fermi mome
tum,

Z5u^cGS~N11;P5kf !uckFs
† ucGS~N;P50!&u2 ~26!

yielding zero in the thermodynamic limit. Our results abo
indicate that the phase shift depends on the densitd
5pNe /L5pr. Recall that in the case of the strong coupli
Hubbard model, the phase shift of the holon wave numbe
independent of the band filling,d5p/2. That phase shift
results from a (2kF) momentum contribution from the spi
sector.2 Here, the phase shift is due to the total momentum
the charge carriers. This dependence on the band filling
agreement with the fact that the anomalous exponent of
model is indeed band filling dependent.22 The Luttinger liq-
uid velocities21 that characterize the low-lying excitation
have been found by Gomez-Santos22 for the strong coupling
t-V model in the thermodynamic limit based on very simp
arguments~basically, the reduction of the effective size
the chain!. These velocities and its finite-size corrections a
easily obtained from the previous equations. In the largL
limit, the Gomez-Santos results are reproduced:

vN5
L

p

]2ET

]N2 5
2t

~12r!3 sinS rp

12r D , ~27!

vJ5
L

p

]2ET

]f2 52t~12r!sinS rp

12r D , ~28!

vS5AvNvJ5
2t

~12r!
sinS rp

12r D , ~29!

wherer5Ne /L and vN , vJ , and vS are, respectively, the
particle, current, and sound-wave velocities.
l-

d

,
nt

d
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III. GENERAL SOLUTION

Let us consider the general case where one may have
links (••) and (22). First, note that a phase-separated st
~one domain of holes and one domain of particles! has no
mobile entities in the strong coupling limit since any hoppi
of a single particle would imply the breakup of a link(••).
So, phase separated states will be eigenstates of the s
coupling Hamiltonian with eigenvalues given byE5VN••.
Furthermore, the same applies to states with several dom
if the only links (2•) present are the domain walls. Clearl
a hole~particle!, in order to be able to move, must be with
a particle~hole! domain. If for a chain withL sites andNe
particles, we fixN•• andN22 , it is the configuration of these
links that will define how many mobile links (2•) one has
and consequently, the number of sitesL̃ of the effective
chain for these mobile links. These mobile links will mov
exchanging their position with links(••) and (22).

It will prove itself useful to do the following mapping:

~•• !5u↑&,

~22 !5u↓&,

~2• !5u0&,

with the exception of the links that are domain walls. That
we will map the states of the spinless chain withL sites and
Ne particles onto states of a spinful chain withL̃ sites and
N•• particles with spin up andN22 particles with spin down.
The first two links are called, respectively, a soliton and
antisoliton. A general state is written as

ua1 , . . . ,aNe
&5)

i 51

Ne

cai

† u0& ~30!

with $ai% an ordered set of integers between 1 andL. Note
that now a particle may occupy the first site and a link m
be divided between sites 1 andL. These states will now be
mapped onto the states of a reduced chain with the num
of sites being

L̃5N••1N221N2•2N↓↑, ~31!

whereN↓↑ is the total number of (↓↑) domain walls in the
sequence of spins obtained by the mapping above. The a
relation leads to the following relation between the real a
effective chain sizes

L̃5L2N2•2N↓↑ , ~32!

which reflects the fact that our moving ‘‘particles’’ are no
the links (2•) with the exception of the ones that are doma
walls. The two sites that compose such a link are effectiv
reduced to one~or zero, if the link is a domain wall!, with the
consequent reduction of the chain effective size. Note thaL̃
is always larger thanNe or Nh .

The state given in Eq.~30! corresponds to the following
state of the reduced chain

uã1 , . . . ,ãN↓1N↑;s1 , . . . ,sN↓1N↑&5 )
i 51

N↓1N↑
cãis i

† u0̃&. ~33!
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If site 1̃ is empty, the first link of the chain ofL sites is
(2•) and in order to have a well-defined mapping, we i
pose the condition that first two sites of the chain ofL sites
correspond to the link and therefore the first site is em
while the second is occupied. The same applies in the cas
site 1̃ being occupied. Links that are domain walls are n
mapped to the reduced chain~see Fig. 1 for an example o
the mapping!. This condition agrees with the definition o
states of the previous section and furthermore, it also imp
that certain states are not included in the mapping, but
previously, they can be written as translations of states
cluded in the mapping. These states, which need to be tr
lated, appear due to hoppings between sites 1˜ andL̃, but also
sites 1̃and 2̃. As previously, we construct states invariant
translation with total momentumP,

u$ã%,$s%,P&5u$a%,P&5
1

AL
(
j 51

L

eiP j T̂ j 21u$a%&, ~34!

and keep the same mapping. The states, which need t
translated, lead toe6 iP terms in the mapped Hamiltonian. S
that one does not need to be concerned with the reorderin
operators in the real chain, we will considerNe odd. TheNe

FIG. 1. The mapping is illustrated in this figure. In the fir
chain, the circles stand for occupied sites while the small dots s
for empty ones. The introduction of the nearest-neighbor interac
leads to a further factorization of the wave function describing
charge degrees of freedom.
-

y
of
t

s
as
-
s-

be

of

even case can be solved with minor modifications of
procedure below. LetNẽ5N↓1N↑ .

Note that in general, the hopping of an electron impl
simply that ã j→ã j61 for somej. Hoppings of a particle
from 1 to 2 or 1 to L are however more complex processe
the reduced chain. In the following tables, we describe
action of these hopping terms. In the first column of ea
table, one has the initial state and in the last column, the fi
state after the application of the hopping operator. An ex
intermediate column is present if the final state cannot
directly mapped onto a state of the reduced chain. The
ond line in each row shows the states in the original ch
while the first line shows the equivalent states in the redu
chain.

~i! Let us first consider the jump of a link from 1˜ to L̃.
Note that this implies acL

†c1 hopping for a link(••), but a
c1

†cL hopping for a link (22).

↑•••↓+ +•••↓↑
•••••22•2 2••••22••
↑•••↑+ +•••↑↑
•••••••2 2•••••••
↑•••++ +•••+↑
•••••2•2•2 2••••2•2••

↓•••↑+ no mapping eiP+•••↑↓
22•••••2• •2•••••22 5T212•2•••••2

↓•••↓+ no mapping eiP+•••↓↓
22•••22• •2•••222 5T212•2•••22

↓•••++ no mapping eiP+•••+↓
22•••2•2• •2•••2•22 5T212•2•••2•2

~ii ! Now, the jump of a link from 2˜ to 1̃:

+↓•••↓ ↓+•••↓
2•22•••2 22•2•••2

+↓•••↑ ↓+•••↑
2•22••••• 22•2•••••

+↓•••+ ↓+•••+

2•22•••2• 22•2•••2•

+↑•••↑ no mapping eiP↑+•••↑
2••••••• •2•••••• 5T21••2•••••

+↑•••↓ no mapping e2 iP↑+•••↓
2•2•••••2 2••2••••2 5T11••2••••22

The last two cases also occur if the last pseudospin is
at site L̃. The HamiltonianH15H2VN••, in the mapped
Hilbert space~in the subspace of momentumP), becomes

H1~P!52(
ĩ 51

L̃

t is~12nĩ s̄!c̃ ĩ s
†

c̃ ĩ 11s~12nĩ 11s̄!1H.c.

~35!
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with

t L̃↑5t~21!Nh,

t L̃↓5teiP~21!Nh,

t 1̃↓5t,

t̂ 1̃↑5tesNẽ
• iP,

and t is5t, in the other cases. This is theU5` Hubbard
chain pierced by a magnetic flux. The Hamiltonian does
change the sequence of spins$s%, but circularly permutes
them. Note that (21)Nh5(21)L̃2N↑, if Ne is odd. In par-
ticular, if N↑50, this factor reflects the fact that a hole ba
is translated byp in relation to an electron band.

The solution of the above model is a little trickier tha
that of the usualU5` Hubbard model13 due to the termsNẽ

in t̂ 1̃↑ . Its solution is easier to understand if one consid
first the application of the Hamiltonian in the subspace
states with the same configuration of thes-spins
us1 , . . . ,sNẽ

&. Then the Hamiltonian can be written in mo
compact notation, dropping the spin index,

H1~P!52t(
ĩ ÞL̃

c̃ ĩ 11
†

c̃ ĩ 2t 1̃s1
c̃1̃

†
c̃2̃2t L̃s1

c̃L̃
†
c̃1̃Q̂1H.c.

~36!

with hopping integrals given as above andQ̂ being the cyclic
spin permutation operator.

Consider a general state with no link at sitẽ,
uã1 , . . . ,ãNẽ

;s1 , . . . ,sNẽ
&. If we redefine these states in th

following way,

uã1 , . . . ,ãNẽ
;↑, . . . ,sNẽ

&→esNẽ
iPuã1 , . . . ,ãNẽ

;↑, . . . ,sNẽ
&

~37!

with ã1>2, the Hamiltonian within the subspace of stat
with the above spin configurations, becomes the one gi
by Eq. ~35! with the following modifications

t 1̃s→t, ~38!

t̂ L̃s→~21!Nhte1/2(11s1•sNẽ
) iP.

The hoppings across the boundary do a cyclic permutatio
the spin sequence$s% with the above phase factor. We wis
to construct now the states that remain invariant under su
cyclic permutation, that is,

Q̂$s%S (
i 50

r ac
21

aiQ̂
i u$n%& D 5eif8S (

i 50

r ac
21

aiQ̂
i u$n%& D , ~39!

where

Q̂$s%us 1̃ , . . . ,sNẽ
&

5~21!Nhe1/2(11s1•sNẽ
) iPQ̂us 1̃ , . . . ,sNẽ

&,

~40!
t

s
f

s
n

of

a

and r ac
is the periodicity of the spin configuration, andac

labels the different spin configurations. For example, the s
periodicity in ↓+↓↑↓↓+↑ is 3. f8 will be the effective flux
felt by the noninteracting fermions. This problem is equiv
lent to solving a one-particle tight-binding model for a cha
of r ac

sites with hopping constantt j5te1/2(11s1•sNẽ
) iP, with

the correspondenceu i &5Q̂i 21u$n%&. The total flux through
this tight-binding chain is

f15r ac

N↑1N↓22N↓↑
N↑1N↓

iP. ~41!

The solution is obtained after a gauge transformation so
t j→eif1 /r act. The gauge transformation depends on t
n-spin configuration, but the tight-binding eigenvalues on
depend on the total flux. The eigenstates will be Bloch sta
uac ,qc& ~in the cyclic permutations! with qc5n(2p/r ac

),

with n50, . . . ,r ac
21. This resolution is rather similar to

that of the Hubbard model with flux that has been treated
Ref. 14.

Its solution is known13,14 and the eigenvalues ofH1 for L
odd are given by

E~$k̃%,qc ,P!522t(
i 51

Nẽ

cosS k̃i1a
P

L̃
1

qc

L̃
D , ~42!

with

a5
N↑1N↓22N↓↑

N↑1N↓
. ~43!

If L is even, there is ap/L̃ correction in the argument of th
cosine due to the term (21)Nh. Note the sign change within
the cosine argument when compared with Eq.~20!. This sign
change just reflects the ‘‘particle-hole’’ transformatio
which is implicit in the fact that now the links (2•) are
mapped onto holes.

Now, the total momentumP has to be determined as
function of $k% andqc . The following condition is obtained
from the phase acquired by a eigenstate under the transla
of two real sites or a pseudosite,

2P5(
i 51

Ne S k̃i1a
P

L̃
1

qc

L̃
D ~mod 2p!, ~44!

which is easy to understand examining the translation o
component of the eigenstate, which does not ha
pseudoparticles at siteL̃ and therefore does not suffer a ci
cular permutation of the pseudospins. Obviously, the com
nents that do not satisfy the previous assumption will lead
the same result since the overall eigenstate is invarian
translation. This relation can be written in a simpler form

P
L

L̃
5(

i 51

Ne

k̃1~N↑1N↓!
qc

L̃
~mod 2p!. ~45!

As in the previous section, the set of pseudomomenta$k̃%
and the pseudospin momentumqc are not enough to totally
defineP.
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The spin-charge factorization of theU5` Hubbard
model translates into a decoupling of the degrees of freed
describing the configuration of domains solitons and antis
tons and the degrees of freedom associated to the presen
‘‘holes’’ moving through these domains. This factorizatio
and the mapping presented in this paper are illustrate
Fig. 1.

A. Flux dependence

Assume now that the chain is pierced by an external fl
f, that is, the Hamiltonian is given by Eq.~2! with t
→teif/L. This problem can be solved following the sam
procedure as forf50 with an extra step. This step i
equivalent to the gauge transformation

c̄ j
†5cj

†eif/L• j ,

which carries all the phase to hoppings at the boundaryt j
→t; j ÞL, tL→teif. Let us show how this can be done fo
the mapped Hamiltonian. We modify the state invariant
translation in the following way,

ua1 , . . . ,aNe
,P&5ei

f
L (

i 5 i

Ne

ai
1

AL
(
j 51

L

eiP j T̂ j 21S )
i 5 i

Ne

cai

† u0& D .

~46!

Now note the following,

~•2•••••22 !P5eiPe2 iNe
f
L~2•2•••••2 !P ;

~•2•••••• !P5eiPe2 iNe
f
Leif~••2••••• !P .

Therefore, we will have an extra phase term in the hoppi
displayed in the previous tables, which involve a translati
Furthermore, a hopping of a link(••) at theboundary im-
plies a hopping of an electron in the same direction while
hopping of a link (22) implies a hopping of an electron i
the opposite direction. For zero external flux, this distinct
would be irrelevant, but for a finite flux, it leads to a sp
dependent phase of the hopping integrale2s1if. Following
exactly the same procedure, we arrive to the same stag
Eq. ~35! with the following modifications

t L̃↑→t L̃↑e2 if,

t L̃↓→t L̃↓eife2 iNe
f
L ,

t 1̃↓→t 1̃↓ ,

t 1̃↑→t 1̃↑e2sNẽ
• iNe

f
Le(11sNẽ

)• if/2.

Following the same steps, this leads to the modification

t L̃s→t L̃se2s1ife21/2•(11s1•sNẽ
) iNe

f
Le1/4•(11sNẽ

)(11s1)• if.

This phase term generates an extra flux contribution thro
the (N↑1N↓) tight-binding chain that is given by

S 2
N↑2N↓
N↑1N↓

2a
Ne

L̃
1

N↑↑
N↑1N↓Df, ~47!
m
i-
e of

in

x

y

s
.

e

of

h

whereNss8 is the number of pairsss8 in the sequence o
spins obtained with our mapping. For example, in Fig.
N↑↑51, N↓↓53, and N↑↓51. Note thatN↑5N↑↑1N↑↓ ,
N↓5N↓↓1N↑↓ , andN↑↓5N↓↑ . The Hamiltonian is simple
to diagonalize and the eigenvalues are given by Eq.~42! with

E~$k̃%!→ES H k̃2b
f

L J D ~48!

and

b5

N↑↑
Ne

L̃
2N↓↓

Nh

L̃

N↑1N↓
5

N↑2N↓
N↑1N↓

. ~49!

Such expression for the flux dependence should be expe
since solitons and anti-solitons in the strong coupling lim
can be viewed as hard-core particles with opposite cha
and a simple spinless model of hard-core particles with
posite charges in a magnetic flux would exhibit precisely t
flux dependence of the eigenvalues. It is easy to show th
N↑50 or N↓50, b561 as it should be. One can interpr
b as the effective charge of the carriers. Note that this ren
malization of the flux dependence was also found for
strong coupling Hubbard model14 with precisely the same
form.

B. Higher-order corrections

The second-order corrections can be obtained conside
virtual hoppings that create or destroy a soliton-antisoli
pair. For a given low-lying eigenstate withN↑50, this leads
to a energy correction of the form

t2

V
^ni↓ni 11↓1~12ni 11↓!~ci↓

† ci 12↓1ci 12↓
† ci↓!&. ~50!

When N↓50, the energy correction is of the same form.
N↑1N↓5L̃, the second-order corrections can be mapped
a Heisenberg spin model. In the general case, the en
correction can be written as an average over an operator
creates~or destroys! a soliton-antisoliton pair and destroy
~or creates! also a pair that may or may not be the one c
ated ~destroyed!, leading to long-range hopping of thes
pairs with or without exchange of the pair. A closer mappi
than that onto theU5` Hubbard model is suggested at th
level, since the above corrections are also present in
charge sector of theU@t Hubbard model, if the spin con
figuration is restricted to be Neel-like with momentumqs
50. In this case, long-range hopping of a hole-‘‘double o
cupancy’’ pair is also possible and one may think of doub
occupied sites, holes and singly occupied sites~with an qs
50 Neel configuration! as equivalent to(••), (22) and
empty sites in our reduced chain. The flux dependence of
eigenvalues also suggests such a picture.14 We will see that
such a picture agrees with the transport properties of thet-V
model.

IV. COMPARISON WITH BETHE ANSATZ RESULTS

Our results can be linked to those obtained with the Be
ansatz technique.18,20 In the following, we adopt the notation
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of Ref. 18. The Bethe ansatz solution is characterized b
set of bandsg ~with g50,1, . . . ),with nontrivial relations
for the total number of available ‘‘single-particle’’ states
each banddc,g and for the total number of occupied states
each bandNc,g . The energy associated with an occupi
state in thegÞ0 band is of orderV and therefore, theg
50 band is the free-carrier band obtained in our picture. T
high-energy bands (gÞ0) are related to the remaining de
grees of freedom associated with the possible configurat
of the links (••) and (22). This is similar to the strong
coupling Hubbard model case where the high-energy
bands are clearly linked to thepossible configurations
holes and double occupancies.14

In Table I of Ref. 18, we see that the low-lying stat
(N0Þ0, Ng50, for g.0) are those of a chain with a re
duced sizeL̃5dc,05L2Ne and number of holes given b
Nh̃5Nc,0

h 5L2Ne , which agrees with our equivalent find
ings in Sec. II B. Noting that in Eq.~24! of Ref. 18,

2p

LNe
2

2p

~L2Ne!Ne
52

2p

L~L2Ne!
,

the eigenvalue expression, Eq.~23! of Ref. 18, becomes ex
actly the same as our Eq.~20! and the same can be said f
the flux dependence of these eigenvalues.

The high-energy states are more complex since they
characterized by a nonzero occupation of the high-ene
bands. Let us assume for simplicity that only one of t
high-energy BA bands (gÞ0) is occupied. The effective
size of the chain and the number of holes in theg50 band
are18

L̃5dc,05L2Ne1~g21!Nc,g ,

Nẽ5Nc,0
h 5L22Ne12gNc,g , ~51!

where in the last equation, we have used the fact the hole
theg50 band are in our picture the particles. Relating the
two equations to the definition of these quantities in our p
ture, one obtains

gNc,g5N•• ; Nc,g5N↑↓ . ~52!

These relations can be confirmed calculating the total n
ber of electrons

Ne5Nc,01~g11!Nc,g5N2•2N↑↓1N••1N↑↓ .
~53!

These relations imply thatg has a very simple physica
meaning in the strong coupling limit, it is the size of th
clusters of links(••). Since only one BA band is occu-
pied, all clusters have the same size and the total num
of these clusters isN↑↓ . The total number of links(••)
is then obviously gN↑↓ . This type of excitation form
the so-called BA strings,28,29 and in particular, the string
associated with an occupied state in bandg has lengthg ~see
Ref. 28 for an explanation of these BA string excitations a
of the precise meaning of string length!. We see now that, for
t-V model in the strong coupling limit, a string is simply
cluster of links(••) in the configuration of links(••)
and (22). In the general case, several BA bands are oc
a

e

ns

A
f

re
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e

in
e
-

-

er

d

-

pied implying a configuration of links(••) and (22),
where the links(••) combine into clusters of several length

V. TRANSPORT PROPERTIES

The transport properties of one-dimensional models h
acquired a renewed interest recently due to a conjecture
Zotos et al.23–25 that integrable models with zero Drud
weight at zero temperature are ideal insulators, that is,
Drude weight remains zero also at finite temperature. Ba
on qualitative arguments, Zotos and Prelovsˇek23 have also
stated that, in the particular case of the strong coupling h
filled t-V model, such temperature independence is pres
even for finite-size chains. This has been confirmed b
Bethe ansatz study of this model.18 These results can be ea
ily rederived with our solution and they are simple cons
quences of theb prefactor in the flux dependence of E
~47!. For instance, the current operator

J5 i t(
i

~ci
†ci 112ci 11

† ci ! ~54!

can be obtained at finite temperatures from

^ j &52
1

2 (
n

e2bEn

Z

]~En /L !

]~fc /L !
U

f50

~55!

and therefore, if all eigenvalues are flux independent,
current will be zero whatever the temperature value. N
this is a stronger absence of current than the usual situa
which may occur also in metallic systems, where the z
average of the current operator results from the fact that
positive-energy slopes being exactly compensated by
negative ones. Also, the charge stiffness is given by26,27

Dc5
1

2 (
n

e2bEn

Z

]2~En /L !

]~fc /L !2 U
fc50

~56!

and as for the current, if all eigenvalues are flux independ
the Drude weight remains zero at finite temperatures. A
genvalue in order to be flux independent must haveN↑
2N↓50. It is easy to show that is indeed the case for ha
filled states. For these states,Ne5Nh and sinceN↑2N↓
5Ne2Nh , b50.

In the following, we illustrate the use of our solution wit
a study of the optical conductivity. The real part of the co
ductivity s(v) is given by

s~v!52pDcd~v!1s reg~v! ~57!

with

s reg~v!5
12e2bv

v

p

L (
n,mÞn

pnu^nuJum&u2d~v2Em1En!,

~58!

wherepn is the Boltzmann weight.
At half-filling, the ground state of thet-V model is insu-

lating @Dc(0)50# and doubly degenerate, one state hav
momentum 0, the otherp. Both states haveN2•5L/2 (L
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even! and N••5N2250. The current operator applied to
ground state induces transitions to states withN••5N22

51 andN2•5L/222.
One should note that when determining the optical c

ductivity at finite temperature, one has to calculate ma
elements of the current operator between states withN•• and
N••8 5N••11 in order to obtain the upper band part of t
optical conductivity. The low-frequency region is given b
matrix elements of the current operator between states
the same number of links. Clearly, the contribution of t
statesun&5uN••Þ0& will be very small as its Boltzmann
weight ispn;e2bN••U/Z and we will only consider tempera
turesT!V/kB . So, the sum overun& becomes a sum over a
statesuN••50& and the sum overum& becomes a sum over a
statesuN••50& for the low-frequency conductivity and a su
over uN••51& for the upper band part of the conductivit
That is, we can writes reg5so1s1, whereso will be the
low-frequency conductivity (v;t)

so~v!5
1

v

p

L (
N••8 50
N••50

pN••50 ~59!

u^N••8 50uJ0uN••50&u2d~v2EN
••8 501EN••50!

and wheres1 will be the high-frequency conductivity (v
;V)

s1~v!5
12e2bV

V

p

L (
N••8 51
N••50

pN••50u^N••8 51uJ1uN••

50&u2d~v2EN
••8 511EN••50!, ~60!

whereJ5J01J1 , J0 being the part of the current operat
which does not alter the number of links and therefore, co
mutes with the strong coupling Hamiltonian,

J05 i t(
i

~12ni 12!ci 11
† ci~12ni 21!

1 i t(
i

ni 12ci 11
† cini 211H.c., ~61!

andJ1 being the sum of terms in the current operator, wh
induce transitions between states such that their energies
fer by V,

J15 i t(
i

~12ni 12!ci 11
† cini 21

1 i t(
i

ni 12ci 11
† ci~12ni 21!1H.c. ~62!

SinceJ0 commutes with the Hamiltonian,so(v)50.
In this paper, we will only evaluates1(v) at zero tem-

perature and half-filling (Dc50),
-
x

th

-

h
if-

s1~v!5
1

V

p

L (
N••8 51

~ u^N••8 51;P50uJ1uN2•5Ne;P50&u2

1u^N••8 51;P5puJ1uN2•5Ne;P5p&u2!

3d~v2EN
••8 51!,

where uN2•5Ne ;P5p& and uN2•5Ne ;P50& are the two
possible ground states at half-filling. Well,

J1uN2•5NeP50&5 i tALu1,2;qc~↓↑ !5p;P50&,

J1uN2•5NeP5p&5 i tALu1,2;qc~↓↑ !50;P5p&,

so we only need to calculate the overlap of the eigenst
with the above states. Note that for these eigenstatesN↓
5N↑51 and thereforeN↓↑51. Consequently,a50. The
respective eigenvalues are given by

E~ k̃1 ,k̃2!5V22t(
i 51

2

cosS k̃i1
qc2p

L̃
D

5V24t cosS k̃11 k̃2

2
1

qc2p

L̃
D cosS k̃12 k̃2

2
D .

~63!

These eigenstates are given by

uk̃1 ,k̃2 ;qc ;P&5
1

L(
j , l

~ei ( k̃1 j 1 k̃2l )2ei ( k̃1 j 1 k̃2l )!

3ei
qc2p

L ( j 1 l )u j ,l ;qc ;P&. ~64!

From Eq. ~45! and noting that 2P50 ~mod 2p), one has
k11k252p/L̃ ~mod 2p) if qc50 andk11k250 ~mod 2p)
if qc5p. Well, s1 has two contributions of the form

sin2S k̃12 k̃2

2
D d@v2E~ k̃1 ,k̃2!#, ~65!

which taking into account the above conditions can be w
ten as sin2(k̃)d @v2V14t cos(k̃)# in both cases. The ground
state momentum (P50 or P5p) is irrelevant as expected
So,

s1;(
k̃

sin2~ k̃!d@v2V14t cos~ k̃!#

;F12S v2V

4t D 2GN1dS v2V

2 D , ~66!

where N1d is the density-of-states of a one-dimension
tight-binding model. This density of states is nonzero b
tween22t and 2t and has inverse square-root divergences
62t. Therefore, the optical conductivity will be characte
ized by absence of weight between zero andV24t, which is
the optical gap. At the extremes, the optical conductiv
goes to zero ass1;Auv2Vu24t, that is,

s1;A12S v2V

4t D 2

, 24t,v2V,4t. ~67!
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This is precisely the dependence obtained by Lyo a
Galinar30,15 for the strong coupling Hubbard model with
Neel ground state.30,31Again, thet-V model seems to behav
as the strong coupling Hubbard model with a fixed Neel s
configuration. The optical conductivity of the strong co
pling t-V model has also been recently studied with a c
junction of Bethe ansatz and conformal invariance,32 which
has allowed the determination of the exponent for the
quency dependence immediately above the absorption e
The exponent obtained was 1/2, in agreement with our
sults.

VI. CONCLUSION

In conclusion, we have presented a non-Bethe-ansatz
lution for the strong couplingt-V model with twisted bound-
ary conditions ~or equivalently, the strongly anisotropi
Heisenberg model!. We have found that this model can b
described in terms of soliton-antisoliton configurations a
noninteracting particles moving in a reduced chain threa
by a fictitious flux generated by the previous configuratio
but also containing a term proportional to the total mom
tum of the noninteracting particles. The flux dependence
the eigenvalues remains unchanged for the low-lying sta
but is reduced for intermediate energies reflecting the re
malization of the charge of the noninteracting particl
Much of the previous picture was obtained with a simp
mapping of this model onto theU5` Hubbard model. How-
ever, thet-V model remains simpler than theU5` Hubbard
model, since no large spin degeneracy is present in the
energy sector. This allows a much easier calculation of c
relations. As an example, we presented the simple calc
tion of the zero temperature optical conductivity of th
model at half-filling.

The arguments by Zotos and Prelovsˇek23 and the Bethe
ansatz studies of thet-V model18 in the strong coupling limit,
have been confirmed here. All states obtained from the h
filled insulating ground state by successive applications
the single-particle hopping operator have energies indep
s.
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dent of the external magnetic flux and consequently,
Drude weight remains zero even at finite temperature. Ho
ever, one should note that the results presented here do
exclude a positive-charge stiffness at finite temperature
sulting from the t2/V corrections to the strong couplin
Hamiltonian. Obviously, the magnitude of the charge st
ness~if nonzero! resulting from these corrections will be a
the most of the order oft2/V. The flux independence is
closely linked with the soliton-antisoliton̂‘‘free particles’’
factorization at intermediate energies. It is curious to n
that such a factorization in the charge sector for intermed
energies is also present in the strong coupling Hubb
model.14 The extended Hubbard model can also be solved
the strong coupling limit taking a similar path to that pr
sented here.33

Finally, note that we have assumed implicitly througho
the paper thatV was positive, but, obviously, the solution
valid for both V/t→` and V/t→2`. For t50, the eigen-
states of the model are the same, independently of the sig
the nearest-neighbor interaction, but obviously the respec
eigenvalues are symmetric forV positive or negative. Fort
Þ0, the projection of the kinetic-energy operator in the d
generate subspaces is independent of the sign of the inte
tion and so will be the diagonalization of this operator
each degenerate subspace. Therefore, the eigenstates a
same forV/t→6` with the respective eigenvalues bein
given by Eq.~42! plus or minusN•••uVu, according to the
sign of the interactionV. In particular, at half-filling, the
phase separated state~which is the highest-energy state whe
V is positive! and the two charge ordered ground states tr
places whenV is negative, i.e., the phase-separated state
comes the ground state and the two charge ordered s
become the highest-energy states.
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