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Exact solution of the strong couplingt-V model with twisted boundary conditions
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We present the solution of the one-dimension& model with twisted boundary conditions in the strong
coupling limit, t<V and show that this model can be mapped onto the strong coupling Hubbard chain threaded
by a fictitious flux proportional to the total momentum of the charge carriers. The high-energy eigenstates are
characterized by a factorization of degrees of freedom associated with configurations of soliton and antisoliton
domains and degrees of freedom associated with the movement of “holes” through these domains. The
coexistence of solitons and antisolitons leads to a strange flux dependence of the eigenvalues. We illustrate the
use of this solution, deriving the full frequency dependence of the optical conductivity at half-filling and zero
temperature.

[. INTRODUCTION bard model* and that clarifies the previous issues. The
simple factorized form of this solutiofand the low degen-
The extended Hubbard model and its spinless version, theracy of the eigenvalugswill, we believe, allow an easy
t-V model, have been extensively studied due to their relcalculation of correlations.
evance in the comprehension of the behavior of strongly cor- Thet-V Hamiltonian for a ring withL sites is
related cgrg]pounds such as cupratdsand organic
conductors:®> Much of the present understanding of these _ + +
models has been a consequence of the exact solution in one H= tZi (© C‘+1+C”1C‘)+VZ Mifli+1, @
dimension by the Bethe ansa®A) technique®’ The evalu-
ation of the correlations remains however a hard task withitwhere ¢ is the fermion creation operator on site n;
the Bethe ansatz framework. For the Hubbard model, further CiTCi , andV is the nearest-neighbor Coulomb interaction.
progress was possible in the strong coupling limit due to thél'he one-dimensional strong couplity model(as the Hub-
simpler form of the solutiofi-12 The eigenfunctions in this bard modelis a classic example of a system that exhibits a
limit factorize as a product of a wave function of noninter- metal-insulator transition upon doping.tk 0, the fermions
acting spinless fermions and a wave function of a squeezedlre localized and all states with the same number of pairs of
spin chairf*® This spin-charge factorization simplifies the nearest-neighbor occupied site$;n;n;;, are degenerate.
calculation of correlations and in particular, it has been used his degeneracy is lifted if/VV is finite and up to first order
to determine the momentum distribution functfbthe spec- in t, the eigenvalues are obtained diagonalizing the Hamil-
tral function®1° the sum rules of the upper and lower Hub- tonian within each of the degenerate subspaces. In the strong
bard bands$! and the Green’s functidh of this model. An  coupling limit t<V, we obtain therefore the projected
alternative solution to that of the Bethe ansatz was also posdamiltonian
sible in this limit**~*°
The t-V model is apparently simpler than the Hubbard
model due to the absence of spin degrees of freedom. This 1= _tZ [(1-ni1 o)l 16i(1—ni_;)+hc]
model can be mapped onto the anisotropic Heisenberg model
(more precisely, the XXZ or Heisenberg-Ising moday} the
Jordan-Wigner transformatidf,whose Bethe ansatz solu- _IZ [ni+20;r+lcini*1+hc]+vii: Nifiv1. (2)
tion has long been knowH.In the strong coupling limit, the
t-V model, despite its apparent simplicity, remains somewhatf his limit corresponds to thé,=J,<J, limit of the aniso-
foggier than the Hubbard model. For instance, the Bethe artropic Heisenberg model. The set of eigenstates and eigen-
satz solutiof®2° presents us with eigenvalues expressionsvalues of this model can be obtained without having to resort
with phase terms whose physical meaning is not clear. Anto the Bethe ansatz, as we will show below.
other curious fact is that the Luttinger liquid exporférhat The behavior of the-V model in the strong coupling limit
characterizes the low-energy excitations of the strong couhas provided support for a recent conjecture by Zotos and
pling t-V model is density depend&Atin contrast to the Prelovsek® 2° According to these authors, theV model
strong coupling Hubbard model where it is a consfa®ince  and the Hubbard model at half-filling are perfect insulators,
this exponent is closely related to Fermi surface phase shifthis meaning that the Drude weighD{) in the thermody-
(a holon Fermi surface in the case of the Hubbard mgdel  namic limit remains zero even at finite temperature. In par-
is worthwhile to investigate how these phase shifts will beticular, in the strong coupling limit, they argue that=0
modified. In this paper, we present a non-Bethe-ansatz soleven for finite systems. Such behavior was confirmed by
tion for the strong coupling one-dimensiorial/ model that  Pereset al,'® applying the Bethe ansatz method to solve the
is closely related to the solution of the strong coupling Hub-t-V model in the strong coupling limit. Here, we present a
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different solution that allows an easy confirmation of thewhere"i' is the one-site translation Operator_ The Sing]e par-
lPYQViOUS results and makes clearer the physical picture in thigcle Hamiltonian rewritten using this new notation becomes
imit.

The remaining part of this paper is organized in the fol-
lowing way. In Sec. I, the low-energy eigenstates of the
model are found. First, we study the one-particle problem
and present a new path for its solution. Then, we show thajith L =L—1. We now introduce an over-complete set of
this solution can be extended to the case Witbarticles. We states, constructing from a stafé), a state invariant by
also find the flux dependence of the eigenvalues. In Sec. llkansiation with momenturk,
the general solution is presented both for periodic and
twisted boundary conditiondinite flux). We also comment 1 & A
on the higher-order corrections. In Sec. IV, we compare our i, ky=—=> ekTi-1i). 9
results with those obtained with the Bethe ansatz technique. JL =
The transport properties of the model are studied in Sec. Vipege states diagonalize the Hamiltonian, but we are going

Finally, we conclude in Sec. V1. to proceed as if they did not and as if they were an orthogo-
nal set of states. The Hamiltonian becomes

HI(—t=2, [T+1){|+T YINL|+Hc, (8
i#L

Il. LOW-ENERGY SUBSPACE

Let us consider two consecutive sites and therefore, near-H/(—t)= >, (~Z [T+ 1k)(T,k +e*|1,k){(L,k+H.c.

est neighbors of each other. There are four different configu- ko=l

rations for this pair of sites, which we will call links and they (10)

are The Hamiltonian in a givel subspace has become that of a
(o0):(=)i(o—)i(——) 3 tight-binding model in a chain df — 1 sites with a fictitious

flux e’%. The eigenvalues are given by
where a dot stands for an occupied site and a dash for an

empty one. The total number of these links in the chain is ~ ~ kK
equal to the number of sitds E(k,k)=—2t coq k— z (11)
N..+N_.+N,_+N__=L 4

with k=n(2#/L), n=0,...L—1, and k=n(2x/L), n
andN_.=N._. Further conditions result from counting the =0, ...L—1. But clearly, not all combinations & and k
number of holes or particles, correspond to real eigenstates of the Hamiltonian. The eigen-

states will be of the form
N_.+N__=N,

_ 1 & - ko
N..+N_.=N,. (5) kky=—7 2 ® 2k, (12

=1
In the limit V/t—<0, the number of linkge) is aconserved L

quantity and consequently also &fe. andN__. So, inthe  put obviously, this is a combination of states that are the
strong coupling limit, the model merely exchanges the posisame state except for a phase, that is,
tions of these links. Note that;n;n;, ;=N...

[T.ky=e*T+1k) (13)
and the linear combination will be zero unless the following

Let us start with the simple case of a single particle in ourcgndition is satisfied

periodic chain. In this case, the interaction term is zero and
we have a one-particle tight-binding model, whose solution _
is trivial. We are going to solve this model in a different k—=—k=0 (mod 2m), (14
fashion, considering as our mobile particle the links(. L
This link moves exchanging its position with a link-(-).
Note that we have one link<(¢) andL —2 links (——), and

A. One particle

which impliesk=kL/L (mod 27). This condition is equiva-
lent to stating that the final state must obviously have a mo-

therefore, the total number of these linkdisL—-1. mentumk. Note that the previous equation has precidely
First, let us define our states in terms of the position ofso|ytions and therefore, the usual set of tight-binding eigen-
this link, values is recovered.
- Let us make a few remarks concerning the above proce-
[)=cl../0) (6)  dure. Let{|i)}, i=1,...L, be an orthogonal set of states,

. ~ . o which constitutes a basis for the states of a given system and
with 1<i<L—1. Note that there is a staté|0),. whichis et 1/ be the matrix elements of the system Hamiltonian
not included in the previous set of states, but this state can Bgaqyeen the statd$) and|j). The set of eigenstatde;)},
written as i=1,...L, of the Hamiltonian can be written in this basis as

f e |¢)=2,a;|j). Assume now that two or more states of this
TH1)=T *c;|0), (7)  pasis were in fact the same state. This would lead to a re-
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duced matrixH;;, which would have the same elements, N s(N P) (
K—— 20)

e
except for the transitions to and from the state that remained E({k},P)= —2'[__21 co
from the set of equivalent states. These transitions are mul- =
tiplied by the total number of equivalent states. The eigen-

states oH remaineigenstates ofl, but now they constitute With k=n(27/L), andP=n(2w/L), with n=0, ... L =1

an over-complete basis of the Hilbert space, that is, they ar@ndn=0, . .. L —1. Again, not all combinations of pseudo-
not all linearly independent. They may however remain armomenta{k} andP are possible and applying the same pro-
orthogonal set if the states in excess are identically zero as ieedure as before, we arrive at the following condition

the case studied above.

N
e[ P
B. Several particles > (ki - f) —P=0 (mod 27), (21
=1

Let us consider now the case Nf particles in a chain of
L sites, but distributed so that there are no ligks). These

states are of the form which implies

Ne L Ne ~
lag, ....an)=1] (1—n,_y)cl|o) (15) Pf=21 k (mod 2m). (22)
e i=1 1 1 1=

with {a;} an ordered set of nonconsecutive numbea: ~ .
{ai} g ( The factorL/L converts the total momentum of our chain of

>1). The total number of { —) and (=) links iSL=L | gjtes in the total momentum of the pseudochain. Note that
—Ne. This state can be mapped onto the following state of a%h t of q R i h to define th
chain with L — N, sites, e set of pseudomoment{&} is not enough to define the

total momentunP since there may be two values Bfsuch
Ne thatPL/L (mod 27) is the same. In fact, iP=n2/L, with
lag, ... ,5N6)=iHlE£i|6> (16)  n=0,...L—1, the stated{k},P) with n in the interval
[0L—1-L] have the same energy as the staltfls,P
such that if the first site of this pseudochain is empty, the first+(277[)/|_>, In the particular case df=L/2, given a state
link of the L sites chain is £ —), if it is occupied, the first  with momentumP, one always has a state with momentum

link is (—+). The same reasoning applies to the other siteSp ;. ;- \yith the same set of wave numbers. The L/2 case
Note that as in the previous case, there are a few states th&{responds to the half-filling and indeed one knows that the

are not included in the above set, namely, states where a lifkond state is doubly degenerate, one state having zero mo-
(—*) is divided between siteks and 1. These states have a hentum. the otherr. excited stategwith N..#0), as we
particle at site 1 and one should note that starting from &p4)| see in the next section.

Etate as above, these states appear when a+ink {s at site An external magnetic fluxp can be introduced in the

L, or equivalently, a particle is at siteand hops to site 1. problem with the transformation—te'#’-. The Hamiltonian

However, this hopping term can written as remains invariant by translation and all the previous steps
o B N can be repeated, leading to the following modification in the
T‘lcilcﬂal, cooan-1L), (170  eigenvalue expression

whereT is the one-site translation operator in the chairt. of _ - b

sites. Note that this translation operator also insures that the E({k})—>E( [ k— f] ) (23

other pseudoparticles remain in the same sites in the reduced

chain. Given a statéa,, ... ,ay_), we build as previously

The ground-state energy is given by E20). If N, is odd,
all single-particle states with pseudomomentinbetween
+(27/L)(Ng—1)/2 are occupied anik=0. Therefore,

the state invariant by translation with moment&n

L
~ ~ 1 A -
[ai, ... an,.Py=—= >, ePITi-1a,, ... ay).
e \/E =1 e
(18 Ne—1 | ™Ng
= sin| —
The mapped Hamiltonian in the subspace of states with mo- Eodd_ _ o 2 27 | _ L
s = coy =i |=—-2t——F——71—.
mentumP becomes 9 Ne—1 L -
i=- 2 sin| =
H(P)=—t gl ¢t G+efeltr|+He (19 (24)
I

So, we have mapped the Hamiltonian onto a tight-binding}f N is even, all states with betwegn—(Zw/L)(Ne—Z)lz
chain withL — N sites threaded by a fluR with N, particles. ~and (2m/L)N¢/2 or between—(2m/L)Ne/2 and (2r/L)
The eigenvalues are given by X(Ng—2)/2 are occupied anlk= = (m/L)-N¢/L. So,



7794 R. G. DIAS PRB 62

IIl. GENERAL SOLUTION

Let us consider the general case where one may have both
7 links () and (— —). First, note that a phase-separated state
(one domain of holes and one domain of particleas no

sin mNe mobile entities in the strong coupling limit since any hopping
T o of a single particle would imply the breakup of a liiike).
=-2t COE( L) (25  So, phase separated states will be eigenstates of the strong

sin f coupling Hamiltonian with eigenvalues given IB~=VN...
T Furthermore, the same applies to states with several domains
if the only links (—) present are the domain walls. Clearly,

This slight energy difference between the two cases had a holé(particle, in order to be able to move, must be within

small flux ¢, the N, odd expression should be multiplied by Particles, we fiN.. andN__, itis the configuration of these
a factor of cosg/L), while for N, even, a— ¢/L term should  links that will define how many mobile links<+) one has
be summed to the argument of the cosine. and consequently, the number of sitesof the effective

This phase shift between the wave numbers of the groundhain for these mobile links. These mobile links will move
states withN and N+ 1 particles, should be responsible for exchanging their position with link&+) and (——).
the orthogonality catastrophe in the thermodynamic limit, It will prove itself useful to do the following mapping:
which, for example, leads to a zero renormalization constant

Z characteristic of a Luttinger liqufd (see Ref. 2 for a de- (*)=1[1),

tailed calculation in the case of the strong coupling Hubbard

mode). The renormalization constaftis given by the over- (—=)=I1),
lap between the ground state with+1 particles and the

ground state wittN particles plus a particle at Fermi momen- (—+)=]0),
tum,

with the exception of the links that are domain walls. That is,
we will map the states of the spinless chain wlitlsites and
Z:|<¢Gs(N+1?P=kf)|Cng|'ﬂGs(N;P=0)>|2 (260 N, particles onto states of a spinful chain withsites and
N.. particles with spin up antll_ _ particles with spin down.
yielding zero in the thermodynamic limit. Our results above The first two links are called, respectively, a soliton and an
indicate that the phase shift depends on the denaity antisoliton. A general state is written as
=mN./L=mp. Recall that in the case of the strong coupling Ne
Hubbard model, the phase shift of the holon wave numbers is la an ) =11 ctlo)
independent of the band fillingd= /2. That phase shift Lree s ON/ AL v
results from a ¢ kg) momentum contribution from the spin )
sector? Here, the phase shift is due to the total momentum ofVith {a;} an ordered set of integers between 1 andNote
the charge carriers. This dependence on the band filling is i@t now a particle may occupy the first site and a link may
agreement with the fact that the anomalous exponent of thi@€ divided between sites 1 ahd These states will now be
model is indeed band filling dependéAtThe Luttinger lig-  Mapped onto the states of a reduced chain with the number
uid velocitie€® that characterize the low-lying excitations Of Sites being
have been found by Gomez-Sarffofor the strong coupling ~
t-V model in the thermodynamic limit based on very simple L=N.+N__+N_.=N, 31
argume_nts(basically, the_ reducti_on _of the_ effective _size of whereN; is the total number of (1) domain walls in the
the chain. These velocities and its finite-size corrections aresequence of spins obtained by the mapping above. The above

easily obtained from the previous equations. In the ldrge rejation leads to the following relation between the real and
limit, the Gomez-Santos results are reproduced: effective chain sizes

(30

L 4°E 2t [ pmw L=L—N_.—Nj, (32
UN ZT 3sm< P ) (27 H
m IN® (1—p) 1-p which reflects the fact that our moving “particles” are now
the links (—¢) with the exception of the ones that are domain
J?Er o walls. The two sites that compose such a link are effectively
v; 787 =2t(1 p)SIﬂ(—) , (28) reduced to onéor zero, if the link is a domain wallwith the
consequent reduction of the chain effective size. Notelthat
is always larger thalN, or N,.
2t | pm The state given in Eq30) corresponds to the following
Us™ VUNVI= (1_p)sm( 1—p)' (29 state of the reduced chain
N|+N;
wherep=N,/L andvy, v;, anduvs are, respectively, the |3 Py . _ RURTe! 33
particle, current, and sound-wave velocities. 2 N NGO TN ) i];[l ""i”i| ) 89
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even case can be solved with minor modifications of the
procedure below. Lelz=N +N;.

Note that in general, the hopping of an electron implies
simply thatajehéjil for somej. Hoppings of a particle
from 1 to 2 or 1 to L are however more complex processes in
the reduced chain. In the following tables, we describe the
action of these hopping terms. In the first column of each
table, one has the initial state and in the last column, the final
state after the application of the hopping operator. An extra
intermediate column is present if the final state cannot be
directly mapped onto a state of the reduced chain. The sec-
ond line in each row shows the states in the original chain
while the first line shows the equivalent states in the reduced
chain.

(i) Let us first consider the jump of a link fromtb L.
Note that this implies a:[cl hopping for a link(e*), but a
cIc,_ hopping for a link = —).

T...lc o...lT

bote o1

T.-.OO O.-.OT
i...To no mappmg eiPo...Ti

— — ...00—0 e — ...00— — :T_l—u—...oo—

llo no mappmg eipo...ll
FIG. 1. The mapping is illustrated in this figure. In the first _ _ . _ _, o =Tl e—...——
chain, the circles stand for occupied sites while the small dots stand
for empty ones. The introduction of the nearest-neighbor interaction - - - co no mapping ePo.. o]
leads to a further factorization of the wave function describing the— —. .. — e—e o— ... — o—— =T loe—iii—e

charge degrees of freedom.

e o , o (i) Now, the jump of a link from 2to 1:
If site 1 is empty, the first link of the chain of sites is

(—*) and in order to have a well-defined mapping, we im—ol. - Lo--|
pose the condition that first two sites of the chairLddites _,_ _ ... _ e —
correspond to the link and therefore the first site is empty

while the second is occupied. The same applies in the case of - - - 1 Joren1
site 1 being occupied. Links that are domain walls are not=*~~"""** Tt
mapped to the reduced chaisee Fig. 1 for an example of _, Lo o

the mapping This condition agrees with the definition of _
states of the previous section and furthermore, it also implies
that certain states are not included in the mapping, but, as <f---1 no mapping ePro...1
previously, they can be written as translations of states in-
cluded in the mapping. These states, which need to be trans-=

lated, appear due to hoppings between sitesdL, butalso ~ °T---! no mapping e Pro...|

~, 7 — e —e00. .. — —e0 —eo... — = +1ou—c...——
sites 1and 2 As previously, we construct states invariant by T
translation with total momenturm,

e — — ... —e — — e — ... — .

ee.. .00 e—e...00 :T_l-o—o...o

The last two cases also occur if the last pseudospin is not
at siteL. The HamiltonianH,;=H—VN.., in the mapped

L
~ 1 o
a} {o},P)=|{a},P)=—= 2, €PITI"Y{a}), (34
a}.{o}.Py=I{alP) \/[21 Hah. 4 Hilbert space(in the subspace of momentuR), becomes

and keep the same mapping. The states, which need to be T
translated, lead te“'" terms in the mapped Hamiltonian. So =t _

’ . h Hi(P)=- i (1=ni;)c Ciiq1,(1—n74q,)+H.cC.
that one does not need to be concerned with the reordering of 1(P) 211 o1 MT) G i 10(1 =T 10)

operators in the real chain, we will considég odd. TheN, (35
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with
tr,=t(—1)N,
tr, =te'"(— 1)
1=t

EET = teo-N;:'iP,

andt;,=t, in the other cases. This is thé=c Hubbard
chain pierced by a magnetic flux. The Hamiltonian does not
change the sequence of spifis}, but circularly permutes
them. Note that £ 1)Nh=(—1)-"Ni, if N, is odd. In par-
ticular, if N;=0, this factor reflects the fact that a hole band !

is translated by in relation to an electron band.

The solution of the above model is a little trickier than

that of the usuall =« Hubbard modéf due to the termr

R. G. DIAS

PRB 62

andr,_is the periodicity of the spin configuration, amd
labels the different spin configurations. For example, the spin
periodicity in [o| 1] ]°T is 3. ¢’ will be the effective flux
felt by the noninteracting fermions. This problem is equiva-
lent to solving a one-particle tight-binding model for a chain
of r,,_sites with hopping constan=te*?(** 71! with

the correspondenci)=Q'~Y|{v}). The total flux through
this tight-binding chain is

NjEN 2Ny

@ N;+N, 41

p1=r
The solution is obtained after a gauge transformation so that
t—>e'¢1 at. The gauge transformation depends on the

v-spin configuration, but the tight-binding eigenvalues only

depend on the total flux. The eigenstates will be Bloch states
|ac,qc) (in the cyclic permutationswith q.=n(2w/r, ),

with n=0, . —1. This resolution is rather S|m|Iar to

in t” Its solution is easier to understand if one COnSIdersthat of the Hubbard model with flux that has been treated in

first the application of the Hamiltonian in the subspace of,
the same configuration of the-spins
log, ... ,aNE). Then the Hamiltonian can be written in more

states with

compact notation, dropping the spin index,

Hy(P)=—t>, © c|+1c~I tlUcTE*z {0, &0 +H.c.
i#L
(36)

with hopping integrals given as above a(@tbeing the cyclic

spin permutation operator.

Consider a general state with no link at site 1
o) If we redefine these states in the |f | js even, there is a/L correction in the argument of the

|al, P :éN'é;O-l’ P
following way,
,O'NE>HGUN”eiP|51, e ,O'N~>

37

lag, .. ang Ty ang Ty

with a;=2, the Hamiltonian within the subspace of states

Ref. 14.
Its solution is knowf***and the eigenvalues &f; for L
odd are given by

.
B e P =23, cog(k+aL+qL° 4

with
NN, 49

cosine due to the term-1)Nh. Note the sign change within
the cosine argument when compared with &4). This sign
change just reflects the “particle-hole” transformation,
which is implicit in the fact that now the links<¢) are
mapped onto holes.

Now, the total momentun® has to be determined as a

with the above spin configurations, becomes the one givefunction of{k} andq.. The following condition is obtained

by Eg. (35) with the following modifications

Ts— 1, (38

E’I:UH( _ 1)Nhtel/2(l+ o o’N~e)iP.

The hoppings across the boundary do a cyclic permutation of
the spin sequender} with the above phase factor. We wish
to construct now the states that remain invariant under such a

cyclic permutation, that is,

-1 -1

c c

20 aiQ‘I{v}>)=ei¢’( ;0 aiQiHv})), (39

r

«a a,

Qo

where

Q{o’}|0’1! s vo-N“é>
:(_1)Nhe1/2(l+0'1~0'Ng)iPQ|a,1, o 10—N’é>1

(40)

from the phase acquired by a eigenstate under the translation
of two real sites or a pseudosite,

(mod 27), (44)

Ne
P=2
=1

=)
k+a -‘rq
L

which is easy to understand examining the translation of a
component of the eigenstate, which does not have

pseudopartlcles at sife and therefore does not suffer a cir-
cular permutation of the pseudospins. Obviously, the compo-
nents that do not satisfy the previous assumption will lead to
the same result since the overall eigenstate is invariant by
translation. This relation can be written in a simpler form

Ne
=,21~k+(NT+Nl)%(mod 2m). (45)

As in the previous section, the set of pseudomoméhja
and the pseudospin momentugp are not enough to totally
defineP.
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The spin-charge factorization of th&d=c«~ Hubbard whereN,, is the number of pairera’ in the sequence of
model translates into a decoupling of the degrees of freedorspins obtained with our mapping. For example, in Fig. 1,
describing the configuration of domains solitons and antisoliN,,=1, N, =3, andN; =1. Note thatN,= NTT+ Ny,
tons and the degrees of freedom associated to the presenceNdf=N, +N; , andN; =N, . The Hamiltonian is simple
“holes” moving through these domains. This factorization to diagonalize and the eigenvalues are given by(E®). with
and the mapping presented in this paper are illustrated in

Fig. 1. E({~k})—>E<[T<—3%]) (48)

A. Flux dependence

and
Assume now that the chain is pierced by an external flux
¢, that is, the Hamiltonian is given by Ed2) with t Ne Np
—te'?". This problem can be solved following the same Npp= =Ny =
procedure as forp=0 with an extra step. This step is B= (49)

equivalent to the gauge transformation Ny +N; Ni+N

Such expression for the flux dependence should be expected
since solitons and anti-solitons in the strong coupling limit
can be viewed as hard-core particles with opposite charges
and a simple spinless model of hard-core particles with op-
yposite charges in a magnetic flux would exhibit precisely this
flux dependence of the eigenvalues. It is easy to show that if
N;=0 orN;=0, B==*1 as it should be. One can interpret

cl=clelL],

which carries all the phase to hoppings at the boundary,
—t; j#L, t,—te'?. Let us show how this can be done for
the mapped Hamiltonian. We modify the state invariant b
translation in the following way,

Ne L N B as the effective charge of the carriers. Note that this renor-
lag, .. Lay,,P)= e%z i 2 |Pj-’|‘-j—1(H cf |0>>_ malization of the flux dependence was also found for the
N = = strong coupling Hubbard modélwith precisely the same
(46) form.

Now note the following, ) )
B. Higher-order corrections
(6— - .o0—— )P:eiPe—iNeg(_._ ceee—)p; The second-order corrections can be obtained considering
virtual hoppings that create or destroy a soliton-antisoliton
pair. For a given low-lying eigenstate witi, =0, this leads
to a energy correction of the form

Therefore, we will have an extra phase term in the hoppings 2

displayed in the previous tables, which involve a translation. _{n:n -n Te. i) _
Furthermore, a hopping of a linfee) at the boundary im- V<n'ln'+ll+(l M 11)(€ €2y + G2 C)))- - (50)
plies a hopping of an electron in the same direction while th
hopping of a link = —) implies a hopping of an electron in
the opposite direction. For zero external flux, this distinction
would be irrelevant, but for a finite flux, it leads to a spin
dependent phase of the hopping integgalt'¢. Following
exactly the same procedure, we arrive to the same stage %f
Eq. (35 with the following modifications 0

(c—.. . .oo)PzeiPeiiNe%ei(b(oc—c. . ..)P_

8hen Nl—O the energy correction is of the same form. If

N +N,= L, the second-order corrections can be mapped on
a Helsenberg spin model. In the general case, the energy
correction can be written as an average over an operator that
eates(or destroy$ a soliton-antisoliton pair and destroys

r createsalso a pair that may or may not be the one cre-
ated (destroyed, leading to long-range hopping of these

tET—“fETe_i‘ﬁ, pairs with or without exchange of the pair. A closer mapping
than that onto thé&) =« Hubbard model is suggested at this
e idaiNG level, since the above corrections are also present in the
thy—tg e et charge sector of th&/>t Hubbard model, if the spin con-
figuration is restricted to be Neel-like with momentung
1 —1tg), =0. In this case, long-range hopping of a hole-"double oc-
o ' cupancy” pair is also possible and one may think of doubly
ti;—ti,e" N NeTe(lony) 1412 occupied sites, holes and singly occupied siteigh an g,

) ) o =0 Neel configurationas equivalent tq¢¢), (——) and
Following the same steps, this leads to the modification  gmpty sites in our reduced chain. The flux dependence of the
eigenvalues also suggests such a pictfil/e will see that
such a picture agrees with the transport properties of-tie
Hwodel.

Ua (Lt op) (1t 07) i

— o4l ¢87 1/2. (l+‘71'”N”e)iNe§e

tf,— 17,8

This phase term generates an extra flux contribution throug

the (N, +N) tight-binding chain that is given by
IV. COMPARISON WITH BETHE ANSATZ RESULTS

NN Ne N
—a=+t——|¢,

(47 Our results can be linked to those obtained with the Bethe
ansatz techniqu¥:?°In the following, we adopt the notation
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of Ref. 18. The Bethe ansatz solution is characterized by gied implying a configuration of linkge¢) and (——),
set of bandsy (with y=0,1, .. .),with nontrivial relations  where the linkgs*) combine into clusters of several lengths.
for the total number of available “single-particle” states in

each bandl, , and for the total number of occupied states in V. TRANSPORT PROPERTIES
each band\.,. The energy associated with an occupied
state in they#0 band is of ordeV and therefore, they The transport properties of one-dimensional models have

=0 band is the free-carrier band obtained in our picture. Thécquired a renewed interest recently due to a conjecture by
high-energy bandsy0) are related to the remaining de- Zotos et al?*~% that integrable models with zero Drude
grees of freedom associated with the possible configurationgeight at zero temperature are ideal insulators, that is, the
of the links(e*) and (— —). This is similar to the strong Drude weight remains zero also at finite temperature. Based
coupling Hubbard model case where the high-energy BAon qualitative arguments, Zotos and Prekiés have also
bands are clearly linked to thepossible configurations obtated that, in the particular case of the strong coupling half-
holes and double occupanci¥s. filled t-V model, such temperature independence is present

In Table | of Ref. 18, we see that the low-lying stateseven for finite-size chains. This has been confirmed by a
(No#0, N,=0, for y>0) are those of a chain with a re- Bethe ansatz study of this modé&IThese results can be eas-
duced S|zeL dco=L—Ng and number of holes given by ily rederived with our solution and they are simple conse-
Nf=N2,=L—N,, which agrees with our equivalent find- quences of thes prefactor in the flux dependence of Eq.
ings in Sec. Il B. Noting that in Eq24) of Ref. 18, (47). For instance, the current operator

2 21 2
—— =— J=it>, (c'ci,,—cl ¢ 54
LNe (L_Ne)Ne L(L_Ne), EI ( ivi+l i+1 I) ( )

the eigenvalue expression, H@3) of Ref. 18, becomes ex- can be obtained at finite temperatures from
actly the same as our EQRO) and the same can be said for

the flux dependence of these eigenvalues. e PEn 9(E, /L)
The high-energy states are more complex since they are (h=- Z — (b /L) (55
characterized by a nonzero occupation of the high-energy ¢ #=0

bands. Let us assume for simplicity that only one of the

high-energy BA bands #0) is occupied. The effective and therefore, if all eigenvalues are flux independent, the
sige of thgychain and the number of hFcJ)Ies.in #he0 band current will be zero whatever the temperature value. Note

are8 this is a stronger absence of current than the usual situation,
which may occur also in metallic systems, where the zero
~ average of the current operator results from the fact that the
L=dco=L=Ne+(y=DN,, positive-energy slopes being exactly compensated by the
. negative ones. Also, the charge stiffness is giveff'by
Ne=Ng=L—2Ng+2yN,,, (51)
where in the last equation, we have used the fact the holes in D :E 2 e PEn %(E, /L) (56)
the y=0 band are in our picture the particles. Relating these © 29 Z d¢.lL)? b
two equations to the definition of these quantities in our pic-
ture, one obtains and as for the current, if all eigenvalues are flux independent,
the Drude weight remains zero at finite temperatures. A ei-
Ne,=Nos Ne, =Ny (52 genvalue in order to be flux independent must have

—N,;=0. Itis easy to show that is indeed the case for half-

These relations can be confirmed calculating the total num
9 filled states. For these stateN,=N; and sinceN;—N;

ber of electrons

=N—Np,, 8=0.
— _ In the following, we illustrate the use of our solution with
Ne=N¢ot+ (y+1)Ne ,=N_.—N; +N..+N;, . ; o
cot (7N & T (59 a study of the optical conductivity. The real part of the con-

ductivity o(w) is given by
These relations imply that has a very simple physical
meaning in the strong coupling limit, it is the size of the 0(0)=27D8(0) + 0eq( ®) (57)
clusters of links(e*). Since only one BA band is occu-
pied, all clusters have the same size and the total numbavith
of these clusters i®;| . The total number of linkge*)

is then obviously yN; . This type of excitation form 1-e Fo 7 )
the so-called BA strmg%829 and in particular, the string “reg(®)=— [n%n Pal(n|IIM)[* (0 —En+En),
associated with an occupied state in banldas lengthy (see ' (58)

Ref. 28 for an explanation of these BA string excitations and

of the precise meaning of string lengthiVe see now that, for wherep, is the Boltzmann weight.

t-V model in the strong coupling limit, a string is simply a At half-filling, the ground state of theV model is insu-
cluster of links(e¢) in the configuration of links(e*) lating [D.(0)=0] and doubly degenerate, one state having
and (——). In the general case, several BA bands are occumomentum 0, the othefr. Both states havé\_.=L/2 (L
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even andN..=N__=0. The current operator applied to a 1 ’ )
ground state induces transitions to states WNEh=N__ (Tl(w)=VE 2 ({N..,=1;P=0|J;IN_.=NgP=0)|
=1 andN_.,=L/2-2. N.,=1

One should note that when determining the optical con- 1o N o A2
ductivity at finite temperature, one has to calculate matrix FI(NL.=1:P=7]JyN_.=Ne;P=m)[*)
elements of the current operator between states Mjttand X 8(w—Epr 1),
N..=N..+1 in order to obtain the upper band part of the "
optical conductivity. The low-frequency region is given by where|N_.=N;P=) and|N_.=N,;P=0) are the two
matrix elements of the current operator between states withossible ground states at half-filling. Well,
the same number of links. Clearly, the contribution of the

states|n)=|N..#0) will be very small as its Boltzmann J1IN_.=NeP=0)=it\L|1,2,0,(1 1)=mP=0),
weight isp,~e~#N-Y/Z and we will only consider tempera- )
turesT<V/kg. So, the sum oven) becomes a sum over all JiIN_.=NP=m)=it\L|1,2:9:(1 1)=0;P=),

stategN..=0) and the sum ovelm) becomes a sumoverall g4 e only need to calculate the overlap of the eigenstates
stategN..=0) for the low-frequency conductivity and a sum \yith the above states. Note that for these eigenstaies,

over |_N..=1) for thg upper band part of the c_onductivity. =N;=1 and thereforeN|;=1. Consequentlya=0. The
That is, we can writar,.q=0,+ 01, Whereo, will be the respective eigenvalues are given by

low-frequency conductivity ¢~t)

2

- E(ky ko) =V—2t>, 005<T<i+ e 77)

=—= > 59) =1 L

oo(w) oL Pn..=0 (

N..=0 KKy qe-m| (KK

N-.=0 =V—4tcos( 2, )cos( : 2).
2 L

|<N:-ZO|JO|N--:O>|25(‘U—EN_’_:0+EN,,:O) (63

. _ . These eigenstates are given by
and whereo; will be the high-frequency conductivitya{

~V) FaRaia1P) = (3, (el Ta) - g -Ta)
i<l
=TT N1 T
oy(@)=—y 1 o Pn,.=ol{N..=1]J4|N.. xe T U*)j I.q.;P). (64
N..=0 From Eg.(45) and noting that 2=0 (mod 2), one has
=0)|*8(w—En; -1+ En_-0), (60)  k;+kp=2m/L (mod 2m) if 4c=0 andk,+k,=0 (mod 2m)

if g.= . Well, oy has two contributions of the form

whereJ=Jy+J;, Jy being the part of the current operator ~ o~
which dqes not alter the number of Iinks and therefore, com- sin2< Ky— kz) S w— E(Fl ,~k2)], 65)
mutes with the strong coupling Hamiltonian, 2

which taking into account the above conditions can be writ-

Jo=itz (1_ni+2)CiT+1Ci(1_nifl) ten as siA(k)6[w—V+4t cosk)] |n'bqth cases. The ground-
i state momentumK=0 or P= ) is irrelevant as expected.
So,
+it ) niy ol cini 1 +H.C, (61)
1

o1~ 2, sirf(k) 8l w—V+4t cogk)]
k

andJ, being the sum of terms in the current operator, which 5
induce transitions between states such that their energies dif- ~[1— ( w_V) } 1d

fer by Vv, 4t

5 (66)

w—V),

where N9 is the density-of-states of a one-dimensional
s tight-binding model. This density of states is nonzero be-
Ji=itY, (1-ni1o)c, cini . .
! Z ( 1+2)Ci i1 tween—2t and 2 and has inverse square-root divergences at
+2t. Therefore, the optical conductivity will be character-
+itS nooof e(l=n_ )+H.wc. 62 ized by_absence of weight between zero afnﬂ4t, which is' '
Ei 1+28116i( -1) 62 the optical gap. At the extremes, the optical conductivity

goes to zero as;~ \|w—V|—4t, that is,
SinceJy commutes with the Hamiltoniam;,(w)=0.

In this paper, we will only evaluate;(w) at zero tem- | w—V _ _
perature and half-filling .= 0), 71 1 4t |’ Asw=V=at. 67)
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This is precisely the dependence obtained by Lyo andlent of the external magnetic flux and consequently, the
Galinar®®® for the strong coupling Hubbard model with a Drude weight remains zero even at finite temperature. How-
Neel ground stat&’3! Again, thet-V model seems to behave ever, one should note that the results presented here do not
as the strong coupling Hubbard model with a fixed Neel spirexclude a positive-charge stiffness at finite temperature re-
configuration. The optical conductivity of the strong cou-Sulting from thet?V corrections to the strong coupling
pling t-V model has also been recently studied with a conHamiltonian. Obviously, the magnitude of the charge stiff-
junction of Bethe ansatz and conformal invariafeeghich ~ Ness(if nonzerg resulting fzrom these corrections will be at
has allowed the determination of the exponent for the frefh€ most of the order of®/V. The flux ‘l(ndepend_ence” IS
quency dependence immediately above the absorption edggSely linked with the soliton-antisolitan“free particles
The exponent obtained was 1/2, in agreement with our refactorization at intermediate energies. It is curious to note
' that such a factorization in the charge sector for intermediate
sults. S . .
energies is also present in the strong coupling Hubbard
model* The extended Hubbard model can also be solved in
the strong coupling limit taking a similar path to that pre-

In conclusion, we have presented a non-Bethe-ansatz s§ented herd? o
lution for the strong coupling-V model with twisted bound- ~ Finally, note that we have assumed implicitly throughout
ary conditions (or equivalently, the strongly anisotropic the paper thaV was positive, but, obviously, the solution is
Heisenberg modgl We have found that this model can be Vvalid for bothV/t—co andV/t— —. Fort=0, the eigen-
described in terms of soliton-antisoliton configurations ancstates of the model are the same, independently of the sign of
noninteracting particles moving in a reduced chain threadethe nearest-neighbor interaction, but obviously the respective
by a fictitious flux generated by the previous configurationgigenvalues are symmetric fof positive or negative. For
but also containing a term proportional to the total momen-# 0, the projection of the kinetic-energy operator in the de-
tum of the noninteracting particles. The flux dependence ofienerate subspaces is independent of the sign of the interac-
the eigenvalues remains unchanged for the low-lying state$ion and so will be the diagonalization of this operator in
but is reduced for intermediate energies reflecting the reno€ach degenerate subspace. Therefore, the eigenstates are the
malization of the charge of the noninteracting particles.same forV/t— *o with the respective eigenvalues being
Much of the previous picture was obtained with a simplegiven by Eq.(42) plus or minusN..-|V|, according to the
mapping of this model onto the = Hubbard model. How- Sign of the interactiorV. In particular, at half-filling, the
ever, thet-V model remains simpler than thé=c Hubbard ~Phase separated stdtehich is the highest-energy state when
model, since no large spin degeneracy is present in the lowX is positive and the two charge ordered ground states trade
energy sector. This allows a much easier calculation of corPlaces wherV is negative, i.e., the phase-separated state be-
relations. As an example, we presented the simple calcul&omes the ground state and the two charge ordered states
tion of the zero temperature optical conductivity of this become the highest-energy states.
model at half-filling.

The arguments by Zotos and Preied@ and the Bethe
ansatz studies of thteV modef®in the strong coupling limit, We wish to thank Nuno M. R. Peres and Joao M. Lopes
have been confirmed here. All states obtained from the halfdos Santos for important discussions. This research was
filled insulating ground state by successive applications ofunded by the Portuguese MCT PRAXIS XXI program un-
the single-particle hopping operator have energies indepenter Grant No. 2/2.1/Fis/302/94.

VI. CONCLUSION
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