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Single atom inside or outside a dielectric or metallic bubble
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The dispersive van der Waals energy of a ground-state atom encapsulated in, or placed in the vicinity of, a
spherical dielectric or metallic shell is calculated. The treatment, the validity of which is restricted to the
intermediate distance range, makes use of the random phase approximation and the propagator method. It is
shown that the dielectric medium appears as a special case in the general nonlocal treatment used for a metal.
Examples are presented and discussed. The interaction between an argon atom and a fullerene molecule,
averaged over the molecule orientation and including a short-distance repulsive contribution, is calculated. It is
then used to evaluate elastic differential cross sections at low energies~26 and 52 meV!—both of them
exhibiting clear rainbow structures—and the total cross section in the range 10–100 meV.
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I. INTRODUCTION

In a previous paper1 the problem of a microsystem
~ground-state atom or molecule! placed inside an empty
spherical cavity in an infinite, linear, homogeneous, and i
topic medium has been addressed. While the treatm
makes use of standard methods such as the random p
approximation~the atom is described as a sum of fluctuati
electric moments!2 and the propagator or susceptibili
method,3 the fact that the medium extends to infinity giv
rise to a special problem, namely, the determination of
adapted radial basis set able to provide converging phys
quantities such as the induced polarization, the van
Waals atom-surface interaction, etc. This determination
been made by considering in a first step a medium limited
two concentric spheres of radiia,b, making thenb infinite
once the response potential of the medium has been ca
lated. This treatment naturally emerges into that of the c
of an atom encapsulated inside a bubble. Actually as it w
be seen further it includes as well the case of an atom out
the bubble, providing then a synthesis of the cases of a fi
spheroid and of an empty cavity.4 In the following for sake
of simplicity we shall restrict to a dipolar moment but th
method can be easily extended to higher orders by u
proper expansions of the source potential. The validity of
method is restricted to the intermediate distance range for
following reasons:~i! because of the quasistatic approxim
tion, it does not take into account retardation effects wh
become significant at large distances~>100 a.u.!, ~ii ! at dis-
tances of a few au, electronic orbitals of the atom and
solid overlap, giving rise to a repulsive interaction,~iii ! at
such short distances the description of the solid as a con
ous medium becomes questionable. When necessary, p
~ii ! and~iii ! can be solved by summing the repulsive part
a Lenard-Jones potential over the solid atomic lattice.

Various applications of the situation considered in t
paper can be found, some of them being nowadays inve
gated experimentally, such as the confinement of atom
molecules inside micro sized bubbles or tubes5,6 ~the present
treatment could be readily extended to the cylindrical sy
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metry!, atoms in the vicinity of a microsphere.7 The paper is
organized as follows: in Sec. II the problem of an atom
side a bubble of radiia,b is considered. The response pote
tials of dielectric and metallic media are calculated and
propagators inside the bubble are determined. Finally the
der Waals energy is evaluated. The empty cavity is obtai
by makingb infinite. In Sec. III similar quantities as before
i.e., the response potential, the propagators outside
bubble and the energy are determined for an atom outside
bubble. The case of an atom in the vicinity of a filled sph
oid is obtained by taking the limita→0. Then it is shown in
both cases that by making respectivelya or b infinite one
gets the due common limiting value of the energy which
that of a planar surface. Finally by making botha and b
infinite, keeping finite the differenceb2a, one obtains the
dispersion energy of an atom placed in front of a plate o
finite thickness. In Sec. IV the collision of an atom~Ar! on a
fullerene molecule assimilated to a bubble is studied as
example of the general treatment, a repulsive short ra
potential being added to the van der Waals energy.

II. AN ATOM INSIDE A BUBBLE

Let us consider a medium, which is assumed to be hom
geneous, isotropic, and linear, limited by two concent
spheresSa ,Sb of radii a,b. The atom~dipolem! is located at
point R inside the bubble (R,a), with R collinear to theẑ
axis~see Fig. 1!. Let f0 ,f1 ,f2 be the potentials at a specifi
frequency~v!, insideSa , in betweenSa andSb , and outside
Sb respectively. The basic quantity here, from which t
propagators and all physical quantities will be deduced
the so-called ‘‘response potential’’ of the medium, insideSa ,
i.e., the differencef r5f02fs , wherefs is the source po-
tential.

A. Response potential and inner reflection factors

1. Dielectric medium

Let us first assume that the medium is a neutral dielec
of permittivity «(v). In this case our method follows tha
7593 ©2000 The American Physical Society
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already used by Linder8 to treat a cavity in infinite dielectric
medium and that used by Lucaset al. to treat a C60 molecule
assimilated to a dielectric bubble9 ~in this latter case the po
larizability of the shell exhibits resonances corresponding
polarization waves!. The treatment is greatly simplified b
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the local character of the response of the medium.
A standard method using expansions over the spher

harmonics, the Laplace equation and the boundary co
tions, leads to the inner reflection factor for a specific sph
cal harmonicYl

m :
D l
i~a,b,v!5

@12«~v!#@11 l 1 l«~v!#~ l 11!~a2l 112b2l 11!

@12«~v!#2l ~ l 11!a2l 112@ l 1 l«~v!11#@ l 1 l«~v!1«~v!#b2l 11
. ~1!
to
It is worth noticing that the limit

lim
b→`

D l
i~a,b,v!5

~ l 11!@12«~v!#

~ l 11!«~v!1 l
~2!

coincides with the reflection factor previously given b
Linder8 for a spherical cavity in an homogeneous isotro
dielectric medium.

The expression ofD l
i @Eq. ~1!# is independent of the

source under consideration. Dipole and higher multipole m
ments can be treated as well, by using proper expression
the source potentials.

2. Metallic medium

The case of a dielectric medium is actually a rather sim
electrostatic problem. The treatment of a metallic medium
more difficult, essentially because of the nonlocal chara
of the metal response. Whilst the following method could
extended to any type of source, for sake of clarity, we sh
restrict ourselves to the case of a dipole momentm located at
a pointR(0,0,R) inside the bubble (R,a).

At a specific frequency, any position-dependent quan
g(r ,v) inside the metal can be expanded over the spher
harmonics

g~r ,v!5(
l ,m

glm~r ,v!Yl
m~V!. ~3!

In view of simplifying the forthcoming treatment, the radi
functions glm(r ,v) themselves are expanded over a co
plete and a orthogonal set of radial functionsf lm(r ,v), cho-
sen in such a way that the productsFlm5 f lmYl

m are solutions
of a Helmholtz equation (D1k2)Flm50.

This latter conditions implies that these radial basis fu
tions are spherical Bessel functions, independent ofm and
they area priori nonregular at the origin~which is located
outside the medium!:

f l~kr !5a l j l~kr !1b l yl~kr !. ~4!

It is easily verified that if the Wronskian of two such fun
tions vanishes atr 5a and r 5b which is obtained here by
imposing the two conditions

]xf l~x!] x5ka,kb50, ~5!

then the orthogonality property holds. Equation~5! deter-
mines the coefficientsa l ,b l in Eq. ~4! as well as a set o
-
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discretek values. Another orthogonality property, related
two different values ofk, also holds

E
a

b

dr r 2f l~kr ! f l~k8r !5
1

Nkl
2 dkk8 , ~6!

where the normalizing factorsNkl are given by

1

Nkl
2 5

1

2
$b3@ f l

2~kb!2 f l 21~kb! f l 11~kb!#

2a3@ f l
2~ka!2 f l 21~ka! f l 11~ka!#%. ~7!

The expansion of radial quantitiesglm(r ,v) over this basis is

glm~r ,v!5(
k

Nkl f l~kr,v!g̃lm~k,v!, ~8a!

where

g̃lm~k,v!5NklE
V
d3r f l~kr !Yl

m* ~V!g~r ,v!

5NklE
a

b

dr r 2f l~kr !glm~r ,v!, ~8b!

V being the volume in between the spheresSa ,Sb .
Inside the metal the potentialf1(r ,v) obeys the Poisson

equation

Df1~r ,v!524pdr~r ,v!, ~9!

theredr is the charge density at pointr . Assuming a linear
response of the medium this charge density is related tof1
by10

dr~r ,v!5E
V
d3r 8x~r ,r 8,v!f1~r 8,v!, ~10!

wherex(r ,r 8,v) is a nonlocal generalized susceptibility.
Using the transformation~8b!, once fordr and f1 and

twice for x, Eq. ~10! transforms into the matrix equation

dr̃ lm~k,v!5 (
l 8,m8,k8

x̃ l l 8mm8~k,k8,v!f1lm
~k8,v!, ~11!

where
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x̃ l l 8mm85NklNk8 l 8E
V
d3r E

V
d3r 8 f l~kr ! f l 8~k8r 8!Yl 8

m8~V8!

3Yl
m* ~V!x~r ,r 8,v!. ~12!

The same transformation applied to Eq.~9! leads to

24pdr̃ lm5NklE
V
d3r f l~kr !Yl

m* ~V!Df1~r ,v!. ~13!

By using the Green’s identity,11 the volume integral in Eq.
~13! can be expressed as

2k2

Nkl
f̃1lm

~k,v!.

Finally Eqs.~11! and~13! lead to a self-consistency equatio
for the potentialsf̃1lm in k space, namely,

(
l 8,m8,k8

@4px̃ l l 8mm8~k,k8,v!2k2d l l 8dmm8dkk8#f̃1l 8m8
~k8,v!

5Nkl@a2f l~ka!f1lm
8 ~a,v!2b2f l~kb!f1lm

8 ~b,v!#, ~14!

where the~unknown! radial derivativesf1lm
8 are defined by

f1lm
8 ~a,v!5E dVYl

m* ~V!] rf1~r ,v!G
r 5a

~15!

and a similar definition atr 5b.
Owing to the isotropy and spherical symmetry of t

metal, the susceptibility matrix simplifies into12

FIG. 1. Geometry of the problem: an atom is located at a d
tanceR from the centerO of a bubble limited by two concentric
spheres of radiia,b ~R<a or R>b!.
x̃ l l 8mm8~k,k8,v!5x̃ l~k,k8,v!d l l 8dmm8 . ~16!

Let JI be the ‘‘dielectric’’ matrix the elementsk,k8 of which
are

J l~k,k8,v!5k2dkk824px̃ l~k,k8,v!. ~17!

It contains all the information about the dynamical propert
of the metal. UsingJI , Eq. ~14! leads to a set of linea
equations inf̃1lm

(k,v) which can be solved by introducin

the inverse matrixJI 21:

f̃1lm
~k,v!5(

k8
Nk8 l@b2f l~k8b!f1lm

8 ~b,v!

2a2f l~ka!f1lm
8 ~a,v!#J l

21~k,k8,v!.

~18!

This leads to the expression of the potential inside the m

f1~r ,v!5(
lm

@Gl~r ,v!f1lm
8 ~b,v!

2Fl~r ,v!f1lm
8 ~a,v!#Yl

m~V!, ~19!

where

Fl~r ,v!5a2(
k,k8

NklNk8 l f l~kr ! f l~k8a!J l
21~k,k8,v!,

~20a!

Gl~r ,v!5b2(
k,k8

nklNk8 l f l~kr ! f l~k8b!J l
21~k,k8,v!.

~20b!

The only unknown quantities in Eq.~19! are the radial
derivativesf1lm

8 . These can be derived from the continui

conditions at boundariesSa ,Sb . The response potentialf r ,
the source potentialfs inside the bubble, and the outer po
tentialf2 have the same type of expansion as they had in
case of a dielectric medium. Using the following expansi
of the potentialf0 inside the bubble:

f0~r ,v!5(
l ,m

~Al ,mr 2 l 211Bl ,mr l !Yl
m~V! ~21!

and writing the continuity of the potential and of its gradie
at boundariesSa ,Sb , the radial derivatives are eliminate
and one gets

Blm~a,b,v!5D l
i~a,b,v!

1

a2l 11 Alm , ~22!

where theAlm’s are the coefficients in the source potent
expansion.

The new nonlocal inner reflection factor is

-

D l
i~a,b,v!5

~ l 11!2Gl~a,v!Fl~b,v!1@b1~ l 11!Gl~b,v!#@a2~ l 11!Fl~a,v!#

l ~ l 11!Gl~a,v!Fl~b,v!2@b1~ l 11!Gl~b,v!#@a1 lF l~a,v!#
. ~23!
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From Eq.~22! one readily gets the response potential

f r~r ,v!5(
lm

D l
i~a,b,v!Alm

r l

a2l 11 Yl
m~V!. ~24!

It may be noticed that, because of their normalization@Eqs.
~20!# the functionsFl andGl remain finite whenb→`. As a
consequence

lim
b→`

D l
i~a,b,v!5

~ l 11!Fl~a,v!2a

lF l~a,v!1a
. ~25!

This is exactly the reflection factorD l(a,v) already
obtained1 for a spherical cavity in an infinite metal.

It is obviously a great advantage to have a general a
lytical expression of the nonlocal reflection factors@Eqs.
~20a!,~20b!,~23!#. A dielectric local medium naturally ap
fo

e

e
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pears as a particular case of this result, namely the cas
which the inverse dielectric matrix elements have the lo
form

J l
21~k,k8,v!5

1

k2«~v!
dkk8 . ~26!

Indeed under such condition, one obtains

Fl~r ,v!5
a2

«~v! (k

Nkl
2

k2 f l~kr ! f l~ka!, ~27a!

Gl~r ,v!5
b2

«~v! (k

Nkl
2

k2 f l~kr ! f l~kb!. ~27b!

After some calculation, the expression ofD l
i(a,b,v) takes

the simplified form
D l
i~a,b,v!5

~ l 11!@12«~v!#@ l«~v!1 l 11#~a2l 112b2l 11!

l ~ l 11!@12«~v!#2a2l 112@ l«~v!1 l 11#@~ l 11!«~v!1 l #b2l 11 ~28!
lar

or
which is the inner reflection factor calculated previously
a dielectric medium@Eq. ~1!#.

B. Propagators inside the bubble; van der Waals energy

Let EI (n)(r ,v) be thenth order tensorial gradient of th
response potentialf r(r ,v) defined by Eq.~24!:

EI ~n!~r ,v!52~¹!nf r~r ,v!, ~29!

In a general casef r is a sum of contributions related to th
different momentsMI (m)(v) ~dipole for m51, quadrupole
for m52, etc.! present at the source pointR. The so-called
propagator or electric susceptibility is a tensor of rankn
1m) allowing to deriveEI (n)(r ,v) from MI (m)(v) by

EI ~n!~r ,v!52 (
m51

1

~2m21!!!
nSI m~r ,R,v!@m#MI ~m!~v!,

~30!

where@m# indicates the contraction order.
In the present case we shall restrict to the ‘‘dipolar pro

gator’’ (n51) for a dipole source (m51) which in general
largely dominates~higher order propagators could be dete
mined in a similar way13!. It is readily derived from Eq.~24!.
It has a standard form, apparently similar to that obtain
elsewhere.1,7 Nevertheless one has to keep in mind that
specificity of the physical problem is contained in the refle
tion factorsD l

i :

1SI 1~r ,R,v!52(
lm

TI lm
~1!

r l 21

a2l 11 D l
i~a,b,v!OI ~1!Yl

m~V!,

~31!

where the components ofTI lm
(1) are
r

-

-

d
e
-

@TI lm
~1!#x5

b l

&
@C~ l ,1,l 21/1,21,0!dm,1

2C~ l ,1,l 21/21,1,0!dm,21#,

@TI lm
~1!#y52 i

b l

&
@C~ l ,1,l 21/1,21,0!dm,1

1C~ l ,1,l 21/21,1,0!dm,21#, ~32!

@TI lm
~1!#z5b lC~ l ,1,l 21/0,0,0!dm,0 .

OI (1) is a Cartesian tensor of rank 1, acting on angu
functions according to

2¹@r lYl
m~V!#5r l 21OI ~1!Yl

m~V!. ~33!

The fluctuating dipole momentm of the atom can be derived
from the electric field using the atomic polarizability tens
1aI 1(v) the elements of which are

1a i j
1 ~v!5a~v!d i j ~ i , j 5x,y,z!. ~34!

The van der Waals energy is given by14

U ~1!~R!5
\

2p E
0

`

dj1aI 1~ i j!@2#
1SI 1~R,R,i j!. ~35!

Using Eq.~31! one obtains

U ~1!~R!5(
l>1

Cl~a,b!
R2l 22

a2l 11 , ~36a!

where
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Cl~a,b!5
\

2p
l ~2l 11!E

0

`

djD l
i~a,b,i j!a~ i j!.

~36b!

The numerical calculation of this energy makes use of~i!
the atomic polarizabilitya(v), which can be obtained, fo
instance, from the Drude’s model

a~v!5a~0!va
2~va

22v2!21 ~37!

and~ii ! the reflection factorsD l
i(a,b,v) given either by for-

mula ~1! for a dielectric, or Eq.~23! for a metal.
The ‘‘dielectric’’ matrix J l of a metal is related to the

so-called Lindhard function15 «(k,v) by J l(k,k8,v)
5k2«(k,v)dkk8 . In most cases a realistic analytical form
«(k,v) can be derived from the hydrodynamical model
Fuchs and Claro:16

«~k,v!512
vp

2

v22d2k2 , ~38!

wherevp is the plasmon frequency;d is a parameter char
acteristic of the electronic screening effect inside the me
which is close to the Fermi velocity at high frequency.

In the case of a dielectric medium, the permittivity fun
tion «~v! is given the Clausius-Mossotti formula

«~v!5F11g0

v0
2

v0
22v2GF12g0

v0
2

v0
22v2G21

. ~39!

Some examples are presented here. In Fig. 2~full line!, U (1)

is plotted as a function ofd, the distance from the dipole
source to the inner sphere, for an Ar atom in a LiF bub
(a510 a.u,b520 a.u.!. Atom and dielectric parameters a
as follows:17

a~0!511.09 a.u.; va50.7024 a.u.;

g050.32 a.u.; v050.639 a.u.

In Fig. 3 the same system is studied for fixed values oa

FIG. 2. full line: van der Waals energyU (1) for an argon atom
inside a LiF bubble~a510 a.u.,b520 a.u.! as a function of the
distanced to the inner sphere; broken line:U (1) for an Ar atom
outside the bubble, as a function ofd, which is now the distance to
the outer sphere. The inner energy is lower than the outer
which is an evidence for a confinement effect~Ref. 27!.
f

l,

e

(510 a.u.) andR5a26 a.u. The energy is plotted as a fun
tion of b (b>a). It is seen thatU (1) approaches its limiting
value i.e., the energy corresponding to a spherical cavity
an infinite medium at relatively low values ofb ~b larger than
25 a.u.!, which shows that the effect induced by the source
the solid is actually restricted to a rather thin spherical sh

It may be noticed that the usual form of the van der Wa
energy for an atom in front of an infinite medium limited b
a planar surface is readily recovered from Eqs.~36a! and
~36b! by makingb infinite, and botha andR infinite with the
condition thatd5a2R remains finite. Under such cond
tions the problem becomes axially symmetric which impl
the predominance ofl values much larger than 1. Cons
quently D l

i'(12«)/(11«) and Cl'(\/2p) l (2l 11)D,
where

D5E
0

`

dj
12«~ i j!

11«~ i j!
a~ i j!.

Finally one gets

U ~1!'
1

aR2

\

p
D(

l
l S l 1

1

2D S R

a D 2l

'
1

aR2

\

p E
0

`

dl l 2S R

a D 2l

5
\

4p
D

1

d3 . ~40!

A similar calculation provides the van der Waals ener
of an atom placed at a distanced in front of a dielectric plate
of thicknesse. This situation corresponds toa, b, and R
infinite, b2a5e and a2R5d remaining finite. In Fig. 4
this energy, calculated for the system Ar1LiF, is plotted as a
function of the thicknesse, the distance being fixed atd
56 a.u. The asymptotic value ofU (1) at largee coincides
with the energy of the atom in front of an infinite mediu
limited by a plane. As expectedU (1)50 at e50. At small
values ofe,U (1) has a linear dependence one:

e,

FIG. 3. U (1) as a function of the outer radiusb; a510 a.u.;R
54 a.u. The asymptotic value at largeb corresponds to an atom
inside a spherical cavity in an infinite medium~broken line!.
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U ~1!'
3\

p
G

e

d4 , where G52E
0

`

dj
@12«~ i j!#2

4«~ i j!
a~ i j!.

These results are in qualitative agreement with those
tained by Schmeits and Lucas18 for an atom in the vicinity of
an aluminum film.

In Fig. 5, an example of a nonlocal treatment, for an arg
atom inside a silver spherical shell~a510 a.u.,b520 a.u.! is
shown. The calculation uses the same atom paramete
before. For the metal, the parameters involved in the hyd
dynamical Lindhard function@Eq. ~38!# are as follows:19

vp50.845 a.u.,d51.031 a.u. The van der Waals energy
plotted as a function of the distanced to the inner sphere
~full line!. It is compared to that given by a calculation usi
a local response~broken line!. This latter energy is much
lower than the nonlocal one which clearly shows the nec
sity to take in account the nonlocality of the response. T
present model is rather crude. Much more elaborated mo
of the metal have been proposed.20 In most cases they hav

FIG. 4. U (1) for an argon atom at a distanced56 a.u. from a
LiF plate, as a function of the thicknesse of the plate. The result is
obtained as a limiting case (a→`; b→`; b2a5e) of an atom
either inside the bubble~full line! or outside the bubble~crosses!.
The horizontal broken line corresponds to a semi-infinite med
limited by a plane.

FIG. 5. U (1) for an argon atom inside a silver bubble~a510
a.u.,b520 a.u.! as a function ofd the distance to the inner spher
full line: non-local calculation; broken line: local calculation.
b-

n

as
-

s-
e
ls

been shown to give results close to those of the pres
model, particularly for large size solids.

III. AN ATOM OUTSIDE A BUBBLE

The atom dipolem is located at pointR outsideSb(R
.b). We keep the previous definitions of the potentials a
specific frequencyv: f0 inside Sa ,f1 in the medium,f2
outsideSb . Now the response potential isf r5f22fs , fs
being the source potential.

A. Response potential and outer reflection factors

The treatment of a metallic medium is made as previou
in the framework of the linear response. The potentialf0
insideSa , as well as the source potentialfs ~for r .R! and
the response potentialf r obey the Laplace equation. Thes
potential can be expanded as

f05(
lm

Blmr lYl
m~V!,

fs5(
lm

Elmr lYl
m~V!, ~41!

f r5(
lm

Hlmr 2 l 21Yl
m~V!,

the potential outsideSb beingf25fs1f r .
Inside the medium the potential obeys the Poisson eq

tion

Df1~r ,v!524pdr~r ,v!.

Using the linearity of the response, together with the tra
formation~8!–~10!, one gets an expression off1 identical to
Eq. ~19!, where the functionsGl(r ,v), Fl(r ,v) have the
same expressions as before@Eqs.~20a! and~20b!#. The con-
tinuity condition of the potential and its gradient at boun
ariesSa , Sb allows us to eliminate the radial derivativesf1lm

8

~a or b,v!, which leads to the relation

Hlm5D l
0~a,b,v!Elm . ~42!

The outer reflection factorD l
0 is given by

D l
0~a,b,v!5

lU 2V

~ l 11!U2V
, ~43a!

where

U5aGl~b,v!1 l @Fl~a,v!Gl~b,v!2Fl~b,v!Gl~a,v!#,

V5b@a1 lF l~a,v!#. ~43b!

It may be noticed that the limiting expression ofD l
0 whena

tend to zero is

D l
0~0,b,v!5

lGl~b,v!2b

~ l 11!Gl~b,v!1b
, ~44!
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where

Gl~r ,v!5b2(
k,k8

NklNk8 l j l~kr ! j l~k8r !J l
21~k,k8,v!.

This coincides with the reflection factor obtained in Ref.
for a filled spheroid of radiusb.

Using expressions~43a! and~43b! of the reflection factor,
one readily obtains the response potential outsideSb :

f r~r ,v!5(
l ,m

D l
0~a,b,v!

b2l 11

r l 11 Elm~v!Yl
m~V!. ~45!

In the present case of a dipolar source, the coefficie
Elm(v) are given by

Elm~v!5b l(
a

C~ l ,1,l 11/a,2a,0!dma m
~2a!

, ~46!
be

he
ts

wherea521,0,11; C is a Clebsh Gordan coefficient and

b5A4p~ l 11!R2 l 22 ~R.b!. ~47!

As previously the~local! dielectric medium appears as
special case of this nonlocal calculation. By making ‘‘loca
the inverse matrixJ l

21 @Eq. ~26!#:

J l
21~k,k8,v!5

dkk8
k2«~v!

,

one gets simplified expressions of the functionsFl and Gl
@See Eqs.~27a! and ~27b!#.

After a rather tedious calculation one gets
D l
0~a,b,v!5

@12«~v!# l @ l 1~ l 11!«~v!#~a2l 112b2l 11!

@~ l 11!«~v!1 l #@ l 111 l«~v!#b2l 112 l ~ l 11!@«~v!21#2a2l 11 , ~48!
sys-
ble
ady

r

s

e

t of

nd-
-
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s
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ed
ed

col-

t

i.e., the reflection factor for a dielectric shell as it might
directly calculated by use of a standard method.

B. Propagators and van der Waals energy

Using a method similar to that of Sec. II B, one gets t
dipolar propagator for a dipole source

1SI 1~r ,R,v!52(
lm

TI lm
~1!

a2l 11

r 2l 11 D l
o~a,b,v!OI ~1!Yl

m~V!,

~49!

where the components ofTI lm
(1) are now

@TI lm
~1!#x5

b l

&
@C~ l ,1,l 11/11,21,0!dm,1

2C~ l ,1,l 11/21,1,0!dm,21#, ~50!

@TI lm
~1!#y52 i @TI lm

~1!#x , ~51!

@TI lm
~1!#z5b lC~ l ,1,l 11/0,0,0!dm,0 , ~52!

whereb l is given by Eq.~47! and

2¹@r 2~ l 11!Yl
m~V!#5r 2~ l 12!OI ~1!Yl

m~V!. ~53!

The van der Waals energy is again given by Eq.~35!,
which leads to

U ~1!~R!5(
l>1

Cl~a,b!
a2l 11

R2l 14 , ~54a!

where
Cl~a,b!5
\

2p
~ l 11!~2l 11!E

0

`

djD l
o~a,b,i j!a~ i j!.

~54b!

Numerical calculations have been made for the same
tem as before, namely, an argon atom outside a LiF bub
~the parameters used in the calculation have been alre
given in Sec. II B!. In Fig. 2 ~broken line!, the energyU (1) is
plotted as a function of the distanced to the outer sphere, fo
a510 a.u.,b520 a.u. As expectedU (1) tends to2` as d
approaches 0, and it tends to zero at infinited. In a second
calculation,b520 au andd56 au are kept constant wherea
a is varied from zero tob ~see Fig. 6!. Fora50 one recovers
the value ofU (1) of an atom outside a filled spheroid. On th
other hand, as expected, fora5b, U (1)50. Finally, making
a, b, andR infinite, with bothb2a5e andR2b5d finite,
we are able to recalculate the energy of the atom in fron
a plate. As it is seen in Fig. 4~crosses!, the result is identical
to that already obtained on the inner side of the bubble.

IV. APPLICATION: THE COLLISION OF AN ARGON
ATOM WITH A FULLERENE MOLECULE

In this last part we consider a collision between a grou
state argon atom and a C60 molecule translationally and vi
brationally at rest. The collision energy lies in the subtherm
to thermal range~a few tens of meV!. Having in mind to
calculate the Ar-C60 interaction by using the previou
method, we first have to examine the validity of a model
which the fullerene molecule is assimilated to a bubble~see
Ref. 22!. Moreover because of the short distances involv
in such a collision, repulsive terms have clearly to be add
to the van der Waals energy. Nevertheless in a realistic
lision experiment~e.g., a Ar beam passing through C60 va-
por, or crossing a C60 beam! ~i! the orientations of the targe
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molecules at a given time are random and~ii ! these mol-
ecules are rotating. To take into account the point~i! would
impose the difficult task to calculate~using an anisotropic
potential! the differential cross section for a given orientati
and then average this cross section over all molecular or
tations. On another hand the point~ii ! turns out to be an
advantage, provided that the rotation is sufficiently fast co
pared to the relative Ar-C60 motion. In such a case it is
justified to average the interactionpotential ~attractive and
repulsive parts! over the molecule orientations, which lea
to a simple spherical potential. The rotational constant of60
can be estimated to be 7.4631029 atomic unit. As a conse
quence at 300 K, the mean value of the angular momentuJ
is about 1380, which corresponds to a rotation periodT
57.32 ps. At a collision energy of 26 meV, the velocity
an argon atom is 317 m/s. The potential range being e
mated at 30 atomic unit, the collision time is about 4.70
i.e., slightly smaller thanT, which seems to compromise th
approximation mentioned above. However the anisotropy
the potential is periodic or quasiperiodic as a function of
rotation angle with a period largely smaller than 2p. Under
such conditions it seems to be justified to average the po
tial and consider the C60 molecule as a bubble, at least fo

FIG. 6. U (1) as a function of the inner radiusa; b520 a.u.;R
524 a.u. The value ata50 corresponds to an atom outside a fille
spheroid~Ar-LiF system!.

FIG. 7. Ar-C60 elastic differential cross sections ina0
2/sr at 26

meV ~full line! and 52 meV~dotted line!. A rainbow effect is vis-
ible on both curves.
n-

-

ti-
,

f
e

n-

collision energies smaller than 100 meV. The mean repuls
part of the potential can be evaluated by summing ther 212

part of a Lenard-Jones potential over the volume of the m
terial. The complete averaged potential has been calcul
using the data of Refs. 23–25. It is in good agreement w
that of Ref. 25. The barrier in between inner and outer
gions is high enough to prevent any tunnel effect, at leas
the collision energies considered here. As a consequenc
collision treatment only involves the outer potential. Sim
larly the lower bound states of an atom inside the bub
~within a well of depth2388.2 meV at a distance of 4.37a0!
are disconnected from outside: they are very close to th
already found inside a spherical cavity in an infini
medium.1 Obviously at large collision energy and/or low C60
rotational temperature the approximation of the mean po
tial fails, leading to a very interesting but difficult problem
namely, the penetration of an outer atom into C60, followed
by a delayed ejection, a process accompanied by a transf
angular momentum to the molecule.

The shortness of the de Broglie wave length~l
50.63 a.u. at 26 meV! fully justifies the use of the JWKB
approximation. Phase shifts have been calculated for var
collision energies, over the range 0–600 of the relative
gular momentuml. Differential cross sections calculated
26 and 52 meV are shown in Fig. 7. Rainbow structures
to the potential well are clearly seen. Because of the prese
of an empty inner part which repels the potential well min
mum ~2158 meV! at a relatively large distance (11.1a0),
both the magnitude of the differential cross sections and
location of the rainbows should make itrelatively easy to
experimentally observe these effects, which would provide a
severe test of the well parameters. On the other hand the
cross section as a function of the collision energyE ~Fig. 8!
reflects the behavior of the potential at mean and large
tances. Towards low energies the cross section approach
behavior inE21/5 characteristic of the expected long ran
potential inr 26, whereas at larger energies it exhibits a glo
oscillation ~Fig. 8! around a mean value decreasing slow
~roughly inE21/11, characteristic of a potential inr 212! than
it did at low energy. All these features should be observed
an experiment in which the attenuation of a wide

FIG. 8. Ar-C60 total elastic cross section ina0
2 as a function of

the collision energyE. The cross section tends to behave asE20.2

~potential inr 26! at low energy~dotted line! and asE21/11 ~poten-
tial in r 212! at large energy~broken line!. A glory structure is seen
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velocity-distributed argon atom beam through a C60 vapor is
measured as a function of the time of flight.

V. CONCLUSION

A rigorous method has been used to determine the no
cal response of a bubble made of a linear continuous
dium, to the presence of a ground-state atom located in
as well as outside the bubble. General analytical express
of inner and outer reflection factorsD l

i ,0 are obtained. Within
the framework of the approximations used here, which
valid at intermediate distances, these factors contain all
physics of the problem, allowing us to calculate, by use
the propagator method, various quantities such as the p
ization, the energy of interaction, etc. For sake of clarity o
dipolar sources and dipolar propagators have been con
ered here, but the treatment~using the same factorsD l

i ,0! can
be easily extended to higher orders. We have verified
when a local form of the response is assumed, then the
eral formula gives as a special case the reflection factors
dielectric medium.

In the numerical calculations, more or less sophistica
models describing the atom and the medium properties
be used. In the case of a metal, the Jellium model, i.e., a
of independent electrons confined within infinite potent
barriers, is the simplest one able to account for the nonlo
ity of the response. This model can be improved, e.g.,
introducing electronic correlation and exchange effects
means of the density-functional formalism.26 Similarly more
elaborated descriptions of the atomic or molecular pola
abilities and of the local properties of dielectric media can
introduced within the framework of the general theory.

Limiting geometrical configurations have been examin
allowing us to recover previous results obtained in simp
situations~spherical cavity, filled spheroid! or providing us
o-
e-
de
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e
e
f
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with new results~plate!. Obviously at short distances be
tween the atom and the solid, the description using a c
tinuous medium becomes questionable and repulsive fo
need to be considered. As it has been shown previous1

both features can be incorporated in the treatment by sim
adding to the van der Waals energy a discrete sum over
solid lattice of the repulsive part of a 6–12 Lenard-Jon
potential.

Applying the propagator method to the Ar-C system a
then adding at short distances a sum of repulsive terms to
van der Waals energy, we have shown that the scatterin
Argon atoms by fullerene molecules at subthermal and th
mal energies leads to rather high differential cross sectio
exhibiting easily observable rainbow features. Similarly t
elastic total cross section, which exhibit a glory oscillatio
should be also easily measured in a beam-gas time-of-fl
experiment.

Other problems involving molecules instead of atoms c
be treated by the same method. For example the dynamic
a polar or nonpolar diatomic molecule encapsulated insid
microsized bubble, a system equivalent to a triatomic m
ecule, is of a particular interest insofar as the anisotro
molecule-solid interaction couples the different degrees
freedom, which could lead to a very special rovibration
spectroscopy.

The extension to the cylindrical symmetry~an atom inside
a nanotube! is feasible. It should extend the domain of a
plicability of the method to a wider variety of experimental
accessible systems.
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