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Single atom inside or outside a dielectric or metallic bubble
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The dispersive van der Waals energy of a ground-state atom encapsulated in, or placed in the vicinity of, a
spherical dielectric or metallic shell is calculated. The treatment, the validity of which is restricted to the
intermediate distance range, makes use of the random phase approximation and the propagator method. It is
shown that the dielectric medium appears as a special case in the general nonlocal treatment used for a metal.
Examples are presented and discussed. The interaction between an argon atom and a fullerene molecule,
averaged over the molecule orientation and including a short-distance repulsive contribution, is calculated. It is
then used to evaluate elastic differential cross sections at low end&fieand 52 mey—both of them
exhibiting clear rainbow structures—and the total cross section in the range 10-100 meV.

[. INTRODUCTION metry), atoms in the vicinity of a microsphefelhe paper is
organized as follows: in Sec. Il the problem of an atom in-
In a previous papérthe problem of a microsystem side a bubble of radi,b is considered. The response poten-
(ground-state atom or moleculglaced inside an empty tials of dielectric and metallic media are calculated and the
spherical cavity in an infinite, linear, homogeneous, and isoPropagators inside the bubble are determined. Finally the van
topic medium has been addressed. While the treatmeister Waals energy is evaluated. The empty cavity is obtained
makes use of standard methods such as the random phddemakingb infinite. In Sec. Ill similar quantities as before,
approximation(the atom is described as a sum of fluctuatingi-€., the response potential, the propagators outside the
electric momenté and the propagator or susceptibility bubble and the energy are determined for an atom outside the
method® the fact that the medium extends to infinity gives bubble. The case of an atom in the vicinity of a filled spher-
rise to a special problem, namely, the determination of amid is obtained by taking the lima— 0. Then it is shown in
adapted radial basis set able to provide converging physicdloth cases that by making respectivelyor b infinite one
quantities such as the induced polarization, the van de@ets the due common limiting value of the energy which is
Waals atom-surface interaction, etc. This determination hathat of a planar surface. Finally by making bathand b
been made by considering in a first step a medium limited bynfinite, keeping finite the difference—a, one obtains the
two concentric spheres of radi,b, making thenb infinite  dispersion energy of an atom placed in front of a plate of a
once the response potential of the medium has been calcfinite thickness. In Sec. IV the collision of an atdar) on a
lated. This treatment naturally emerges into that of the castlllerene molecule assimilated to a bubble is studied as an
of an atom encapsulated inside a bubble. Actually as it willexample of the general treatment, a repulsive short range
be seen further it includes as well the case of an atom outsideotential being added to the van der Waals energy.
the bubble, providing then a synthesis of the cases of a filled
spheroid and of an empty cavityin the following for sake Il. AN ATOM INSIDE A BUBBLE
of simplicity we shall restrict to a dipolar moment but the ) _ o
method can be easily extended to higher orders by using L€t Us consider a medium, which is assumed to be homo-
proper expansions of the source potential. The validity of th&J€N€ous, isotropic, and linear, limited by two concentric
method is restricted to the intermediate distance range for thePheresS,, S, of radiia,b. The atom(dipole ) is located at
following reasons(i) because of the quasistatic approxima-POint R inside the bubbleR<a), with R collinear to thez -
tion, it does not take into account retardation effects whicheXis(see Fig. 1. Let ¢q, $1, ¢, be the potentials at a specific
become significant at large distandes100 a.u), (ii) at dis- ~ frequency(w), insideS,, in betweerss, andS,, and outside
tances of a few au, electronic orbitals of the atom and thé» respectively. The basic quantity here, from which the
solid overlap, giving rise to a repulsive interactigiii) at ~ Propagators and all physical quantities will be deduced, is
such short distances the description of the solid as a continiibe so-called “response potential” of the medium, ins&le
ous medium becomes questionable. When necessary, poit§.. the differencep, = ¢o— ¢s, wheregs is the source po-
(i) and iii ) can be solved by summing the repulsive part oftential.
a Lenard-Jones potential over the solid atomic lattice.
Various applications of the situation considered in this A. Response potential and inner reflection factors
paper can be found, some of them being nowadays investi-
gated experimentally, such as the confinement of atoms or
molecules inside micro sized bubbles or tulfeghe present Let us first assume that the medium is a neutral dielectric
treatment could be readily extended to the cylindrical sym-of permittivity e(w). In this case our method follows that

1. Dielectric medium
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already used by Lind&to treat a cavity in infinite dielectric the local character of the response of the medium.

medium and that used by Lucasal.to treat a gy molecule A standard method using expansions over the spherical
assimilated to a dielectric bubBlén this latter case the po- harmonics, the Laplace equation and the boundary condi-
larizability of the shell exhibits resonances corresponding tdions, leads to the inner reflection factor for a specific spheri-
polarization waves The treatment is greatly simplified by cal harmonicY|":

[1-e(w)][1+]+]le(w)](1+1)(a?T1-p2*Y)

Al(a,b,w)= . 1
i ) [1-e(w)Pl(+D)a? T —[I+le(w)+1][I +le(w)+e(w)]b? 1 @
|
It is worth noticing that the limit discretek values. Another orthogonality property, related to
two different values ok, also holds
lim Ai(a b )_M 2
b T T De(0) F b2 e L
drrefi(kr)f(k r)—N—Zb‘kk,, (6)
coincides with the reflection factor previously given by 2 K
Linder® for a spherical cavity in an homogeneous isotropicyhere the normalizing factoid,, are given by
dielectric medium. _
The expression ofA; [Eq. (1)] is independent of the 1 )
source under consideration. Dipole and higher multipole mo- N2 E{b3[f| (kb) = f;_1(kb)f;  1(kb)]
ments can be treated as well, by using proper expressions of kI
the source potentials. _a3[f|2(|(a)_flil(ka)le(ka)]}_ (7)
2. Metallic medium The expansion of radial quantitigg,(r,») over this basis is

The case of a dielectric medium is actually a rather simple
electrostatic problem. The treatment of a metallic medium is Fw)= Nufi (K )i (K 8
more difficult, essentially because of the nonlocal character 9T ) Ek: khi(Kr @) Gin(k.w), ®3
of the metal response. Whilst the following method could be
extended to any type of source, for sake of clarity, we shallvhere
restrict ourselves to the case of a dipole momeitdcated at
a pointR(0,0R) inside the bubbleR<a). ~ _ f 3 m*
At a specific frequency, any position-dependent quantity Gim(k, @) =Niq Vd riikn) Y (Q)g(r, o)
g(r,w) inside the metal can be expanded over the spherical

_ b
harmonics :NkJ dr r2f,(Kr)gim(r, ), (8b)
a

g(r,w)=%; Gim(F, @) Y[(Q). 3V being the volume in between the sphegass, .
' Inside the metal the potentigl,(r,») obeys the Poisson
In view of simplifying the forthcoming treatment, the radial equation
functions g,,(r,») themselves are expanded over a com-

plete and a orthogonal set of radial functidyg(r,w), cho- Ap(r,w)=—478p(r,w), 9
sen in such a way that the produéts,= f,,Y|" are solutions ) ) ) ) )
of a Helmholtz equation + k?)F,,,=0. there dp is the charge density at point Assuming a linear

This latter conditions implies that these radial basis functesponse of the medium this charge density is relategi;to
tions are spherical Bessel functions, independentnaind
they area priori nonregular at the origifiwhich is located

outside the mediuin 5p(|’,w)=f By (rr ) ot ), (10
\Y
fi(kr)= aj(kr)+ By (kr). (4)

It is easily verified that if the Wronskian of two such func-
tions vanishes at=a andr=b which is obtained here by twi
imposing the two conditions

where x(r,r’,w) is a nonlocal generalized susceptibility.
Using the transformatiori8b), once for §p and ¢, and
ce for y, Eq. (10) transforms into the matrix equation

3xf1(X)] x=kakp=0, ©) Spimk,w)= > Xirmm (KK 0) g (K" w), (11)
then the orthogonality property holds. Equatits) deter- ok
mines the coefficientsy,,; in Eq. (4) as well as a set of where
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Xitrmm (K K" 0) =X1(K,K', 0) 8 Sy - (16)

Let 2 be the “dielectric” matrix the elements,k’ of which
are

E|(k,k’,w)=k25kkr—477“)2|(k,k’,w). (17)

It contains all the information about the dynamical properties
of the metal. UsingZ, Eq. (14) leads to a set of linear

equations in?bllm(k,w) which can be solved by introducing

the inverse matrixg ~*:

b1, (k@) =2 Ni[b*fi(K'D) ¢} (b,w)
k/

—a*fi(ka)¢; _(a,w) 2, kK ).

(18)
This leads to the expression of the potential inside the metal

FIG. 1. Geometry of the problem: an atom is located at a dis-
tanceR from the centerO of a bubble limited by two concentric ¢1(r,w):2 [Gi(r,w)¢; (b,w)
spheres of radia,b (R<a or R=b). Im m

—Firw)¢) (a0)YN(Q), (19

7(”,mm,:Nk,Nk,,,JVd3rJvd3r’f|(kr)f|,(k’r')Y|"? Q) here

m* !
><Y| (Q)X(r,r 7w)' (12) Fl(r,w)ZaZE Nk|Nk/|f,(kr)ﬁ(k’a)Efl(k,k',w),
The same transformation applied to Ef) leads to kK’ (203

_ — 3 m*

BN | ST (DBB00 B3 G S kD) )
k,k’

By using the Green’s identit}, the volume integral in Eq. (20b

13 b sed as o :
(13) can be expres The only unknown quantities in Eq19) are the radial

—K2_ derivatives¢1lm. These can be derived from the continuity
N_H¢1lm(k’w)' conditions at boundarieS, ,S,. The response potentia, ,
the source potentiap, inside the bubble, and the outer po-
Finally Egs.(11) and(13) lead to a self-consistency equation tential ¢, have the same type of expansion as they had in the
for the potentialspy,, in k space, namely, case of a dielectric medium. Using the following expansion
of the potentialg, inside the bubble:

A7 rmm (KK ©) = K28 Sy Sk 11, (K,
|’,§,k' [4mX) ( ) I kel (K o) ¢0(r,w):|z (Aot 4By )Y 21

— 2 ’ K2 ’
Ny[afi(ka)¢y (a,0)—bf(kb)¢y (b,w)], (14) and writing the continuity of the potential and of its gradient

where the(unknown radial derivative&bil are defined by  at goundariessa,sb, the radial derivatives are eliminated
m and one gets

’ * . 1
¢1,,(8,0)= f AT ( Darar0)| (9 Bim(a,b,®)=A](a,b,0) 1 Aim, (22)
and a similar definition at=b. where theA,,'s are the coefficients in the source potential
Owing to the isotropy and spherical symmetry of theexpansion.
metal, the susceptibility matrix simplifies irtto The new nonlocal inner reflection factor is

(1+1)2G,(a,w)F(b,w)+[b+(1+1)G,(b,w)][a— (I+1)F|(a,0)]
[(1+1)G(a,w)F|(b,w)—[b+(1+1)G(b,w)][a+IF|(a,w)]

Al(a,b,w)= (23)
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From Eq.(22) one readily gets the response potential pears as a particular case of this result, namely the case in
| which the inverse dielectric matrix elements have the local
B0 = Al@bwAnorer¥PQ). (24 O™
_ , 1
It may be noticed that, because of their normalizafigns. kK w)= Ko@) Okk! - (26)
(20)] the functiond=; andG, remain finite wherb—o. As a
consequence Indeed under such condition, one obtains
(I+1)F(a,w)—a
= r fi(kr)fi(ka 27

lim aj(ab,0) = 2" (25) Fi(r,o)= Z—f (knfi(ka), (278
This is exactly the reflection factor\|(a,w) already b? NEI
obtained for a spherical cavity in an infinite metal. Gi(r,w)= ﬁZ 1@ fitkn)fi(kb). (270

It is obviously a great advantage to have a general ana-
lytical expression of the nonlocal reflection factdiSgs.  After some calculation, the expression @f(a b,w) takes
(209,(200),(23)]. A dielectric local medium naturally ap- the simplified form

(I+D)[1-e(w)][le(w)+1+1](a%1-b2*1)

[ -
D) = e T e () 222 ™ [T (w) 1+ 1][(1+ e (w) +1]67 T 8
|
which is the inner reflection factor calculated previously for
a dielectric mediumEq. (1)]. [T <1>]X:—[C(| 1)-1/1,-1,0 81
B. Propagators inside the bubble; van der Waals energy -C(,1]-1/-1,1,0 6 - 1],
Let EM(r,w) be thenth order tensorial gradient of the
response potentiab,(r,») defined by Eq(24): (T3] = — i [C(I 1-11-1.05
y— T o [ m,1
EV(r,0)==(V)"¢(r,0), (29
+C(1,11-1/-1,1,0 6 —1], (32

In a general case, is a sum of contributions related to the
different momentsM (™ (w) (dipole for m=1, quadrupole [T(Y1,=8,C(1,11—1/0,0,0 5.
for m=2, etc) present at the source poiRt The so-called i '

propagator or electric susceptibility is a tensor of ramk ( 0W is a Cartesian tensor of rank 1, acting on angular
+m) allowing to deriveE™(r, ) from MM (w) by functions according to

1 _ M _l=1~(1)ym
E(n)(r,w):_mZ:l Em=D n_Sm(nR,w)[m]M(m)(w), V[r Y| (Q)] r O Yl (Q) (33)

(30) The fluctuating dipole moment of the atom can be derived
from the electric field using the atomic polarizability tensor

where[m] indicates the contraction order. 'a'(w) the elements of which are
In the present case we shall restrict to the “dipolar propa-
gator” (n=1) for a dipole sourcemi=1) which in general lailj(w)Z a(w)d; (i,j=XY,2). (34

largely dominateghigher order propagators could be deter-

mined in a similar wa}P). It is readily derived from Eq(24).  The van der Waals energy is given'by

It has a standard form, apparently similar to that obtained

elsewheré:” Nevertheless one has to keep in mind that the . A= 1 e _
specificity of the physical problem is contained in the reflec- UD(R)= 7 Jo déa (i) S(RRiE). (39
tion factorsA| :

Using Eq.(31) one obtains
I 1

'SrRw)==2 T rrAla.b,w)0YI(Q), .
(3D UM(R)=3, Ci(ab) et (363

where the components @i} are where
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FIG. 3. UM as a function of the outer radils a=10 a.u.;R
=4 a.u. The asymptotic value at lar@pecorresponds to an atom
inside a spherical cavity in an infinite mediutioroken ling.

FIG. 2. full line: van der Waals enerdy™® for an argon atom
inside a LiF bubblela=10 a.u.,b=20 a.u) as a function of the
distanced to the inner sphere; broken lin&l™® for an Ar atom
outside the bubble, as a function @fwhich is now the distance to
the outer sphere. The inner energy is lower than the outer ond=10a.u.) andR=a—6 a.u. The energy is plotted as a func-
which is an evidence for a confinement efféRef. 27. tion of b (b=a). It is seen that)¥) approaches its limiting
value i.e., the energy corresponding to a spherical cavity in

fi o : an infinite medium at relatively low values bf(b larger than
Ci(a,b)=o—1(21+ 1)f déAj(a,b,if)a(ié). 25 a.u), which shows that the effect induced by the source in
0 (36b) the solid is actually restricted to a rather thin spherical sheet.
It may be noticed that the usual form of the van der Waals

The numerical calculation of this energy makes usé)f energy for an atom in front of an infinite medium limited by
the atomic polarizabilityx(w), which can be obtained, for @ planar surface is readily recovered from E(#63 and

instance, from the Drude’s model (36b) by makingb infinite, and botha andR infinite with the
condition thatd=a—R remains finite. Under such condi-
a(0)=a(0)wi(wi-w?)~? (37)  tions the problem becomes axially symmetric which implies

the predominance of values much larger than 1. Conse-
quently Aj=(1—¢)/(1+e) and C,~(#/2m)I(21+1)D,
where

and (ii) the reflection factord|(a,b,w) given either by for-
mula (1) for a dielectric, or Eq(23) for a metal.

The “dielectric” matrix =, of a metal is related to the
so-called Lindhard functioR e(k,0) by Z(k.k’ )
=k?e(k,») 8¢ . In most cases a realistic analytical form of "4 1-e(ié) .
e(k,w) can be derived from the hydrodynamical model of D= JO §1+g(ig) a(if).
Fuchs and Clar®

2 Finally one gets
_q_ P
e(k,w)=1 Pyl (38
_ . w1 1\(R\?
where w, is the plasmon frequencyj is a parameter char- U~ e ;DE (s 5\
acteristic of the electronic screening effect inside the metal, !
which is close to the Fermi velocity at high frequency. 1 4 (= R\ 2
In the case of a dielectric medium, the permittivity func- ~ IR dl I2(5>
tion g(w) is given the Clausius-Mossotti formula 0
_ A1
2 2 1

e(@)=|1+0o—>—||1-%o > (39 4= d°

Some examples are presented here. In Figuiline), U A similar calculation provides the van der Waals energy

is plotted as a function ofl, the distance from the dipole of an atom placed at a distandén front of a dielectric plate
source to the inner sphere, for an Ar atom in a LiF bubbleof thicknesse. This situation corresponds ta, b, and R
(a=10 a.u,b=20 a.u). Atom and dielectric parameters are jnfinite, b—a=e and a— R=d remaining finite. In Fig. 4
as follows:’ this energy, calculated for the systemAriF, is plotted as a
) ) function of the thickness, the distance being fixed at

«(0)=11.09a.u; w,=0.7024a.u; =6 a.u. The asymptotic value dJ'¥) at largee coincides
with the energy of the atom in front of an infinite medium
limited by a plane. As expected®=0 ate=0. At small
In Fig. 3 the same system is studied for fixed valuesaof values ofe,U*) has a linear dependence en

00=0.32a.u.; wg=0.639a.u.
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T been shown to give results close to those of the present
] model, particularly for large size solids.

- Ill. AN ATOM OUTSIDE A BUBBLE

. The atom dipoleu is located at pointR outside S,(R

1 >b). We keep the previous definitions of the potentials at a
] specific frequencyw: ¢q inside S;, ¢4 in the medium,¢,

§ outsideS,,. Now the response potential i& = ¢, — ¢s, ds

; being the source potential.

van der Waals energy (meV)

3 A. Response potential and outer reflection factors

0 ' 0 20 30 The treatment of a metallic medium is made as previously
Thickness (a.u.) in the framework of the linear response. The potendgl

insideS,, as well as the source potenti@l (for r>R) and

the response potentigl, obey the Laplace equation. These

potential can be expanded as

FIG. 4. U® for an argon atom at a distance=6 a.u. from a
LiF plate, as a function of the thicknesf the plate. The result is
obtained as a limiting casea{~%; b—o; b—a=e) of an atom
either inside the bubblé&ull line) or outside the bubblécrosses
The horizontal broken line corresponds to a semi-infinite medium d)ozz B|mr'Y|m(Q),
limited by a plane. Im

[1-s(i&)]? d)s:% Einr ' Y(Q), (42)

3 e
)m— i
Ut r 2506 a(ié).

o d¥

where I' = —f dé
0

=2 Himf ~'71Y(Q),
These results are in qualitative agreement with those ob- o % m i

;z?:naelﬂrtr)])i/nir%hmﬁ:fs and Luc&sor an atom in the vicinity of the pqtential outsiqsb being ¢2:.¢S+ .. |

In Fig. 5, an example of a nonlocal treatment, for an argor{iorllnade the medium the potential obeys the Poisson equa-
atom inside a silver spherical shéi=10a.u.,b=20a.u) is
shown. The calculation uses the same atom parameters as __
before. For the metal, the parameters involved in the hydro- A1 w)=—4mdp(r,v).
dynamical Lindhard functiofEq. (38)] are as follows®  Using the linearity of the response, together with the trans-
wp=0.845a.u.,6=1.031a.u. The van der Waals energy isformation(8)-(10), one gets an expression ¢f identical to
plotted as a function of the distanckto the inner sphere Eg. (19), where the functions5(r,»), F|(r,o) have the
(full line). It is compared to that given by a calculation using same expressions as bef¢Egs. (208 and(20b)]. The con-
a local responsébroken ling. This latter energy is much tinuity condition of the potential and its gradient at bound-
lower than the nonlocal one which clearly shows the necesariesS,, S, allows us to eliminate the radial derivativ¢$Im
sity to take in account the nonlocality of the response. Theg o, b, ), which leads to the relation
present model is rather crude. Much more elaborated models

of the metal have been propos€dn most cases they have 0
Hn=A4/(a,b,0)E,. (42

' ' The outer reflection factcxfsf’ is given by
-200 lU—-V

0 —
AP(a,b,w)= EEY (433

-400
where

-600

U=aG|(b,w)+I[F|(a,w)G|(b,w)—F|(b,w)G|(a,w)],

van der Waals energy (meV)

80| i

V=b[a+IF (a,e)]. (43b)
1000 —— p ' 5 ' s 0 It may be noticed that the limiting expression&f whena
d (au.) tend to zero is
FIG. 5. U for an argon atom inside a silver bubble=10 1G (b b
a.u.,b=20 a.u) as a function ofl the distance to the inner sphere: AO(O b,w)= Gi(b,w)— (44)
full line: non-local calculation; broken line: local calculation. e

(1+1)G/(b,w)+b’
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where

Gi(r,w)=b22 NNy ji(kn)ji(k'n)E; M (kk' ).
k,k’

This coincides with the reflection factor obtained in Ref. 21

for a filled spheroid of radius.

Using expressiong3a and(43b) of the reflection factor,

one readily obtains the response potential outSigle

21+1
$e(r,0)= 2 Af(a,b,0) T Ein(@)Y]'(2). (49

In the present case of a dipolar source, the coefficients

Eim(w) are given by

(—a)
Em(0)=82 C(I,1)+1a,—a,0)8,, n , (46)

SINGLE ATOM INSIDE OR OUTSIDE A DIELECTRC . ..

Al(a,b,w)=

7599

wherea=—1,0+1; C is a Clebsh Gordan coefficient and

B=+\4m(1+1)R"'"2 (R>b). (47

As previously the(local) dielectric medium appears as a
special case of this nonlocal calculation. By making “local”
the inverse matrix@; ! [Eq. (26)]:

5kk/

=-1 ’ _ "
]| (k;k lw) kzs(w)'

one gets simplified expressions of the functidhsand G,
[See Eqgs(27a and(27b)].
After a rather tedious calculation one gets

[1—e()]I[1+(I+1)e(w)](@® T t—b2T1)

i.e., the reflection factor for a dielectric shell as it might be

directly calculated by use of a standard method.

B. Propagators and van der Waals energy

Using a method similar to that of Sec. 11 B, one gets the

dipolar propagator for a dipole source

a.2|+l
'SH(rRw) ==X Tii a1 Af(a,b,0) 0 Y(Q),
(49
where the components @t are now
T = i)+ 141-1.05
2Im Jdx \/Z 7= 1 ’ m,1

—C(IL1I+1/-1,1,0 8, 4], (50)
[Timly=—ilTiw 1, (51)

[Tim 1= BiC(1,11+1/0,0,0 85, (52

where g, is given by Eq.(47) and
=V[r- "By =r(F20WYN(Q). (53

The van der Waals energy is again given by E3p),
which leads to

a2|-%—1

UB(R)= 2, Ci(ab) garea, (543

where

[(1+1D)e(w)+HI][I+1+]e(w)]b? T 1=1(1+1)[e(w)—1]%a% 1"

(48)

h
C|(a,b)=g(

|+1)(2|+1)f:d§A?(a,b,ig)a(ig).
(54b)

Numerical calculations have been made for the same sys-
tem as before, namely, an argon atom outside a LiF bubble
(the parameters used in the calculation have been already
given in Sec. Il B. In Fig. 2 (broken ling, the energyy™® is
plotted as a function of the distanddo the outer sphere, for
a=10 a.u.,b=20 a.u. As expectetd® tends to—= asd
approaches 0, and it tends to zero at infintdn a second
calculation,b=20au andd=6 au are kept constant whereas
ais varied from zero td (see Fig. 8 Fora=0 one recovers
the value ofU® of an atom outside a filled spheroid. On the
other hand, as expected, far=b, U®)=0. Finally, making
a, b, andR infinite, with bothb—a=e andR—b=d finite,
we are able to recalculate the energy of the atom in front of
a plate. As it is seen in Fig. &rosse} the result is identical
to that already obtained on the inner side of the bubble.

IV. APPLICATION: THE COLLISION OF AN ARGON
ATOM WITH A FULLERENE MOLECULE

In this last part we consider a collision between a ground-
state argon atom and gg@molecule translationally and vi-
brationally at rest. The collision energy lies in the subthermal
to thermal rangga few tens of meY. Having in mind to
calculate the Ar-g, interaction by using the previous
method, we first have to examine the validity of a model in
which the fullerene molecule is assimilated to a bulskee
Ref. 22. Moreover because of the short distances involved
in such a collision, repulsive terms have clearly to be added
to the van der Waals energy. Nevertheless in a realistic col-
lision experimentie.g., a Ar beam passing throughva-
por, or crossing a £ beam (i) the orientations of the target
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o ) ) ) FIG. 8. Ar-Cy total elastic cross section & as a function of
FIG. 6. U™ as a function of the inner radius b=20 a.u;R  the collision energ)E. The cross section tends to behaveEad?
=24 a.u. The value & =0 corresponds to an atom outside a filled (potential inr ~®) at low energy(dotted line and asE ~ ! (poten-

spheroid(Ar-LiF system). tial in r 19 at large energybroken ling. A glory structure is seen.

molecules at a given time are random afiid these mol- o ] )
ecules are rotating. To take into account the péintould  collision energies smaller than 100 meV. The mean repulsive

impose the difficult task to calculatising an anisotropic Part of the potential can be evaluated by summingrth¥
potentia) the differential cross section for a given orientation part of a Lenard-Jones potential over the volume of the ma-
and then average this cross section over all molecular orierierial. The complete averaged potential has been calculated
tations. On another hand the poifit) turns out to be an using the data of Refs. 23-25. It is in good agreement with
advantage, provided that the rotation is sufficiently fast comthat of Ref. 25. The barrier in between inner and outer re-
pared to the relative Ar-§ motion. In such a case it is gions is high enough to prevent any tunnel effect, at least at
justified to average the interactigrotential (attractive and the collision energies considered here. As a consequence the
repulsive partsover the molecule orientations, which leads collision treatment only involves the outer potential. Simi-
to a simple spherical potential. The rotational constantggf C larly the lower bound states of an atom inside the bubble
can be estimated to be 7460 ° atomic unit. As a conse- (within a well of depth—388.2 meV at a distance of 4.83)
guence at 300 K, the mean value of the angular momedtumare disconnected from outside: they are very close to those
is about 1380, which corresponds to a rotation perfod already found inside a spherical cavity in an infinite
=7.32ps. At a collision energy of 26 meV, the velocity of medium® Obviously at large collision energy and/or lowgdC
an argon atom is 317 m/s. The potential range being estiotational temperature the approximation of the mean poten-
mated at 30 atomic unit, the collision time is about 4.70 pstfial fails, leading to a very interesting but difficult problem,
i.e., slightly smaller tha, which seems to compromise the namely, the penetration of an outer atom intg,Gollowed
approximation mentioned above. However the anisotropy oby a delayed ejection, a process accompanied by a transfer of
the potential is periodic or quasiperiodic as a function of theangular momentum to the molecule.
rotation angle with a period largely smaller than. 2Jnder The shortness of the de Broglie wave length
such conditions it seems to be justified to average the poter=0.63 a.u. at 26 meNfully justifies the use of the JWKB
tial and consider the §& molecule as a bubble, at least for approximation. Phase shifts have been calculated for various
collision energies, over the range 0—600 of the relative an-
200 T - ; ' ' ' ' gular momentund. Differential cross sections calculated at
' 26 and 52 meV are shown in Fig. 7. Rainbow structures due
to the potential well are clearly seen. Because of the presence
of an empty inner part which repels the potential well mini-
mum (—158 me\j at a relatively large distance (1a4),
both the magnitude of the differential cross sections and the
location of the rainbows should make riélatively easy to
experimentally observe these effeethich would provide a
severe test of the well parameters. On the other hand the total
cross section as a function of the collision eneEggFig. 8)
reflects the behavior of the potential at mean and large dis-
. . . . . . . tances. Towards low energies the cross section approaches a
% 50 100 150 behavior inE~ Y characteristic of the expected long range
9 (deg) potential inr ~©, whereas at larger energies it exhibits a glory
oscillation (Fig. 8) around a mean value decreasing slower
FIG. 7. Ar-Cy, elastic differential cross sections &f/sr at 26 ~ (roughly in E~ Y, characteristic of a potential in *%) than
meV (full line) and 52 meV(dotted lind. A rainbow effect is vis- it did at low energy. All these features should be observed in
ible on both curves. an experiment in which the attenuation of a widely

100 |

do/dQ (a,’/sr)
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velocity-distributed argon atom beam through g @apor is ~ With new results(plate. Obviously at short distances be-

measured as a function of the time of flight. tween the atom and the solid, the description using a con-
tinuous medium becomes questionable and repulsive forces
V. CONCLUSION need to be considered. As it has been shown previdusly,

both features can be incorporated in the treatment by simply

A rigorous method has been used to determine the nonlaadding to the van der Waals energy a discrete sum over the
cal response of a bubble made of a linear continuous mesolid lattice of the repulsive part of a 6-12 Lenard-Jones
dium, to the presence of a ground-state atom located insidgotential.
as well as outside the bubble. General analytical expressions Applying the propagator method to the Ar-C system and
of inner and outer reflection factots° are obtained. Within  then adding at short distances a sum of repulsive terms to the
the framework of the approximations used here, which arean der Waals energy, we have shown that the scattering of
valid at intermediate distances, these factors contain all thargon atoms by fullerene molecules at subthermal and ther-
physics of the problem, allowing us to calculate, by use ofmal energies leads to rather high differential cross sections,
the propagator method, various quantities such as the polaexhibiting easily observable rainbow features. Similarly the
ization, the energy of interaction, etc. For sake of clarity onlyelastic total cross section, which exhibit a glory oscillation,
dipolar sources and dipolar propagators have been consighould be also easily measured in a beam-gas time-of-flight
ered here, but the treatmefuising the same factors,®) can  experiment.
be easily extended to higher orders. We have verified that Other problems involving molecules instead of atoms can
when a local form of the response is assumed, then the gehe treated by the same method. For example the dynamics of
eral formula gives as a special case the reflection factors of @ polar or nonpolar diatomic molecule encapsulated inside a
dielectric medium. microsized bubble, a system equivalent to a triatomic mol-

In the numerical calculations, more or less sophisticategcule, is of a particular interest insofar as the anisotropic
models describing the atom and the medium properties camolecule-solid interaction couples the different degrees of
be used. In the case of a metal, the Jellium model, i.e., a gdseedom, which could lead to a very special rovibrational
of independent electrons confined within infinite potentialspectroscopy.
barriers, is the simplest one able to account for the nonlocal- The extension to the cylindrical symmetign atom inside
ity of the response. This model can be improved, e.g., bya nanotubgis feasible. It should extend the domain of ap-
introducing electronic correlation and exchange effects byplicability of the method to a wider variety of experimentally
means of the density-functional formaligthSimilarly more  accessible systems.
elaborated descriptions of the atomic or molecular polaris-
abilities and of the local properties of dielectric media can be
introduced within the framework of the general theory.

Limiting geometrical configurations have been examined, M. Boustimi thanks the Association Louis de Broglie
allowing us to recover previous results obtained in simplerd’Aide a la Recherche for providing him with a Nicolas-
situations(spherical cavity, filled spherojdr providing us Claude Fabri de Peiresc grant.
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