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Generation and amplification of sub-THz coherent acoustic phonons
under the drift of two-dimensional electrons
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This paper addresses the Cˇ erenkov emission of high-frequency confined acoustic phonons by drifting elec-
trons in a quantum well. We have found that the electron drift can cause strong phonon amplification~gen-
eration!. The spectra of the confined modes are calculated and their confinement properties are analyzed. The
spectra consist of a set of branches, and for each branch, the confinement effect increases considerably when
the phonon wave vector increases. We have studied the coupling between electrons and confined modes and
proved that the coupling is a nonmonotonous function of the wave vector for each of the phonon branches. We
have obtained a general formula for the gain coefficient as a function of the phonon frequency and the structure
parameters. For each of the branches, the amplification takes place in a spectrally separated and quite narrow
amplification band in the high-frequency range. For the example ofp-doped Si/SiGe/Si heterostructures it is
shown that the amplification coefficients of the order of hundreds of cm21 can be achieved in the sub-THz
frequency range.
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I. INTRODUCTION

High-frequency coherent phonons have been observed
a number of semiconductor materials and heterostructu
coherent optical phonons have been discovered in GaAs,
Te, as well as in other materials; see Refs. 1 and 2 fo
recent review. Short-wavelength acoustic phonons have b
studied in bulk GaAs and Si,3 as well as in Si/Ge, GaAs
AlAs, and InxGa12xN/GaN superlattices.2,4,5 These studies
provide information on the excitation mechanisms of the
herent phonons, their dynamics, electron-phonon inte
tions, and other important phenomena, including phon
control of ionic motion.6

Intense coherent phonon waves can be exploited for v
ous applications: terahertz modulation of light, generation
high-frequency electric oscillations, nondestructive testing
microstructures, etc. Usually, both optical and acoustic hi
frequency coherent phonons are excited optically by ultra
laser pulses.1,2 The development of electrical methods of c
herent phonon generation is a long-standing and impor
problem that has presented many technical challenges.

An electric current flowing though a semiconductor c
produce high-frequency coherent acoustic phonons. Two
tinct cases can be realized. If the current results from tra
tions of carriers between bound electron states~so-called
hopping transport!, the generation of coherent phonons c
be achieved if the states are inversely populated.7 Examples
of heterostructures with this type of population inversion
clude three barrier heterostructures similar to those use
the cascade lasers,8,9 as well as superlattices with vertica
hopping transport.10
PRB 620163-1829/2000/62~11!/7459~11!/$15.00
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If the current is due to free electron motion in an elect
field, phonon amplification~generation! can be achieved via
the Čerenkov effect when the electron drift velocity excee
the velocity of sound. This effect has been studied int
sively for bulk samples.11 It has been well established tha
the following three requirements are necessary for pract
use of the Cˇ erenkov effect: high electron mobilities, larg
electron densities, and strong coupling between electrons
amplifying phonons.

Advanced technology of semiconductor heterostructu
opens new possibilities to employ the Cˇ erenkov effect,
namely, for high-frequency phonon generation. Indeed, t
conditions—high electron mobility and large electro
densities—are already realized for confined electrons
modulation-doped heterostructures. Then, generally,
electrons are coupled with all phonon modes existing in
sample. However, if there are phonons confined near the
cation of the electrons, it is obvious that the electrons will
coupled more strongly just with these phonons. Quant
well ~QW! structures frequently provide confinement of bo
electrons and acoustic phonons near the QW layer.12 For a
given QW layer, the phonon confinement increases with
phonon frequency. These properties of quantum heterost
tures can facilitate achieving amplification and generation
high-frequency phonons by drifting electrons. This paper
dresses the theory of amplification and generation ofcon-
fined acoustic phonons under electron drift in a QW lay
The results are applied to Si-Ge heterostructures.

Since acoustic-phonon confinement is important for o
problem we start with a brief analysis of acoustic wav
localized within a quantum well layer. Consider the hete
structure shown in Fig. 1, where electrons are confined
7459 ©2000 The American Physical Society
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QW layer A embedded in a semiconductor materialB. The
thickness of the layerA is 2d. Let isotropic elastic propertie
be assumed for both materialsA andB. Then, one can char
acterize them by introducing the longitudinalVLA and VLB
and transverseVTA andVTB sound velocities as well as th
material densitiesrA and rB . It is well known that in a
layered structure there may exist the effect of localization
acoustic waves within an embedded layer if

VTA,VTB ,VLA ,VLB ; ~1!

see, for example, Refs. 12 and 13. The localized wa
propagate along the layer and decay outside it. There are
classes of the localized waves: shear-horizontal~SH! and
shear-vertical~SV!. The SH waves are purely transverse a
polarized along the layer. Assuming the configuration sho
in Fig. 1, the displacement vector for SH waves isuW
5(0,uy,0). The shear-vertical waves have two projections
the displacement vector:uW 5(ux,0,uz).

In this paper we will concentrate on electrons with
isotropic energy dispersion interacting with phonons via
deformation potential. This interaction is dominant in t
high-frequency region of interest. For this case, the electr
are coupled only withlongitudinal lattice vibrations. The SV
waves comprise both longitudinal and transverse vibratio
and, thus, are coupled with the electrons. For a given
wave, the displacement vector can be represented as a su
longitudinal and transverse components. The relative con
bution of the longitudinal component and, hence, the c
pling with electrons, depend on the material parameters
well as on the wave vector. The latter can be explained
making use of the sketch of thev-q diagram shown in Fig. 2
where the dispersion curves of acoustic waves in infinit
extended materialsA and B are shown for typical relations
between the velocities

VTA,VTB,VLA,VLB . ~2!

For a localized wave the dispersion relation can be rewri
in terms of factors determining spatial decay of the wa
v25VLB

2 @q22KLB
2 (v)#5VTB

2 @q22KTB
2 (v)#, wherev andq

are the wave frequency and the wave vector, respectiv

FIG. 1. Geometry of heterostructure analyzed. The quan
well layer and the barrier layers are marked byA and B, respec-

tively. VW dr is the electron drift velocity andqW is the phonon wave
vector.
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andKT,L are the frequency-dependent decay factors of l
gitudinal and transverse components, i.e.,KT,L.0. This im-
plies thatq2.(v/VLB)2,(v/VTB)2. That is, the waves de
caying in materialB exist only forv andq to the right of the
TB line, v5VTBq, in thev-q plane. Similarly, one can se
that to the right of theTA line, v5VTAq, only interface
modes can exist. Thus, the localized waves of interest oc
in the sector between theTB- and TA lines. In Fig. 2, two
dispersion branches of these waves are shown. Each of t
has a frequency onset. Near the onsets,q'qn and vn

'VTBq. This implies that outside the QW layer the displac
ment is almost transversal and decays very slowly in thB
material. Thus, the relative contribution of the longitudin
component is expected to be small. Atq@qn , when the
branch is well developed andv→VTAq, the transversal com
ponent dominates over the longitudinal component inside
QW layer. As a result, the electron-phonon coupling is e
pected to have a maximum somewhere in the intermed
region.

Since the heterostructures under consideration are s
metric with respect to thex-y plane, SV waves can be as
signed to subclasses of symmetric and antisymmetric wa
Dispersion relations for each class of the waves are re
sented by a set of branchesv5vn(q), wheren is an integer.
Let uW nq(x,z,t)5wW nq(z)e( iqx2 ivt) be solutions of the elastic
equations14 describing the localized waves. One can sh
that functionswx(z) and wz(z) always havedifferent sym-
metry. We define the symmetric shear-vertical~SSV! modes
as those withwx(z)5wx(2z), wz(z)52wz(2z) and the
antisymmetric ones with wx(z)52wx(2z),wz(z)
52wx(2z),wz(z)5wz(2z). For a square quantum
well, the electrons are coupled only with the SSV-waves

Solutions with different ‘‘quantum numbers’’$n,q% are
orthogonal. One can normalize the solutions by imposing
condition that for the$n,q% wave the elastic energy equa
\vn(q). The set of such solutions~modes! allows one to
quantize the lattice vibrations, introduceconfined phonons
and analyze processes of absorption and emission of

m

FIG. 2. The dispersion relations for longitudinal and transve
acoustic waves in materialsA andB, and for two lowest SSV con-
fined modes. Results are shown for the strained Si/Si0.5Ge0.5/Si
heterostructure. The marks on the curves corresponds to
maxima of the amplification coefficient presented in Fig. 5.
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phonons, as well as their amplification and generation un
the condition of electron drift. This quantum approach w
be explored below.

The rest of the paper is organized as follows. In Sec. II
formulate general equations describing generation and
plification of confined phonons. In Sec. III we present t
analytical results based on a simple phonon model, wh
highlight the general properties of the amplification effect
the confined acoustic phonons. An analysis of a reali
model and its application to particular SiGe heterostructu
are given in Sec. IV. The discussion of the results and p
sible experiments is presented in Sec. VI.

II. THE BASIC EQUATIONS

First we shall define states of the electrons in the QW.
them be characterized by the subband numberl and the two-
dimensional wave vectorkW . Then the electron wave function
are C l ,kW(rW,z)5(1/ALxLy)e

ikW•rWx l(z), where Ly and Lx are
the lateral dimensions of the sample. In what follows
assume that only the lowest two-dimensional subband w
l 51 is populated by the electrons and the energy distan
to the next subbands are larger than the energy of
phonons under consideration. In making estimates, we
assume that the barriers confining the electrons are infin
high, i.e.,x l(z)5(1/Ad)cos(pzl/2d). Electron motion along
the QW layer is supposed to be semiclassical and descr
by a distribution functionF@kx ,ky# dependent on the applie
electric field.

As for the phonon subsystem, we shall follow the proc
dure indicated in Sec. I. First we define the acoustic w
equations14

rM

]2ui

]t2
2

]s i j
M

]xj
50, i , j 5x,y,z, M5A,B. ~3!

Here s i j
M are the stress tensors. For isotropic elastic me

s i j
M are defined through the two Lame` coefficientslM and

mM by

sz, j
M 5S lM1

2

3
mM Dull d i j 12mMS ui j 2

1

3
d i j ull D , ~4!

where we use the standard definition for the strain ten
ui j .14 The Lamècoefficients are related to the longitudin
and transverse sound velocities:VLM5A(lM12mM)/rm,
VTM5Amm /rM. At the interfaces, we impose the bounda
conditions

uW B5uW A , sz, j
B 5sz, j

A at z56d. ~5!

Then, we find solutions of Eq.~3! satisfying conditions
uW nq(z56`)50. In terms ofs i j and ui j the elastic energy
density isUel

M5 1
2 s i j

Mui j . According to the virial theorem the
kinetic energy of vibrations equals the potential~elastic! en-
ergy. Thus, to normalize a solution,uW nq , properly we use the
following condition:15

2LxLyE
2`

`

dzUel~z!5\vnq , ~6!
er
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where the overbar means the averaging over one perio
the oscillations. In the following sections we will use the
equations to compute and study the confined phonon mo
in different materials.

The energy of electron-phonon interaction via the def
mation potential is

Hint5b div uW , ~7!

where b is the constant of the deformation potential. T
interaction of the electrons with a given phonon mode$n,q%
should be obtained from Eq.~7! through the substitutionuW

5uW nq .
Supposing that the electron-phonon interaction is we

we will use the perturbation theory. Then, the transiti
probabilities for electron states with wave vectorskW and kW8
due to emission or absorption of the$n,q% confined phonon
mode are

P(6)~kW ,kW8un,q!5
2p

\
uM ~q!u2S Nnq1

1

2
6

1

2D
3dky ,k

y8
dkx7q,k

x8
d@E~kW !2E~kW8!

7\vn,q#3F~kW !@12F~kW8!#, ~8!

where M (q) is the matrix element calculated on the wa
functionsx1(z),

M ~q![b E
2`

` S iqwnq,x~z!1
dwnq,z~z!

dz Dx1
2~z!dz, ~9!

and Nnq is the phonon occupation number of the$n,q%
mode. In Eq.~8! the upper signs correspond to emissi
processes, and the lower signs correspond to absorption
cesses.

We shall mention that Eq.~7! determines interactions be
tween a single electron and the lattice vibrations. If the el
tron concentration is finite, a perturbation in the form of E
~7! drives a spatial redistribution of electrons and there
leads to screening effects which modify the electron-phon
interaction. This modification can be accounted for in t
framework of the standard linear response approach.16 Tak-
ing account for the finite electron concentration leads to
modification of the interactionHint→Hint

(scr) , as discussed in
the Appendix, as well as to the following changes of t
above results:

uM ~q!u2→uM (scr)~q!u25
uM ~q!u2

@k (el)~q!#2
~10!

with the electron permittivityk (el)(q) in the form

k (el)~q!511
2pe2d

k
A11~q!B~qd!. ~11!

HereA11(q) is the polarization operator of two-dimension
electrons:

A11~q!52
2

LxLy
(

kW

F~kW !2F~kW2qW !

E~kW !2E~kW2qW !
, ~12!
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7462 PRB 62S. M. KOMIRENKO et al.
k is the dielectric constant and factorB(s) is

B~s!5
d2

s E2`

` E
2`

`

dzdz8x1
2~zd!x1

2~z8d!e2suz2z8u.

~13!

Now we return to the analysis of Eq.~8!. The total rates of
emission and absorption of phonons of the$n,q% mode can
be obtained by the summation of Eq.~8! over all initial and
final electron states:

P (6)~n,q!52(
kW ,kW8

P(6)~kW ,kW8un,q!, ~14!

where the factor of 2 results from the electron spin. The s
over kW8 can be computed using the Kronekerd symbols in
Eq. ~8!. The sum overkW can be converted into an integra
(kW(•••)→@LxLy /(2p)2#*dkxdky(•••). This integral can
be simplified by using the energy-dependentd functions in
Eq. ~8!. Finally, we obtain the emission and absorption ra
in the form

P (6)~n,q!5
m*

p\3uqu

uM ~q!u2

@k (el)~q!#2
LxLyI n

(6)~qW !

3S Nnq1
1

2
6

1

2D , ~15!

wherem* is the effective mass and the factorsI n
(6) are:

I n
(6)~qW !5E

2`

`

dkyFFsgn~q!
m* vnq

\uqu
VL6

1

2
q,kyG . ~16!

Here sgn(x)51 for x.0 and sgn(x)521 for x,0. It is
worth noting that in Eq.~15! only the factorI (6) depends on
the direction of propagation of the phonon mode.

These results allow one to introduce the kinetic equat
for the phonon number of the$n,q% mode:

dNnq

dt
5gnq

(1)~11Nnq!2gnq
(2)Nnq2bnqNnq , ~17!

where gnq
(6) are parameters that determine the evolution

the phonon numberNnq in time due to the interaction with
the electrons. These parameters can be found from Eqs.~15!
and ~16!. The parameterbnq describes the phonon losse
These losses can include phonon scattering or phonon
sorption due to non-electronic mechanisms, phonon de
due to the anharmonicity of the lattice, etc. Equation~17!
contains the terms corresponding to spontaneous and st
lated processes. The latter terms can be represente
gnqNnq5(gnq

(1)2gnq
(2))Nnq , with the phonon incremen

~decrement!

gnq5
m*

p\3uqu

uM ~q!u2

@k (el)~q!#2
LxLy~I n

(1)~q!2I n
(2)~q!!.

~18!

Depending on the shape of the electron distribution fu
tion, F(kx ,ky), the valuegnq can be either positive, or nega
tive. If the phonon increment caused by the electron-pho
m

s

n

f

b-
ay

u-
as

-

n

interaction is positive and, in addition, it exceeds phon
losses,gnq.bnq , the population of corresponding mode~s!
should increase in time, i.e., we obtain the effect of phon
generation.

Besides the increment, one can introduce also the am
fication ~absorption! coefficient for the confined acousti
modes. The amplification coefficient describes the rate
increase per unit length in the acoustic wave intensityj nq :

a5
1

j nq

d jnq

dx
, j nq5\v

dvnq

dq

Nnq

LxLy
,

wheredvnq /dq has the meaning of the group velocity of th
corresponding wave. Then, from Eq.~18! we obtain for the
amplification coefficient:

anq5gnq Y Udvnq

dq U. ~19!

Obviously, these formulas are valid if 2pa/q!1, which al-
ways holds, as shown below.

We suppose that the electrons drift in an applied elec
field along the QW layer. Under the realistic assumption
strong electron–electron scattering,17 the distribution func-
tion can be thought of in terms of the shifted Fermi distrib
tion:

F@kx ,ky#5FFFkx2
m*

\
Vdr ,kyG , ~20!

whereFF(kW )51/„11exp@$E(kW)2EF%/kBT#… is the Fermi func-
tion, EF is the Fermi level, andVdr and T are the electron
drift velocity and temperature, respectively. From Eq.~18!,
one can see that for the phonons propagating along the e
tron flux (q.0) gnq , anq.0 if the electron drift velocity
exceeds the confined-phonon phase velocity:

Vdr.
vnq

uqu
. ~21!

This criterion is, in fact, the well-known condition of th
Čerenkov generation effect.11 If q,0, we always havegnq ,
anq,0.

Typically, both velocitiesVdr andvn,q /uqu are much less
than the average electron velocity. This implies that Eq.~20!
represents a relatively small disturbance of the Fermi fu
tion. Thus, when calculating the screening effect@see Eq.
~12!# we can neglect this shift and use just the Fermi funct
FF(kW ). The shifted distribution, however, has to be tak
into account when estimatinggnq andanq .

III. ANALYSIS OF THE SIMPLE MODEL

In this section we analyze the amplification effect for t
simplest model of confined phonons. As was discus
above, we shall focus on longitudinal acoustic phonons e
ciently interacting with electrons. Hence, we formulate
model for which only longitudinal waves are localized. F
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this model we can find analytical results and illustrate
basic properties of the amplification effect. Let us assu
that the elastic dilatation modulilM are different for the two
materialsA andB, while the shear moduli and the densiti
are equal:mA5mB , rA5rB . Under this assumption, th
longitudinal and the transverse vibrations in the heterost
ture are decoupled, which simplifies the analysis consid
ably. Indeed, the longitudinal vibrations are described by
relative volume change divuW , then Eq.~3! can be presented
in terms of divuW :

F 1

VLM
2

]2

]t2
2DGdiv uW 50, M5A,B. ~22!
d

n

e
e

c-
r-
e

The boundary conditions at the interfaces~5! can be also
formulated for the value divuW :19

~lA12m!div uW uA5~lB12m!div uW uB at z56d, ~23!

where divuW uA,B means the values calculated near the int
faces in materialsA,B, respectively. Equations~22! and~23!

reduce the problem to the analysis of the value divuW . Ac-
cording to Refs. 12 and 18 in such a simple model the loc
ized SV waves exist if (lA12m)/(lB12m)[h.1.

Now from Eq.~22! we can find the relative change of th
volume to be
div uW ~x,y,z!55 iCA

v2

VLA
2 KLA

cos~KLAz!exp~ iqx2 ivt !, uzu,d

iCB

v2

VLB
2 KLB

exp~2KLBuzu! exp~ iqx2 ivt !, uzu.d,

~24!
s
re

the
-
-

where

KLA~v,q!5A v2

VLA
2

2q2 and KLB~v,q!5Aq22
v2

VLB
2

.

~25!

From Eq.~23! we find that the magnitudesCA and CB are
related through the equation

CB52 iCAsin~KLAd!eKLBd5 iCA

KLB

KLA
cos~KLAd!eKLBd.

~26!

Equation~26! gives the dispersion relation for the localize
longitudinal waves:

KLB~v,q!5KLA~v,q!tan@KLA~v,q!d#. ~27!

It can be rewritten in the parametrical form:

vd

VLB
5A h

h21

j

ucos~j!u
, qd5

j

Ah21
A11h tan2~j!,

~28!

where j is a parameter. From Eq.~27! it follows that
tan(j).0 and the allowed values ofj belong to the intervals

pn<j<pS n1
1

2D , n50,1,2. . . . ~29!

Whenj runs over one of these intervals, the frequency a
the wave vector change from

v5vn
05pnVLB /dAh21, q5qn

05pn/dAh21,

n50,1,2 . . .
d

to infinity. We obtain an infinite set of branchesvnq within
the sectorqVLB.vnq.qVLA . The lowest branch originate
from v50, q50, while the onsets of the next branches a
at finite qn

0 andvn
0 .

Using Eq.~6! we can normalize the solutions of Eq.~24!
and obtain

uCAu25
2\

rvLxLyd
S VLAj

vd D 2 j tan~j!

j tan~j!1sin2~j!1
1

h
cos2~j!

.

~30!

In Eq. ~30! the parameterj runs over thenth interval of Eq.
~29! for the $n,q% mode.

Now we can compute the matrix element of Eq.~9! in the
explicit form:

uM ~q!u25
2b2\vn~q!

~l12m!LxLyd
f ~j!, ~31!

f ~j!5S sin~j!

j D 2

3
j tan~j!

@12~j/p!2#2Fj tan~j!1sin2~j!1
1

h
cos2~j!G . ~32!

Here, j runs in the intervals withn50,2, . . . , otherwise
f (j)50. The functionf (j) is strongly correlated with the
mode confinement effect: The stronger the confinement,
larger the functionf (j). This function increases monoto
nously for the lowest mode,n50, and has maxima for ex
cited even modes.
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To proceed with the analytical consideration, we consider the low-temperature limit,T→0. In this case the polarization
operator of Eq.~12! and the integrals in Eq.~18! can be calculated:

A11~q!5
m

p\2
AS q

2kF
D , AS q

2kF
D5F12QF q

2kF
21GA12S 2kF

q D 2G , ~33!

I n
(6)~q!52kFJ (6)S q

2kF
UVdr

VF
,
VLA

VF
D ,

J (6)S q

2kF
UVdr

VF
,
VLA

VF
D'QF12S Vdr2sgn~q!VLA

VF
7

q

2kF
D 2GA12S Vdr2sgn~q!VLA

VF
7

q

2kF
D 2

. ~34!
li
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Here we suppose that the difference in the elastic modu
small,h21!1, and that the substitutionvnq→VLAq can be
done under the integrals of Eq.~16!. Then,kF is the Fermi
wave vector related to the electron area concentration
throughkF5A2pn, Q@x# is the Heaviside step function an
the wave vectorq can be of arbitrary sign.

From these last equations we see that in the limitT→0
the processes of emission and absorption are possible
finite phonon wave vector intervals:

22kFS 12
Vdr1VLA

VF
D<q<2kFS 11

Vdr2VLA

VF
D

for emission,
~35!

22kFS 11
Vdr1VLA

VF
D<q<2kFS 12

Vdr2VLA

VF
D

for absorption.

~36!

Since VF@Vdr ,VLA , one can estimate the interval of th
wave vectors where phonon amplification occurs as 0,q
,2kF and determine that the population factor inside t
interval is

J (1)~q!2J (2)~q!'
q

AkF
22q2/4

~Vdr2VLA!

VF
.

The maximum ofJ (1)2J (2) is achieved at the end of th
interval given by Eq. ~36!: max(J (1)2J (2))
'2A(Vdr2VLA)/VF.

Several effects contribute to the phonon increment and
amplification coefficient: the phonon localization effe
through the functionf (j), the screening through the electro
permittivity k (el)(q), and the nonequilibrium population o
electron states through the factor (J (1)2J (2)). To repre-
sent these factors in an explicit form we rewrite Eq.~19! as
follows:

a5
a0kFd f@j~qd!#

F11
2d

aB
B~qd!AS q

2kF
D G2

3FJ (1)S q

2kF
UVdr

VF
,
VLA

VF
D2J (2)S q

2kF
U Vdr

VF
,
VLA

VF
D G ,

~37!
is

for

s

e

where the first multiplier is a0(d)54m* b2/p(l
12m)\2d2 and aB5k\2/e2m* is the Bohr radius in the
material. The rest of the formula depends on three par
eters:h, kFd, and (Vdr2VLA)/VF . Using the parametric rep
resentation given by Eq.~28!, one can computea either as a
function of the phonon wave vectorq, or as a function of the
frequencyv. Now, we summarize the results forf @j(qd)#,
B(qd), A(q/kF), andJ (6)(q/kF) in order to formulate gen-
eral features of the amplification effect given by this simp
model. The amplification coefficient for the lowest SV mo
increases withq ~or with v) and reaches a maximum ne
the end of the interval of Eq.~36!. The rapid increase in
a(v) is mainly due to the effect of progressive confineme
of the phonon mode, while the maximum and following dr
in a(v) are caused by the abrupt decrease in the popula
factor (J (1)2J (2)). Near the maximum the main depen
dence ofa on the electron concentrationn comes from the
multiplier kF , i.e., a}An. Since the maximum occurs a
qd'2kF , for a given electron concentration we findamax
}d22.

It is worth noticing that this simple model not only repr
sents general features of the amplification effect but a
comprises the most favorable conditions for the confinem
of longitudinal vibrations. This results in a highest value
the amplification coefficient that could ever be achieved. I
interesting to estimate this upper limit ofa. For numerical
estimates, we assume the following parameters:l12m
51.231012 dyn/cm2, VLA54.73105 cm/sec, h51.1, k
513, b510 eV, m50.067m0 (m0 is the free electron
mass!, 2d5100 Å , n5431011 cm22. Then we obtain
a0563104 cm21, 2kF51.63106 cm21 and VF52.7
3107 cm/sec. Let us set (Vdr2VLA)/VF50.05. Then, the
amplification coefficient has a maximumamax51.1
3103 cm21 at v5230 GHz. The corresponding wave
length is 195 Å and the phonon is confined in a spa
region with a thickness of 570 Å .

IV. CALCULATIONS FOR PARTICULAR
HETEROSTRUCTURES

Now we return to the more general phonon model form
lated in Sec. II and apply it to particular heterostructures.
symmetric SV modes the solution of Eqs.~3! and~4! can be
represented as

wx~z!5H CLBe2KLBuzu1CTBe2KTBuzu, uzu.d

CLAcos~KLAz!1CTAcos~KTAz!, uzu,d,
~38!
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wz~z!5H i sgn~z!CLB

KLB

q
e2KLBuzu1 i sgn~z!CTB

q

KTB
e2KTBuzu, uzu.d

CLA

KLA

q
sin~KLAz!2CTA

q

KTB
sin~KTAz!, uzu,d,

~39!
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whereKLA(v,q) andKLB(v,q) are defined by Eqs.~25! and

KTA~v,q!5A v2

VTA
2

2q2 and KTB~v,q!5Aq22
v2

VTB
2

.

~40!

The solution given by Eqs.~38! and ~39! contains four yet
undefined coefficients,CLA ,CLB ,CTA , andCTB . Then four
boundary conditions of Eq.~5! provide a system of four al
gebraic linear and homogeneous equations, from which
can find relations between the coefficients and an equa
for the dispersion relation. The latter equation is a transc
dental equation that has to be solved numerically. We h
computed the dispersion relations, found the displacem
fields, wx(z) and wz(z), and analyzed the amplification co
efficients for different heterostructures.

Before proceeding with these results we need to make
following remark. The above equations are derived for
model of materials with isotropic elastic properties. To ap
the formulas to the cubic crystals we use the so-called
tropic approximation.20 In this approximation for a materia
M, the sound velocitiesVLM and VTM can be expressed i

terms of effective moduli: VLM5A(l̄12m̄)/r, VTM

5Am̄/r, where l̄5C1122C4424D and m̄5C441D, with
D5(C112C1222C44)/5, andC11, C12, C44 are elastic stiff-
ness coefficients of a cubic crystal.

From the analysis given in Sec. III, it follows that th
larger acoustic mismatch of materialsA andB, the better the
phonon confinement and the higher the amplification coe
cient. Strained Si/SiGe/Si heterostructures represent a ca
practical importance exhibiting considerable acoustic m
match. It is well established that a thin strained Si12xGex
layer can be embedded between thick Si layers. For exam
stable 100-Å SiGe layers withx<0.5 can be grown by epi
taxial processes. These layers are compressively strained
provide good confinement for holes. Due to the compress
character of the strain, the lowest hole subband is assigne
the heavy holes. We have calculated the confined acou
modes in symmetric Si/SiGe/Si heterostructures and a
lyzed the Čerenkov effect caused by the drift of the hea
holes in the SiGe QW’s.

To calculate the stiffness coefficientsCi j for the Si12xGex

layer we use the linear approximation:Ci j
SiGe5(12x)Ci j

Si

1xCi j
Ge; accordingly, rSiGe5(12x)rSi1xrGe. For ex-

ample, forx50.5 in the isotropic approximation; this give
VLA55.643105 cm/sec, VTA53.423105 cm/sec, while
for Si we obtain VLB593105 cm/sec and VTB55.4
3105 cm/sec. Here and in the subsequent discussion we
the stiffness constants, the material densities and other
rameters given in Ref. 21. The effective mass for the he
holes in the SiGe QW is taken to bem* 50.4m0.
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In computing localized acoustic waves we found that
any composition of the SiGe layer the lowest branch of
SV waves corresponds toantisymmetricSV waves that do
not interact with the carriers.SymmetricSV waves are al-
ways represented by theexcitedbranches of the dispersio
relations and, hence, always characterized by the previou
discussed onsets of the wave vectors and frequencies. L
introduce the dimensionless frequencyv/v0 with v0
5VTA /d, and wave vectorqd. One can show that in terms o
these dimensionless quantities the dispersion relations do
depend on the half-thickness of the layerd. Figure 2 shows
just the two lowest SSV phonon branchesv/v0 and qd,
which correspond to amplification maxima are marked
each branch. The displacement fieldswx and wz calculated
for the lower SSV branch at the marked point are represen
in Fig. 3~a! as functions of the transverse coordinatez/d.
One can see that the displacements of the lattice are ind
confined near the layer: The displacementwx is confined
mainly inside the layer, while the displacementwz is con-
fined near the interfaces. In Fig. 3~b! we depict the elastic
energy density of this wave as a function ofz/d. The com-
plex redistribution of the elastic energy across the structur
due to the fact that the wave under consideration correspo
to the excited phonon branch. From this figure we can c
clude that the energy of the wave is confined to a narr
spatial region of thickness of about 4d.

The magnitude of the interaction strongly depends on
relative change of the volume associated with the displa
ment wave, divuW . Figure 3~c! shows the distribution of this
quantity across the structure. In Sec. I we presented a q
tative analysis of the relative contributions of both longit
dinal and transverse components of the confined phonons
was discussed, the redistribution between these compon
gives rise to nontrivial behavior of the electron-phonon co
pling as a function of the wave vector or frequency. T
coupling is represented by the matrix element of Eq.~9!. In
Fig. 4 the square of this matrix element is depicted a
function of q for the two lower SSV phonon branches. Th
result clearly demonstrates the following effects: the wa
vector onset, the strongq-dependence and the existence o
maximum of the electron-phonon coupling. Surprisingly, t
electron-phonon coupling for the second SSV branch reac
larger values than that of the first. We calculatedwx(z),
wz(z) and divuW (z) for the second branches and found tw
physical reasons for this larger coupling. First, it turns o
that the magnitudes of the waves of the second branch
larger as a result of the largerv in the normalization condi-
tion of Eq. ~6!. Second, the longitudinal component of th
vibrations and divuW are more localized inside the QW laye

To compute the amplification coefficient of Eqs.~18! and
~19! we assume that 2d5100 Å and that the carriers ar
drifting with velocity Vdr52.5VTA . For this value ofVdr ,
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the Čerenkov criterion of Eq.~21! is fulfilled for any branch
of the confined acoustic modes. The calculations of the
plification coefficient,a, as a function of the phonon fre
quency,v/v0, are presented in Fig. 5 for the first and seco
SSV phonon branches. For this particular case, we ob
v05110 GHz. The results are calculated for different te
peratures:T550, 100, 150, and 300 K. Now we can see th
for each SSV phonon branch the amplification exists in
spectral band. The low-frequency cutoff of the amplificati
is due to the onset of the phonon branch. The maximum
the amplification coefficient and its high-frequency cutoff a
determined by two effects. These are the nonmonoton

FIG. 3. ~a! Displacement fieldswx(z/d), wz(z/d). ~b! Distribu-

tion of the elastic energyUel(z/d). ~c! div uW as a function ofz/d.
The results are presented for the lower SSV phonon branch a
values ofv andq marked in Fig. 2.
-

d
in
-
t
a

of

us

dependence of the electron-phonon coupling onq andv as
well as the decrease in the population factor,I (1)2I (2),
when the wave vector increases. The population facto
shown in the inset to Fig. 5 as a function ofqd for the lower
SSV phonon branch at four previously mentioned tempe
tures. This factor is calculated for both signs ofq, i.e., for
phonons propagating along the electron drift and those m
ing in the opposite direction. The occurrence of the onset
caused by the functional dependences of the integrals of
~16! I n

(6)(q) on vnq . A decrease in the population factor fo

he

FIG. 4. The square of the matrix elements as a function ofqd
for two lowest SSV confined phonon branches shown in Fig. 2

FIG. 5. The amplification coefficient versus frequency for t
Si/Si0.5Ge0.5/Si heterostructure. In the inset the population fac
I (1)2I (2) is presented as a function ofqd. All curves calculated
at T550, 100, 150, and 300 K. Amplitudes of all shown depe
dences decrease with increasing of temperature.
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the second SSV phonon branch explains the smaller ma
tude ofa for this branch. For the first SSV branch, the ma
mum amplification is achieved for low temperature
amax(4 K)5770 cm21 and amax(50 K)5290 cm21 at
v5300 GHz. As temperature increases above 50 K, the
plification coefficient decreases, but atT5300 K it is still
high: amax(300 K)'80 cm21. For the second SSV phono
branch, the maximum amplification occurs atv'650 GHz.
In the temperature range from 50 to 100 K, the maxim
amplification coefficient is almost constant ('190 cm21)
and decreases forT.100 K. At room temperature, the va
ues ofa for both amplification bands are almost equal.

To demonstrate that even larger amplification effects
be achieved, we also calculateda(v) for anotherp-doped
SiGe heterostructure: a 50-Å Ge QW embedded betwee
layers.22 The results are presented in Fig. 6 for different te
peratures. The parameters of both materials and the ca
concentration were selected as described above. The
quency is measured in units ofv05208 GHz. One can se
that the amplification is larger than in the previous ca
particularly, amax(50 K)51750 cm21 at v5460 GHz.
The larger values ofa are due to both the thinner QW laye
and the larger acoustical mismatch~better phonon confine
ment!.

V. DISCUSSION AND CONCLUSION

In low-dimensional structures, where electrons~holes! are
confined in a quantum well, or in a quantum wire, driftin
electrons generate both bulklike and confined acou
phonons. Both types of phonons contribute, say, to the li
tation of the carrier mobility and many other effects. T
lack of the electron-phonon coupling strength for the bu
like phonons is compensated by their dominant density
states. For the amplification of a particular phonon mo
however, the coupling between this mode and the carrie
extremely important. Indeed, generally, the Cˇ erenkov effect
holds for all phonons, if the carrier drift velocity exceeds t

FIG. 6. The amplification coefficient versus frequency for t
Si/Ge/Si heterostructure atT550, 100, 150, and 300 K.
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phase velocity of these phonons. However, realization o
measurable phonon amplification is possible only for tho
phonons which are strongly coupled to the carriers. Lo
dimensional carriers are coupled strongly only with the co
fined phonon modes.

Phonon confinement exists if velocities of the acous
waves satisfy the inequality~1!. Using the data on the elasti
moduli and the material densities given in Refs. 21,23 a
24, it can be proved easily that most of the QW heterostr
tures made from III-V, II-VI, and IV-VI compounds, as we
as SiGe materials, meet this condition and both carriers
phonons can be confined within the same QW layer.

In previous sections, we have developed a quantum
proach to describe the confined phonon modes and theˇ er-
enkov effect of the phonon generation. The drifting electro
have been described by the shifted Fermi distribution, wh
is proved to be valid for strong electron-electro
scattering.17,25 In this approach, three electron parameters
concentration, temperature, and drift velocity—must
specified to determine the Cˇ erenkov effect. Then, we hav
demonstrated that acoustical phonons confined within a
layer can be amplified and generated by the drift of the tw
dimensional carriers in this layer.

The simple analytical model presented in Sec. III demo
strated the general properties of this effect. The effect
electron-phonon coupling is strongly dependent on the p
non confinement and it increases significantly in the hig
frequency~high-wave vector! range. On the other hand, th
electrons can interact with phonons of wave vectors hav
an upper limit of 2kF ~for degenerated carriers!, or of ap-
proximately 2A2m* kBT/\ ~for nondegenerated carriers!.
These two factors result in the existence of a narrow am
fication band with a sharp maximum of the amplificatio
coefficient for each of the confined phonon branches in
acting with the carriers. The simple model suggests a h
value of the amplification coefficient~above 103 cm21) in
the sub-THz frequency range.

Using the general equations of Sec. II, we have perform
the calculations of the confined modes and the amplifica
effect for strained SiGe QW heterostructures. Contempor
SiGe technology is developed well enough to fabricate d
ferent high-quality pseudomorphic SiGe heterostructur
see, for example, Ref. 26. For the symmetric heterostruct
sketched in Fig. 1 we have found that only symmetric sh
vertical modes interact with the carriers. The SiGe hete
structures are characterized by the acoustic velocities s
fying the inequality~2!. For such a case, all SSV phono
branches areexcitedand have the previously discussed o
sets in frequencies~and wave vectors!. We have considered
the amplification effect due to the drift of the heavy hol
confined in the SiGe layer. We showed that the amplificat
bands for the confined phonons in these structures are
more narrow than that appearing in the simple model. For
hole drift velocity, we suppose Vdr52.5 VTA58.5
3105 cm/sec. In the case of the 100-Å Si/Si0.5Ge0.5/Si
QW heterostructure with a hole concentration of 1012 cm21,
we found that two phonon branches can be amplified,
demonstrated in Fig. 5. For the 50-Å Si/Ge/Si QW structu
we found one phonon branch which can be amplified by
drift of the carriers. The frequencies of amplified phono
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are in the sub-THz range and the amplification coefficien
of the order of hundreds to thousands of cm21.

We suggest the use of modulation-doped SiGe struct
with a high hole mobility. In this case, the necessary val
of the drift velocities ~above 53105 cm/sec) can be
achieved in modest electric fields. Our calculations for d
ferent electron temperature have shown that though the
plification effect decreases at high temperatures, the amp
cation coefficient remains high enough at temperatures
about 300 K. Our estimates have shown that at higher t
peratures, amplification of the higher phonon branches
comes dominant. Moreover, due to dependence of the e
on the population factor, the amplification associated w
these branches can even increase with increasing of tem
ture.

In any structure, besides the amplification caused by
carriers, there always exist phonon losses due to scatte
by imperfections. There are also unavoidable phonon los
due to the effects of anharmonicity and scattering on i
topes. The latter losses were estimated in Refs. 27 and
According to the data of these papers, in the sub-THz ra
the phonon losses due to the anharmonicity and scatterin
isotopes are well below the calculated amplification coe
cients of the present work. Thus, at least in perfect structu
the amplification of the confined modes exceeds their los
considerably.

The Čerenkov effect studied in this paper can be used
both the amplification of a given high-frequency acous
signal and the generation of a high-frequency phonon fl
We suggest that in modulation-doped high-mobility hete
structures a large amplification effect can be achieved
modest electric fields. The simplest device for phonon g
eration is a single passage device. The condition of pho
generation in such a device,

aLx@1, ~41!

can be realized for reasonable extensions of the structureLx ,
since the predicted values ofa are large. In the framework o
the linear analysis developed above the distribution of
phonon flux intensity can be found to be proportional
exp@a(v)L#. Under condition~41! the latter means that th
device generates a flux of phonons propagating along
applied field with a very narrow frequency distributio
around the maximum ofa(v), i.e., a flux of almost coheren
phonons. It is important that the generated short-wavelen
phonon beam has to be highly collimated. Indeed, for
example of the Si/SiGe/Si structure, at the maximum of a
plification the generated phonon flux is confined to a spa
region of thickness of about 200 Å~the phonon wavelength
is 160 Å ).

In conclusion, we have found that the drift of two
dimensional electrons in the QW’s lead to the instability
phonon subsystem: the phonon modes confined within
QW layer and propagating along the electron flux are am
fied. The amplification coefficient for each of these mod
has a sharp maximum in the sub-THz frequency range.
maximum values of the amplification coefficient are of t
order of 100 to 103 cm21.

The Čerenkov effect studied here comprises such p
nomena as strong electron-confined phonon coupling, h
electron densities, and high electron mobilities in QW str
s
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tures, and can be used for both the amplification of a giv
high-frequency acoustic signal and the generation of a h
frequency phonon flux. As a result of the phonon confin
ment effect it is predicted that the a high-collimated phon
beam can be generated. Thus, a simple electrical method
generation of high-frequency coherent phonons can be de
oped on the basis of the Cˇ erenkov effect.
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APPENDIX

To account for the electron screening effect on t
electron-phonon interaction, one can use the fact that e
tron motion is much faster than that of the lattice. In quan
tative terms, this results in the following condition:Vel
@VLM ,VTM , where Vel is the average electron velocity
This inequality always holds for semiconductors. Thus, el
trons adiabatically follow acoustic phonons and the scre
ing can be estimated in the static approximation. T
electron-phonon interaction energyHint induces an electron
redistribution and an electrostatic potentialf ( ind), so that the
total perturbation energy is

Hint
(scr)5Hint2ef ( ind). ~A1!

To calculatef ( ind) we find the perturbed electron wave fun
tion

C̃1,kW5
1

ALxLy

x1~z!eikW•rW

1
1

ALxLy

x1~z!(
kW8

Hint,11
(scr) ~kW2kW8!

E~kW !2E~kW8!
eikW8•rW, ~A2!

where

Hint,11
(scr) ~kW2kW8![

1

LxLy
E dzE dxdyx1

2~z!Hint
(scr)~rW,z!eikW•rW

and the one-subband approximation is assumed. The ind
changes in the charge density are

r ( ind)~rW,z!522e(
kW

H UC̃1,kW~rW !U22
1

LxLy
x1

2~z!J F~kW !

52ex1
2~z!(

qW
A11,qHint,11

(scr) ~q!eiqW •rW. ~A3!

The solution of Poisson’s equation with this charge densit
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f ( ind)~rW,z!5
1

k
E dzE drW

r ( ind)~rW8,z8!

A~rW2rW8!21~z2z8!2
.

~A4!

Using the two-dimensional Fourier transformation of t
Coulomb interaction

1

A~rW2rW8!21~z2z8!2
5

2p

LxLy
(

qW

1

q
eiqW •(rW2rW8)e2quz2z8u,

we calculate straightforwardly

f ( ind)~qW ,z!5
2pe

k
A11~qW !Hint,11

(scr) ~qW !
1

qE dz8x2~z8!e2quz2z8u.

According to Eq.~8!, probabilities of transitions are dete
mined by matrix elements calculated with wave functio
x1(z). In particular, we find
c-
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2ef11
( ind)~qW !5

2pe2dA11~q!B~qd!/k

112pe2dA11~q!B~qd!/k
Hint,11

(scr) ~q!

~A5!

with factorsA11(q) andB(qd) given by Eqs.~12! and~13!.
Using these results and Eq.~A1! we can easily calculate
Hint,11

(scr) (q) and prove the substitution represented by Eq.~10!.
For a QW with infinite barriers, the factorB can be found

explicitly:

B~s!5
1

2

3s515s3p212sp42p41e(22s)p4

s3~s21p2!2
. ~A6!

One can see that the functionB(s)}1/s for s!1, B(1)
50.69 andB(s)!1 for s.1.
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