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This paper addresses ther@nkov emission of high-frequency confined acoustic phonons by drifting elec-
trons in a quantum well. We have found that the electron drift can cause strong phonon amplifigation
eration. The spectra of the confined modes are calculated and their confinement properties are analyzed. The
spectra consist of a set of branches, and for each branch, the confinement effect increases considerably when
the phonon wave vector increases. We have studied the coupling between electrons and confined modes and
proved that the coupling is a nonmonotonous function of the wave vector for each of the phonon branches. We
have obtained a general formula for the gain coefficient as a function of the phonon frequency and the structure
parameters. For each of the branches, the amplification takes place in a spectrally separated and quite narrow
amplification band in the high-frequency range. For the exampleddped Si/SiGe/Si heterostructures it is
shown that the amplification coefficients of the order of hundreds of'coan be achieved in the sub-THz
frequency range.

[. INTRODUCTION If the current is due to free electron motion in an electric
field, phonon amplificatioigeneratioh can be achieved via
High-frequency coherent phonons have been observed fdhe Gerenkov effect when the electron drift velocity exceeds
a number of semiconductor materials and heterostructurethe velocity of sound. This effect has been studied inten-
coherent optical phonons have been discovered in GaAs, Geively for bulk sampleé? It has been well established that
Te, as well as in other materials; see Refs. 1 and 2 for e following three requirements are necessary for practical
recent review. Short-wavelength acoustic phonons have begaise of the @renkov effect: high electron mobilities, large
studied in bulk GaAs and Sias well as in Si/Ge, GaAs/ €lectron densities, and strong coupling between electrons and
AlAs, and InGa_,N/GaN superlattice*® These studies @mplifying phonons. _
provide information on the excitation mechanisms of the co- Advanced technology of semiconductor heterostructures
herent phonons, their dynamics, electron-phonon interac?P€ns new possibilities to employ thee@nkov effect,

tions, and other important phenomena, including phonor?amel.)/’ for hi'gh-frequency phonpn generation. Indeed, two
control of ionic motior? conditions—high electron mobility and large electron

. densities—are already realized for confined electrons in
Intense coherent phonon waves can be exploited for vari- ;
odulation-doped heterostructures. Then, generally, the

ous applications: terahertz modulation of light, generation Olmlectrons are coupled with all phonon modes existing in the
high-frequency electric oscillations, nondestructive testing o€

; v both ontical and ic high ample. However, if there are phonons confined near the lo-
microstructures, etc. Usually, both optical and acoustic highg.ation of the electrons, it is obvious that the electrons will be

frequency cozherent phonons are excited_ optically by ultrafaséoumed more strongly just with these phonons. Quantum
laser pulse$? The development of electrical methods of co- g| (QW) structures frequently provide confinement of both
herent phonon generation is a long-standing and importaidjectrons and acoustic phonons near the QW I%/&or a
problem that has presented many technical challenges.  given QW layer, the phonon confinement increases with the
An electric current flowing though a semiconductor canphonon frequency. These properties of quantum heterostruc-
produce high-frequency coherent acoustic phonons. Two digures can facilitate achieving amplification and generation of
tinct cases can be realized. If the current results from transiigh-frequency phonons by drifting electrons. This paper ad-
tions of carriers between bound electron states-called dresses the theory of amplification and generatiorcani-
hopping transpo)t the generation of coherent phonons canfined acoustic phonons under electron drift in a QW layer.
be achieved if the states are inversely populdtBdamples The results are applied to Si-Ge heterostructures.
of heterostructures with this type of population inversion in-  Since acoustic-phonon confinement is important for our
clude three barrier heterostructures similar to those used iproblem we start with a brief analysis of acoustic waves
the cascade lasets, as well as superlattices with vertical localized within a quantum well layer. Consider the hetero-
hopping transport® structure shown in Fig. 1, where electrons are confined in
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FIG. 1. Geometry of heterostructure analyzed. The quantum qd
well layer and the barrier layers are marked Adyand B, respec-

tively. Vg, is the electron drift velocity and is the phonon wave
vector.

FIG. 2. The dispersion relations for longitudinal and transverse
acoustic waves in materials andB, and for two lowest SSV con-
fined modes. Results are shown for the strained $if845/Si
heterostructure. The marks on the curves corresponds to the

QW layer A embedded in a semiconductor mate&alThe  yaxima of the amplification coefficient presented in Fig. 5.

thickness of the layeA is 2d. Let isotropic elastic properties

be assumed for both materigdsandB. Then, one can char-

acterize them by introducing the longituding , and V, a_nd K_T,L are the frequency-dependent_ decay facto_rs_ of lon-
and transvers¥/s, andVyg sound velocities as well as the 9itudinal and transverse components, iter, >0. This im-
material densitieg, and pg. It is well known that in a  Plies thatq*>(w/V g)? (w/V1g)?. That is, the waves de-
layered structure there may exist the effect of localization ofaying in materiaB exist only forw andq to the right of the

acoustic waves within an embedded layer if TB line, w=Vrgq, in the w-q plane. Similarly, one can see
that to the right of theTA line, w=V+,q, only interface
V1a<V7g.Via,Vie; (1) modes can exist. Thus, the localized waves of interest occur

see, for example, Refs. 12 and 13. The localized waves, the sector between tHeB- and TA lines. In Fig. 2, two
propagate along the layer and decay outside it. There are t spersion branches of these waves are shown. Each of them
classes of the localized waves: shear-horizo®#) and @S & frequency onset. Near the onsgs;q, and o,
shear-vertica(SV). The SH waves are purely transverse and V7gd. This implies that outside the QW layer the displace-

polarized along the layer. Assuming the configuration showrd"€nt is almost transversal and decays very slowly inBhe
. . . ~ material. Thus, the relative contribution of the longitudinal
in Fig. 1, the displacement vector for SH waves us

, > omponent is expected to be small. 4>q,, when the
= (O,L.Jy,O). The shear-vgrt|cal waves have two projections ofgranch is well developed a V70, the transversal com-
the displacement vectou= (uy,0,). ponent dominates over the longitudinal component inside the
In this paper we will concentrate on electrons with anQW |ayer' As a resu":, the e|ectron_phonon Coup"ng is ex-
deformation potential. This interaction is dominant in theyggion.
high-frequency region of interest. For this case, the electrons since the heterostructures under consideration are sym-
are coupled only wittiongitudinallattice vibrations. The SV metric with respect to the-y plane, SV waves can be as-

and, thus, are coupled with the electrons. For a given S\Hispersion relations for each class of the waves are repre-

wave, the displacement vector can be represented as a suM@inted by a set of branches- w,(q), wherev is an integer.

oiudinal and veneverse component. The 1lae COMI et 7.) (21 be sluons of th clsic
! ) Y P . ' equation$* describing the localized waves. One can show
pling with electrons, depend on the material parameters a%\at functionsw,(z) andw,(z) always havedifferent sym-

well as on the wave vector. The latter can be explained b ; . :
making use of the sketch of the-q diagram shown in Fig. 2 insettrﬁ/(.)g/;/ew?te& (?Zt)h:ev\sli/(nl rr;;atrlvt\:ljg)e ir_vﬁi?@gwaff ctire]:

where the dispersion curves of acoustic waves in infinitely_ ™ . . . _
. . . antisymmetric  ones  with w,(z)=—w,(—2),w,(2)
extended materiald and B are shown for typical relations _
between the velocities =—W,(—2),W,(2)=w,(—2). For a ~ square guantum
well, the electrons are coupled only with the SSV-waves.
Via<Vie<V A<V g. 2 Solutions with different “quantum numbers{r,q} are
orthogonal. One can normalize the solutions by imposing the
For a localized wave the dispersion relation can be rewritterzondition that for the{v,q} wave the elastic energy equals
in terms of factors determining spatial decay of the wave# w,(q). The set of such solutiongnodes allows one to
w?=VZ[?— K?5(0)]=V25[q>—KZ5(w)], wherew andg  quantize the lattice vibrations, introducenfined phonons
are the wave frequency and the wave vector, respectivelyand analyze processes of absorption and emission of the
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phonons, as well as their amplification and generation undewhere the overbar means the averaging over one period of

the condition of electron drift. This quantum approach will the oscillations. In the following sections we will use these

be explored below. equations to compute and study the confined phonon modes
The rest of the paper is organized as follows. In Sec. Il wean different materials.

formulate general equations describing generation and am- The energy of electron-phonon interaction via the defor-

plification of confined phonons. In Sec. Ill we present themation potential is

analytical results based on a simple phonon model, which

highlight the general properties of the amplification effect for Hi,.=bdiv u, )

the confined acoustic phonons. An analysis of a realistic

model and its application to particular SiGe heterostructurel/here b is the constant of the deformation potential. The
are given in Sec. IV. The discussion of the results and poshteraction of the electrons with a given phonon méde}

sible experiments is presented in Sec. VI. should be obtained from Eq7) through the substitution
=U,q-
vq
Il. THE BASIC EQUATIONS Supposing that the electron-phonon interaction is weak

) ) ) we will use the perturbation theory. Then, the transition
First we shall dgfme states of the electrons in the QW. I‘ebrobabilities for electron states with wave vectérandk’
them be characterized by the subband nunilagd the two- due to emission or absorption of thie,q} confined phonon

dimensional wave vectdx. Then the electron wave functions mode are
are W, (r,z) = (1WL,L,)e* "x(z), whereL, and L, are

the lateral dimensions of the sample. In what follows we (5)C 27 ’ 1.1

assume that only the lowest two-dimensional subband with Pk K [v,q)= 7|M(Q)| Nogt 272

=1 is populated by the electrons and the energy distances _ _

to the next subbands are larger than the energy of the X Oy 'kfékqu,kré[E(k)—E(k’)
phonons under consideration. In making estimates, we will T §

assume that the barriers confining the electrons are infinitely Fho,dXF(K[1-FK)], 8

high, i.e., x;(2) = (1/\/Jd)cos(rzl/2d). Electron motion along , )
the QW layer is supposed to be semiclassical and describe’€re M(q) is the matrix element calculated on the wave
by a distribution functiorF[k, k,] dependent on the applied functions x1(2),
electric field. . dw, ,(2)
As for the phonon subsystem, we shall follow the proce- M(q)=b J (iquq (2)+ — =2
dure indicated in Sec. |. First we define the acoustic wave — ’ dz
equationd?

x3(z)dz, (9)

and N,4 is the phonon occupation number of the,q}
2u goM mode. In Eq.(8) the upper signs correspond to emi_ssion
PM—zl——ll:O, i,j=xy,zz M=A,B. (3 Processes, and the lower signs correspond to absorption pro-

at IX; cesses.
M ] ) i . We shall mention that Eq7) determines interactions be-

Here oy’ are the stress tensors. For isotropic elastic medigyeen a single electron and the lattice vibrations. If the elec-
oj; are defined through the two Lamueefficientshyy and  tron concentration is finite, a perturbation in the form of Eq.
Hm by (7) drives a spatial redistribution of electrons and thereby
leads to screening effects which modify the electron-phonon
interaction. This modification can be accounted for in the
framework of the standard linear response appré&dtak-

i . ing account for the finite electron concentration leads to a
where we use the standard definition for the strain tensof, J.c -von of the interactiok.

. A n H() | as discussed in
u;; .** The Lamecoefficients are related to the longitudinal the Appendix, as well as to tlplteﬁfoli(n)twing changes of the

and transverse sound velocitie®; y=V(Ay+2um)/ Pm: above results:
Vim=Vum/pum- At the interfaces, we impose the boundary

M _

02~

2 1
A3 s | Ui J; +2MM<Uij _§5ijull)v 4

conditions IM(q)|2
q)|
. IM(@)|?=[M®(q)[?=— = (10)
. . .« . ( |) .
Then, we find solutions of Eq(3) satisfying conditions With the electron permittivity:®”(q) in the form
U,q(z=*=%)=0. In terms ofo;; andu;; the elastic energy 2re?d
density isUY =307 u;; . According to the virial theorem the k) (q)=1+ A1(q)B(qd). (12)

kinetic energy of vibrations equals the potentielastio en- K

ergy. Thus, to normalize a solutioﬁ,q, properly we use the HereA;;(q) is the polarization operator of two-dimensional
following condition®® electrons:

B 2 F(k)—F(k—q
2,0y [ 2@ =hog, © e i S CE

y ¥ E(—E(k—q)’
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k is the dielectric constant and factB(s) is interaction is positive and, in addition, it exceeds phonon
losses,y,q>B,q. the population of corresponding mdde

d? (= (= Lo 20 o1 e sl— '] should increase in time, i.e., we obtain the effect of phonon
B(S): ? o _xdgdg Xl(gd)Xl(g d)e . generation_
(13) Besides the increment, one can introduce also the ampli-

fication (absorption coefficient for the confined acoustic
Now we return to the analysis of E(B). The total rates of modes. The amplification coefficient describes the rate of
emission and absorption of phonons of theq} mode can increase per unit length in the acoustic wave intenfjty
be obtained by the summation of E®&) over all initial and

final electron states: 1 dj dow.. N
:.——VCI, jvq=ﬁw 4 Vq,
o Jug dx dg L,L,
PE(v,q)=22, PE(KK'|v,q), (14)
kK’ wheredw,q/dq has the meaning of the group velocity of the

where the factor of 2 results from the electron spin. The sungorresponding wave. Then, from E@{.8) we obtain for the
overk’ can be computed using the Kronek&symbols in  @mplification coefficient:
Eqg. (8). The sum ovek can be converted into an integral:

Se(-- .)_>[LXLy/(277)2]fdedky(. -+). This integral can o = / % (19)
be simplified by using the energy-dependéntunctions in va~ Y dq |’
Eq. (8). Finally, we obtain the emission and absorption rates
in the form Obviously, these formulas are valid ifi2v/q<1, which al-
ways holds, as shown below.
) . om* IM(q)? (+), 2 We suppose that the electrons drift in an applied electric
(V'q)_wﬁ3lq| [«€D(q)]2 xLyZ,(Q) field along the QW layer. Under the realistic assumption of
strong electron—electron scatteritigthe distribution func-
1 1 tion can be thought of in terms of the shifted Fermi distribu-
X| N,q+ > t§> , (19  tion:
wherem* is the effective mass and the factaf§™) are: m
F[kx-ky]:FF[kx_ 7Vdrvk }v (20)

I(f)(ti)=f dk/F

m* w,q 1
stq)WVLiEqvky . (16)
whereF (k) = 1/(1+ exp{E(K) — Eg}/kgT]) is the Fermi func-
Here sgnk)=1 for x>0 and sgnX)=—1 for x<0. It is  tion, Ef is the Fermi level, and/y4, and T are the electron
worth noting that in Eq(15) only the factorZ ) depends on  drift velocity and temperature, respectively. From Etg),

the direction of propagation of the phonon mode. one can see that for the phonons propagating along the elec-
These results allow one to introduce the kinetic equatiortron flux (q>0) v,q, @,q>0 if the electron drift velocity
for the phonon number of thir,q} mode: exceeds the confined-phonon phase velocity:
dN
2 () —VOIN— w,
dt yvq (1+qu) ’qu qu ﬂququ (17) Vdr>W|q- (21)

where y(yé) are parameters that determine the evolution of
the phonon numbeN,, in time due to the interaction with This criterion is, in fact, the well-known condition of the
the electrons. These parameters can be found from(Egs. Cerenkov generation effett.If q<0, we always havey,,

and (16). The parameteg,, describes the phonon losses. @,q<0.

These losses can include phonon scattering or phonon ab- Typically, both velocitiesVy, andw,, ,/|q| are much less
sorption due to non-electronic mechanisms, phonon decaijpan the average electron velocity. This implies that 26)

due to the anharmonicity of the lattice, etc. Equatid®@  represents a relatively small disturbance of the Fermi func-
contains the terms corresponding to spontaneous and stimtion. Thus, when calculating the screening effeste Eq.
lated processes. The latter terms can be represented @s2)]we can neglect this shift and use just the Fermi function
YuqNug= (75’ = 7S )N,q, with the phonon increment Fg(k). The shifted distribution, however, has to be taken
(decrement into account when estimating,, and .

__mr M)
wh%al [« (a)]?

Yuq LLy(Z$ (@) -2 (q)). Ill. ANALYSIS OF THE SIMPLE MODEL

(18) In this section we analyze the amplification effect for the
simplest model of confined phonons. As was discussed
Depending on the shape of the electron distribution funcabove, we shall focus on longitudinal acoustic phonons effi-
tion, F(k, k), the valuey,, can be either positive, or nega- ciently interacting with electrons. Hence, we formulate a
tive. If the phonon increment caused by the electron-phonomodel for which only longitudinal waves are localized. For
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this model we can find analytical results and illustrate theThe boundary conditions at the interfacés can be also
basic properties of the amplification effect. Let us assumegrmulated for the value diy:*°

that the elastic dilatation moduwliy, are different for the two

materialsA and B, while the shear moduli and the densities

are equal:ua=ug, pa=pg. Under this assumption, the (Ma+2up)divu|a=(Ng+2u)divulg at z==*d, (23
longitudinal and the transverse vibrations in the heterostruc-

ture are decoupled, which simplifies the analysis consider- .

ably. Indeed, the longitudinal vibrations are described by thevhere divu|, g means the values calculated near the inter-
relative volume change diy, then Eq.(3) can be presented faces in material#, B, respectively. Equation&2) arld(23)
reduce the problem to the analysis of the valueudivic-

in terms of divu: . . ;
cording to Refs. 12 and 18 in such a simple model the local-

1 2 ) ized SV waves exist if Xpo+2u)/(Ag+2u)=h>1.
— —Z—A divu=0, M=A,B. (22 Now from Eg.(22) we can find the relative change of the
Vin dt volume to be
2
iCa— cog K pz)expligx—iwt), |z|]<d
. - LAT™LA
div u(x,y,z)= , (24
iCs— exp(—K_ glz|) expligx—iwt), |z|>d,
LB"™MLB
|
where to infinity. We obtain an infinite set of branches,, within

the sectoqV, g>w,q>qV_ a. The lowest branch originates

w? 5 5 w? from =0, =0, while the onsets of the next branches are
Kia(w,q)= vz, @ and K g(w,q)= vz atfiniteq) andw).
LB

LA Using Eq.(6) we can normalize the solutions of E@4)
(25  and obtain

From Eq.(23) we find that the magnitudeS, and Cg are

related through the equation ) 2f (Viaé\? §tan(§)
CAl* = oL d | wd 1 '
K POSCYRL @ Etan( &)+ sir(€) + —cog( &)
CB=—iCASin(KLAd)eK'-Bd=iCAﬁCOS(KLAd)eK'-Bd. h
Kia (30)
(26)
Equation(26) gives the dispersion relation for the localized !N EQ. (30) the parameteg runs over thevth interval of Eg.
longitudinal waves: (29 for the{r,q} mode.
Now we can compute the matrix element of E).in the
Kis(w,q) =Ka(w,q)tarf K a(w,q)d]. (27 explicit form:
It can be rewritten in the parametrical form: 2w (q)
M 2= T f(§), 31
» . . ; M@= zata (3D
—=\/m——>7—>, (qd=-—=yJl+hta ,
Vie  Vh-ifcosal” 9% ho1 © o
sin(§)
@ 1o)==
where ¢ is a parameter. From Eq27) it follows that
tan(¢) >0 and the allowed values @fbelong to the intervals & tan(&)
X . (32
1 212 ; 1 %2
mvsgsalv+s|, v=012.... (29 [1-(&/m)?]| £ tan(§) +sin’(£) +{cos(£)
When & runs over one of these intervals, the frequency andHere, £ runs in the intervals withv=0,2, ..., otherwise
the wave vector change from f(£)=0. The functionf(&) is strongly correlated with the
mode confinement effect: The stronger the confinement, the
w=0’=mV gld\Vh—1, gq=q°=nv/id/h—1, larger the functionf(§). This function increases monoto-

nously for the lowest mode;=0, and has maxima for ex-
v=0,12 ... cited even modes.
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To proceed with the analytical consideration, we consider the low-temperature Timi@. In this case the polarization
operator of Eq(12) and the integrals in Eq18) can be calculated:

m [q q q 2Kg | °
R B e N %
N q [Var Via
(=) — (=) L | =2 =~
d [Var Via Var—=sgna)Via _ d 2\/ Vagr—sgna)Via _ g \?
(=) |20 22 o g4 et A T A Yt A T
J (2kF vF'vF) ®[1 ( Ve 2k V! Ve k) 59

Here we suppose that the difference in the elastic moduli isvhere the first multiplier is aq(d)=4m*b? (A
small,h—1<1, and that the substitution,q—V g can be  +2u)#?d® and ag=«#?/e’m* is the Bohr radius in the
done under the integrals of E(L6). Then, kg is the Fermi  material. The rest of the formula depends on three param-
wave vector related to the electron area concentration etersh, ked, and V4, —V )/VE. Using the parametric rep-
throughkg-= \277n, O[x] is the Heaviside step function and resentation given by E¢28), one can compute either as a
the wave vector can be of arbitrary sign. function of the phonon wave vectqr or as a function of the
From these last equations we see that in the Iifnit0  frequencyw. Now, we summarize the results féfr&(qd) ],

the processes of emission and absorption are possible f&H(dd), A(a/ks), and7)(a/kg) in order to formulate gen-
finite phonon wave vector intervals: eral features of the amplification effect given by this simple

model. The amplification coefficient for the lowest SV mode
Vdr_VLA> B . . .
1+ A increases withg (or with @) and reaches a maximum near
F the end of the interval of Eq36). The rapid increase in
o a(w) is mainly due to the effect of progressive confinement
for emission,  of the phonon mode, while the maximum and following drop
(35 in a(w) are caused by the abrupt decrease in the population
Vg —Via factor (7(")— 7(7)). Near the maximum the main depen-
V—F> dence ofa on the electron concentrationcomes from the
multiplier kg, i.e., ax\/n. Since the maximum occurs at
for absorption. g((jﬁgkp, for a given electron concentration we firg,
(36) It is worth noticing that this simple model not only repre-
Since Ve>Vy,,V A, One can estimate the interval of the sents general features of the amplification effect but also
wave vectors where phonon amplification occurs asq0 comprises the most favorable conditions for the confinement

<2kF and determine that the popu|ation factor inside thiSOf Iongitudinal vibrations. This results in a hlghest value of

VgtV
Ve

Vg +V
—2kF(1+ u)sqs2kF<1—
Ve

interval is the amplification coefficient that could ever be achieved. It is
interesting to estimate this upper limit af. For numerical
THN(q) =T (q)~ 4 (Var—Via) _ estimates, we assume the following parametens:2u
JK2—q?4 Ve =1.2x10% dyn/cnf, V A=4.7x10° cm/sec, h=1.1, «

=13, b=10 eV, m=0.067my; (my is the free electron

The maximum of7¢*)— 7(7) is achieved at the end of the mas3, 2d=100 A, n=4x10'* cm 2. Then we obtain

interval given by Eq. (36: max(7-70))  4,=6x10* em !, 2ke=1.6x10° cm! and Ve=2.7

~2\(Var—=Via)/ Ve X 10" cm/sec. Let us set\y,— V| A)/Vg=0.05. Then, the

Several effects contribute to the phonon increment and thamplification coefficient has a maximumu,,=1.1
amplification coefficient: the phonon localization effect x 10> cm ! at w=230 GHz. The corresponding wave-
through the functiorf(£), the screening through the electron |ength is 195 A and the phonon is confined in a spatial

permittivity x®)(q), and the nonequilibrium population of region with a thickness of 570 A .
electron states through the factaf (") —7(7)). To repre-

sent these factors in an explicit form we rewrite EtP) as IV. CALCULATIONS FOR PARTICULAR
follows: HETEROSTRUCTURES
aokpdf[€(qd)] Now we return to the more general phonon model formu-
a= 2d q |2 lated in Sec. Il and apply it to particular heterostructures. For
1+ a_B(qd)A<W” symmetric SV modes the solution of Ed8) and(4) can be
B F represented as
x| 79| L Var Via| o 9 | Var Via CLge Kisld 4 Crge KT8l |z|>d
2k[: V|: ’ V|: 2k|: V|: ' V|: ’ WX(Z):

CLaCOS K| a2) + CracodKraz), |[2]<d,
(37) (38)
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K
i sgr(z)cLBTLBe—Klezm sgr(z)cTBKiTBe—KTslzl, I2|>d

wiz)=) (39)
LA . q .
CLA_Sm(KLAZ)_CTAK_Sln(KTAZ)v |z|<d,
q T8
|
whereK| 5o(w,q) andK g(w,q) are defined by Eq$25) and In computing localized acoustic waves we found that for
any composition of the SiGe layer the lowest branch of the
w2 ) , w2 SV waves corresponds tantisymmetricSV waves that do
Kralw,q)= vz, ¢ and Krg(w,d)= \/q°— V2 not interact with the carriersSymmetricSV waves are al-
TA TB ways represented by thexcitedbranches of the dispersion

(40) relations and, hence, always characterized by the previously-
discussed onsets of the wave vectors and frequencies. Let us
The solution given by Eq938) and (39) contains four yet introduce the dimensionless frequenay/w, with w,
undefined coefficient<Z| o,C, 5,Cra, andCrg. Then four  =V;,/d, and wave vectogd. One can show that in terms of
boundary conditions of Eq5) provide a system of four al- these dimensionless quantities the dispersion relations do not
gebraic linear and homogeneous equations, from which ongepend on the half-thickness of the laygerFigure 2 shows
can find relations between the coefficients and an equatiojust the two lowest SSV phonon branche¢w, and qd,
for the dispersion relation. The latter equation is a transcenwhich correspond to amplification maxima are marked on
dental equation that has to be solved numerically. We haveach branch. The displacement fields and w, calculated
computed the dispersion relations, found the displacemeribr the lower SSV branch at the marked point are represented
fields, w,(z) andw,(z), and analyzed the amplification co- in Fig. 3(a as functions of the transverse coordinate.
efficients for different heterostructures. One can see that the displacements of the lattice are indeed
Before proceeding with these results we need to make theonfined near the layer: The displacement is confined
following remark. The above equations are derived for themainly inside the layer, while the displacememi is con-
model of materials with isotropic elastic properties. To applyfined near the interfaces. In Fig(l3 we depict the elastic
the formulas to the cubic crystals we use the so-called isoenergy density of this wave as a functionzstl. The com-
tropic approximatiorf? In this approximation for a material plex redistribution of the elastic energy across the structure is
M, the sound velocitie¥| \, and Vry can be expressed in due to the fact that the wave under consideration corresponds
terms of effective moduli: V| y= \/(f+ 2;)/ . Vium to the excited phonon branch. From this figure we can con-
=\ lp, wherex=Cy;—2C—4A and m=Cy+ A, with clude that the energy of the wave is confined to a narrow
A=(Cy— C1p—2C42)/5, andCyy, Cyp, Cay are elastic stiff-  SPatial region of thickness of about4
ness coefficients of a cubic crystal. The magnitude of the interaction sFroneg _depend; on the
From the analysis given in Sec. Ill, it follows that the relative change of the volume associated with the displace-

larger acoustic mismatch of materi#sandB, the better the ~ment wave, diw. Figure 3(c) shows the distribution of this
phonon confinement and the higher the amplification coeffiguantity across the structure. In Sec. | we presented a quali-
cient. Strained Si/SiGe/Si heterostructures represent a case'gfive analysis of the relative contributions of both longitu-
practical importance exhibiting considerable acoustic misdinal and transverse components of the confined phonons. As
match. It is well established that a thin strained_$Ge, ~ Was discussed, the redistribution between these components
|ayer can be embedded between thick Si |ayer3_ For examp|gjves rise to nontrivial behavior of the electron-phonon cou-
stable 100-A SiGe layers witk<0.5 can be grown by epi- pling as a function of the wave vector or frequency. The
taxial processes. These layers are compressively strained af@upling is represented by the matrix element of &. In
provide good confinement for holes. Due to the compressiv&ig. 4 the square of this matrix element is depicted as a
character of the strain, the lowest hole subband is assigned fgnction ofq for the two lower SSV phonon branches. The
the heavy holes. We have calculated the confined acousti€sult clearly demonstrates the following effects: the wave
modes in_symmetric Si/SiGe/Si heterostructures and ana/ector onset, the strongrdependence and the existence of a
lyzed the @renkov effect caused by the drift of the heavy maximum of the electron-phonon coupling. Surprisingly, the
holes in the SiGe QW's. electron-phonon coupling for the second SSV branch reaches
To calculate the stiffness coefficier@s; for the Sj_,Gg, ~ 1arger values than that of the first. We calculated(z),
layer we use the linear approximatioﬁ:ﬁ'Ge:(1—x)Cﬁ' w,(z) and divu(z) for the second branches and found two
+fo}’e; accordingly, psice=(1—X)psi+Xpge. For ex-  physical reasons for this larger coupling. First, it turns out
amp|e, forx=0.5 in the isotropic approximation; this gives that the magnltudes of the waves of the second branch are
V| o=5.64x10° cm/sec, V;o=3.42x10° cm/sec, while larger as a result of the larger in the normalization condi-
for Si we obtain V g=9x10° cm/sec andV;g=5.4 tion of Eq.(6). Second, the longitudinal component of the
X 10° cm/sec. Here and in the subsequent discussion we usgbrations and diwi are more localized inside the QW layer.
the stiffness constants, the material densities and other pa- To compute the amplification coefficient of Eq48) and
rameters given in Ref. 21. The effective mass for the heavy19) we assume that®=100 A and that the carriers are
holes in the SiGe QW is taken to lne* =0.4m,. drifting with velocity V4,=2.5V14. For this value ofVy,,



7466 S. M. KOMIRENKO et al. PRB 62

1.0
-—
2
c
S 2
T .
S N
N < 054
g P Ve E .
- % =
x / -
2 ‘s
\ o+
-1.0°
1.07 (b)
0.0 . . .
.y 0 2 4 6 8
;g 0-8' qd
§
. 0.6- FIG. 4. The square of the matrix elements as a functiogaf
-E ) for two lowest SSV confined phonon branches shown in Fig. 2.
s ]
0.4
T dependence of the electron-phonon couplinggeemd w as
> 1 well as the decrease in the population factf)—7(),
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The results are presented for the lower SSV phonon branch at th 034
values ofw andq marked in Fig. 2. ’ -
' o =290 cm
. 0.2 X
the Gerenkov criterion of Eq(21) is fulfilled for any branch ] ®,=110 GHz
of the confined acoustic modes. The calculations of the am- 0.1
plification coefficient,«, as a function of the phonon fre-
guency,w/ wg, are presented in Fig. 5 for the first and second 0.0 TS———
SSV phonon branches. For this particular case, we obtair 0 8 10 12
wo=110 GHz. The results are calculated for different tem- o/ (00

peraturesT =50, 100, 150, and 300 K. Now we can see that

for each SSV phonon branch the amplification exists in a F|G. 5. The amplification coefficient versus frequency for the
spectral band. The low-frequency cutoff of the amplificationsj/sj, .Ge,s/Si heterostructure. In the inset the population factor
is due to the onset of the phonon branch. The maximum of (©)—7(%) is presented as a function qfi. All curves calculated
the amplification coefficient and its high-frequency cutoff areat T=50, 100, 150, and 300 K. Amplitudes of all shown depen-
determined by two effects. These are the nonmonotonougences decrease with increasing of temperature.
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1.0 S phase velocity of these phonons. However, realization of a
O 1750 €m measurable phonon amplification is possible only for those

0.94 . .
phonons which are strongly coupled to the carriers. Low-

0.8 ©,=208 GHz dimensional carriers are coupled strongly only with the con-
fined phonon modes.
071 Phonon confinement exists if velocities of the acoustic
0.6- waves satisfy the inequalii§l). Using the data on the elastic
:éf moduli and the material densities given in Refs. 21,23 and
= 0.51 24, it can be proved easily that most of the QW heterostruc-
S o4 tures made from IlI-V, II-VI, and 1V-VI compounds, as well

as SiGe materials, meet this condition and both carriers and
0.31 phonons can be confined within the same QW layer.
In previous sections, we have developed a quantum ap-

*2] proach to describe the confined phonon modes and ére C

0.11 enkov effect of the phonon generation. The drifting electrons
have been described by the shifted Fermi distribution, which

008 z 3 is proved to be valid for strong electron-electron

scattering-"?® In this approach, three electron parameters—
concentration, temperature, and drift velocity—must be
FIG. 6. The amplification coefficient versus frequency for the specified to determine thge@enkov effect. Then, \{ve_ have
Si/Ge/Si heterostructure at=50. 100. 150. and 300 K. demonstrated that acoustical phonons confined within a QW
layer can be amplified and generated by the drift of the two-

the second SSV phonon branch explains the smaller magnflimensional carriers in this layer. .
tude ofa for this branch. For the first SSV branch, the maxi-  The simple analytical model presented in Sec. Ill demon-
mum amplification is achieved for low temperatures:strated the general properties of this effect. The effective
a4 K)=770 cm! and a,,,(50 K)=290 cm! at electron-phonon coupling is strongly dependent on the pho-
0=300 GHz. As temperature increases above 50 K, the anfion confinement and it increases significantly in the high-
plification coefficient decreases, but B&=300 K it is still  frequency(high-wave vectorrange. On the other hand, the
high: a;ma{(300 K)=~80 cm L. For the second SSV phonon electrons can interact with phonons of wave vectors having
branch, the maximum amplification occursaet=650 GHz. an upper limit of X (for degenerated carrigrsor of ap-
In the temperature range from 50 to 100 K, the maximumproximately 2/2m*kgT/% (for nondegenerated carrigrs
amplification coefficient is almost constart= (90 cmi %) These two factors result in the existence of a narrow ampli-
and decreases far>100 K. At room temperature, the val- fication band with a sharp maximum of the amplification
ues ofa for both amplification bands are almost equal. coefficient for each of the confined phonon branches inter-

To demonstrate that even larger amplification effects camcting with the carriers. The simple model suggests a high
be achieved, we also calculateqd ) for anotherp-doped value of the amplification coefficiertabove 16 cm™1) in
SiGe heterostructure: a 50-A Ge QW embedded between $iie sub-THz frequency range.
layers?? The results are presented in Fig. 6 for different tem-  Using the general equations of Sec. Il, we have performed
peratures. The parameters of both materials and the carriéie calculations of the confined modes and the amplification
concentration were selected as described above. The freffect for strained SiGe QW heterostructures. Contemporary
guency is measured in units efy=208 GHz. One can see SiGe technology is developed well enough to fabricate dif-
that the amplification is larger than in the previous caseferent high-quality pseudomorphic SiGe heterostructures;
particularly, am.(50 K)=1750 cm! at w=460 GHz. see, for example, Ref. 26. For the symmetric heterostructures
The larger values ofr are due to both the thinner QW layer sketched in Fig. 1 we have found that only symmetric shear
and the larger acoustical mismat@better phonon confine- vertical modes interact with the carriers. The SiGe hetero-
meny. structures are characterized by the acoustic velocities satis-
fying the inequality(2). For such a case, all SSV phonon
branches arexcitedand have the previously discussed on-
sets in frequenciet@nd wave vectols We have considered

In low-dimensional structures, where electrghsleg are  the amplification effect due to the drift of the heavy holes
confined in a quantum well, or in a quantum wire, drifting confined in the SiGe layer. We showed that the amplification
electrons generate both bulklike and confined acoustibands for the confined phonons in these structures are even
phonons. Both types of phonons contribute, say, to the limifmore narrow than that appearing in the simple model. For the
tation of the carrier mobility and many other effects. Thehole drift velocity, we supposeVy,=2.5 Vi,=8.5
lack of the electron-phonon coupling strength for the bulk-x10° cm/sec. In the case of the 100-A SySBe,s/Si
like phonons is compensated by their dominant density oQW heterostructure with a hole concentration of2.@m™1,
states. For the amplification of a particular phonon modewe found that two phonon branches can be amplified, as
however, the coupling between this mode and the carriers idemonstrated in Fig. 5. For the 50-A Si/Ge/Si QW structure,
extremely important. Indeed, generally, therénkov effect we found one phonon branch which can be amplified by the
holds for all phonons, if the carrier drift velocity exceeds thedrift of the carriers. The frequencies of amplified phonons

oo/o)0

V. DISCUSSION AND CONCLUSION
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are in the sub-THz range and the amplification coefficient igures, and can be used for both the amplification of a given
of the order of hundreds to thousands of ¢m high-frequency acoustic signal and the generation of a high-
We suggest the use of modulation-doped SiGe structuresequency phonon flux. As a result of the phonon confine-
with a high hole mobility. In this case, the necessary valuesnent effect it is predicted that the a high-collimated phonon
of the drift velocities (above 5<10° cm/sec) can be beam can be generated. Thus, a simple electrical method for
achieved in modest electric fields. Our calculations for dif-generation of high-frequency coherent phonons can be devel-
ferent electron temperature have shown that though the anoped on the basis of thee@nkov effect.
plification effect decreases at high temperatures, the amplifi-
cation coefficient remains high enough at temperatures of
about 300 K. Our estimates have shown that at higher tem- ACKNOWLEDGMENTS
peratures, amplification of the higher phonon branches be-
comes d°m'”af.“- Moreover, due to_depgndence qf the effe'f’—toundation for Fundamental Researches and the US Army
on the population factor, the amplification associated W'thResearch Office
these branches can even increase with increasing of tempera- '
ture.
In any structure, besid_es the amplification caused by the APPENDIX
carriers, there always exist phonon losses due to scattering
by imperfections. There are also unavoidable phonon losses To account for the electron screening effect on the
due to the effects of anharmonicity and scattering on isoelectron-phonon interaction, one can use the fact that elec-
topes. The latter losses were estimated in Refs. 27 and 280n motion is much faster than that of the lattice. In quanti-
According to the data of these papers, in the sub-THz rangtative terms, this results in the following conditioN
the phonon losses due to the anharmonicity and scattering By Vi u ,Vrm, Where Vg, is the average electron velocity.
isotopes are well below the calculated amplification coeffi-This inequality always holds for semiconductors. Thus, elec-
cients of the present work. Thus, at least in perfect structurestons adiabatically follow acoustic phonons and the screen-
the amplification of the confined modes exceeds their losseéigg can be estimated in the static approximation. The
considerably. electron-phonon interaction energly,; induces an electron
The Gerenkov effect studied in this paper can be used foredistribution and an electrostatic potenigl"?, so that the
both the amplification of a given high-frequency acoustictotal perturbation energy is
signal and the generation of a high-frequency phonon flux.
We suggest that in modulation-doped high-mobility hetero- (sch) (ind)
structures a large amplification effect can be achieved in Hing'=Hine— €™, (A1)
modest electric fields. The simplest device for phonon gen-

eration is a single passage device. The condition of phonomo calculatep!"? we find the perturbed electron wave func-

This work was supported by the grant of Ukrainian State

generation in such a device, tion
al,>1, (41
can be realized for reasonable extensions of the strutture V.= 1 (2)¢ <P
since the predicted values afare large. In the framework of Lk \/H)“
the linear analysis developed above the distribution of the Y
phonon flux intensity can be found to be proportional to 1 Hfﬁﬁ?l(lz—ﬁ’) -
exd a(w)L]. Under condition(41) the latter means that the + Hxl(z)z me , (A2)
device generates a flux of phonons propagating along the x=y k (k) =E(k")

applied field with a very narrow frequency distribution
around the maximum aof(w), i.e., a flux of almost coherent where
phonons. It is important that the generated short-wavelength
phonon beam has to be highly collimated. Indeed, for the

example of the Si/SiGe/Si structure, at the maximum of am-  (scn) .p_ ry— 1 f f 2 (seN (7 ) aik 1
plification the generated phonon flux is confined to a spatial = "2 k=K') LyL, dz | dxdyx3(2)Hinc"(r,2)€
region of thickness of about 200 &he phonon wavelength

is 160 A).

and the one-subband approximation is assumed. The induced

In conclusion, we have found that the drift of two- changes in the charge density are

dimensional electrons in the QW’s lead to the instability of
phonon subsystem: the phonon modes confined within the

QW layer and propagating along the electron flux are ampli- L -
fied. The amplification coefficient for each of these modes p!"(r,2)=—2e>, H\I’l,ﬁ(f)
has a sharp maximum in the sub-THz frequency range. The K

1 N
Z—Hyﬁ(z)}ﬂk)

maximum values of the amplification coefficient are of the L

order of 100 to 18 cm™*. =—exi (22 AugHS (g (A3)
The Cerenkov effect studied here comprises such phe- q

nomena as strong electron-confined phonon coupling, high

electron densities, and high electron mobilities in QW struc-The solution of Poisson’s equation with this charge density is
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pind(r’,z") 2mwe?dAy(q) B(qd)/ k
(Stcrl)l(q)
1+2me2dA(q)B(qd)/x

(A5)

—e¢iTV(a)=

o 1 .
qb('”d)(r,z)z—f dzf dr .
K (r=r")2+(z—2")?

(Ad)
Using the two-dimensional Fourier transformation of the

Coulomb interaction with factorsA4;(q) andB(qd) given by Eqs(12) and(13).

Using these results and E¢Al) we can easily calculate
1 20 1 H{¢7 () and prove the substitution represented by @&6).
2 Zeia(r-rg-alz=7'|, For a QW with infinite barriers, the factdt can be found
\/(r—r )2+ (z2—2")2 L xby g d explicitly:

we calculate straightforwardly

o 2 1 , 1 3s°+ 55372+ 257t — 7t + e(729) 74
G2 =" AUGHEUE) [ a7 x(2e 9 B(s)=3 . - A9

According to Eq.(8), probabilities of transitions are deter-
mined by matrix elements calculated with wave functionsOne can see that the functiofi(s)«1/s for s<1, B(1)
x1(2). In particular, we find =0.69 andB(s)<1 fors>1.
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