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Three-wave interaction among plasmons in a weakly coupled quasi-two-dimensional Fermi gas:
Down-conversion of high-power terahertz radiation
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It is shown that, unlike in three dimensions, and as a result of their acoustic character, three plasmons of the
same type in the same subband of a quasi-two-dimensional electrd@8B&EG can satisfy the frequency
matching conditions among themselves across different regimes of collisionality. The lowest frequency in-
volved in the three-wave interaction can be tuned, through the use of segments of different impurity doping
levels within the two-dimensional layer and through the total carrier defgétie voltage A wide range of
frequencies within the terahertz regime can thus be covered. The present theory is built on the flow equations
based upon the Bhatnagar-Gross-Krook approximation as an extension of the Euler equations for quasi-two-
dimensional electron layers for the low-frequency, collisional regime and the Lindhard theory based on the
random phase approximation for the high-frequency, collisionless regime within the context of kinetic theory
for an arbitrary Fermi-Dirac distribution. The mode-coupling equations show the possibility of generating
plasmons in the terahertz range through frequency difference generation, yielding nonlinear growth within
about 1 to 2 ps. The criterion for parametric instability based on one pump plasmon is also given. It is shown
that the quasi-two-dimensional pump plasmon needed for the three-wave interaction within the Q2DEG found
in this paper can be resonant with a three-dimensional plasmon in the bulk with a wave number corresponding
to the peak of stimulated Raman scattering against plasmons for some parameters corresponding to a low-gap
semiconductor. The dependence of the terahertz amplitude and rise time on the three-dimensional stimulated
Raman scattering process providing the pump plasmon in the quasi-two-dimensional layer is quantified.

I. INTRODUCTION theoretical and experimental arguments seem to favor the use
of weakly coupled)2DEG's for the generation of plasmons,
Efforts to create a tunable, high-power, cw source of terato which case we restrict ourselves in this w@rl§< 1rg
hertz radiation through the excitation and subsequent&k/(2kg), whereke and ks are the Fermi and screening
grating-induced radiative decay of plasmons in quasi-twowave numbers, respectivély
dimensional electron gas€Q2DEG’S have widely been Particularly, we consider theoherentexcitatiort’~2 of
recognized for their potentiar:® The most extensively devel- plasmons as this method has several advantages. First, the
oped and interesting scenarios are based on the excitation lefvel of excitation can be adjusted more readily by control-
current-drivef? instabilities in a single layer or pair of coun- ling the driver. Second, parametric excitation does not rely
terstreaming layers, on the field-induced instability in a su-on the drift velocity as the sole source of free energy. Third,
perlattice of alternating electron and hole layém, on the by varying the parametefgarrier density, pump frequency,
shallow-water wave type electron plasma instability in thetemperature, drift velocity, doping concentraticthe tera-
short field effect transistd¥-® For the current-driven or field- hertz frequency could be tuned. To avoid the need for bulk
induced methods it is not clear whether the fields requirechcceleration that is necessary for two-stream instability but
for acceleration of the carriers inevitably cause a degradatioReep the advantage of high power through exploiting the
of the plasma or whether nonradiative decay of plasmongong-range, collective interactions in the plasma, long-pulse,
through acoustic phonons is too strong a competitivenigh-power, tunable THz radiation may be achieved by the
process. The strongly coupled nature of theapplication ofstimulated Raman scatterif@RS to nonme-
Al,Ga _,As/In,Ga,_,As system considered for the short tallic media. Carrier densities of even intrinsic semiconduc-
field effect transistor as well as for GaAs/@& _,As sys-  tors such as InSb are experimentally kndwio be increased
tems aimed for in the work on two-stream instability strictly within 1 ps to about 1¥ cm™2 through the application of a
speaking invalidates the application of the random phase a0, laser \ ~10.6 wm) in the 106- 200 MW/cn? power
proximation, thus also of a fluid-dynamical description. Therange and at a laser frequency below the intrinsic gap but
strongly coupled nature of the plasma may well be a limitingabove the expected range of subintrinsic peaks in the optical
factor in efforts for the practical realization of these methodsconductivity usually attributed to phonon activity. Laser
by limiting the lifetime of plasmonlike structures to micro- power levels of several tens of MW/érare sustainable over
dynamical time scales associated with the unscreened mangiuch longer periods without damage to the crystal. Stimu-
body system. This theoretical poffit is underscored lated Raman scattering in InSb has also been establtéhed,
experimentally in the case of optically excited plasmons in while stimulated Raman scattering against the LO phonon
Al,Ga, _,As/GaAs heterojunctions. Their quick decay wasand coupled LO-phonon—plasmon modes in GaP has long
attributed to strong carrier-carrier interactions. Hence, botlbeen known to produce extremely high gain, exceeding gains
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from a/o CS, LiNbOs, and potassium dihydrogenphosphatedimensional, andfor low temperature;T/T<1) the elec-
(KDP).®® It has long been recogniz&tdthat SRS at intensi- tron sound velocity iss~vg/,2; if instead the rate of ap-
ties >10 MW cm 2 can produce Stokes wave intensities Proach towards pressure isotropy is lower than the oscillation
approaching those of the incident laser beam. In the case &eduency the dynamics is essentially that of a one-
InSb stimulated Brillouin scattering is known to interfere dimensional, collisionless shock wave and the sound speed is
with SRS after about 1 ns. Numerical simulatibhisdicate ~ €loser tove. A third, and, as it turns out, more important
that such interference may be due to the local violation of théactor contributing to three-wave interaction in the terahertz
condition, necessary for propagation of the plasma wave angggime is the role of the linear momentum relaxation rate
idler, that the carrier density be less than one-quarter critical¥c) @s @ sink of momentum, but not of particle number
Therefore, a material with a slightly higher intrinsic gap maydensity, thus providing an offset to the square of the real
overall be preferable despite a lower relative power effifrequency @?— w”—v2/4) in addition to a linear damping
ciency because of a higher down-conversion ratio. It is nof y=—v¢/2). That the conditions for three-wave interaction
the purpose of the present paper to specify a particular ex¢an be fulfilled is illustrated in Figs. 1 and 2. As a result of
perimental configuration by which SRS in three-dimensionathe offset the real phase velocity of the low-frequency plas-
media could be exploited to excite the pump plasmon in thénon varies over a range that can include the high-frequency
Q2DEG required for the presently discussed three-wave inplasmon group velocity within the terahertz regime for mod-
teraction. However, a numerical example is worked outerate values of the mobility, i.e., typically several thousands
based on a material with an energy gap and other materi@f cn?/(V s), while at the same time the frequency is tunable
properties similar to InAs because of its low g@35 eV at  through the electron mobilitthence through the neutral im-
room temperature, 0.4 eV at 100 K without doping, and apurity doping level and through the total carrier densifye.,
reduction by less than 0.1 eV for doping concentrations nogate voltagg
exceeding 18 cm3).1® This may enable, under certain cir-  In addition to the generic process of three-plasmon inter-
cumstances, the use of a laser wavelength down to as low &tion we also discuss a specific mechanism for producing
4.2 um, although the experimentally obtainable powerhigh-frequency pump plasmons in the Q2DEG as an ex-
seems to be an open question. The plasmon frequency froample of a possible application. When moving at close dis-
three-dimensional SRS would only be moderately tunable, a&nce i<k !) past a Q2DEG, a three-dimensional longitu-
it depends on three-dimensional parameters and moreovéinal wave interacts electrostatically with the Q2DEG charge
has an optical character; it also tends to be slightly above thearriers as if the wave occurs within it. This can be seen from
desired THz range oflinean frequencies between 0.2 and the quasi-two-dimensional Poisson equatidof which the
2.0 THz. Therefore,moderate down-conversion and a Green function after Fourier transformation in the coordi-
method for tuningvould be desirable. We stress, however,nates tangential to the planes is given by
that on the one hand, to the best of the authors’ knowledge
the usefulness of InAs for this purpose is not established, 9(z,20)=(2k) " Texp —k|z—zo), (1)
while on the other hand, the physics of the currently found
three-wave interaction among plasmons in Q2DEG's doesvhere the exponential factor is non-negligible for any two
not depend on the use of stimulated Raman scattering againsbints at vertical coordinate&) differing by not substan-
plasmons, nor is it the focus of the present communicationtially more thank 1. Consequently, when its frequency and
It is the main purpose of this paper to show that condi-wave number match those of a plasmon in the Q2DEG it will
tions for three-plasmon interaction within the elect(bole)  be able to propagate as a quasi-two-dimensional plasmon
plasma pertaining to one subband in a Q2DEG can be fulthere. As will be shown, a plasmon with frequency and wave
filled, and that this offers the possibility to achieve down-number corresponding to the pedackscatterof SRS pro-
conversion and tuning of high-power, three-dimensional londuced by a laser source with(aacuun) wavelength of 4.2
gitudinal waves. Because of the limited range of the plasma.m in a three-dimensional medium with a refractive index
frequency in three dimensions, and because of the weak am{ ;,=3.5 can be resonant with a two-dimensional plasmon
concave dependence on wave number of the thredn an InSb layer for wave numbers of the order of the screen-
dimensional plasma frequency, three-wave interactionng wave number, while at the same time conditions are
among plasmons in a three-dimensional isotropic plasma imanifestly fulfilled for three-wave interaction within the
known to be impossibl& However, plasmons in Q2DEGs layer and while the grating is sufficiently close by to achieve
have an acoustic character, withy& behavior of the fre- radiative decay(cf. Figs. 3 and %
quency for small wave number. Furthermore, the dispersion In passing it is noted here that the use of InSb as both the
curve has an inclination point at the screening wave numbeQ2DEG and the 3D medium is complicated for the case of
beyond which it is slightly convex, while the group velocity SRS against plasmons because the peak wave number, being
of the high-frequency plasmons with finitdks is higher  twice the wave number of the laser in the medium, is neces-
than what would be predicted from hydrodynamic theory.sarily rather much lower than the screening wave number of
The latter property is caused by a difference in the electroQ2DEG’s for moderate densities because of the extremely
(or hole sound speed corrections in the collisional and col-low-energy gap of InSK0.17 eV at 300 K, 0.23 eV at 77
lisionless regimes because of a difference in the rate of afK), whereas the carrier density of the 3D medium is close to
proach towards isotropy of the stress tensor relative to thene-quarter critical. The collision frequency in the case of
oscillation frequency. If the rate of approach towards isot-InSb as the 3D medium is just above the terahertz frequency
ropy is higher than the oscillation frequency the pressurdsee Fig. 5, casting further doubt on the feasibility to use
perturbation is isotropic within the Q2DEG, hence two- InSh. Therefore, although electron-neutral collisions, as-
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sumed here to limit the mobility, typically make the distri- whereN, is the total number of electrons. As the occupation
bution function isotropic after just one collision, important number of quantum states of electrons with definite values of
kinetic corrections must be expected in the case of InSb. Athe momentum and spin component, the number of states in
shown in Fig. 5, apart from the aforementioned difficulties itan element?p of momentum space and with either value of
is possible to obtain three-plasmon resonance also in thihe spin component is®®p/(274)?; hence the electron dis-

case, while the intensities obtained for any given pump wavipytion function is given byf(p)=2n(p)/(2%)2. After

exceed those in the case of InAs precisely because of the, o gecompositioni= i exp(—iwt-+ik-x), wherex is the
closeness of terahertz and collision frequencies. spatial coordinate in the plane amzds the distance to the

Returning to thg InSb-InAs system described aboye, th%Iane, the density response to a fluctuation in the electro-
terahertz radiation is shown to be tunable across a wide pof-

tion of the terahertz frequency range through variation of thet@lic potentialy is obtained in the usual manrigas
carrier density and, more importantly, impurity concentration ~ . .

across segments of the layer, thereby allowing the use of the ~ eo( ., f(p+hki2)—f(p—£ki2)
linear momentum relaxation rate for tuning. However, the n_T d*p ’
terahertz power can only be quantified in terms of the power

of the three-dimensional pump wave, the former dependingvith the Landau prescription for the pole. The Fermi-Dirac
quadratically on the latter. For the main purpose of the papetlistribution function may be writtéth as a convolution over
the specific nature of the three-dimensional longitudinalits zero-temperature limifo=2/h26(u' — p%/2m), where 6
pump wave does not matter as long as it resonates. Howevas, the Heavyside function and

for the present purpose we restrict considerations to SRS

—— 4
w—Kk-p/m @

against plasmons. B[~ fo ' —p2/2m)

The organization of the paper is as follows. In Secs. Il and f=—| du’ , (5)
Il we derive the dispersion relations for plasmons in the 4Jo cosi? E,B(M—,u’)}
collisionless, high-frequency regime as described by kinetic 2

theory based on the random phase approximation and in the ) .
collisional, hydrodynamic regime as described by awhere B=1/(kgT). The density response and electrostatic

Bhatnagar-Gross-Krook extension of the quasi-two-pc’te”tial fluctuation are also related through the quasi-two-

dimensional Euler equations, respectively. In Sec. IV we adgdimensional Poisson equatiSnfor free oscillations in a

dress the possibilities to obtain exact frequency matching. 1iplane under the influence of tiigree-dimensionalelectro-
Sec. V mode-coupling equations are derived based on a coftetic potential, i.e.,

tinuum description of the essential convective nonlinearities. R o

In Sec. VI the nonlinear evolution is discussed, based on the(#?/9z°—k?) e@(k,z,0) = —2mek 'n(|k|,w)exp( —Kk|z|),
nonlinear equations with full incorporation of linear damp- (6
ing, driving forces, and mode coupling for the case of fre-

quency dlffer.e'ncg generat@ﬁDG). The condition for para- the three-wave interaction among Q2DEG plasmons we may
metric instability is also derived. In Sec. VIl we present the - _— . , o .
setz=0. Substituting Poisson’s equation into the dynamical

numerical analysis on the creation and use of three: sponse and performing the intearation over momentum
dimensional plasmons obtained from SRS as pump plasmorqg. P perto 9 9

in the Q2DEG within this dynamical context. We end with prior .to the.convolu.tlon, Eqs4) and(6) lead to the follow-
concluding remarks. ' ing dispersion relation:

wheree is the dielectric function. For the purpose of deriving

me? 2 (= (I*=37)
Il. HIGH-FREQUENCY PLASMON DISPERSION 0=1+ ﬁ—f du’ , @)
2ehk h2 0 1
EQUATION cosk SB(r—p")
Within the context of the random phase approximation for
the case of a spin-independent electron distribution the disshere we defined
persion relation for a fully collisionless plasmon can be de-
rived from the Schrdinger equation for the density 0(u' — p2/2m)
operatof’ with the Hamiltonian JSEJ d’p————, (8)
ws—Kk-p/m
2
g ﬁ_ _ b with s=+,— andw.=w*+#k?(2m). The integration over
2m the angle of the momentum can be performed to yield
subject to linearization about a homogeneous dynamical m
s - - Js:_[A(S)_A(S)] (9)
equilibrium, p=pg+ 8p, wherep, only depends orR=r, D -
—Fz. The density operatop, is related to the equilibrium
electron momentum distribution by where
- 5 2 B2 A<S>=f dp, In &)ﬂ (10
no(p)=Nef po(R)exp(—ip-R)d<x, () = Jipd=py P Kpw(p |~ 1
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Here, py=(p2—p;) Y2 with p,=(2mu')¥2 Use of the  k/kre, while small errors in the difference of pump and idler
substitutionx(8) = sin(@) on e (— w/2,7/2) followed by frequencies magnify in the expression for the resonance fre-

the inverse ofx(6) =tan(¢/2) that is monotonic on (@/2)  quency. As discussed in the Appendix, its lowest-order ap-
yields proximation reduces to the more familiar forffithrough the

Taylor expansion for smak/k¢g.
AP —A®=27p [v,—2m(05 DY), (1D
g lll. LOW-FREQUENCY PLASMON DISPERSION
where the tilde in 4= w/(kv,) denotes normalization of the RELATION
phase velocity in units ob, and w.=w* oy, with o,

=#k2/(2m). The resulting dispersion equation is The description of the low-frequency plasmon in principle

involves the nonlinear integro-differential kinetic equations
/ with full incorporation of electron-electron and unlike-

k o d . g T .
0=1+ ﬁ[ (1+e—BM)—1+iJ s species collision terms. For simplicity we will adhere to the
k 8wqJo cosi[B(p—u')12] Euler equations for a quasi-two-dimensional Fermi‘gas$
spin 1/2 augmented by a veIocitnglrzfgg term based on the
> 2 122 VU2 ()2 K22 YU Bhatnagar-Gross-Kroo(BGK) modef™ fqr the linear mo-
[(0% Kk Ui ) (03 —k Ui el (12 mentum relaxation processes. The coupling of fluctuations in

the impurity and phonon distributions back onto the elec-
wherev . is the Fermi velocity corresponding to the chemi- trons is ignored. Linear momentum relaxation through colli-
cal potential u’. kie=2mée?/(€) is the Thomas-Fermi sions between different species also has an effect of creating
wave number corresponding to the average dielectric corpressure isotropy in their time scale through the randomiza-
stante of the semiconductor and insulator. Without the de-tion of the specific velocities. However, because electron-
pendence o’ of the numerator of the integrand the inte- electron collisions conserve togal _eIectron momentum, their
gration would just yield the overall multiplier (te~##)~1 effect on momentum is mostly |nd|rect,' although it hgs been
for the entire termekoe/K. Thus finite temperature would reported that they sometimes do contribute to mobility, spe-
only have an exponentially small effect in the degeneratéifically in narrow wires, where they cause an increase in
regime; with it, however, electron plasmons in the Sourmelectror_1 qollls!ons with the wall. T_wq coII!S|onaI rates have
wave regime k>kr) are affected by wave-particle reso- to be dlstmgmshed, at least in principle, ie., the linear mo-
nance, in particular, Landau damping. mentum relaxation a_nd the pressure anisotropy relaxation

It has been shovfA that screening and hence the effectivefate. The latter rate is the sum of the former and ¢he

ke¢ are modified by nearby conductors on both sides of the&ollision rate, although practically treee quI|S|on rate does
Q2DEG. In the presence of a nearby grating, needed fopot play an important rol¢see next sectignin the prgsent
radiative plasmon decay, the insulator thickness is limited bypGK model of the low-frequency plasmon we consider the
the distancel;,; of the Q2DEG to the grating. On the other electron plas_ma as a Q2DEG coupled to the outside through
hand, the thicknesd. of the semiconductor would be lim- the (three-dimensional electrostatic field and through

ited by enhanced levels of the charge carrier density in it, adnlike-particle collisions. _ ,
in the case of SRS against plasmons. The full expression 1he complete fluid-dynamical equations based on the

for the modification is kT,:—>kTF2?/[emscothQ<qns) BGK approximation aré

+eg.cothkds)) . c_

Equation(12) will be used in the numerical work. Its form Din+nV-u=0, 3
illustrates that finite temperature manifests itself mainly . V-P e. o
through distributing the relevant Fermi velocity over a range Dius+ ————E =wj(u;—uy), (14
of the order of the thermal velocity. It is clear that finite mn-m-J,

temperature effects are most important when (fdeppler- > . . . .
P P (@epp whereu is the electron fluid velocityspecies k P is the

shifted phase velocities approach the Fermi veloaity, . ; .
which occurs folkskye . As will be shown in the Appendix, pressure tensor, on the right-hand side summation over all

the integral equation can be approximated by a local equasPeciesj #k is assumed, an®=d;+v-V. The pressure
tion providedT<T; andthe thermal velocity is small com- 9gradient tgrm in the case of a two—d_|men_S|onaI Fermi gas is
pared with the difference between, andv 4 ¢ for s=+,—. equ_al to (30/”_0)Vn, wheres_o_ls the adiabatic so_und Ve|OC|'_fy-
The latter condition is the most restrictive: when not met?jk is the resistance coefficiéfitper mass density of species
Landau damping sets in. The local equation in its simplesk against the drag exerted by specjeand as such only
form tends to agree quantitatively even for rather highdepends on the collision frequency of spediesith species
T/Te<1 up tok~ksg, but for realistic values of it sud- I, the effective masses of specjeandk, and the density of
denly breaks down for wave numbers comparable to théarget SDECielﬁ The linear momentum collision terms for the
Thomas-Fermi wave numbésee Fig. 6. The authors do not case of massive scattering targets lead to perturbations in the
know whether Eq(12) for arbitrary temperature or its math- momentum balance that can be approximated-bysu, as
ematical equivalent exists in the literature to date. It is useanly the electron species is perturbed. There is no counter-
here because, in addition to demonstrating the importance gfart in the continuity equation to the drag in momentum
Landau damping fok> kg and in addition to our interest in balance, because we only consider particle-conserving colli-
finite T/Tg for room-temperature applications, the pumpsions. Because the low-frequency plasmon is described in the
waves in the three-plasmon interaction must have finiteegime where the pressure perturbation is fully isotropic, no
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viscosity term is included in the force balance. Density and T In(8)

electrostatic fields are also coupled through Poisson’s equa- Ve-e:§7'2 In(7)+ ———0.083, (23

tion [Eq. (6)]. Linearization and Fourier decomposition of

the continuity equation and force balance yield in the abyyhere 7=T/T;, and the electron-electron momentum an-
sence of background magfuid) flow isotropy relaxation rate for degenerate systems is reported to

be much slower thaw,_. as given above, namely a factor

—iwn+ingkjv;=0 (15) 2

« 72 slower, except within a cone of ordefr.?° In the
and present work we will therefore neglect the electron-electron
collisions altogether. The three-wave interaction, then, is
ek ¢ | Si . limited to nonideal systems. Because the electron momentum
—lwv;— — + |kin—0n= —VUi- (16 relaxation rate due to all other types of collisions affects the

momentum of the electron fluid as a whole, it is necessary to
keep this rate as low as possible in order to prevent strong
damping ¢<v./2). This prompts consideration of the regime
w<v.<wg. The linear momentum relaxation reduces the
real frequency for a giverk<k;g, thereby reducing the
phase velocity of the low-frequency plasmon such that it
+ kzsg_ (17) bec_:om_es equal to the group velocity of the pump plags)on
which is roughly the phase matching condition. As can be
seen from the position of the participating modes in the lin-
ear dispersion curve&f. Fig. 2), the idler wave is rather
close to the pump, such that a Taylor expansion of the dif-

Substituting Poisson’s law into the inner product of force

balance withk, and eliminating the fluid velocity through the
continuity equation, we find the dispersion equation

2me?ny|K|

w’+iviw=
€m

In terms of the screening wave numbge=krrv/(2s)) the
eigenfrequency may be written

_ 2Va2_ L 2/ 47102 ference of their frequencies is allowed for purposes of illus-
0 =[(ksk+ K55~ ve/4] vel2. (18) tration. However, ir?the numerical calculatignspthe exact ex-
The sound velocitys, is, at any temperature, given 8y pressions for the pump and idler frequencies are taken into
account, as the danger otherwise might be that in relation to
2P the (much lower excited frequency the error in the Taylor
o= mn (19 expansion is not negligible. Let the group velocity of high-

frequency plasmons near the pump and idlevpg. Then,
Starting from the grand-canonical thermodynamic potentialyithin the context of the Taylor expansion, wave numker
for an ideal Fermi gas with spin 1/2 over a surface aea and frequencyw of the low-frequency mode both match
whenkvg p~ o, ie.,

mA o
_ -2 —X
Pro=——5p Jﬁﬂdx'”(”e ) (20 K2(v2 2 ~Kkesz— v2/4. (24)
the pressure, aB=—®p/A (A—0), is seen to have the  Becausevy,>ve as the pump wave has to be in the
following exact temperature dependence: purely oscillatory regime while, except for highly nondegen-
P erate regimessO:vF/\/E<vF, there is a solution to the
=2 —2J' In(1+e %)dx, 21 resonance qondmon provided the p!asma frequency in t_he
P(T=0) (Bu) ~ B ( ) 1) absence of linear momentum relaxation exceeds half the lin-

) ) ear momentum relaxation rate. Note that the plasmon fre-
where 8=1/(kgT). This determines the temperature depen-quency in the presence of linear momentum relaxation is
dence of the sound velocity through E@G.9) agd th(zereby reduced, such that the required inequality for pressure isot-
also that of the screening wave numierkrrv’,/(2s5). ropy on the time scale of the excited frequency can be met.

The logarithm in the above integral can be analyticallyFrom Eqs.(18) and(61) the wave number is found to be
determinedconvergence radii are) Without approximations

by expanding the logarithm in Infle )= In(1+€‘)—x for K 2 112
smalle* in the negative domain and expanding @) for k= %( 1t[ 1+ 1_(v§'h/sg)2_°2H ) 7
smalle™* in the positive domain. This yields 2[vgn/sg—1] kssg
, 1, 1 - : . . :
So=5VF 1+ §ﬂ-2—22 (=D 1z " (Br) %, while the threshold linear momentum relaxation rate is
n=1
(22 ve=(v2 /5 1) " YKso. (26)
where the sum involving the fugaciiy=ef* can be approxi-
mated by its first term even for the case when Tg. Inclusion of linear momentum relaxation in the high-
frequency plasmon dispersion equation does not significantly
IV. FREQUENCY MATCHING modify the frequency matching condition, because in order

of magnitude this modification could be estimated from the
While the electron-electron scattering rate with regard tcsame effect on a mode of higher frequency given by the
the energy of a quasiparticle is quadraticTifT g ,%7+?8 Euler equations with a BGK term added. From the above-
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mentioned threshold condition with; ,=vZ~2s3, we ob-  the dynamical variablefin this examplel(n©®+n®) and

tain v?/4<kZsg/4<2kisj . Therefore, up to an error of rela- its complex conjugateand collecting terms with the same

tive order (v, /wo)?/8, Fourier component, the following set of mode-coupling
equations is obtained:

2
14
w= wo( 1—- 8—02) , (27) (at_’_ i wL)aL:C(LO,l)al(_?)al(_il)* , (30)
®q
(0 0)_ ~(1L 1
where wg is the high-frequency eigenfrequency in the ab- (&t“w(H))a(H)—C(H )aﬁ, a, (31

sence of collisions. Applying this rough estimate we see that (1 oL (0
the frequency matching conditian,— w,= w only acquires (dtiof)aiP=cYaal (32)
an additional term through BGK effects on the pump andyhere the mode-coupling coefficients are given by
idler by —v2/(8w3) on the left, which is small compared

with the excited frequencw, because, as a prerequisite for o ik, ©. v(HO)vﬁ)
the matchingw,> v, . Figure 2 indicates the positions on the cL=——z |l vntont——(—, (33
dispersion curves in a typical example of a three-wave reso- UL
nance.
(0) * (1)
TR, S S N COMI (34)
V. MODE-COUPLING EQUATIONS . 16 Re(wy) | " o™ )
To analyze the mode coupling we will assume, for sim- ) £ (0)
plicity, one-dimensional perturbations in a fully degenerate (oL _ _ ik “L 0O x4 LUH (35)
Fermi gas. The high-frequency modes are only needed in a H 16 Re(w) | " TF 0 @ )7

narrow portion of wave numbers, between idler and pump
waves, in which we can take the dependence on wave nunytherev andv,  are the average phase velocity of the
ber of frequency to be linear, as evidenced from the highpump and idler waves, and ttieomplex phase velocity of
frequency dispersion equation. To avoid a very complicatedhe low-frequency wave, respectively.

nonlinear kinetic treatment we will represent the high- To simplify notation define

frequency modes by a dispersion equation that is linear as far

=0 =a1) =
as the dependence of frequency on wave number between Q=ay’, A =ayT, =a, (36)
pump and idler waves is concerneﬂ_though yvith an pffse)t o =0 o b RCTD 37
and adopt otherwise the same nonlinear fluid equations as for 01—~ » M127%H o+ F02TFH o

the low-frequency modes. Implicitly we thereby approximate (0) W
its form (as opposed to théocation of the points on the W=y, W=y, WE0, (38)

dispersion curveby that of the low-frequency dispersion anq define moduli and phases for all amplitudes and coupling
equation in the range where we do not need the dispersiofyefficients aj:uje—i Re(w))t+i¢; Cij:vijeioij the mode-

equation. Eliminating the electrostatic potential from the.q pjing equations can be shown to be equivalent to the real
fully linear Poisson equatiofEqg. (6)] the normal modesg, equations

anday for the low- and high-frequency waves are combina-
tions of the dynamical variables n,~ exp(kx—iwt) andv,, JUp=v 12U Uy COY D + b1, (39
i.e.,a=n/ny+A\vy, where in both low- and high-frequency

cases the coefficient is determined by requiring to be an JiU1 =V ozloUz COS P+ Op), (40
eigenmode in the linear case, which yields 1
H K atUQZ - z VCU2+ Uo1UoU1q COQ(I)-I— 001), (41)
a g=—+—uy, (29
L,H No CUT_‘YH X

uuz UoUz .
in which thew, 4 are the eigenfrequencies of the low- and i LT Uo SIN(®+ 615) + v, U SIn(® + 0g2)

high-frequency modes, respectively, the latter being given by
the fully kinetic dispersion relation. From the continuity n UoUs .

: . sin(®+ 6yy) |, 42
equation the relation between the normal modes and the elec- vorTy, n( 01) (42)

tron density perturbation is obtained, i.e., where®= g — b, — . From Eqs(33—(35) it follows that

aH'L: 1+

wH,L) N, 29) Op1= 0= — 2+ 0,, 601,=m2+ 6, (43)
* Nn
@h) 70 where 6.= ard 1+v v, /(2|v,|?)] represents the effect of

Turning to the nonlinear fluid equations, the nonIinearityd'SS”oatIon on the phases of the coupling coefficients.

involving the sound velocity, which vanishes whefr=vZ,

will be neglected, and the only nonlinearities that remain are
dx(nvy) in the continuity equation and,dy(v,) in force Although linear damping is slow compared with the os-
balance. Expressing the real variablesy.,n,) in terms of  cillation frequency of the high-frequency plasmons and thus

VI. NONLINEAR EVOLUTION
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does not affect their dispersion relations, it is comparable to
the linear damping of the low-frequency plasmons and the
nonlinear time scales of evolution. Therefore, in the descrip-
tion of the nonlinear evolution of the three-wave system it is
necessary to include linear damping for all plasmons. Fur-
thermore, a model of the SRS driving force is required. To
be specific, let us assume that in the absence of the mode
coupling the overall effect of the driving force and losses on
any driven high-frequency plasman, is to bring and main-
tain its amplitude to a certain level, ,, at a characteristic
rate vy 4 and proportional to its relative deviationy p,
—uy from it. Defining®=® + 0.— /2 the dynamical sys-
tem may then be written as

f (THz), f (THz)

~ 1 1 1 1 1
JUp= —v 1U1Up COSP + v 4(Ugm— Up) — 5 Velo, 0016 0018 0.020 0.022
(44) (@) k/ky

n 1
dtU1=vglgUp COSP + vy y(Ug j—Ug) — 5 Ve, (45)

1.0
.1 08
diUs=Ugu, cosd — 2 Vel (46) L
u,u Ugu Ugu g%
2 .2 142 o412 oY1 S
&t®: sin® V12 —Uop2 —Uo1 . (47) -~
Uo Uz Uz g 04
As the relevant collisions are between electrons and neu- ot
w 0.2

tral species within the framework of a BGK model we as-
sume all three plasmons share the saqehile for the case
of FDG we will take the rategy = vq and asymptotic lev-
els uy m=uy to be the same for both high-frequency plas- . )
mons. Because the estimatg ,,qa~—1M(€)/d,Re(e) 0016 0.020 0.024

shows that the Landau damping is less than 1/1000 of the (b) k/kpy

coII|S|onal damp_lng for the cases .St.Ud'ed here_we approxi- g 1. Frequency mismatch and terahertz frequer(bieth lin-
mate.! their damping rate by the COI.“‘?'O” raig, which when ear rather than angulaversus the ratio of the terahertz wave num-
dominated by electron-neutral collisions as assumed here 403 divided by the Thomas-Fermi wave number far T=77 K,

be taken to be theT same for all three waves. We consider the, 4 (b) T=300 K, for the case when the total carrier density
case when both high-frequency modes are driven through the ~ — 5% 102 cm 2, The infrared dielectric constants of the in-
use of two lasers with different wave numbesg; (hence  sylator and semiconductor are chosen toepg=3 and e;.= 16,
different pump wave numbers in the Q2DE&nd the use of  respectively. The distances from the Q2DEG to the grating and to
two Separate slabs with different carrier density within a diS-the illuminated portion of the semiconductor akg;=2000 A and
tance d<kg; from and parallel to the Q2DEG, such dy,=1000 A, respectively. The pump wave number is chosen to
that the three-dimensional plasma frequencieg, sp  correspond with the peak of SRS against plasmdas=@Kaser

= (4mnzpe?)/(m, esp) V2 are equal to the frequencies,;,  =1.0472<10° cm '=~0.09%¢) for a 3D refractive index, 55
respectively. Alternatively, one slab with a gradient in the=3.5 and a vacuum laser wavelength of 4&. The wave number
carrier density could be considered. No distinction will beko determines the pump frequency through the high-frequency dis-
made between the growth time of the three-dimensionapersion relation. This frequency should equal the three-dimensional
stimulated Raman signals for the high-frequency modes. AfPlasma frequency excited by SRS. (tsiean value isfo=4.578

ter an initial rise time 529 due to the startup of SRS in the THZ: The mobility was selected to he=6708 cnf/(V's). The

3D medium to a level for the amplitudes of the normal semiclassical approximation for the mass dependence for narrow-

_ . : gap semiconductors is adopté@ef. 30, such thatm, =0.03 for
modes (i) that would be equal to a certain level, in the this total carrier density. Thinear electron momentum relaxation

.ak?slence of tbe_ mode Couplln.g a sta.tlonary sta}te sets n. If ﬂ'\‘?equency is thereforé.=1.542 THz. The excited frequency fs
initial phase® is set to zero it remains so during the evolu- — g33 THz. The 0-subband density is také®ef. 30 to be n

tion; if not it relaxes to zero typically in a fraction of 1 ps —qgm,,.,,.

[Fig. 7(@]. The time needed for the low-frequency plasmon

to reach its asymptotic value typically is of the order of aVvided by that of the high-frequency mode in percentage as a
picosecond or twé[qg 7(b)] Figure 8 shows the numerical function of both the Strength and grOWth (ate of the 3D SRS
solution for the asymptotic values of the ratio of tfay-  Process as represented by the asymptotic normal mode am-

namica) density perturbation of the low-frequency mode di- Plitude of the high-frequency modes in the Q2DEG in the
absence of mode

e
=)
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(vg+vel2)(ve/2)

VoowolUp>———"—. (50)

Vg

This criterion agrees with numerical solutions. However,
the threshold is not met for the presently studied parameter
set (see Fig. 3 chosen to obtain resonance with three-
dimensional SRS in a moderately low-gap semiconductor.

f, . (TH2)

flow ?

VII. NUMERICAL ANALYSIS ON THE USE OF PUMP
PLASMONS FROM STIMULATED RAMAN SCATTERING

In the numerical analysis we use a fit to the semiclassical
approximatiori® for the dependence on total carrier density
of both the effective mass and the density of the zeroth sub-
band of a Q2DEG consisting of InSbh. This approximation
agrees closely with the more complete thethy? For the
electro-optical properties of the low-gap semiconductors
InSb and InAs as three-dimensional media we refer to ar-
ticles in a recent compendiutf

Our main objective in this section is to demonstrate that
SRS against plasmons in a three-dimensional medium adja
cent to the Q2DEG may in principle be used for the genera-
tion of the high-frequency pump plasmons needed for the
currently proposed three-plasmon interaction in a Q2DEG.
This issue depends admittedly on the maximum obtainable
power through SRS in three-dimensional media, which is
ultimately an experimental issue beyond the scope of the
present article. However, we show here that the resonance
conditions, first between the three-dimensional plasmon and
a Q2DEG plasmon with finit&/k+g, and subsequently be-

8 L L . . tween the Q2DEG plasmon thus created and two lower-

00 002 004 006 008 010 frequency plasmons, can be met, such that the lowest fre-

(b) k/k, quency plasmon is in the terahertz range and such that,
through variation of total carrier density and impurity level,

FIG. 2. Fast and slow wave dispersion relations showing thehis frequency can be tuned across the terahertz range. Fur-
interacting triplet and the electron momentum relaxation frequencmermore, the resonance between the three-dimensional plas-
fo_r (@ T=77 K and(b) T=300 K for the parameters pertaining t0 mon and the Q2DEG plasmon of finikék;r can be accom-

Fig. 1. plished at peak SRS powedbackscatter Leaving aside

. - . considerations of manufacturability, we also show that these
coupling. Additional losses due to the distance between th%

)

i atements can be made not only for fairly low temperature
3D medium and the Q2DEG and between the Q2DEG an

. - S 7 K), but also for room temperaturd € 300 K).
the grating are not taken into account in Fig. 8 and amount to The illumination by a laser of a frequency below the ma-
a multiplication of the ordinate bg *H9sce ™ Ldins (=0.28

for th £ Ei terial’s energy gap but at least a factor well over 2 above the
or t. € parametgrs of Fig.)8 . o plasma frequency associated with the charge carriers in the
Flnally_, we give an analytlcal crlterlon- for the qnset of three-dimensional medium, and at a Poynting fl8xbelow
parametric instabilitone driver only. Settingd;=0 in all " he preakdown voltage but exceeding the stability threshold
dynamical equations we see that the asymptotic value of thg). srs would yield a spectrum of plasma waves peaking at
normal mode of the pump waueg . corresponds to the con- 1o packscatter wave numbley 5p=2Kase;. In terms of the

dition for the marginal point of a purely growing instability |actric field amplitude of the laser light
for the envelope of the pump plasmon, i.e.,

vol2 49) E.— 8_778) ” (51)
Ugoe = . 0~
° VU102 C\/E

Then a steady state with nonzewg,. transpires if and and assuming the predominance of collisional damping
only if (ve3p) the threshold condition for the onset of SRS is given
in the underdense regime Hy

vor| " [Va(Um—Ugs) — veUg../2] | M2
Hoe ™ U_oz Vo2 49 e, [N\ o
_ _ _ (—) >y 20 (52
is real and nonzero, whence if and only if KM, C\ N, w1
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FIG. 3. Dependence of the terahertz frequency ortibial) carrier density for three different impurity contents including the choice for
Figs. 1 and 2(a) T=77 K, (b) T=300 K. Because the mobilities are assumed to be dominated by impurities they depend on carrier density
through the Fermi velocity and the mean free path. Therefore we asgurid/n. At a reference total carrier density of £0cm™2 the
values of the mobility were taken to be 30 0@®lid squarels 40 000(solid circles, and 50 000(upward trianglescn?/(V's). All other
parameters are the same as in Figs. 1 and 2. Ai$dts dependence on the mobility fag,,,=3x 10 cm 2 for T=77 K andT=300 K,
and the same parameter setting. Finally), the dependence on mobility of the required three-dimensional carrier density for the same
parameter setting.

Provided a strip of the three-dimensional medium adjafrequency plasmon must have a significant correction in the
cent to the quasi-two-dimensional layer is excited such thateal frequency caused by the linear momentum relaxation
the distance of the strip to the layer does not exceed the wavate. This can only happen if the relaxation rate is not too far
number of the excited three-dimensional plasmon, the tworemoved from the lowest plasmon frequency. The sharpness
and three-dimensional media can be considered as interpeof the resonance and the location of the triplet on the high-
etrating, as discussed before. A two-dimensional plasmoand low-frequency plasmon dispersion curves are illustrated
(wg,ko) is then excited by the three-dimensional plasmonin Figs. 1 and 2, respectively. As shown in Fig. 3 the tera-
whenwo= w,, 3p andky= 2K;,s¢,. Because the group veloc- hertz frequency is tunable throughout a wide range by vary-
ity of the two-dimensional pumgand idley plasmon is low ing the total carrier density an@nore importantthe impu-
the phase velocity of the excited low-frequency plasmorrity level, such that the momentum relaxation rate itself is
should be considerably lower than the sound velocity of thevaried through the dependence of the mean free path on the
low-frequency plasmon. Therefore, any excited low-total carrier density. Tunability could thus be achieved in
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principle by varying the doping level in the Q2DEG from 0.6 T T T T T T
one segment to another, using the total carrier derigiye
voltage for fine tuning. That the frequency of the excited A
plasmon could be in the terahertz regime and that the relax- 0.5
ation rate satisfies the conditions w.<1<w/w., albeit

for the former inequality only marginally, is illustrated in
Figs. 3 and 5. The parametersT/T¢ andkg/kg are small

as requiredFig. 4). Furthermore, these conditions are met
while the illuminated area is within about one inverse pump
wave number from the Q2DE@nd while the grating is well
within one inverse terahertz plasmon wave number from the
Q2DEG [see Figs. @), 4(b), and §b)]. The pump wave
number in the Q2DEG is limited by the energy gap of the
three-dimensional medium, for which in the present numeri- 0.1F o .
cal results, we assumed a value not less than that of InAs, * o
which is given by?® 00

T2 1.0 1.5 20 25 30 35 40
T+83 & ©3 (a) n,, (10%cm?)

whereT is in K (0<T<300). We assume here that the en-

ergy gap narrowing due to high doping levels is such that a o6k
value for the laser pump wavelength equal to 4
(=~0.28 eV is still allowable. Finally, we note that the re- A [ a
sults for pure InSbh are limited to 77 K because of the laser 0.5
wavelength of 8 um and the low-energy gap of InSh.

>
>
>

04

¢ A D> eonm

03

*

ud

02t = g

r, T, O, vjo,, kd

E,=0.415-2.76<10 *

>
>

VIIl. CONCLUDING REMARKS

Three-wave interaction between three plasmons in the
same subband of a weakly coupled, quasi-two-dimensional,
Fermi gas of spin 1/2 was shown to be possible in principle
across regimes of different collisionality. In three-
dimensional plasmas three-wave interaction among electron
plasmons is known to be impossible. The nonlinear evolution
has been quantified through the derivation of the mode-
coupling equations using a fluid approach to the convective
nonlinearities. It was shown that SRS against plasmons at
peak powerbackscatterthrough the use of a nearby three- B 2
dimensional semiconducting medium of a moderately nar- (b) 0, (107cm”)
row gap and a gradient in the charge carriers, or, alterna-
tively, two parallel segments of different carrier FIG 4. For the pgrameter setting of Fig. 3 and fqr a re_ference
concentration, could in principle provide plasmons with themebility - corresponding to the lowest curve in Fig. 3

correct wave numbers to generate a Q2DEG plasmon in th@o 000 cm/V s) (actual mobility depends on total carrier density
terahertz range. o« 1/y/Nioia the following parameters are plotteds=krg/2ke, 7

One open question is the output power that is maximall =T/Tg, the ratios of the frequencies of the low-frequency plasmon

obtainable in the three-dimensional SRS process, as this OLE!—V!ded by the collision frequencyf‘(/ Vo), the collision frequency

. . ivided by the frequency of the idler plasmom.(w,), and the
put power is input into the presently proposed three—wavefh. K f the insul b h d th oo
interaction within the Q2DEG. The terahertz output power ickness of the insulator between the Q2DEG and the grating in

. . ) . terms of the wave number of the low-frequency plasmbd():

depends quadratically on it. In this work only the relation _ ) _

; S . (a) for T=77 K; (b) for T=300 K.
between input and output power within the quasi-two-
dimensional plasma has been quantified. Therefore, the olffrequency plasmons. However, because power transfer from
tainable power levels are an open question depending on tttee three-dimensional medium to the Q2DEG occurs through
experimentally achievable three-dimensional density fluctuaresonance, a sharp peak in the spectrum of the particular SRS
tion level of coherent longitudinal excitations. Given such aprocess used for this purpose would be an advantage.
level the present theory predicts terahertz output through fre- Another open question is the control over the three-
quency difference generation. For the purpose of generatindimensional plasma frequency. Because the three-
a suitable pump plasmon in the Q2DEG it is not essentiatlimensional plasma frequency depends on the effective mass
that the SRS in the nearby three-dimensional medium band infrared refractive index, which in turn depend on the
against plasmons, the only requirement being that the exciteabundance of optically excited carrie(sf effective mass
longitudinal mode must correspond to a solution of the~1) and on the total carrier density, hence on the laser
guasi-two-dimensional dispersion equation for high-power, it is a rather complicated task to theoretically predict

<

.7, o/v_,v /o, kd,
Bd
<

Vv v
02r o] a )

1.0 15 20 25 3.0 35 40

0.1
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S o1f
036 L 4 A o %
3 é ‘ O% 1 1 1
5 3 4 .0 0.1 02 03
() n,, (10”cm? k/k,
T T T T T FIG. 6. Comparison between the lowest-order analytical ap-
A A A N proximation for the high-frequency plasmon dispersion equation
08l i [Egs. (A8)] and the integral equatiofEq. (12)], for r¢=0.16 and
g 7=T/Tg=0.16. All other data have been obtained by computing
E the real roow, to the real part of the permittivity given by the full
., . integral equatiodEq. (12)], and approximating the imaginary part
§ 06 o 7 T of the frequency byy~— Im(e)/[4,, Re(e)].
g A /o . s
- v / c action depends on the shift in real frequency caused by the
§ 04F O 70, | linear momentum relaxation rate. incorporated through a
s ° kd, BGK model. This shift is due to the existence of a velocity
- drag and the absence of a corresponding dissipative process
- 02t : v v v v in the equation of continuity. Such a shift is possible, but of
= . u u u a different physical origin(ionization recombinationand
o hence would always be an independent physical quantity.
00— ® ® e o The above-mentioned shift results in a drastic phase velocity
Y20 25 30 35 40 reduction of the low-frequency plasmon enabling a reso-
P nance for low wave numbekk) and with pump and idler
(b) Nyq (107 cm™) wave numbers down to a finite fraction of the effective

_ screening wave number of the low-frequency plasmon,
FIG. 5. InSb as both the Q2DEG and the 3D medium for theyyhich s the screening wave number calculated with the av-
same parameter setting as Fig. 3 except for the 3D refractive index 56 of the semiconductor and insulator dielectric constants.
Nr,3p=4.0, and the vacuum laser wavelengiasersacuum  Because the phase velocity of the excited low-frequency
=8 um: (a) dependence of thginear) terahertz frequency on total plasmon is approximately equal to the group velocity of the
carrier density for three values of the reference mobllNioal high-frequency plasmons, retardation effects are negligible
=102 cm~2)=80000, 100 000, and 120 000 #'s from top to 9" T€qUENCY P . . glgivie,
bottort; (b) parameters ,,r=T/Ty, wlw,, wylwy Kt Versus prowc_ied this group v_elocny_, typically between one ar_id sev-
eral times the Fermi velocity, is small compared with the

the total carrier density for a reference mobilitg(n . . o L
— 10" em?)=100 000 ct/ﬁlv s. These results are Vggd“]i;%' velocity of light, which is assumed here and which is true for

=77 K but not extendable to 300 K because of the low-energy galot,he quantified examples. Frequency difference generation is

given the present relatively short vacuum laser wavelength oPredicted to result in a saturated amplitude of the low-

8 um. frequency plasmon after approximately 1 or 2 ps and at a
power level quantified by Fig. 8, which information might be

conditions under which the three-dimensional plasma fre-used for an expenimental test.

guency will equal the quasi-two-dimensional pump fre-

quency of a given wave number. The problem is aggravated ACKNOWLEDGMENT

by uncertainties about the lifetime of carriers optically ex- |t is a pleasure to acknowledge Dr. Bun Lee for stimulat-

cited into the conduction band of low-gap semiconductorsing discussions and logistical support.

particularly in relation to the plasma period. Without any

enhancement of the product of effective mass and permittiv-

ity the carrier density required for the conditions pertaining

to Fig. 3¢) is in the 13°-10" range; see Fig. (8). We discuss the conditions under which the integral repre-
The essence of the present finding of three-plasmon inteisentation[Eq. (12)] of the high-frequency plasmon disper-

APPENDIX
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() t (ps) FIG. 8. Time-asymptotic ratio of the density fluctuations of the
terahertz plasmon and the high-frequency plasmons in percent, as a
T T T T T T function of both the density fluctuation relative to background den-
1.0} 4 sity of the high-frequency plasmaim percent and the character-
istic rate ysgsap Of the three-dimensional SR® units 162 s™%).
Parameters as in Fig. 3 with the actual mobility equal to
0.8} . 10047 cm/Vs, and a density of 10 cm 2. Other (depen-
5 dend parameters arey;=5.79x10 s % v=v,,=10 s 1
2 ve=2.87X10% s 1,
s 06} .
= ties and the Fermi velocity in units of the thermal velocity.
04k i The real (. ;) and imaginary J.. ;) parts are equal to
R fl A= (A3)
5 - E S — > _ax,
02 Tax ) (—aLpu)cosR(x/a.)
and

0. 1 1 1 Il Il 1
%.0 05 10 15 20 25 30

- _ /
(b) t (ps) Ji,i:azlf Lz HTx (A4)

. . . 1 cos(x/a.)
FIG. 7. Nonlinear evolution(a) Time dependence of the phase

®, essentially the phase difference between the normal modes, Rrovideda. <1, cosh?(x/a.)~0 unlessx<1. Only then is
Egs. (44)—(47) for various initial conditions, demonstrating subpi- the imaginary part exponentially small. For the full integral
cosecond relaxation to zero. Parameterg;=0.579x10'? s™,  equation nca priori assumption is necessary, since Landau
Ve=01,=8.51X10"% s, ©;=5.09<10" s7!, up,=0.03, vy  damping manifests itself through the disappearance of a real
=2.5x10" s™*. The low-frequency plasmon amplitude saturatesroot to the real part of the permittivity, while if the solution

to the same value at a much later tifde-2 p3: (b) evolution of the  ¢an pe obtained~ — Im(€)/d,Re(e). In the expression for
normal mode of the low-frequency plasmon for the same case as ifhe reg| part ofl . the square root in the numerator can then
@. be expanded for smak<1. Keeping only the first three

. . . . terms and partially integrating the second and third term we
sion equation may be approximated through an expansion fqrnd

low electron temperature. The kernel in the integral represen-

tation depends on the integration variable througfy 1 1 1 -
E(ZM//m)ll% The relevant nontrivial integrals to be per- J==tanh—+ = | 2+ 5 tanh—
formed are 2 ar 2 a? — T
kre 1 2 _ 2, 2\1/2 1 Tr
= — — + o —
|+ K 4wq(wt k)" Js (A1) a.lln COSth In coshz—_l_
with the definition e &2
Lo [ra—t
»  (1—a.x)t? 4 7| Jo " cosH(x)
J.= f ——F—dXx, (A2)
(—Bul2)  cost x —(ai?+ait+1/2e 2o

where we deﬁned»ziE(ZT/TF)/(ZZ(/,’i —1), aninverse mea-

1 1 1
sure of the closeness of tliPoppler-shifted phase veloci- —(ZTE/T2+§TF/T+ > elr/T

. (AB)
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Here, the only remaining integral is equal to 0.8225. TheBecause the errors are additive the combined relative error in
degree of smallness of the imaginary part follows from thethe numerator involving the square roots in the above expres-

substitution cost)~e/2 under the same restriction: sion for the permittivity equala?/4, wherea by definition is
the maximum of thex-. .
Ji=V2ma. exp(—2a.), (A6) The above-derived simplified dispersion relation exhibits

which is exponentially small whemr, <1, i.e., when the the well-knowr? first-order Taylor expansion ik/krg, i.e.,
difference between the phase velocity Doppler-shifted by 3 Kk
* wgy/2 and the Fermi velocity is small compared with the o(k<kp)~wee~| 1+ Zk_) V2kkrev, . (A1D)
thermal velocity. In conclusion, fa#.. <1 and to within an TF

error of 0|’de|’ai/4 the integrals). may be approximated by Even in the low-temperature regime it is only possible to
the above expressions. The high-frequency plasmon dispesatisfy both the real and imaginary parts of the dispersion
sion equation reduces to its zero-temperature limit when irequation for purely oscillatory waves when both Doppler-
addition T/Tg<1, since then). =2. Therelative errors in  shifted phase velocities exceed the Fermi velocity in magni-
the integrals). each are therefore half of the absolute valuesude and provided the expression obtained by squaring both
given above. The conditioa . <1 reflects the importance of sides of the dispersion equatien=0 as given by Eq(A7)
finite temperature effects upon waves with a phase velocityllows for non-negative values of the product of the two
that differs from the Fermi velocity by about the thermal square roots occurring in it. The latter condition is, in terms
velocity or less. With this approximation the permittivity be- of v y= w/(kv ,):

comes

v2=1+ ( €V k)2 k)z A12
=1+ —— — == .

kee [ Vo2—1—+o2-1 Vo= 2 kyeke k| alig - A2

e=1+—|1+ ) (A7) o i
k k/kg In terms of wave number the above condition is met if and

only if
w=V(1+ 6wy, (A8) . ) )

Where k°+ 2krek“< 2k ke (A13)
5 A quantitative comparison between the solutions of the
_ (krek+k%v , (A9) integral form of the dispersion equation and even the lowest-

Wsc= 2y1/2 order approximation ifT/Tg given above shows agreement
(2krek+k*)

_ ) ) o _ (see Fig. & within a few percent for the frequency and even

is the semi-classical limitk/kg|0) of the eigenfrequency petter agreement for tHenore relevantgroup velocity up to

and where the wave number at which the integral equation fails to have

2 a solution altogether due to Landau damping. All results

(1+ 2kqe/K). (A10)  other than Fig. 6 given here are obtained from the full inte-
gral dispersion equation.
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