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Three-wave interaction among plasmons in a weakly coupled quasi-two-dimensional Fermi ga
Down-conversion of high-power terahertz radiation

J. P. Mondt,* Hyun-Tak Kim,† and Kwang-Yong Kang‡

Telecommunications Basic Research Laboratory, ETRI, Taejon 305-350, Korea
~Received 4 August 1999; revised manuscript received 8 May 2000!

It is shown that, unlike in three dimensions, and as a result of their acoustic character, three plasmons of the
same type in the same subband of a quasi-two-dimensional electron gas~Q2DEG! can satisfy the frequency
matching conditions among themselves across different regimes of collisionality. The lowest frequency in-
volved in the three-wave interaction can be tuned, through the use of segments of different impurity doping
levels within the two-dimensional layer and through the total carrier density~gate voltage!. A wide range of
frequencies within the terahertz regime can thus be covered. The present theory is built on the flow equations
based upon the Bhatnagar-Gross-Krook approximation as an extension of the Euler equations for quasi-two-
dimensional electron layers for the low-frequency, collisional regime and the Lindhard theory based on the
random phase approximation for the high-frequency, collisionless regime within the context of kinetic theory
for an arbitrary Fermi-Dirac distribution. The mode-coupling equations show the possibility of generating
plasmons in the terahertz range through frequency difference generation, yielding nonlinear growth within
about 1 to 2 ps. The criterion for parametric instability based on one pump plasmon is also given. It is shown
that the quasi-two-dimensional pump plasmon needed for the three-wave interaction within the Q2DEG found
in this paper can be resonant with a three-dimensional plasmon in the bulk with a wave number corresponding
to the peak of stimulated Raman scattering against plasmons for some parameters corresponding to a low-gap
semiconductor. The dependence of the terahertz amplitude and rise time on the three-dimensional stimulated
Raman scattering process providing the pump plasmon in the quasi-two-dimensional layer is quantified.
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I. INTRODUCTION

Efforts to create a tunable, high-power, cw source of te
hertz radiation through the excitation and subsequ
grating-induced radiative decay of plasmons in quasi-tw
dimensional electron gases~Q2DEG’s! have widely been
recognized for their potential.1–6 The most extensively devel
oped and interesting scenarios are based on the excitatio
current-driven1,2 instabilities in a single layer or pair of coun
terstreaming layers, on the field-induced instability in a
perlattice of alternating electron and hole layers,3 or on the
shallow-water wave type electron plasma instability in t
short field effect transistor.4–6 For the current-driven or field
induced methods it is not clear whether the fields requi
for acceleration of the carriers inevitably cause a degrada
of the plasma or whether nonradiative decay of plasm
through acoustic phonons is too strong a competit
process. The strongly coupled nature of t
Al xGa12xAs/InxGa12xAs system considered for the sho
field effect transistor as well as for GaAs/GaxAl12xAs sys-
tems aimed for in the work on two-stream instability stric
speaking invalidates the application of the random phase
proximation, thus also of a fluid-dynamical description. T
strongly coupled nature of the plasma may well be a limit
factor in efforts for the practical realization of these metho
by limiting the lifetime of plasmonlike structures to micro
dynamical time scales associated with the unscreened m
body system. This theoretical point7,8 is underscored
experimentally9 in the case of optically excited plasmons
Al xGa12xAs/GaAs heterojunctions. Their quick decay w
attributed to strong carrier-carrier interactions. Hence, b
PRB 620163-1829/2000/62~11!/7440~14!/$15.00
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theoretical and experimental arguments seem to favor the
of weakly coupledQ2DEG’s for the generation of plasmon
to which case we restrict ourselves in this work@r s

2!1,r s

[ks/(2kF), wherekF and ks are the Fermi and screenin
wave numbers, respectively#.

Particularly, we consider thecoherentexcitation10–12 of
plasmons as this method has several advantages. First
level of excitation can be adjusted more readily by contr
ling the driver. Second, parametric excitation does not r
on the drift velocity as the sole source of free energy. Th
by varying the parameters~carrier density, pump frequency
temperature, drift velocity, doping concentration! the tera-
hertz frequency could be tuned. To avoid the need for b
acceleration that is necessary for two-stream instability
keep the advantage of high power through exploiting
long-range, collective interactions in the plasma, long-pu
high-power, tunable THz radiation may be achieved by
application ofstimulated Raman scattering~SRS! to nonme-
tallic media. Carrier densities of even intrinsic semicondu
tors such as InSb are experimentally known13 to be increased
within 1 ps to about 1018 cm23 through the application of a
CO2 laser (l'10.6 mm) in the 1002200 MW/cm2 power
range and at a laser frequency below the intrinsic gap
above the expected range of subintrinsic peaks in the op
conductivity usually attributed to phonon activity. Las
power levels of several tens of MW/cm2 are sustainable ove
much longer periods without damage to the crystal. Stim
lated Raman scattering in InSb has also been establish14

while stimulated Raman scattering against the LO phon
and coupled LO-phonon–plasmon modes in GaP has l
been known to produce extremely high gain, exceeding ga
7440 ©2000 The American Physical Society
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PRB 62 7441THREE-WAVE INTERACTION AMONG PLASMONS IN A . . .
from a/o CS2, LiNbO3, and potassium dihydrogenphospha
~KDP!.15 It has long been recognized16 that SRS at intensi-
ties .10 MW cm22 can produce Stokes wave intensiti
approaching those of the incident laser beam. In the cas
InSb stimulated Brillouin scattering is known to interfe
with SRS after about 1 ns. Numerical simulations17 indicate
that such interference may be due to the local violation of
condition, necessary for propagation of the plasma wave
idler, that the carrier density be less than one-quarter criti
Therefore, a material with a slightly higher intrinsic gap m
overall be preferable despite a lower relative power e
ciency because of a higher down-conversion ratio. It is
the purpose of the present paper to specify a particular
perimental configuration by which SRS in three-dimensio
media could be exploited to excite the pump plasmon in
Q2DEG required for the presently discussed three-wave
teraction. However, a numerical example is worked
based on a material with an energy gap and other mat
properties similar to InAs because of its low gap~0.35 eV at
room temperature, 0.4 eV at 100 K without doping, and
reduction by less than 0.1 eV for doping concentrations
exceeding 1018 cm23).18 This may enable, under certain ci
cumstances, the use of a laser wavelength down to as lo
4.2 mm, although the experimentally obtainable pow
seems to be an open question. The plasmon frequency
three-dimensional SRS would only be moderately tunable
it depends on three-dimensional parameters and more
has an optical character; it also tends to be slightly above
desired THz range of~linear! frequencies between 0.2 an
2.0 THz. Therefore,moderate down-conversion and
method for tuningwould be desirable. We stress, howev
that on the one hand, to the best of the authors’ knowle
the usefulness of InAs for this purpose is not establish
while on the other hand, the physics of the currently fou
three-wave interaction among plasmons in Q2DEG’s d
not depend on the use of stimulated Raman scattering ag
plasmons, nor is it the focus of the present communicati

It is the main purpose of this paper to show that con
tions for three-plasmon interaction within the electron~hole!
plasma pertaining to one subband in a Q2DEG can be
filled, and that this offers the possibility to achieve dow
conversion and tuning of high-power, three-dimensional l
gitudinal waves. Because of the limited range of the plas
frequency in three dimensions, and because of the weak
concave dependence on wave number of the th
dimensional plasma frequency, three-wave interact
among plasmons in a three-dimensional isotropic plasm
known to be impossible.12 However, plasmons in Q2DEG
have an acoustic character, with aAk behavior of the fre-
quency for small wave number. Furthermore, the dispers
curve has an inclination point at the screening wave num
beyond which it is slightly convex, while the group veloci
of the high-frequency plasmons with finitek/ks is higher
than what would be predicted from hydrodynamic theo
The latter property is caused by a difference in the elect
~or hole! sound speed corrections in the collisional and c
lisionless regimes because of a difference in the rate of
proach towards isotropy of the stress tensor relative to
oscillation frequency. If the rate of approach towards is
ropy is higher than the oscillation frequency the press
perturbation is isotropic within the Q2DEG, hence tw
of
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dimensional, and~for low temperature,T/TF!1) the elec-
tron sound velocity iss'vF /A2; if instead the rate of ap
proach towards pressure isotropy is lower than the oscilla
frequency the dynamics is essentially that of a on
dimensional, collisionless shock wave and the sound spee
closer tovF . A third, and, as it turns out, more importan
factor contributing to three-wave interaction in the terahe
regime is the role of the linear momentum relaxation r
(nc) as a sink of momentum, but not of particle numb
density, thus providing an offset to the square of the r
frequency (v2→v22nc

2/4) in addition to a linear damping
(g.2nc/2). That the conditions for three-wave interactio
can be fulfilled is illustrated in Figs. 1 and 2. As a result
the offset the real phase velocity of the low-frequency pl
mon varies over a range that can include the high-freque
plasmon group velocity within the terahertz regime for mo
erate values of the mobility, i.e., typically several thousan
of cm2/(V s), while at the same time the frequency is tunab
through the electron mobility~hence through the neutral im
purity doping level! and through the total carrier density~i.e.,
gate voltage!.

In addition to the generic process of three-plasmon in
action we also discuss a specific mechanism for produc
high-frequency pump plasmons in the Q2DEG as an
ample of a possible application. When moving at close d
tance (d<k21) past a Q2DEG, a three-dimensional longit
dinal wave interacts electrostatically with the Q2DEG cha
carriers as if the wave occurs within it. This can be seen fr
the quasi-two-dimensional Poisson equation,19 of which the
Green function after Fourier transformation in the coor
nates tangential to the planes is given by

g~z,z0!5~2k!21 exp~2kuz2z0u!, ~1!

where the exponential factor is non-negligible for any tw
points at vertical coordinates~z! differing by not substan-
tially more thank21. Consequently, when its frequency an
wave number match those of a plasmon in the Q2DEG it w
be able to propagate as a quasi-two-dimensional plas
there. As will be shown, a plasmon with frequency and wa
number corresponding to the peak~backscatter! of SRS pro-
duced by a laser source with a~vacuum! wavelength of 4.2
mm in a three-dimensional medium with a refractive ind
nr ,3D53.5 can be resonant with a two-dimensional plasm
in an InSb layer for wave numbers of the order of the scre
ing wave number, while at the same time conditions
manifestly fulfilled for three-wave interaction within th
layer and while the grating is sufficiently close by to achie
radiative decay~cf. Figs. 3 and 4!.

In passing it is noted here that the use of InSb as both
Q2DEGand the 3D medium is complicated for the case
SRS against plasmons because the peak wave number,
twice the wave number of the laser in the medium, is nec
sarily rather much lower than the screening wave numbe
Q2DEG’s for moderate densities because of the extrem
low-energy gap of InSb~0.17 eV at 300 K, 0.23 eV at 77
K!, whereas the carrier density of the 3D medium is close
one-quarter critical. The collision frequency in the case
InSb as the 3D medium is just above the terahertz freque
~see Fig. 5!, casting further doubt on the feasibility to us
InSb. Therefore, although electron-neutral collisions,
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7442 PRB 62J. P. MONDT, HYUN-TAK KIM, AND KWANG-YONG KANG
sumed here to limit the mobility, typically make the distr
bution function isotropic after just one collision, importa
kinetic corrections must be expected in the case of InSb
shown in Fig. 5, apart from the aforementioned difficulties
is possible to obtain three-plasmon resonance also in
case, while the intensities obtained for any given pump w
exceed those in the case of InAs precisely because of
closeness of terahertz and collision frequencies.

Returning to the InSb-InAs system described above,
terahertz radiation is shown to be tunable across a wide
tion of the terahertz frequency range through variation of
carrier density and, more importantly, impurity concentrat
across segments of the layer, thereby allowing the use o
linear momentum relaxation rate for tuning. However, t
terahertz power can only be quantified in terms of the po
of the three-dimensional pump wave, the former depend
quadratically on the latter. For the main purpose of the pa
the specific nature of the three-dimensional longitudi
pump wave does not matter as long as it resonates. Howe
for the present purpose we restrict considerations to S
against plasmons.

The organization of the paper is as follows. In Secs. II a
III we derive the dispersion relations for plasmons in t
collisionless, high-frequency regime as described by kin
theory based on the random phase approximation and in
collisional, hydrodynamic regime as described by
Bhatnagar-Gross-Krook extension of the quasi-tw
dimensional Euler equations, respectively. In Sec. IV we
dress the possibilities to obtain exact frequency matching
Sec. V mode-coupling equations are derived based on a
tinuum description of the essential convective nonlinearit
In Sec. VI the nonlinear evolution is discussed, based on
nonlinear equations with full incorporation of linear dam
ing, driving forces, and mode coupling for the case of f
quency difference generation~FDG!. The condition for para-
metric instability is also derived. In Sec. VII we present t
numerical analysis on the creation and use of thr
dimensional plasmons obtained from SRS as pump plasm
in the Q2DEG within this dynamical context. We end wi
concluding remarks.

II. HIGH-FREQUENCY PLASMON DISPERSION
EQUATION

Within the context of the random phase approximation
the case of a spin-independent electron distribution the
persion relation for a fully collisionless plasmon can be d
rived from the Schro¨dinger equation for the densit
operator20 with the Hamiltonian

Ĥ5
\2

2m
D2ew~ t,rW !, ~2!

subject to linearization about a homogeneous dynam
equilibrium, r5r01dr, wherer0 only depends onRW [rW1

2rW2. The density operatorr0 is related to the equilibrium
electron momentum distribution by

n0~pW !5NeE r0~RW !exp~2 ipW •RW !d2x, ~3!
s
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whereNe is the total number of electrons. As the occupati
number of quantum states of electrons with definite value
the momentum and spin component, the number of state
an elementd2p of momentum space and with either value
the spin component is 2d3p/(2p\)2; hence the electron dis
tribution function is given byf (pW )52n(pW )/(2p\)2. After
Fourier decompositionc̃5c exp(2ivt1ikW•xW), wherexW is the
spatial coordinate in the plane andz is the distance to the
plane, the density response to a fluctuation in the elec
static potentialw̃ is obtained in the usual manner20 as

ñ5
ew̃

\ E d2p
f ~pW 1\kW /2!2 f ~pW 2\kW /2!

v2kW•pW /m
, ~4!

with the Landau prescription for the pole. The Fermi-Dir
distribution function may be written21 as a convolution over
its zero-temperature limitf 052/h2u(m82p2/2m), whereu
is the Heavyside function and

f 5
b

4E0

`

dm8
f 0~m82p2/2m!

cosh2F1

2
b~m2m8!G , ~5!

where b[1/(kBT). The density response and electrosta
potential fluctuation are also related through the quasi-tw
dimensional Poisson equation19 for free oscillations in a
plane under the influence of the~three-dimensional! electro-
static potential, i.e.,

~]2/]z22k2!ew~kW ,z,v!522pek21ñ~ ukW u,v!exp~2kuzu!,
~6!

wheree is the dielectric function. For the purpose of derivin
the three-wave interaction among Q2DEG plasmons we m
setz50. Substituting Poisson’s equation into the dynami
response and performing the integration over momen
prior to the convolution, Eqs.~4! and~6! lead to the follow-
ing dispersion relation:

0511
pe2

2e\k
b

2

h2E0

`

dm8
~J12J2!

cosh2F1

2
b~m2m8!G , ~7!

where we defined

Js[E d2p
u~m82p2/2m!

vs2kW•pW /m
, ~8!

with s51,2 andv6[v6\k2/(2m). The integration over
the angle of the momentum can be performed to yield

Js5
m

k
@A1

(s)2A2
(s)#, ~9!

where

A6
(s)[E

upxu<pM

dpxF lnS mvs

kpM~px!
D61G . ~10!
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Here, pM[(pm
2 2px

2)1/2 with pm[(2mm8)1/2. Use of the
substitutionx(u)5 sin(u) on uP(2p/2,p/2) followed by
the inverse ofx(u)5tan(u/2) that is monotonic on (0,p/2)
yields

A1
(s)2A2

(s)52ppm@ ṽf,s22p~ ṽf,s
2 21!1/2#, ~11!

where the tilde inṽf[v/(kvm) denotes normalization of th
phase velocity in units ofvm and v6[v6vq , with vq
[\k2/(2m). The resulting dispersion equation is

0511
kTF

k H ~11e2bm!211
b

8vq
E

0

` dm8

cosh2@b~m2m8!/2#

3@~v2
2 2k2vm8

2
!1/22~v1

2 2k2vm8
2

!1/2#J , ~12!

wherevm8 is the Fermi velocity corresponding to the chem
cal potential m8. kTF[2me2/(\ē) is the Thomas-Ferm
wave number corresponding to the average dielectric c
stant ē of the semiconductor and insulator. Without the d
pendence onm8 of the numerator of the integrand the int
gration would just yield the overall multiplier (11e2bm)21

for the entire term}kTF /k. Thus finite temperature would
only have an exponentially small effect in the degener
regime; with it, however, electron plasmons in the sou
wave regime (k@kTF) are affected by wave-particle reso
nance, in particular, Landau damping.

It has been shown22 that screening and hence the effecti
kTF are modified by nearby conductors on both sides of
Q2DEG. In the presence of a nearby grating, needed
radiative plasmon decay, the insulator thickness is limited
the distancedins of the Q2DEG to the grating. On the othe
hand, the thicknessdsc of the semiconductor would be lim
ited by enhanced levels of the charge carrier density in it
in the case of SRS against plasmons. The full expres
for the modification is kTF→kTF2ē/@e ins coth(kdins)
1esccoth(kdsc)#.

Equation~12! will be used in the numerical work. Its form
illustrates that finite temperature manifests itself mai
through distributing the relevant Fermi velocity over a ran
of the order of the thermal velocity. It is clear that fini
temperature effects are most important when the~Doppler-
shifted! phase velocities approach the Fermi velocityvm ,
which occurs fork@kTF . As will be shown in the Appendix
the integral equation can be approximated by a local eq
tion providedT!TF and the thermal velocity is small com
pared with the difference betweenvm andvf,s for s51,2.
The latter condition is the most restrictive; when not m
Landau damping sets in. The local equation in its simp
form tends to agree quantitatively even for rather h
T/TF,1 up tok'kTF , but for realistic values ofr s it sud-
denly breaks down for wave numbers comparable to
Thomas-Fermi wave number~see Fig. 6!. The authors do no
know whether Eq.~12! for arbitrary temperature or its math
ematical equivalent exists in the literature to date. It is u
here because, in addition to demonstrating the importanc
Landau damping fork.kTF and in addition to our interest in
finite T/TF for room-temperature applications, the pum
waves in the three-plasmon interaction must have fin
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k/kTF , while small errors in the difference of pump and idl
frequencies magnify in the expression for the resonance
quency. As discussed in the Appendix, its lowest-order
proximation reduces to the more familiar forms23 through the
Taylor expansion for smallk/kTF .

III. LOW-FREQUENCY PLASMON DISPERSION
RELATION

The description of the low-frequency plasmon in princip
involves the nonlinear integro-differential kinetic equatio
with full incorporation of electron-electron and unlike
species collision terms. For simplicity we will adhere to t
Euler equations for a quasi-two-dimensional Fermi gas19 of
spin 1/2 augmented by a velocity drag term based on
Bhatnagar-Gross-Krook~BGK! model24,25 for the linear mo-
mentum relaxation processes. The coupling of fluctuation
the impurity and phonon distributions back onto the ele
trons is ignored. Linear momentum relaxation through co
sions between different species also has an effect of crea
pressure isotropy in their time scale through the random
tion of the specific velocities. However, because electr
electron collisions conserve total electron momentum, th
effect on momentum is mostly indirect, although it has be
reported that they sometimes do contribute to mobility, s
cifically in narrow wires, where they cause an increase
electron collisions with the wall. Two collisional rates hav
to be distinguished, at least in principle, i.e., the linear m
mentum relaxation and the pressure anisotropy relaxa
rate. The latter rate is the sum of the former and thee-e
collision rate, although practically thee-e collision rate does
not play an important role~see next section!. In the present
BGK model of the low-frequency plasmon we consider t
electron plasma as a Q2DEG coupled to the outside thro
the ~three-dimensional! electrostatic field and through
unlike-particle collisions.

The complete fluid-dynamical equations based on
BGK approximation are24

Dtn1n“•uW 50, ~13!

H DtuW s1
“•P

mn
2

e

m
EW J

k

5n jk~uW j2uW k!, ~14!

whereuW is the electron fluid velocity~species k!, P is the
pressure tensor, on the right-hand side summation ove
speciesj Þk is assumed, andDt[] t1vW •¹W . The pressure
gradient term in the case of a two-dimensional Fermi ga
equal to (s0

2/n0)¹n, wheres0 is the adiabatic sound velocity
n jk is the resistance coefficient24 per mass density of specie
k against the drag exerted by speciesj and as such only
depends on the collision frequency of speciesk with species
j, the effective masses of speciesj andk, and the density of
target speciesj. The linear momentum collision terms for th
case of massive scattering targets lead to perturbations in
momentum balance that can be approximated by2nduW , as
only the electron species is perturbed. There is no coun
part in the continuity equation to the drag in momentu
balance, because we only consider particle-conserving c
sions. Because the low-frequency plasmon is described in
regime where the pressure perturbation is fully isotropic,
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viscosity term is included in the force balance. Density a
electrostatic fields are also coupled through Poisson’s e
tion @Eq. ~6!#. Linearization and Fourier decomposition
the continuity equation and force balance yield in the
sence of background mass~fluid! flow

2 ivñ1 in0kjv j̃50 ~15!

and

2 ivv ĩ2
iek',iw

m
1 ik i

s0
2

n0
ñ52ncv ĩ . ~16!

Substituting Poisson’s law into the inner product of for
balance withkW , and eliminating the fluid velocity through th
continuity equation, we find the dispersion equation

v21 incv5
2pe2n0ukW u

e rm
1k2s0

2 . ~17!

In terms of the screening wave numberks[kTFvm
2 /(2s0

2) the
eigenfrequency may be written

v5@~ksk1k2!s0
22nc

2/4#1/22nc/2. ~18!

The sound velocitys0 is, at any temperature, given by26

s05
2P

mn
. ~19!

Starting from the grand-canonical thermodynamic poten
for an ideal Fermi gas with spin 1/2 over a surface areaA,

FFD52
mA

p\2
b22E

2bm

`

dx ln~11e2x!, ~20!

the pressure, asP52FFD /A (A→0), is seen to have the
following exact temperature dependence:

P

P~T50!
52~bm!22E

2bm

`

ln~11e2x!dx, ~21!

whereb[1/(kBT). This determines the temperature depe
dence of the sound velocity through Eq.~19! and thereby
also that of the screening wave numberks5kTFvm

2 /(2s0
2).

The logarithm in the above integral can be analytica
determined~convergence radii are 1! without approximations
by expanding the logarithm in ln(11e2x)5 ln(11ex)2x for
smallex in the negative domain and expanding ln(11e2x) for
small e2x in the positive domain. This yields

s0
25

1

2
vF

2 H 11F1

3
p222(

n51

`

~21!n21z2nG ~bm!22J ,

~22!

where the sum involving the fugacityz[ebm can be approxi-
mated by its first term even for the case whenT'TF .

IV. FREQUENCY MATCHING

While the electron-electron scattering rate with regard
the energy of a quasiparticle is quadratic inT/TF ,27,28
d
a-

-

l

-

o

ne-e5
p

8
t2F ln~t!1

ln~8!

2
20.083G , ~23!

where t[T/TF , and the electron-electron momentum a
isotropy relaxation rate for degenerate systems is reporte
be much slower thanne-e as given above, namely a facto
}t2 slower, except within a cone of orderAt.29 In the
present work we will therefore neglect the electron-elect
collisions altogether. The three-wave interaction, then,
limited to nonideal systems. Because the electron momen
relaxation rate due to all other types of collisions affects
momentum of the electron fluid as a whole, it is necessar
keep this rate as low as possible in order to prevent str
damping (}nc/2). This prompts consideration of the regim
v,nc,v0. The linear momentum relaxation reduces t
real frequency for a givenk,kTF , thereby reducing the
phase velocity of the low-frequency plasmon such tha
becomes equal to the group velocity of the pump plasmon~s!,
which is roughly the phase matching condition. As can
seen from the position of the participating modes in the l
ear dispersion curves~cf. Fig. 2!, the idler wave is rather
close to the pump, such that a Taylor expansion of the
ference of their frequencies is allowed for purposes of illu
tration. However, in the numerical calculations the exact
pressions for the pump and idler frequencies are taken
account, as the danger otherwise might be that in relatio
the ~much! lower excited frequency the error in the Taylo
expansion is not negligible. Let the group velocity of hig
frequency plasmons near the pump and idler bevg,h . Then,
within the context of the Taylor expansion, wave numbek
and frequencyv of the low-frequency mode both matc
whenkvg,h'v, i.e.,

k2~vg,h
2 2s0

2!'kkss0
22nc

2/4. ~24!

Becausevg,h.vF as the pump wave has to be in th
purely oscillatory regime while, except for highly nondege
erate regimes,s0.vF /A2,vF , there is a solution to the
resonance condition provided the plasma frequency in
absence of linear momentum relaxation exceeds half the
ear momentum relaxation rate. Note that the plasmon
quency in the presence of linear momentum relaxation
reduced, such that the required inequality for pressure i
ropy on the time scale of the excited frequency can be m
From Eqs.~18! and ~61! the wave number is found to be

k5
ks

2@vg,h
2 /s0

221#
S 16H 11F12~vg,h

2 /s0
2!

nc
2

ks
2s0

2G J D 1/2

,

~25!

while the threshold linear momentum relaxation rate is

nc<~vg,h
2 /s0

221!21/2kss0 . ~26!

Inclusion of linear momentum relaxation in the hig
frequency plasmon dispersion equation does not significa
modify the frequency matching condition, because in or
of magnitude this modification could be estimated from t
same effect on a mode of higher frequency given by
Euler equations with a BGK term added. From the abo
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mentioned threshold condition withvg,h
2 >vF

2'2s0
2 , we ob-

tain n2/4<ks
2s0

2/4!2ks
2s0

2 . Therefore, up to an error of rela
tive order (nv /v0)2/8,

v.v0S 12
nc

2

8v0
2D , ~27!

where v0 is the high-frequency eigenfrequency in the a
sence of collisions. Applying this rough estimate we see t
the frequency matching conditionv02v15v only acquires
an additional term through BGK effects on the pump a
idler by 2nc

2/(8v1
2) on the left, which is small compare

with the excited frequencyv, because, as a prerequisite f
the matchingv1@nc . Figure 2 indicates the positions on th
dispersion curves in a typical example of a three-wave re
nance.

V. MODE-COUPLING EQUATIONS

To analyze the mode coupling we will assume, for si
plicity, one-dimensional perturbations in a fully degener
Fermi gas. The high-frequency modes are only needed
narrow portion of wave numbers, between idler and pu
waves, in which we can take the dependence on wave n
ber of frequency to be linear, as evidenced from the hi
frequency dispersion equation. To avoid a very complica
nonlinear kinetic treatment we will represent the hig
frequency modes by a dispersion equation that is linear a
as the dependence of frequency on wave number betw
pump and idler waves is concerned~although with an offset!
and adopt otherwise the same nonlinear fluid equations a
the low-frequency modes. Implicitly we thereby approxima
its form ~as opposed to thelocation of the points on the
dispersion curve! by that of the low-frequency dispersio
equation in the range where we do not need the disper
equation. Eliminating the electrostatic potential from t
fully linear Poisson equation@Eq. ~6!# the normal modesaL
andaH for the low- and high-frequency waves are combin
tions of the dynamical variablesn̄/n0;exp(ikx2iwt) andv̄x ,
i.e., a5n̄/n01l v̄x , where in both low- and high-frequenc
cases the coefficientl is determined by requiringa to be an
eigenmode in the linear case, which yields

aL,H5
n̄

n0
1

k

vL,H*
v̄x , ~28!

in which thevL,H are the eigenfrequencies of the low- a
high-frequency modes, respectively, the latter being given
the fully kinetic dispersion relation. From the continui
equation the relation between the normal modes and the e
tron density perturbation is obtained, i.e.,

aH,L5S 11
vH,L

vH,L* D n̄H,L

n0
. ~29!

Turning to the nonlinear fluid equations, the nonlinear
involving the sound velocity, which vanishes whens0

2.vF
2 ,

will be neglected, and the only nonlinearities that remain
]x(nvx) in the continuity equation andvx]x(vx) in force
balance. Expressing the real variables~e.g., ñL) in terms of
-
at
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on
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e

the dynamical variables@in this example1
2 (ñ(0)1ñ(1)) and

its complex conjugate! and collecting terms with the sam
Fourier component, the following set of mode-couplin
equations is obtained:

~] t1 ivL!aL5cL
(0,1)aH

(0)aH
(1)* , ~30!

~] t1 ivH
(0)!aH

(0)5cH
(1,L)aH

(1)aL , ~31!

~] t1 ivH
(1)!aH

(1)5cH
(0,L)aH

(0)aL* , ~32!

where the mode-coupling coefficients are given by

cL
(0,1)52

ikL

16 S vH
(0)1vH

(1)1
vH

(0)vH
(1)

vL*
D , ~33!

cH
(1,L)52

ikH
(0)

16

vL*

Re~vL! S vH
(1)1vL1

vLvH
(1)

vH
(0) D , ~34!

cH
(0,L)52

ikH
(1)

16

vL

Re~vL! S vH
(0)1vL* 1

vL* vH
(0)

vH
(1) D , ~35!

wherevf,H and vf,L are the average phase velocity of th
pump and idler waves, and the~complex! phase velocity of
the low-frequency wave, respectively.

To simplify notation define

a0[aH
(0) , a1[aH

(1) , a2[aL , ~36!

c0,1[cL
(0,1) , c1,2[cH

(1,L)* , c0,2[cH
(0,L) , ~37!

v0[vH
(0) , v1[vH

(1) , v2[vL , ~38!

and define moduli and phases for all amplitudes and coup
coefficients, aj5uje

2 i Re(v j )t1 if j , ci j 5v i j e
iu i j , the mode-

coupling equations can be shown to be equivalent to the
equations

] tu05v12u1u2 cos~F1u12!, ~39!

] tu15v02u0u2 cos~F1u02!, ~40!

] tu252
1

2
ncu21v01u0u1 cos~F1u01!, ~41!

] tF52Fv12

u1u2

u0
sin~F1u12!1v02

u0u2

u1
sin~F1u02!

1v01

u0u1

u2
sin~F1u01!G , ~42!

whereF[f02f12f2. From Eqs.~33!–~35! it follows that

u0,15u0,252p/21uc , u1,25p/21uc , ~43!

whereuc[ arg@11vHvL /(2uvLu2)# represents the effect o
dissipation on the phases of the coupling coefficients.

VI. NONLINEAR EVOLUTION

Although linear damping is slow compared with the o
cillation frequency of the high-frequency plasmons and th
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does not affect their dispersion relations, it is comparable
the linear damping of the low-frequency plasmons and
nonlinear time scales of evolution. Therefore, in the desc
tion of the nonlinear evolution of the three-wave system i
necessary to include linear damping for all plasmons. F
thermore, a model of the SRS driving force is required.
be specific, let us assume that in the absence of the m
coupling the overall effect of the driving force and losses
any driven high-frequency plasmonuH is to bring and main-
tain its amplitude to a certain leveluH,m at a characteristic
rate nH,d and proportional to its relative deviationuH,m

2uH from it. Defining F̂[F1uc2p/2 the dynamical sys-
tem may then be written as

] tu052v12u1u2 cosF̂1n0,d~u0,m2u0!2
1

2
ncu0 ,

~44!

] tu15v02u0u2 cosF̂1n1,d~u1,m2u1!2
1

2
ncu1 , ~45!

] tu25u0u1 cosF̂2
1

2
ncu1 , ~46!

] tF̂5 sinF̂S v12

u1u2

u0
2v02

u0u2

u1
2v01

u0u1

u2
D . ~47!

As the relevant collisions are between electrons and n
tral species within the framework of a BGK model we a
sume all three plasmons share the samenc while for the case
of FDG we will take the ratesnd,H[nd and asymptotic lev-
els uH,m[uH to be the same for both high-frequency pla
mons. Because the estimategLandau'2Im(e)/]vRe(e)
shows that the Landau damping is less than 1/1000 of
collisional damping for the cases studied here we appr
mate their damping rate by the collision ratenc , which when
dominated by electron-neutral collisions as assumed here
be taken to be the same for all three waves. We conside
case when both high-frequency modes are driven through
use of two lasers with different wave numbersk0,1 ~hence
different pump wave numbers in the Q2DEG! and the use of
two separate slabs with different carrier density within a d
tance d<k0,1 from and parallel to the Q2DEG, suc
that the three-dimensional plasma frequenciesvp,3D
[(4pn3De2)/(m* e3D)1/2 are equal to the frequenciesv0,1,
respectively. Alternatively, one slab with a gradient in t
carrier density could be considered. No distinction will
made between the growth time of the three-dimensio
stimulated Raman signals for the high-frequency modes.
ter an initial rise time (gSRS

21 ) due to the startup of SRS in th
3D medium to a level for the amplitudes of the norm
modes (ui) that would be equal to a certain levelum in the
absence of the mode coupling a stationary state sets in. I
initial phaseF̂ is set to zero it remains so during the evol
tion; if not it relaxes to zero typically in a fraction of 1 p
@Fig. 7~a!#. The time needed for the low-frequency plasm
to reach its asymptotic value typically is of the order of
picosecond or two@Fig. 7~b!#. Figure 8 shows the numerica
solution for the asymptotic values of the ratio of the~dy-
namical! density perturbation of the low-frequency mode d
to
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vided by that of the high-frequency mode in percentage a
function of both the strength and growth rate of the 3D S
process as represented by the asymptotic normal mode
plitude of the high-frequency modes in the Q2DEG in t
absence of mode

FIG. 1. Frequency mismatch and terahertz frequencies~both lin-
ear rather than angular! versus the ratio of the terahertz wave num
ber divided by the Thomas-Fermi wave number for~a! T577 K,
and ~b! T5300 K, for the case when the total carrier dens
ntotal5231012 cm22. The infrared dielectric constants of the in
sulator and semiconductor are chosen to bee ins53 andesc516,
respectively. The distances from the Q2DEG to the grating an
the illuminated portion of the semiconductor aredins52000 Å and
dsc51000 Å, respectively. The pump wave number is chosen
correspond with the peak of SRS against plasmons (k052klaser

.1.04723105 cm21.0.097kTF) for a 3D refractive indexnr ,3D

53.5 and a vacuum laser wavelength of 4.2mm. The wave number
k0 determines the pump frequency through the high-frequency
persion relation. This frequency should equal the three-dimensi
plasma frequency excited by SRS. Its~linear! value is f 054.578
THz. The mobility was selected to bem56708 cm2/(V s). The
semiclassical approximation for the mass dependence for nar
gap semiconductors is adopted~Ref. 30!, such thatm* 50.03 for
this total carrier density. The~linear! electron momentum relaxation
frequency is thereforef c51.542 THz. The excited frequency isf
50.833 THz. The 0-subband density is taken~Ref. 30! to be n
50.67ntotal .
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coupling. Additional losses due to the distance between
3D medium and the Q2DEG and between the Q2DEG
the grating are not taken into account in Fig. 8 and amoun
a multiplication of the ordinate bye2kHdsce2kLdins (.0.28
for the parameters of Fig. 8!.

Finally, we give an analytical criterion for the onset
parametric instability~one driver only!. Setting] t50 in all
dynamical equations we see that the asymptotic value of
normal mode of the pump waveu0,̀ corresponds to the con
dition for the marginal point of a purely growing instabilit
for the envelope of the pump plasmon, i.e.,

u0`5
nc/2

Av01v02

. ~48!

Then a steady state with nonzerou2,̀ transpires if and
only if

u2`5S v01

v02
D 1/4S @nd~um2u0`!2ncu0`/2#

v02
D 1/2

~49!

is real and nonzero, whence if and only if

FIG. 2. Fast and slow wave dispersion relations showing
interacting triplet and the electron momentum relaxation freque
for ~a! T577 K and~b! T5300 K for the parameters pertaining t
Fig. 1.
e
d

to

e

Av01v02um.
~nd1nc/2!~nc/2!

nd
. ~50!

This criterion agrees with numerical solutions. Howev
the threshold is not met for the presently studied param
set ~see Fig. 3! chosen to obtain resonance with thre
dimensional SRS in a moderately low-gap semiconducto

VII. NUMERICAL ANALYSIS ON THE USE OF PUMP
PLASMONS FROM STIMULATED RAMAN SCATTERING

In the numerical analysis we use a fit to the semiclass
approximation30 for the dependence on total carrier dens
of both the effective mass and the density of the zeroth s
band of a Q2DEG consisting of InSb. This approximati
agrees closely with the more complete theory.31,32 For the
electro-optical properties of the low-gap semiconduct
InSb and InAs as three-dimensional media we refer to
ticles in a recent compendium.18,33

Our main objective in this section is to demonstrate t
SRS against plasmons in a three-dimensional medium a
cent to the Q2DEG may in principle be used for the gene
tion of the high-frequency pump plasmons needed for
currently proposed three-plasmon interaction in a Q2DE
This issue depends admittedly on the maximum obtaina
power through SRS in three-dimensional media, which
ultimately an experimental issue beyond the scope of
present article. However, we show here that the resona
conditions, first between the three-dimensional plasmon
a Q2DEG plasmon with finitek/kTF , and subsequently be
tween the Q2DEG plasmon thus created and two low
frequency plasmons, can be met, such that the lowest
quency plasmon is in the terahertz range and such t
through variation of total carrier density and impurity leve
this frequency can be tuned across the terahertz range.
thermore, the resonance between the three-dimensional
mon and the Q2DEG plasmon of finitek/kTF can be accom-
plished at peak SRS power~backscatter!. Leaving aside
considerations of manufacturability, we also show that th
statements can be made not only for fairly low temperat
~77 K!, but also for room temperature (T5300 K!.

The illumination by a laser of a frequency below the m
terial’s energy gap but at least a factor well over 2 above
plasma frequency associated with the charge carriers in
three-dimensional medium, and at a Poynting flux~S! below
the breakdown voltage but exceeding the stability thresh
for SRS would yield a spectrum of plasma waves peaking
the backscatter wave numberkp,3D52klaser . In terms of the
electric field amplitude of the laser light

E05S 8pS

cAe
D 1/2

~51!

and assuming the predominance of collisional damp
(nc,3D) the threshold condition for the onset of SRS is giv
in the underdense regime by34

eE0

km* c S n

ncr
D 1/4

.n
vp3D

v1
. ~52!

e
y
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FIG. 3. Dependence of the terahertz frequency on the~total! carrier density for three different impurity contents including the choice
Figs. 1 and 2:~a! T577 K, ~b! T5300 K. Because the mobilities are assumed to be dominated by impurities they depend on carrier
through the Fermi velocity and the mean free path. Therefore we assumem}1/An. At a reference total carrier density of 1011 cm22 the
values of the mobility were taken to be 30 000~solid squares!, 40 000~solid circles!, and 50 000~upward triangles! cm2/(V s). All other
parameters are the same as in Figs. 1 and 2. Also,~c! its dependence on the mobility forntotal5331012 cm22 for T577 K andT5300 K,
and the same parameter setting. Finally,~d! the dependence on mobility of the required three-dimensional carrier density for the
parameter setting.
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Provided a strip of the three-dimensional medium ad
cent to the quasi-two-dimensional layer is excited such
the distance of the strip to the layer does not exceed the w
number of the excited three-dimensional plasmon, the t
and three-dimensional media can be considered as inter
etrating, as discussed before. A two-dimensional plasm
(v0 ,k0) is then excited by the three-dimensional plasm
whenv05vp,3D andk052klaser . Because the group veloc
ity of the two-dimensional pump~and idler! plasmon is low
the phase velocity of the excited low-frequency plasm
should be considerably lower than the sound velocity of
low-frequency plasmon. Therefore, any excited lo
-
at
ve
-

en-
n

n

n
e
-

frequency plasmon must have a significant correction in
real frequency caused by the linear momentum relaxa
rate. This can only happen if the relaxation rate is not too
removed from the lowest plasmon frequency. The sharpn
of the resonance and the location of the triplet on the hi
and low-frequency plasmon dispersion curves are illustra
in Figs. 1 and 2, respectively. As shown in Fig. 3 the te
hertz frequency is tunable throughout a wide range by va
ing the total carrier density and~more important! the impu-
rity level, such that the momentum relaxation rate itself
varied through the dependence of the mean free path on
total carrier density. Tunability could thus be achieved
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principle by varying the doping level in the Q2DEG fro
one segment to another, using the total carrier density~gate
voltage! for fine tuning. That the frequency of the excite
plasmon could be in the terahertz regime and that the re
ation rate satisfies the conditionsv/vc!1!v1/vc , albeit
for the former inequality only marginally, is illustrated i
Figs. 3 and 5. The parameterst[T/TF andks /kF are small
as required~Fig. 4!. Furthermore, these conditions are m
while the illuminated area is within about one inverse pu
wave number from the Q2DEGandwhile the grating is well
within one inverse terahertz plasmon wave number from
Q2DEG @see Figs. 4~a!, 4~b!, and 5~b!#. The pump wave
number in the Q2DEG is limited by the energy gap of t
three-dimensional medium, for which in the present num
cal results, we assumed a value not less than that of In
which is given by18

Eg50.41522.7631024
T2

T183
eV, ~53!

whereT is in K (0,T,300). We assume here that the e
ergy gap narrowing due to high doping levels is such tha
value for the laser pump wavelength equal to 4.2mm
('0.28 eV! is still allowable. Finally, we note that the re
sults for pure InSb are limited to 77 K because of the la
wavelength of 8 mm and the low-energy gap of InSb.

VIII. CONCLUDING REMARKS

Three-wave interaction between three plasmons in
same subband of a weakly coupled, quasi-two-dimensio
Fermi gas of spin 1/2 was shown to be possible in princi
across regimes of different collisionality. In thre
dimensional plasmas three-wave interaction among elec
plasmons is known to be impossible. The nonlinear evolut
has been quantified through the derivation of the mo
coupling equations using a fluid approach to the convec
nonlinearities. It was shown that SRS against plasmon
peak power~backscatter! through the use of a nearby thre
dimensional semiconducting medium of a moderately n
row gap and a gradient in the charge carriers, or, alte
tively, two parallel segments of different carrie
concentration, could in principle provide plasmons with t
correct wave numbers to generate a Q2DEG plasmon in
terahertz range.

One open question is the output power that is maxima
obtainable in the three-dimensional SRS process, as this
put power is input into the presently proposed three-w
interaction within the Q2DEG. The terahertz output pow
depends quadratically on it. In this work only the relati
between input and output power within the quasi-tw
dimensional plasma has been quantified. Therefore, the
tainable power levels are an open question depending on
experimentally achievable three-dimensional density fluct
tion level of coherent longitudinal excitations. Given such
level the present theory predicts terahertz output through
quency difference generation. For the purpose of genera
a suitable pump plasmon in the Q2DEG it is not essen
that the SRS in the nearby three-dimensional medium
against plasmons, the only requirement being that the exc
longitudinal mode must correspond to a solution of t
quasi-two-dimensional dispersion equation for hig
x-
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frequency plasmons. However, because power transfer f
the three-dimensional medium to the Q2DEG occurs thro
resonance, a sharp peak in the spectrum of the particular
process used for this purpose would be an advantage.

Another open question is the control over the thre
dimensional plasma frequency. Because the thr
dimensional plasma frequency depends on the effective m
and infrared refractive index, which in turn depend on t
abundance of optically excited carriers~of effective mass
;1) and on the total carrier density, hence on the la
power, it is a rather complicated task to theoretically pred

FIG. 4. For the parameter setting of Fig. 3 and for a refere
mobility corresponding to the lowest curve in Fig.
(50 000 cm2/V s) ~actual mobility depends on total carrier densit
}1/Antotal the following parameters are plotted:r s[kTF/2kF , t
[T/TF , the ratios of the frequencies of the low-frequency plasm
divided by the collision frequency (v/nc), the collision frequency
divided by the frequency of the idler plasmon (nc /v1), and the
thickness of the insulator between the Q2DEG and the gratin
terms of the wave number of the low-frequency plasmon (kdins):
~a! for T577 K; ~b! for T5300 K.



fre
e
te
x
rs

ny
tti
ng

te

the

ity
cess
of

tity.
city
so-

ve
on,
av-
nts.

ncy
he
ble,
v-

he
for
n is
w-
t a
e

at-

re-
r-

th
d

l

a
o

ap-
ion

ing

rt
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conditions under which the three-dimensional plasma
quency will equal the quasi-two-dimensional pump fr
quency of a given wave number. The problem is aggrava
by uncertainties about the lifetime of carriers optically e
cited into the conduction band of low-gap semiconducto
particularly in relation to the plasma period. Without a
enhancement of the product of effective mass and permi
ity the carrier density required for the conditions pertaini
to Fig. 3~c! is in the 1016–1017 range; see Fig. 3~d!.

The essence of the present finding of three-plasmon in

FIG. 5. InSb as both the Q2DEG and the 3D medium for
same parameter setting as Fig. 3 except for the 3D refractive in
nr ,3D54.0, and the vacuum laser wavelengthl laser,vacuum

58 mm: ~a! dependence of the~linear! terahertz frequency on tota
carrier density for three values of the reference mobility@m(ntotal

51012 cm22)580 000, 100 000, and 120 000 cm2/V s from top to
bottom#; ~b! parametersr s ,t[T/TF , v/vc , vc /v1 ,kdins versus
the total carrier density for a reference mobilitym(ntotal

51011 cm22)5100 000 cm2/V s. These results are valid forT
577 K but not extendable to 300 K because of the low-energy g
given the present relatively short vacuum laser wavelength
8 mm.
-
-
d

-
,

v-

r-

action depends on the shift in real frequency caused by
linear momentum relaxation ratenc incorporated through a
BGK model. This shift is due to the existence of a veloc
drag and the absence of a corresponding dissipative pro
in the equation of continuity. Such a shift is possible, but
a different physical origin~ionization recombination! and
hence would always be an independent physical quan
The above-mentioned shift results in a drastic phase velo
reduction of the low-frequency plasmon enabling a re
nance for low wave number (k!ks) and with pump and idler
wave numbers down to a finite fraction of the effecti
screening wave number of the low-frequency plasm
which is the screening wave number calculated with the
erage of the semiconductor and insulator dielectric consta
Because the phase velocity of the excited low-freque
plasmon is approximately equal to the group velocity of t
high-frequency plasmons, retardation effects are negligi
provided this group velocity, typically between one and se
eral times the Fermi velocity, is small compared with t
velocity of light, which is assumed here and which is true
the quantified examples. Frequency difference generatio
predicted to result in a saturated amplitude of the lo
frequency plasmon after approximately 1 or 2 ps and a
power level quantified by Fig. 8, which information might b
used for an experimental test.
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APPENDIX

We discuss the conditions under which the integral rep
sentation@Eq. ~12!# of the high-frequency plasmon dispe

e
ex

p,
f

FIG. 6. Comparison between the lowest-order analytical
proximation for the high-frequency plasmon dispersion equat
@Eqs. ~A8!# and the integral equation@Eq. ~12!#, for r s50.16 and
t[T/TF50.16. All other data have been obtained by comput
the real rootv r to the real part of the permittivitye given by the full
integral equation@Eq. ~12!#, and approximating the imaginary pa
of the frequency byg'2 Im(e)/@]vr

Re(e)#.
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sion equation may be approximated through an expansion
low electron temperature. The kernel in the integral repres
tation depends on the integration variable throughvm8
[(2m8/m)1/2. The relevant nontrivial integrals to be pe
formed are

I 6[
kTF

k

1

4vq
~v6

2 2k2vm
2 !1/2J6 , ~A1!

with the definition

J6[E
(2bm/2)

` ~12a6x!1/2

cosh2 x
dx, ~A2!

where we defineda6[(2T/TF)/( ṽf,6
2 21), an inverse mea

sure of the closeness of the~Doppler-shifted! phase veloci-

FIG. 7. Nonlinear evolution:~a! Time dependence of the phas

F̂, essentially the phase difference between the normal mode
Eqs. ~44!–~47! for various initial conditions, demonstrating subp
cosecond relaxation to zero. Parameters:v0150.57931012 s21,
v025v1258.5131012 s21, vc55.0931012 s21, u0m50.03, nd

52.531012 s21. The low-frequency plasmon amplitude satura
to the same value at a much later time~1–2 ps!: ~b! evolution of the
normal mode of the low-frequency plasmon for the same case a
~a!.
or
n-

ties and the Fermi velocity in units of the thermal velocit
The real (J6,r) and imaginary (J6,i) parts are equal to

J6,r5
1

a6
E

(2a6bm/2)

1 ~12x!1/2

cosh2~x/a6!
dx, ~A3!

and

J6,i5a6
21E

1

` ~x21!1/2dx

cosh2~x/a6!
. ~A4!

Provideda6!1, cosh22(x/a6)'0 unlessx!1. Only then is
the imaginary part exponentially small. For the full integr
equation noa priori assumption is necessary, since Land
damping manifests itself through the disappearance of a
root to the real part of the permittivity, while if the solutio
can be obtainedg'2 Im(e)/]vRe(e). In the expression for
the real part ofJ6 the square root in the numerator can th
be expanded for smallx!1. Keeping only the first three
terms and partially integrating the second and third term
find

Jr5
1

2
tanh

1

a6
1

1

2 S 21
1

a6
2 21

D tanh
TF

T

1a6S ln cosh
1

a6
2 ln cosh

TF

2TD
1

1

4
a6

2 F E
0

`

dj
j2

cosh2~x!

2~a6
221a6

2111/2!e22/a6

2S 1

4
TF

2/T21
1

2
TF /T1

1

2DeTF /TG . ~A5!

in

in

FIG. 8. Time-asymptotic ratio of the density fluctuations of t
terahertz plasmon and the high-frequency plasmons in percent,
function of both the density fluctuation relative to background d
sity of the high-frequency plasmon~in percent! and the character-
istic rategSRS,3D of the three-dimensional SRS~in units 1012 s21).
Parameters as in Fig. 3 with the actual mobility equal
10 047 cm2/V s, and a density of 331012 cm22. Other ~depen-
dent! parameters arev0155.7931012 s21; v025v1251012 s21;
nc52.8731012 s21.
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Here, the only remaining integral is equal to 0.8225. T
degree of smallness of the imaginary part follows from
substitution cosh(j)'euju/2 under the same restriction:

Ji5A2pa6 exp~22/a6!, ~A6!

which is exponentially small whena6!1, i.e., when the
difference between the phase velocity Doppler-shifted
6vq/2 and the Fermi velocity is small compared with t
thermal velocity. In conclusion, fora6!1 and to within an
error of ordera6

2 /4 the integralsJ6 may be approximated by
the above expressions. The high-frequency plasmon dis
sion equation reduces to its zero-temperature limit when
addition T/TF!1, since thenJ652. The relative errors in
the integralsJ6 each are therefore half of the absolute valu
given above. The conditiona6!1 reflects the importance o
finite temperature effects upon waves with a phase velo
that differs from the Fermi velocity by about the therm
velocity or less. With this approximation the permittivity b
comes

e511
kTF

k
S 11

Aṽ2
2 212Aṽ1

2 21

k/kF
D , ~A7!

v5A~11d!vsc , ~A8!

where

vsc[
~kTFk1k2!vm

~2kTFk1k2!1/2
~A9!

is the semi-classical limit (k/kF↓0) of the eigenfrequency
and where

d[S k2

2kTFkF
D 2

~112kTF /k!. ~A10!
o

e
e

y

er-
in

s

ty
l

Because the errors are additive the combined relative erro
the numerator involving the square roots in the above exp
sion for the permittivity equalsa2/4, wherea by definition is
the maximum of thea6 .

The above-derived simplified dispersion relation exhib
the well-known23 first-order Taylor expansion ink/kTF , i.e.,

v~k!kTF!'vsc'S 11
3

4

k

kTF
DA2kkTFvm . ~A11!

Even in the low-temperature regime it is only possible
satisfy both the real and imaginary parts of the dispers
equation for purely oscillatory waves when both Dopple
shifted phase velocities exceed the Fermi velocity in mag
tude and provided the expression obtained by squaring b
sides of the dispersion equatione50 as given by Eq.~A7!
allows for non-negative values of the product of the tw
square roots occurring in it. The latter condition is, in term
of ṽf[v/(kvm):

ṽf
2 >11

1

2 S k2

kTFkF
D 2S 11

kTF

k D 2

2
1

4 S k

kF
D 2

. ~A12!

In terms of wave number the above condition is met if a
only if

k312kTFk2<2kTF
2 kF . ~A13!

A quantitative comparison between the solutions of
integral form of the dispersion equation and even the lowe
order approximation inT/TF given above shows agreeme
~see Fig. 6! within a few percent for the frequency and eve
better agreement for the~more relevant! group velocity up to
the wave number at which the integral equation fails to ha
a solution altogether due to Landau damping. All resu
other than Fig. 6 given here are obtained from the full in
gral dispersion equation.
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