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Longitudinal and transverse components of excitons in a spherical quantum dot
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Exciton states confined in a spherical quantum(@id) are studied in a weak confinement regime with the
consideration of the electron-hole exchange interaction and induced surface charge density. Except for special
cases, most exciton states are longitudihal-transvers€T) mixed modes. With an increase of radius, e
mixed modes approach bulk T, and surfacéS) modes. When the energies IoT mixed modes get close to
that of theSmode, they acquire considerable amounSahode character. It is demonstrated that the effect of
the surface charge density does not affect themode exciton confined in an arbitrary shape. Within the
long-wavelength approximation, one-photon transitions toward thelparel T modes are forbidden, and for
other states the oscillator strengths per unit volume become maximum around the energ$ ofdtie.

. INTRODUCTION interactiont®18-20 byt they are not enough to answer the
question mentioned above. In considering tAesplitting or
Recently, exciton states confined in a zero-dimensionathe effect ofe-h exchange interaction, there are two different
microcrystal, which is usually called quantum d@D), viewpoints. In one caséa) this interaction is considered as a
have been investigated extensively. Various QD’s embeddegart of matter energy, and in the othép) it is considered to
in glasse$? and in alkali-halide crystafs® have been grown. e the interaction energy between the matter polarization
The optical properties of these QD’s have been studiedensity and(external longitudinal electric field. In each
mainly in the aspect of the quantum-size effect of opticallyscheme, the definition of the matter Hamiltonian, susceptibil-
excited electron-holeg-h) pairs. The effect manifests itself ity tensors, and electromagnetiem) field as a source of
as blue shifts of absorption and luminescence peaks. matter polarization is different. The relationship between the
The motion of are-h pair is quite different in two limit- two schemes has recently been discussed by one of the
ing situations characterized by the ratio of the QD’s $e authors?! who pointed out how these two schemes are con-
to the effective Bohr radiusag of an exciton in bulk nected via thee-h exchange interaction. The works of
material’® The energy of are-h pair is mainly determined Ruppin® and Ekimovet al® are based on schenb), and
by the individual size quantization with a small correction those by Takagahatdand Goupalov and Ivchenkbbelong
due to the Coulomb interaction in the case R§<ag to schemda).
(strong-confinement regimeln the opposite situatiofRg In schemeb), one calculates the optical response by solv-
>ag (weak-confinement regimethe e-h relative motion ing Maxwell equations with a given susceptibility and as-
stays almost as in the bulk and only the center-of-nfess,) suming an additional boundary condition for connecting em
motion is affected by the confinement. The evolution of anfield across the boundary of confinement. The resonant struc-
e-h pair state from strong- to weak-confinement regime hagsure reflects the level scheme of the QD, but every level is
been studied via variational methods based on effective-mashifted and broadened from the corresponding level scheme
theory!1-1¢ (a) due to the interaction with transverse em field. From the
It is well known that excitons in a bulk crystal have lon- optical spectrum, it is hard to tell the and T characters of
gitudinal (L) and transversé€T) characters according to its each resonant level.
polarization direction with respect to the translational wave For the study of the level structure in schefag we start
vector.(In the absence of translational symmetry as in QD’s,from a general expression of the applicalbld exchange
the definition of theL and T modes can be generalized as interaction, not only to the bulk crystals, but also to QD’s. It
rotP=0 and divP=0, respectively.In high-symmetry crys- was demonstratétithat the use of the induced charge den-
tals, theL andT characters are kept in the exciton dispersionsity (off-diagonal matrix element of charge-density operator,
curves. When the exciton is confined, the boundary conditiorr -div of the induced polarizatiorfor each size-quantized
for its wave function leads to a set of discrete allowed waveexciton state is the most general way until now to express the
vectors on the dispersion curve. The problem is whether theffect of LT splitting. The Coulomb interaction of these in-
boundary condition can be applied to theand T branches duced charge densities coincides with &ié exchange ma-
separately or not, but it is hard to find any evident reason thatix element, and this form can be directly applied to both
allows it. Theoretically, it has not been made clear whethebulk and confined systems and also to both phonons and
the same level scheme occurs in a QD as in the bulk witlexcitons. Our study in this paper is based on schéane
respect to the. and T level arrangement. However, an ex- together with the modeling of the induced charge densities
perimental work claims or suggests the existenceTosplit-  for size-quantized excitons appropriate for the weak-
ting in a QD as in the bulk’ confinement regime.
Some theoretical studies on spherically confined excitons As another point of this work, we include the effect of
have been made, including thee-h exchange nonresonant polarization in QD and its surrounding materi-
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als. There are many other polarizations in the system, whiciment regime, including the-h exchange interaction and
are usually treated as a background dielectric medium iimmage-potential effect. We assume that the system consists
considering exciton resonances. If one treats only the res@f a background dielectric and a number of electrons contrib-
nant modes as dynamical variables, the effect of nonresonanting to the formation of the exciton states. The effect of the
modes can be taken into account by multiplying a screeningackground dielectric is considered in the Hamiltonian of
constant 1¢, to Coulomb interaction energy. For a finite-size these electrons. In general, the image-potential energy com-
system, however, we need an additional consideration of thimg from more than one charged particle is divided into two
induced surface charge density due to the polarization of thparts, i.e., the energy of image potential induced by itself and
background dielectric(i.e., the assembly of nonresonant other charged particles. We describe the former “self-
modes. This mirror-charge or image-potential effect modi- energy” part agj?U;,, and the latter part ag°V;,. Then, the

fies thee-h attraction energy and theh exchange interac- Hamiltonian is written as

tion among the resonant modes. The effect ofahe bind-

ing was studied by Brd$ and Takagahar¥, but the image-

potential effect on the latter problem has not been studied ﬁZVZ q?
The effect of the bulklike screening of tieeh exchange was 2| W)+ We(r) | + +32 E e ln—ril
considered in our previous wdtkbut the image-potential '
effect was neglected. The present work is a revised version

2 PUin(r) +3 2 2 42Vim(ry.171)

of our previous paper in this respect.

The present calculation shows the results of diagonalizing
the size-quantized kinetic energy of exciton c.m. motion and
the e-h exchange interaction among the resonant exciton
levels, with due consideration of the image-potential effect.
The radius of the sphere is changed in the weak-confinement 1 2
regime up to infiniF:y. Due to sgherical symmetry, all the +32,2 aVin(Ri R)) @3
levels are classified according to the total angular momentum
and its projection. Except for special cases, most levels have
LT mixed character in general. As the radius gets largerwherel indicates electron indexy, the mass of electrorwy
these levels tend to converge to thosé of, andS(surfaceé  the periodic potential by the crystal, the confinement po-
modes of the corresponding bulk system. The effect of théential of QD, €, the background dielectric constant of QD,
image potential shifts the energy of tBenode, but not those and R; the position of periodic positive ions. The last three
of T and L modes in the bulk limit. For finite radius, the terms are the image-potential energies of positive ions,
mixing of L, T, andS modes occurs in general. which ensures, in the case of charge neutrality, that the over-

This paper is organized as follows: In Sec. Il we provideall image potential becomes zero in the ground state.
an effective-mass equation of c.m. motion confined in arbi- The conduction and valence bands will be denotedvby
trary shape, including the-h exchange interaction and im- and u, respectively, each of which includes a spin quantum
age potential. In Sec. Ill the equation is applied to the spherinumber. The wave function of one exciton state can be de-
cal confinement case, and we will find some excitons to b&cribed by
pureL and T modes independent of confinement size. Ana-
lytical results of exciton states with infinite mass are ob-
tained in Sec. IV. In Sec. V the states of finite-mass exciton
are calculated numerically. THe and T characters and os- V= VE,L ; Fuu(RiR) P, 2.2
cillator strengths per unit volume are discussed. A summary
and conclusion are given in Sec. VI.

The level structure obtained from the present study is justhere®;i* is the Slater determinant of the configuration in
that of the matter system. How it is reflected in the opticalwhich an electron of a Wannier staf, (r —R;) is excited
spectrum must be calculated in the next step. From the viewnto ¢,(r —R;), andF,,(R;,R;) is the normalized envelope
point of scheme(a), this calculation is appropriately done function associated with the Slater determinant.
with the help of microscopic nonlocal theory of optical re-  Using the fact that a Wannier functiog,,,)(r —R) is
sponse developed by &%.2° The result is planned to be well localized around an atomic siR, we obtain the Schro
published in the near future. A preliminary account of thisdinger equation for the envelope function giving the excita-

[ES

+ Ei qzuimmi)—Z Zi 9?Vim(r1,R))

work has been presented elsewh@re. tion energyE’ from the ground state as follows:
iy’
Il. ELECTRON-HOLE INTERACTION 2 E Hopw w Forw (R R =EF L (RR)),
IN A CONFINED MEDIUM vl 2.3

Here we derive the effective-mass equation for the c.m.
motion of an exciton confined in a QD in the weak confine-with
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e . _ q° 1 c.m. motions. In this regime the image potential in té
Hopvr =1 8c(—1V) =g, (—1V))— G—WJFWC(RO attraction terms do not affect the relative motion
LI considerably!® The confinement potential is assumed to be
+We(Rj) + %[ Uin(R) +Uin(R)) infinite, and we apply the boundary condition that the wave
function of c.m. motion vanishes at the effective confinement
v (P B . boundary. Furthermore, we approximate that the wave func-
Vim( R ’R’)]}5 Opun’ 9Oy tion of the relative motion is the same as that in a bulk
crystal. Considering the simplest model of direct band gap at
+f drf dr'p* (r—R)) i 1 the band center with isotropic effective masses, we obtain the
G Vleg[r—r’| equation satisfying the c.m. motion in the effective-mass ap-
proximation as follows:
+Vim(r,r,) erMr(r/_Ri/)éijairj/, (24)
1
wheree. ande, are the energies of the conduction and va- E dr [¢(0)MVM]*~[VV L_l Ir—r']
lence bands, respectively, apg, is the matrix element of i
charge-density operator between the ground statedgfid , ,
i_e_, +Vim(r1r ) '[¢(O)”V’M’]GV’M’(r )
L(T—R)=0q¢*(r—R; r-R)). 2. h?
P ,u( )=q¢75( |)¢,u( i) (2.9 _ VZGVM(F)ZEGVM(I‘), 2.9

The last term in Eq(2.4) originates from thee-h exchange 2Mex

interaction?’~?°and it has the form of the Coulomb interac- , _
tion between induced charge densities,. The induced whereM is the transnational mass,,, and ¢ are the wave
charge density takes a finite value only for the same Spir_flunctlon of the c.m. and relative motlc_)ns_, respectively, Bnd
states ofv and u (spin-singlete-h pain) as a result of the IS the energy measured from the excitation energy toward the
inner product for spin states. In the following, we will con- transvgrse exciton at band center in a bglk crystal. We have
sider only the spin-singlet exciton and regazdand » as ~ @pproximated that the envelope functids,, does not
band indices excluding spin states. Note that the expressidil@nge over the range of effective Bohr radius, and the elec-
of the e-h exchange interaction in terms of the inducedt.ron or hole position is replaced by the position of c.m. mo-
charge densities is an exact and model-independent onHOn in thee-h exchange term. -
from which one can derive “short- and long-range parts” or Finally we obtain matrix elements of the Hamiltonian
“analytic and nonanalytic parts” of the-h exchange inter-
action. In the following model of this paper, we use a smooth h? . )
form of the induced charge density of a confined exciton, va’u’z_mJ’ dr G,(N V<G, ,/(r)
which is equivalent to neglecting analytic part of teeh
exchange interaction. 1 1

For Vg\Jlannier sites with larger distances than the extension +J drf dr’[—V-PVM(r)]*L—l m
of Wannier functions, one can expandrr’| to obtain the

?O|r|10\(/av>;c::hange part ., in terms of induced polarization as +Vim(r,r’)}[—V-Pyrﬂr(r’)], 2.9
1 1 ;
Hexch:l‘:,u' Vivi’<6_1|Ri_Ri,| with
Pou(r)=p,,$(0)G, (1), (2.10
+Vim(Ri,Ri") | |- oy 1 6 i (2.6)

where we have integrated by parts with respectamdr’ in

wherepu,,, is the induced polarization given by the e-h exchange term. The resultingth exchange term
corresponds to the nonanalytic part giving thel' splitting

“ :f dr p,.(1)r 2.7 energy in bulk systems. The intensity of the induced polar-
e YR ' ization u=|m, ,¢(0)| is obtained from the bulk limit. Sub-

stituting the polarization of the bulkL mode P(r)

In our previous work .to estimate the imgge-potentia.l eN-— 4 exp(k-r)/\V, whereV is volume andu is parallel tok,
ergy of e-h exchange interaction for exciton states in iy thee-h exchange interaction without the image potential
spherical QD, we introduced a virtual spherical boundary of,, Eq. (2.9, we get
dielectric constants and calculated the work to shrink the
boundary from infinity to the QD’s radilf8. However, this
procedure is incorrect because #wh exchange interaction u2= €1l 2.11
arises from the Coulomb interaction between different elec- 4 '
trons, as explicitly shown in the last terms of EJ.4).

In the weak-confinement regime the envelope function ofwhereA, 1 is the splitting energy of and T modes of exci-

an exciton is approximately separated into the relative andon.
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Ill. EXCITON IN A SPHERICAL QUANTUM DOT B. Electron-hole exchange energy

A. Set of bases In a confinement systera-h exchange interaction con-
sists of “direct” and image-potential terms, which corre-

and dielectric constané, that is embedded in an isotropic spond to the first and the second terms of the induced polar-

continuous medium with dielectric constagt. The crystal ~ 12ation interaction in Eq(2.9), respectively. For our model
forming the QD is assumed to have either the valence of€ induced polarization is written @&= Q. where u is
conduction band withs-like character and the other with the intensity of polarization given in E¢2.11), and the po-
p-like character that possesses three degenerate gtates larization charge density is obtained from
py, andp,. In this case three possible combinationsmf)
give the three transition-dipole momenis,, , each of which
is polarized in thex, y, andz direction, and thus the combi- 2 iy(kor)
nations of band indices can be indicated by the unit vectors  v.Q,;,\(r)= kn/pJ/\/;_‘]—n/YMA(f)'
&, ¢, and e,. In the following we will use three- a’ j/+alkny)
dimensional vector functions without band indices as a set of (3.6
bases.

In spherical coordinates, it is useful to introduce the vec-
tor functions given in terms of the vector spherical harmon-with
ics Y;,m(F) as follows:

]2 jAKyr) . [ 3 )
QnJ/M_\/WYJ/M(r)- (3.9 7351 (/=3-1),

wherej ,(x) is the spherical Bessel function of ordér and Pas 0 (7=J). @7
k., =K, a is thenth zero ofj ,(x). The discrete wave num- [I+1 (/=3+1)
bersk,, are chosen to satisfy the boundary condition. 2J+1 7 '

The vector spherical harmonics is the eigenfunction of the
added angular momentum gfand/”’ (|/’|=1) relating to
the unit polarization vectd?

We consider an exciton in a spherical QD with radaus

The “direct” term is calculated as

1 1
Yom()= 2 2 (/mls|/1IM)Y nF)es,
m=—-/ s=-1 dir 1 1 , ,
(3.2 H§§,=J'drfdr’[—V-Pg(r)]*e—l—[—V Pe(r)]

r=r|
where (#/mls|/1JM) is the Clebsch-Gordan coefficient, =383 Oumr ALt
Y m(F) is the spherical harmonics withbeing the angular ) .,
variable, ande; are the spherical unit vectors Py O (/=7"),
X4 W@+ Dfpny (£/=3+1, /'=3-1), (3.9
1 , ,
eilziﬁ(exiiey), e=¢,. (3.3 WE+D g (£=3-1, /'=J3+1),

The quantum numberkandM are the total angular momen- with

tum and its projection, respectively. Fde 1, / itself runs

from J—1 to J+1, and forJ=0 the allowed value of” is

only 1. 2Kn3i1

The vector function®,,;,(r) form an orthonormal set fong= 3 7 : (3.9
Knr3-1(Kngy1 = Kprg—y)

| dr QB (1) Qursrs (1= 8 333, v | |
In the above calculation we have used the expansion

(3.9
and the set is complete. Furthermore, the bases are the eigen- . , ,
functions of the kinetic part, whose matrix elements are 1 ' 41 ~ ox
given by —|r—r’|:/zo m:Z_/ 2771 7—r,>+1Y/m(f)Y/m(f ),
212 (3.10
e 1K s (3.5
TV :

wherer-. is the larger ofr andr’ andr _ is the smaller of
where £ represents a set of quantum numbersl(//,M). andr’, and the integral formula
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1 1 <
X< .
f dXJ dX XX > 3 (aX)] A BX)
0 0 X<

2/+1 : , : , j/v1(@)j, —1(a)
Bz g5 L (@B~ B A 1B (a%p),
") 2741 e s(@)is (@) (3.12)
S [adiZ(@Fi2 (@)} = 2/ + DjA@]/1(@)] = (a=P).
|
It should be noted that, for given good quantum numbers C. Pure L and T modes

) . , rdi
JandM, 7/=J-1 a/nd/—J+/1 states are mixed viel®". The exciton levels in a sphere are obtained from diago-
Namely, forJ=1, /=0 and/ =2 states are mixed. This nalizing the Hamiltonian

conclusion seems to be inconsistent with that of Takagahara,
where the long-range part makes no contribution to the ex- H.. =R pdir 4 gim 31
citon levels'® This is because he was interested in the S (319

strong-confinement regime alone, though his wave functiofyhich has a block-diagonalized form with respec@andM

has a general form applicable to both strong- and weakhecause of spherical symmetry. In some cases eigenstates of
confinement regimes. The mixing scheme mentioned abovgn exciton are obtained immediately, and these states are

applies to both strong- and weak-confinement regimes. Fapund to bel or T mode independent of the size of sphere.
the discussion about the effectlof splitting in this paper, it By definition, the rotation of.-mode polarization and the
is crucial to consider both =J—1 and/ =J+1 subspaces. divergence off-mode polarization are zero everywhere. Oth-
For spherical shape the image potential in the Hamilerwise, a polarization is &T mixed mode. It is useful to
tonian equatior2.1) is given by* provide the divergence and rotation of a set{ @} to in-
vestigate thd.- or T-mode character of spherically confined

11 (/+1)(1-¢ ¥ exciton. The divergence @; is given in Eq.(3.6) and the
Uim(r)=§6—l§/: J¥el/+1) aZ L rotation is
VX Quym(r)=—k \F !
Z _ yaa r)y=— _—_—
U' (r r/):iz (/+_1)(1 a rr P (COSH) nIIM nJ a3.lJ+1(KI"IJ)
i e < /+e(/+1) a¥ 1/ ’
(3.12 X > Py /(Knat)Y 3,m(F),
/=J-1J+1

where e=e¢,/€; is the relative dielectric constant and
P, (cosd) is the Legendre polynomial with being the angle — 2 ji(kn )
betweenr andr’. Thus thee-h exchange energy coming VX Quym(r)=kn Py, ik
. . . . /+1\Kn/
from image-potential effect is obtained as

Yiam(F),
(3.16

_ with

H';,‘g,,zf drf dr'[ =V -P0)]*Vin(r,r [V -Pe(r)]

) J+1 .
_ 1 “Nggrg (737D
=y(€J) ————A18;530um 0,516,151,

Kni—1Kn’3-1 Py, = . 3 | : (3.17
(3.13 N1 (7=9+D

For J=/=1, P;,=0 and forJ=0, P,,=0. Thus the
former (latten is pure T(L) mode, and its energy is
(1-€)J(J+1) (314 (72K2 J/2M ) (7.2K2 2M gyt A 7).
€J+1)+d '

with

y(e,J)=2

IV. THE CASE OF INFINITE MASS
The image-potential energy depends on the relative dielectric
constant. When the dielectric constants inside and outside of Let us consider the case without spatial dispersion, i.e.,
the sphere are the same={1), the matrix elements of the the kinetic part of the Hamiltonian is neglected. The situation
image potential become zero. Far>e, (€,<e€,) the occurs for infinitely large translational mass of exciton. In
image-potential energy becomes positimegative. In usual this limit we can calculate exciton levels analytically.
experimentse, is smaller thare;, and thus the image poten- First, we confine ourselves to the subspateJ—1.
tial raises the energy of confined exciton. Then the Schidinger equation is written as
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J y(€,J)
Ayt Onm™ Cmi-1=ECny-1, Smn=13(23+1) 2 frnQnas-m(r)
m [2J+1 Kn—1KmJi-1 n
(4.7
. ] o ] J+1

where C,, is the expansion coefficient with respect to the - QOJJJrlM(r), 4.9
basisQyj, v . Multiplying Eq. (4.1) by x,;- ; and summing

overn, we have with energyE-™=A, 1. The divergence and rotation of the

polarizations for these modes are obtained by using Egs.

J _ _ (3.6) and(3.16 and Eq.(A9) in the Appendix. These modes
2 —
Aoyt V(E’J)zn: Kni-1 | X=EX, (42} are confirmed to bd or L mode as follows:
with X=3 k5 ;Cny_1. The solution of Eq(4.2) turns out V-QJm(r)=0,
to be of theS mode as will be shown later, and its energy is
o[ 2 jy(Kmaral) R
J VXQIm(r):I\/;'m—+ka+1YJM(r)v
Esurf: — AL (4.3 a® Jy(kmyr1)
I+ + e T (4.10
The corresponding eigenstates are V-Qm(r)= \g MkaJrlYJM(f),
a’ Ji(kmar1)
QN =V2(23+ 1) X K73-1Qnas-1m (1) v xQ5m(r)=0.
Both L and T modes are infinitely degenerate for eath
_ 2J+1 while theSmode is a nondegenerate state. It is noted that the
— " Y, (4.4 - - :
a effect of the image potential does not appear inltheode.

where we have used E¢A1) in the Appendix. The resultin This situation is also found for confined excitons having fi-
. PP : 9 nite translational mass, and its demonstration will be given in

energy is the same as that obtained from dielectric functior) .
. " the next section.

and Maxwell's boundary conditiong.
We now choose a complete set of ba§@s:r, Q5 Q5
for givenJ andM, as V. THE CASE OF FINITE MASS

A. Energy levels

Qm(r)z(ZJJr 1)2 fmnQnia—1m(r), For a finite translational mass of exciton, the level struc-
" ture is obtained from numerical calculations, except for the

Bm pureL (J=0, /=1) andT (J=/=1) modes discussed in
Qim(r)=CQmaz+1m- (4.9 Sec. IlIC. Figure 1 shows the energy levels of an exciton

The bases form an orthonormal set, which is confirmed byVith J=1 as a function of radius. The relative dielectric
using Eqs(A1)—(A4) in the Appendix, and the Hamiltonian constante; / e,=5.6 corresponds to the situation in which an

is represented in the bases as follows: exciton is confined in a CuCl crystal and its surrounding is
vacuum. The unit of radiud/2MgA | 1 is chosen as the de
Egun‘ 0 Broglie wavelength for a particle with madé,, and energy

A, 7. In the upper abscissa the radius is converted using the
surf K 0 (4.6) parameter for theZ; exciton of CuCl, i.e.,A 1=5.7 meV
M 0 K 0 ’ and M= 2.3m,. Although the number of basis in the cal-
. culation is only 29, the convergence is satisfied very well
except for the isolated level corresponding to Swmode in
with the Mg,=2 limit, whose energy lies between 0 and. If
we increase the number of bases, the additional levels are
ami - P3y P33-1Ps+1 piled above the highest level of each branch approaching
K= tr- (47 andT modes in theM .= limit. In the figure, we can see
how the discrete size-quantized levels approach the bulk
Therefore it is found immediately th@Shy is an eigenstate T, andSmodes.
having energ;Ej””. Figure 2 gives the result for some lower levels as a func-
By diagonalizing the matriX we getT modes, tion of the inverse square of radius. The solid lines show the
lowest three levels withl=1, and the dotted and dashed
lines show the lowest two levels of pute and T modes,

Bm 2
JM PJJ—lpJJ+1 I3JJ+1

M =V+1)(23+ 1)2”4 frnQnas-1m(r) respectively. The levels of puleand T modes are linear in
the inverse square of radius and separated from each other by
J A, 7 as shown in Sec. llI C. It should be noted that the lowest
~ V23577 Qmasram(r), (4.8 J=1 level is isolated, while the higher members consist of a

pair of levels with a splitting of the order &, ;. Figure 3
with energyE™™=0, andL modes, shows the three lowest levels 31 together with the hy-
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FIG. 1. Calculated energy levels of a confined exciton wiith FIG. 2. Calculated lowest levels as a function of the inverse

=1 as a function of radius of QD’s. Levels for pufe (/'=1) square of the radius.
modes are not included. The radius ufity2MgA 1 is the de

Broglie wavelength forA 1. In the upper abscissa the radius is

given in units of A by using the parameter for t#g exciton of

CuCl, i.e.,A 1=5.7meV andM ;,=2.3m,. o
Radius (A)

pothetical levels of purd modes (szﬁOIZM e and pureL 40 30 20
modes 2k2,/2M ¢+ A 7). The lowest and the third-lowest 15 T

levels lie between the energies bfand T modes with/
=0. The second-lowest level has energy betweeand T
modes with/'=2 which are not shown in this figure. These
results imply that exciton modes in a small sphere lafe
mixed states except for the puteand T modes, which will

be explicitly shown in Figs. 6 and 7.

Figure 4 exhibits the energy levels of the exciton with
=1 as functions of radius. The curves bfk2,/2M, and
ﬁzkﬁOIZM ot A 7 are shown by dotted and dashed lines, re-
spectively, which exhibit good agreement with the numerical
calculation for sufficiently large spheres. However, one ex-
ception can be seen around the energy ofSmeode in the
M= limit, where the levels show crossover behavior.
Every level gets an appreciable mixture®xodes in such a
crossover region.

Figure 5 gives the energy levels of the 1 exciton(solid
lines) and those obtained by eliminating the image-potential - T’izknoz/ZMex**AL
part(dashed lines As mentioned before, only tfemode is 0 R S AR S S
affected by the image potential in .= limit, and in 060 02 04 06 08 10
fact thg energy Sf thg |§qlated level corrgspondlng toShe [Radius]'2 (Units of ﬁ-22MexALT)
mode in theM =« limit is shown to be increased appre-
ciably due to the image potential. The image-potential effect F|G. 3. Calculated three lowest levels witk 1 as a function of
also appear in the cross-over region having $like char-  inverse square of the radius denoted by solid lines. Dotted and
acter. It should be noted that levels approachinglLttmode  dashed lines represent hypothetical levels lfoand T modes, re-
are not affected by the image potential. spectively.

10

Energy (Units of A_T)

0 T ﬁzknoz/zMex
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FIG. 4. Calculated energy levels as a function of radius denoted FIG. 5. Energy levelgsolid lineg and those obtained by elimi-
by solid lines. Dotted and dashed lines represent levels approxiating the image-potential paftiotted line$ are calculated as a
mated byL and T modes, respectively. function of radius.

It is demonstrated generally that the effect of the image
potential does not appear in themode of an exciton con-
fined in an arbitrary shape. We rewrite the Sclinger equa-

B. L and T components

exhibits  fdr|divP(r)|> and @c)

Gb)

Figure

tion (2.8) as fdr|rotP(r)|? of the levelsa, B, andy, which approach the
T mode in the large-radius limit as is shown in Figa)e The
_ 2 V2P(r)— €A1 E(r)=EP(r) (5.1) integration of the rotation is measured in units of that in the
2M oy A ’ ' Me=co limit, ie., [dr|rotP]m(r)|?=«2 . ,(|u|?/a%).

Sharp peaks in Fig.(6) and dips in Fig. &) occur at the
radii where the levelg and y cross the levels approaching
the L mode. In the levele the divergence decreases with
radius and becomes zero. On the other hand the rotation
:1 r—r'] increases with radius and reaches the same value as that in
(5.2) the Mg, =0 limit. Therefore we conclude that the levelis

o _ 5 aLT mixed mode in sufficiently small QD’s, which becomes
When a polarization wave is the mode, we haveV°P 5 T mode with an increase of radius. Similarly the other
=VV.P-VXVXP=VV.P. Taking the divergence of EQ. |evels approaching modes are.T mixed modes for small
(5.2, we get an equation for the polarization charge QD's.
2 Vertical arrows denote the radii where each level crosses
- the energy of thes mode in theM =0 limit. Around the

2M gy radii indicated by the arrows the divergence and rotation
where we use the fact that the image potential satisfies thg/ /oW the local maximum and local minimum, respectively.
Laplace equation, i.e., This comes from 'Fhe fact thdtand S modes are coupled in

the crossover region.

Figure 7b) shows/dr|div P(r)|? and 7c) fdr|rotP(r)|?
of the levelsp, o, and 7 in Fig. 7(a), which approach thé&
mode in the large-radius limit. The integration of divergence
is measured in units of that in th#,=o limit, i.e.,

whereE(r) is a static electric field produced by the induced
polarization charge as follows:

E(r)=—Vf dr’

1 1
+Vim(r,r’)}[—V-P(r’)].

V24+A 1|V-P(r)=EV-P(r), (5.3

2 1 TV ’
61|I'—I”| im(rar )

— 47T !
——E—l o(r—=r"). (5.9

Hence the equatiolV - P satisfies the Helmholtz equation
(V2+g?)V-P=0, and we find the eigenenergy for the  [dr|divP;;7(r)|?=«32,.,(|u|?/a?). For each level the di-
mode to beE=7%2k?/2M 4+ A 1, in which the effect of im-  vergence is less than that of thenode and the rotation also
age potential does not appear. Note that we do not use theakes a finite value, and thus each level isTamixed mode.
information of the confinement shape in the demonstration.With an increase of radius these levels get mbrmode
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FIG. 6. (a) Energy levels indicated by, 8, andy that approach
T modes in the infinite-mass limitth) CalculatedL component
[Jdr|div P(r)|?] of levels a, B, and y as a function of radiuslc) [ dr|divP(r)|?] of levels p, o, and 7 as a function of radius(c)

CalculatedT component [dr|rotP(r)|?] of levelsa, B, andyas a  CalculatedT componenf fdr|rotP(r)|?] of levelsp, o, and as a
function of radius. Vertical arrows indicate radii where each levelfynction of radius.

crosses the energy of ttf®mode in the infinite-mass limit.

FIG. 7. (8) Energy levels indicated by, ¢, and 7, which ap-
proachL des in the infinite-mass limitb) Calculated. component

wherePY), is the polarization mode of theth level,f w}, is

character except for the crossing regions, where sharp dips i[ﬂe excitation energy, and, is the volume of the sphere.

Fig. 7(b) and peaks in Fig.(€) appear. Only the component with’=0 takes a finite value from the
integration of the angular part 3,,(r). Therefore the op-
C. Oscillator strength tical transition is allowed only fod= 1, and thus the transi-
In the long-wavelength approximatioiWA), the one- tions to pureL (J=0, /=1) andT (J=/=1) modes are
photon transition is characterized by oscillator strength. Théorbidden for one-photon transitions within the LWA. The
oscillator strength per unit volume of tmh-level exciton is ~ 0Scillator strength of the exciton with=1 can be rewritten
given by as

2
fbulk: (56)

2

n
n _205uMo (5.5 n,=6

B 1
MT TRV,

cn

JdrPgM(r)
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FIG. 8. Calculated oscillator strength per unit volume for the  FIG. 9. Calculated oscillator strength per unit volume for the
lowest four levels approachin modes as a function of radius. lowest four levels approachirig modes as a function of radius.

Vertical arrows denote the radii in which each level cross the en- . . ) . . .
ergy of theS mode in the infinite-mass limit. gime, including thee-h exchange interaction and image-

potential energy. It is found that the statds=0, /'=1) and
whereC; , is the expansion coefficien;s pf theh Ievel_ with E;oiu/s) .?Eg I(‘)tﬁgrd S-[azggd:é. L?;%%leg&singﬁg evCi?r? r::]eo f
bases Qmym, and fpu=2womoe/ne” is the oscillator increase of radius they approathT, and S modes, which
strength per unit volume for a bulk crystal. The sum rule of,re in agreement with those obtained analytically in the
t_he oscillator s_trength is _conflrmed in the numenca_ll calculay o= limit. The effect of the image potential manifests
tion, and for instance, it becomes about 08 if the jtself mainly at the crossover region around the energy of the
number of basis is 50. Smode in theM o, =2 limit.

Figure 8 shows the calculated oscillator strength per unit We have also studied the oscillator strength per unit vol-
volume for various levels from the lowegolid line) to the  ume, which is meaningful only when the LWA is valid. For
fourth-lowest(dash-dotted lineones approaching modes  sufficiently small radii(up to about 100 A in the case of the
as a function of radius. For small radii, the oscillator strengthz; exciton in CuCJ the lowest level has the largest oscillator
is concentrated on the lowest level, and, as the radius irstrength and the states approaching thenode take still
creases, it starts to decrease and eventually vanishes. Tfigite values. It is also found that the oscillator strength be-
vertical arrows show the radii where the levels cross thecomes maximum around tf@mode in agreement with the
energy of theS mode in theM =< limit, and it is found analysis by Ekimowet al.
that the oscillator strength of the level 2, 3, or 4 takes a
maximum around the energy of th® mode. This result
agrees with the theoretical analysis in the LWA by Ekimov  we would like to thank Professor H. Ishihara and Mr. J.
etall® Ushida for useful discussions. Numerical calculations were

Figure 9 shows the oscillator strength per unit volume forperformed in part on FACOM VPP500 in Supercomputer
various levels from the lowestsolid line) to the fourth-  Center, Institute for Solid State Physics, University of To-
lowest (dash-dotted line ones approaching. modes as a kyo. This work was supported in part by Grant-in-Aid for
function of radius. Since these levels &r€ mixed modes, COE Researci10CE2004 of the Ministry of Education,
the oscillator strengths take finite values. With an increase ofcience, Sports and Culture of Japan, and also by the Mit-
radius the oscillator strengths decrease because the leveélgbishi Foundation.
approach puré modes as shown in Fig. 7.
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APPENDIX: FORMULAS FOR SUMMATIONS
OF INFINITE SERIES

VI. SUMMARY AND CONCLUSION . o
The orthonormality of the polarization vector lof T, and

The energies and mode character of the excitons confine®8 modes in theM =0 limit given in Egs.(4.4), (4.8), and
in a sphere have been calculated in a weak-confinement r¢4.9) is confirmed by using of the following formulas:
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> o= , (A1)
“ k2, 2(23+1)
- 1 1 (K
; = _JJ( my+1) (A2)
n=1 Kmi+1~ Knjy-1 2kmar1 Ja-1(Kmyr1)
- 1
7 2 ) >—=0 (m#m’),
n=1 Kmi+1~ KnJ—1 Kpyrgy1~ Kni-1
(A3)
- 1 1
(A4)

1 (kg1 Kng-)? 423+
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Because ofim1,=0 we finally obtain

n—o

11 A
n:122_Kn371 22]3,1(2).

Substitutingz=0 and z= 3.1, we have Eqs(Al) and
(A2), respectively. Formulas Eq6A3) and(A4) can be also
obtained in a similar way using contour integral

i13(2)

I ja-1(2)”

_1 3g q
"2 te ¥ — -2

(A8)

We shall prove the above formulas. We consider the se- | the calculation of the divergence and the rotation for

guence of contour integrals aloi@y,,

¢ 1 13(2)
{(L—2) j;-1(2)°

(A5)

.=
" 27 (o

whereC, represents the circular path about origin including

zeros of j;_1(2), *x13-1,.--,=Kpn3—1, and not passing
through any other zeros, armis any point insideC,, other
than zeros. A residue integration gives
10 1y
" z2j;-10) zj34(2) w1
1

Kma-1(Z+ Kmy-1)

1

Kmi-1(Z— Kmy-1)

: (AB)

the polarization vector ot, T, and S modes, we have a
useful formula:

©

1 Ja(kng—1X)
n=1 Kr2n3+1_KﬁJ_1 Ja(kna-1)
1 j (K X
Jo(Kmy+1X) (0=x<1). (A9)

- 2Kkmar1 Jo-1(Kmar1)
This is obtained from a sequence of contour integrals

1 13(z%)
{({=2) j;-1(2)°

n
|ﬂ

1
= ﬁ ﬁndg (AlO)
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