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Longitudinal and transverse components of excitons in a spherical quantum dot
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Exciton states confined in a spherical quantum dot~QD! are studied in a weak confinement regime with the
consideration of the electron-hole exchange interaction and induced surface charge density. Except for special
cases, most exciton states are longitudinal~L!–transverse~T! mixed modes. With an increase of radius, theLT
mixed modes approach bulkL, T, and surface~S! modes. When the energies ofLT mixed modes get close to
that of theSmode, they acquire considerable amount ofS-mode character. It is demonstrated that the effect of
the surface charge density does not affect theL-mode exciton confined in an arbitrary shape. Within the
long-wavelength approximation, one-photon transitions toward the pureL andT modes are forbidden, and for
other states the oscillator strengths per unit volume become maximum around the energy of theS mode.
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I. INTRODUCTION

Recently, exciton states confined in a zero-dimensio
microcrystal, which is usually called quantum dot~QD!,
have been investigated extensively. Various QD’s embed
in glasses1,2 and in alkali-halide crystals3–9 have been grown
The optical properties of these QD’s have been stud
mainly in the aspect of the quantum-size effect of optica
excited electron-hole (e-h) pairs. The effect manifests itse
as blue shifts of absorption and luminescence peaks.

The motion of ane-h pair is quite different in two limit-
ing situations characterized by the ratio of the QD’s sizeRQ
to the effective Bohr radiusaB of an exciton in bulk
material.10 The energy of ane-h pair is mainly determined
by the individual size quantization with a small correcti
due to the Coulomb interaction in the case ofRQ!aB
~strong-confinement regime!. In the opposite situationRQ
@aB ~weak-confinement regime!, the e-h relative motion
stays almost as in the bulk and only the center-of-mass~c.m.!
motion is affected by the confinement. The evolution of
e-h pair state from strong- to weak-confinement regime
been studied via variational methods based on effective-m
theory.11–16

It is well known that excitons in a bulk crystal have lo
gitudinal ~L! and transverse~T! characters according to it
polarization direction with respect to the translational wa
vector.~In the absence of translational symmetry as in QD
the definition of theL and T modes can be generalized
rotP50 and divP50, respectively.! In high-symmetry crys-
tals, theL andT characters are kept in the exciton dispers
curves. When the exciton is confined, the boundary condi
for its wave function leads to a set of discrete allowed wa
vectors on the dispersion curve. The problem is whether
boundary condition can be applied to theL and T branches
separately or not, but it is hard to find any evident reason
allows it. Theoretically, it has not been made clear whet
the same level scheme occurs in a QD as in the bulk w
respect to theL and T level arrangement. However, an e
perimental work claims or suggests the existence ofLT split-
ting in a QD as in the bulk.17

Some theoretical studies on spherically confined excit
have been made, including thee-h exchange
PRB 620163-1829/2000/62~11!/7402~11!/$15.00
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interaction,16,18–20 but they are not enough to answer th
question mentioned above. In considering theLT splitting or
the effect ofe-h exchange interaction, there are two differe
viewpoints. In one case,~a! this interaction is considered as
part of matter energy, and in the other,~b! it is considered to
be the interaction energy between the matter polariza
density and~external! longitudinal electric field. In each
scheme, the definition of the matter Hamiltonian, suscepti
ity tensors, and electromagnetic~em! field as a source of
matter polarization is different. The relationship between
two schemes has recently been discussed by one of
authors,21 who pointed out how these two schemes are c
nected via thee-h exchange interaction. The works o
Ruppin19 and Ekimovet al.18 are based on scheme~b!, and
those by Takagahara16 and Goupalov and Ivchenko20 belong
to scheme~a!.

In scheme~b!, one calculates the optical response by so
ing Maxwell equations with a given susceptibility and a
suming an additional boundary condition for connecting
field across the boundary of confinement. The resonant st
ture reflects the level scheme of the QD, but every leve
shifted and broadened from the corresponding level sch
~a! due to the interaction with transverse em field. From
optical spectrum, it is hard to tell theL andT characters of
each resonant level.

For the study of the level structure in scheme~a!, we start
from a general expression of the applicablee-h exchange
interaction, not only to the bulk crystals, but also to QD’s.
was demonstrated21 that the use of the induced charge de
sity ~off-diagonal matrix element of charge-density operat
or -div of the induced polarization! for each size-quantized
exciton state is the most general way until now to express
effect of LT splitting. The Coulomb interaction of these in
duced charge densities coincides with thee-h exchange ma-
trix element, and this form can be directly applied to bo
bulk and confined systems and also to both phonons
excitons. Our study in this paper is based on scheme~a!
together with the modeling of the induced charge densi
for size-quantized excitons appropriate for the wea
confinement regime.

As another point of this work, we include the effect
nonresonant polarization in QD and its surrounding mat
7402 ©2000 The American Physical Society
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als. There are many other polarizations in the system, wh
are usually treated as a background dielectric medium
considering exciton resonances. If one treats only the re
nant modes as dynamical variables, the effect of nonreso
modes can be taken into account by multiplying a screen
constant 1/eb to Coulomb interaction energy. For a finite-siz
system, however, we need an additional consideration of
induced surface charge density due to the polarization of
background dielectric~i.e., the assembly of nonresona
modes!. This mirror-charge or image-potential effect mod
fies thee-h attraction energy and thee-h exchange interac
tion among the resonant modes. The effect of thee-h bind-
ing was studied by Brus11 and Takagahara,16 but the image-
potential effect on the latter problem has not been stud
The effect of the bulklike screening of thee-h exchange was
considered in our previous work22 but the image-potentia
effect was neglected. The present work is a revised ver
of our previous paper in this respect.

The present calculation shows the results of diagonaliz
the size-quantized kinetic energy of exciton c.m. motion a
the e-h exchange interaction among the resonant exc
levels, with due consideration of the image-potential effe
The radius of the sphere is changed in the weak-confinem
regime up to infinity. Due to spherical symmetry, all th
levels are classified according to the total angular momen
and its projection. Except for special cases, most levels h
LT mixed character in general. As the radius gets larg
these levels tend to converge to those ofL, T, andS ~surface!
modes of the corresponding bulk system. The effect of
image potential shifts the energy of theSmode, but not those
of T and L modes in the bulk limit. For finite radius, th
mixing of L, T, andS modes occurs in general.

This paper is organized as follows: In Sec. II we provi
an effective-mass equation of c.m. motion confined in a
trary shape, including thee-h exchange interaction and im
age potential. In Sec. III the equation is applied to the sph
cal confinement case, and we will find some excitons to
pureL andT modes independent of confinement size. An
lytical results of exciton states with infinite mass are o
tained in Sec. IV. In Sec. V the states of finite-mass exci
are calculated numerically. TheL and T characters and os
cillator strengths per unit volume are discussed. A summ
and conclusion are given in Sec. VI.

The level structure obtained from the present study is
that of the matter system. How it is reflected in the opti
spectrum must be calculated in the next step. From the vi
point of scheme~a!, this calculation is appropriately don
with the help of microscopic nonlocal theory of optical r
sponse developed by us.23–25 The result is planned to b
published in the near future. A preliminary account of th
work has been presented elsewhere.26

II. ELECTRON-HOLE INTERACTION
IN A CONFINED MEDIUM

Here we derive the effective-mass equation for the c
motion of an exciton confined in a QD in the weak confin
h
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ment regime, including thee-h exchange interaction an
image-potential effect. We assume that the system con
of a background dielectric and a number of electrons cont
uting to the formation of the exciton states. The effect of t
background dielectric is considered in the Hamiltonian
these electrons. In general, the image-potential energy c
ing from more than one charged particle is divided into tw
parts, i.e., the energy of image potential induced by itself a
other charged particles. We describe the former ‘‘se
energy’’ part asq2U im and the latter part asq2Vim . Then, the
Hamiltonian is written as

H5(
l

F2
\2

“ l
2

2me
1W~r l !1Wc~r l !G1 1

2 ((
lÞ l 8

1

e1

q2

ur l2r l 8u

1(
l

q2U im~r l !1 1
2 ((

lÞ l 8
q2Vim~r l ,r l 8!

1F(
i

q2U im~Ri !2(
l

(
i

q2Vim~r l ,Ri !

1 1
2 ((

iÞ j
q2Vim~Ri ,Rj !G , ~2.1!

wherel indicates electron index,me the mass of electron,W
the periodic potential by the crystal,Wc the confinement po-
tential of QD,e1 the background dielectric constant of QD
andRi the position of periodic positive ions. The last thre
terms are the image-potential energies of positive io
which ensures, in the case of charge neutrality, that the o
all image potential becomes zero in the ground state.

The conduction and valence bands will be denoted bn
andm, respectively, each of which includes a spin quant
number. The wave function of one exciton state can be
scribed by

C5(
nm

(
i j

Fnm~Ri ,Rj !F i j
nm , ~2.2!

whereF i j
nm is the Slater determinant of the configuration

which an electron of a Wannier statefm(r2Rj ) is excited
into fn(r2Ri), andFnm(Ri ,Rj ) is the normalized envelope
function associated with the Slater determinant.

Using the fact that a Wannier functionfm(n)(r2R) is
well localized around an atomic siteR, we obtain the Schro¨-
dinger equation for the envelope function giving the exci
tion energyE8 from the ground state as follows:

(
n8m8

(
i 8 j 8

Hnm,n8m8
i j ,i 8 j 8 Fn8m8~Ri 8 ,Rj 8!5E8Fnm~Ri ,Rj !,

~2.3!

with
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Hnm,n8m8
i j ,i 8 j 8 5H «c~2 i“ i !2«v~2 i“ j !2

q2

e1

1

uRi2Rj u
1Wc~Ri !

1Wc~Rj !1q2@U im~Ri !1U im~Rj !

2Vim~Ri ,Rj !#J dnn8dmm8d i i 8d j j 8

1E drE dr 8rnm* ~r2Ri !F 1

e1

1

ur2r 8u

1Vim~r ,r 8!Grn8m8~r 82Ri 8!d i j d i 8 j 8 , ~2.4!

where«c and«v are the energies of the conduction and v
lence bands, respectively, andrnm is the matrix element of
charge-density operator between the ground state andF i j

nm ,
i.e.,

rnm~r2Ri !5qfn* ~r2Ri !fm~r2Ri !. ~2.5!

The last term in Eq.~2.4! originates from thee-h exchange
interaction,27–29 and it has the form of the Coulomb intera
tion between induced charge densitiesrnm . The induced
charge density takes a finite value only for the same s
states ofn and m ~spin-singlete-h pair! as a result of the
inner product for spin states. In the following, we will co
sider only the spin-singlet exciton and regardm and n as
band indices excluding spin states. Note that the expres
of the e-h exchange interaction in terms of the induc
charge densities is an exact and model-independent
from which one can derive ‘‘short- and long-range parts’’
‘‘analytic and nonanalytic parts’’ of thee-h exchange inter-
action. In the following model of this paper, we use a smo
form of the induced charge density of a confined excit
which is equivalent to neglecting analytic part of thee-h
exchange interaction.

For Wannier sites with larger distances than the extens
of Wannier functions, one can expand 1/ur2r 8u to obtain the
e-h exchange partHexch in terms of induced polarization a
follows:

Hexch5mnm* •F“ i“ i 8S 1

e1

1

uRi2Ri 8u

1Vim~Ri ,Ri 8! D G•mn8m8d i j d i 8 j 8 , ~2.6!

wheremnm is the induced polarization given by

mnm5E dr rnm~r !r . ~2.7!

In our previous work to estimate the image-potential e
ergy of e-h exchange interaction for exciton states in
spherical QD, we introduced a virtual spherical boundary
dielectric constants and calculated the work to shrink
boundary from infinity to the QD’s radius.26 However, this
procedure is incorrect because thee-h exchange interaction
arises from the Coulomb interaction between different el
trons, as explicitly shown in the last terms of Eq.~2.4!.

In the weak-confinement regime the envelope function
an exciton is approximately separated into the relative
-
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c.m. motions. In this regime the image potential in thee-h
attraction terms do not affect the relative motio
considerably.16 The confinement potential is assumed to
infinite, and we apply the boundary condition that the wa
function of c.m. motion vanishes at the effective confinem
boundary. Furthermore, we approximate that the wave fu
tion of the relative motion is the same as that in a bu
crystal. Considering the simplest model of direct band gap
the band center with isotropic effective masses, we obtain
equation satisfying the c.m. motion in the effective-mass
proximation as follows:

(
n8m8

E dr 8@f~0!mnm#* •H““8F 1

e1

1

ur2r 8u

1Vim~r ,r 8!G J •@f~0!mn8m8#Gn8m8~r 8!

2
\2

2Mex
“

2Gnm~r !5EGnm~r !, ~2.8!

whereMex is the transnational mass,Gnm andf are the wave
function of the c.m. and relative motions, respectively, andE
is the energy measured from the excitation energy toward
transverse exciton at band center in a bulk crystal. We h
approximated that the envelope functionGnm does not
change over the range of effective Bohr radius, and the e
tron or hole position is replaced by the position of c.m. m
tion in thee-h exchange term.

Finally we obtain matrix elements of the Hamiltonian

Hnm,n8m852
\2

2Mex
E dr Gnm* ~r !“2Gn8m8~r !

1E drE dr 8@2“•Pnm~r !#* F 1

e1

1

ur2r 8u

1Vim~r ,r 8!G@2“•Pn8m8~r 8!#, ~2.9!

with

Pnm~r !5mnmf~0!Gnm~r !, ~2.10!

where we have integrated by parts with respect tor andr 8 in
the e-h exchange term. The resultinge-h exchange term
corresponds to the nonanalytic part giving theL-T splitting
energy in bulk systems. The intensity of the induced pol
ization m5ummmf(0)u is obtained from the bulk limit. Sub-
stituting the polarization of the bulkL mode P(r )
5m exp(ik•r )/AV, whereV is volume andm is parallel tok,
into thee-h exchange interaction without the image potent
in Eq. ~2.9!, we get

m25
e1DLT

4p
~2.11!

whereDLT is the splitting energy ofL andT modes of exci-
ton.
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III. EXCITON IN A SPHERICAL QUANTUM DOT

A. Set of bases

We consider an exciton in a spherical QD with radiusa
and dielectric constante1 that is embedded in an isotrop
continuous medium with dielectric constante2 . The crystal
forming the QD is assumed to have either the valence
conduction band withs-like character and the other wit
p-like character that possesses three degenerate statepx ,
py , andpz . In this case three possible combinations of~nm!
give the three transition-dipole momentsmnm , each of which
is polarized in thex, y, andz direction, and thus the combi
nations of band indices can be indicated by the unit vec
ex , ey , and ez . In the following we will use three-
dimensional vector functions without band indices as a se
bases.

In spherical coordinates, it is useful to introduce the v
tor functions given in terms of the vector spherical harmo
ics YJl M( r̂ ) as follows:

QnJl M5A 2

a3

j l ~knl r !

Jl 11~knl !
YJl M~ r̂ !, ~3.1!

where j l (x) is the spherical Bessel function of orderl , and
knl 5knl a is thenth zero of j l (x). The discrete wave num
bersknl are chosen to satisfy the boundary condition.

The vector spherical harmonics is the eigenfunction of
added angular momentum ofl andl 8 (ul 8u51) relating to
the unit polarization vector30

YJl M~ r̂ !5 (
m52l

1

(
s521

1

^l m1sul 1JM&Yl m~ r̂ !es ,

~3.2!

where ^l m1sul 1JM& is the Clebsch-Gordan coefficien
Yl m( r̂ ) is the spherical harmonics withr̂ being the angular
variable, andes are the spherical unit vectors

e6157
1

&
~ex6 iey!, e05ez . ~3.3!

The quantum numbersJ andM are the total angular momen
tum and its projection, respectively. ForJ>1, l itself runs
from J21 to J11, and forJ50 the allowed value ofl is
only 1.

The vector functionsQnJl M(r ) form an orthonormal set

E dr QnJl M* ~r !•Qn8J8l 8M8~r !5dnn8dJJ8d l l 8dMM8 ,

~3.4!

and the set is complete. Furthermore, the bases are the e
functions of the kinetic part, whose matrix elements a
given by

Hjj8
kin

5
\2knl

2

2Mex
djj8 , ~3.5!

wherej represents a set of quantum numbers (n,J,l ,M ).
r

rs

of

-
-

e
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B. Electron-hole exchange energy

In a confinement systeme-h exchange interaction con
sists of ‘‘direct’’ and image-potential terms, which corre
spond to the first and the second terms of the induced po
ization interaction in Eq.~2.9!, respectively. For our mode
the induced polarization is written asPj5mQj wherem is
the intensity of polarization given in Eq.~2.11!, and the po-
larization charge density is obtained from

“•QnJl M~r !52knl PJl A 2

a3

j J~knl r !

j l 11~knl !
YJM~ r̂ !,

~3.6!

with

PJl 55
A J

2J11
~ l 5J21!,

0 ~ l 5J!,

A J11

2J11
~ l 5J11!.

~3.7!

The ‘‘direct’’ term is calculated as

Hjj8
dir

5E drE dr 8@2“•Pj~r !#*
1

e1

1

ur2r 8u
@2“8•Pj8~r 8!#

5dJJ8dMM8DLT

3H PJl
2 dnn8 ~ l 5l 8!,

AJ~J11! f nn8J ~ l 5J11, l 85J21!,

AJ~J11! f n8nJ ~ l 5J21, l 85J11!,

~3.8!

with

f nn8J5
2knJ11

kn8J21~knJ11
2 2kn8J21

2
!
. ~3.9!

In the above calculation we have used the expansion

1

ur2r 8u
5 (

l 50

`

(
m52l

l
4p

2l 11

r ,
l

r .
l 11 Yl m~ r̂ !Yl m* ~r 8!,

~3.10!

wherer . is the larger ofr andr 8 andr , is the smaller ofr
and r 8, and the integral formula
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E
0

1

dxE
0

1

dx8x2x82
x,

l

x.
l 11 Jl ~ax! j l ~bx!

5H 2l 11

b2~a22b2!
@a j l 11~a! j l ~b!2b j l ~a! j l 11~b!#2

j l 11~a! j l 21~a!

a2 ~aÞb!,

2l 11

2a3 @a$ j l
2 ~a!1 j l 11

2 ~a!%2~2l 11! j l ~a! j l 11~a!#2
j l 11~a! j l 21~a!

a2 ~a5b!.

~3.11!
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It should be noted that, for given good quantum numb
J and M, l 5J21 and l 5J11 states are mixed viaHdir.
Namely, for J51, l 50 and l 52 states are mixed. Thi
conclusion seems to be inconsistent with that of Takagah
where the long-range part makes no contribution to the
citon levels.16 This is because he was interested in t
strong-confinement regime alone, though his wave func
has a general form applicable to both strong- and we
confinement regimes. The mixing scheme mentioned ab
applies to both strong- and weak-confinement regimes.
the discussion about the effect ofLT splitting in this paper, it
is crucial to consider bothl 5J21 andl 5J11 subspaces

For spherical shape the image potential in the Ham
tonian equation~2.1! is given by11

U im~r !5
1

2

1

e1
(

l

~ l 11!~12 ē !

l 1 ē~ l 11!

r 2l

a2l 11 ,

U im~r ,r 8!5
1

e1
(

l

~ l 11!~12 ē !

l 1 ē~ l 11!

r l r 8 l

a2l 11 Pl ~cosu!,

~3.12!

where ē5e2 /e1 is the relative dielectric constant an
Pl (cosu) is the Legendre polynomial withu being the angle
betweenr and r 8. Thus thee-h exchange energy comin
from image-potential effect is obtained as

Hjj8
im

5E drE dr 8@2“•Pj~r !#* Vim~r ,r 8!@2“8•Pj8~r 8!#

5g~ē,J!
1

knJ21kn8J21
DLTdJJ8dMM8d l J21d l 8J21 ,

~3.13!

with

g~ē,J!52
~12 ē !J~J11!

ē~J11!1J
. ~3.14!

The image-potential energy depends on the relative diele
constant. When the dielectric constants inside and outsid
the sphere are the same (ē51), the matrix elements of the
image potential become zero. Fore1.e2 (e1,e2) the
image-potential energy becomes positive~negative!. In usual
experimentse2 is smaller thane1 , and thus the image poten
tial raises the energy of confined exciton.
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C. Pure L and T modes

The exciton levels in a sphere are obtained from dia
nalizing the Hamiltonian

Hjj85Hjj8
kin

1Hjj8
dir

1Hjj8
im , ~3.15!

which has a block-diagonalized form with respect toJ andM
because of spherical symmetry. In some cases eigenstat
an exciton are obtained immediately, and these states
found to beL or T mode independent of the size of spher

By definition, the rotation ofL-mode polarization and the
divergence ofT-mode polarization are zero everywhere. Ot
erwise, a polarization is aLT mixed mode. It is useful to
provide the divergence and rotation of a set of$Qj% to in-
vestigate theL- or T-mode character of spherically confine
exciton. The divergence ofQj is given in Eq.~3.6! and the
rotation is

“3QnJJM~r !52knJA 2

a3

1

j J11~knJ!

3 (
l 5J21,J11

P̄Jl j l ~knJr !YJl M~ r̂ !,

“3QnJl M~r !5knl P̄Jl A 2

a3

j J~knl r !

j l 11~knl !
YJJM~ r̂ !,

~3.16!

with

P̄Jl 55 2 iA J11

2J11
~ l 5J21!

iA J

2J11
~ l 5J11!

. ~3.17!

For J5l >1, PJl 50 and for J50, P̄Jl 50. Thus the
former ~latter! is pure T (L) mode, and its energy is
(\2knJ

2 /2Mex)(\
2knJ

2 /2Mex1DLT).

IV. THE CASE OF INFINITE MASS

Let us consider the case without spatial dispersion,
the kinetic part of the Hamiltonian is neglected. The situat
occurs for infinitely large translational mass of exciton.
this limit we can calculate exciton levels analytically.

First, we confine ourselves to the subspacel 5J21.
Then the Schro¨dinger equation is written as
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DLT(
m

F J

2J11
dnm1

g~ē,J!

knJ21kmJ21
GCmJ215ECnJ21 ,

~4.1!

whereCnl is the expansion coefficient with respect to t
basisQn j l M . Multiplying Eq. ~4.1! by knJ21

21 and summing
over n, we have

DLTF J

2J11
1g~ē,J!(

n
knJ21

22 GX5EX, ~4.2!

with X5(nknJ21
21 CnJ21 . The solution of Eq.~4.2! turns out

to be of theS mode as will be shown later, and its energy

EJ
surf5

J

J1~J11!ē
DLT . ~4.3!

The corresponding eigenstates are

QJM
surf~r !5A2~2J11!(

n
knJ21

21 QnJJ21M~r !

5A2J11

a3 r J21YJJ21M , ~4.4!

where we have used Eq.~A1! in the Appendix. The resulting
energy is the same as that obtained from dielectric func
and Maxwell’s boundary conditions.31

We now choose a complete set of bases$QJM
surf,QJM

Am ,QJM
Bm%

for given J andM, as

QJM
Am~r !5~2J11!(

n
f mnJQnJJ21M~r !,

QJM
Bm~r !5QmJJ11M . ~4.5!

The bases form an orthonormal set, which is confirmed
using Eqs.~A1!–~A4! in the Appendix, and the Hamiltonia
is represented in the bases as follows:

QJM
surfS EJ

surf 0

0 K 0

0 K 0

� � �

D , ~4.6!

with

K5
QJM

Am

QJM
BmS PJJ21

2 PJJ21PJJ11

PJJ21PJJ11 PJJ11
2 DDLT . ~4.7!

Therefore it is found immediately thatQJM
surf is an eigenstate

having energyEJ
surf.

By diagonalizing the matrixK we getT modes,

QJM
Tm~r !5A~J11!~2J11!(

n
f mnJQnJJ21M~r !

2A J

2J11
QmJJ11M~r !, ~4.8!

with energyETm50, andL modes,
n

y

QJM
Lm~r !5AJ~2J11! (

n
f mnJQnJJ21M~r !

2A J11

2J11
QmJJ11M~r !, ~4.9!

with energyELm5DLT . The divergence and rotation of th
polarizations for these modes are obtained by using E
~3.6! and~3.16! and Eq.~A9! in the Appendix. These mode
are confirmed to beT or L mode as follows:

“•QJM
Tm~r !50,

“3QJM
Tm~r !5 iA 2

a3

j J~kmJ11r !

j J~kmJ11!
kmJ11YJM~ r̂ !,

~4.10!

“•QJM
Lm~r !5A 2

a3

j J~kmJ11r !

j J~kmJ11!
kmJ11YJM~ r̂ !,

“3QJM
Lm~r !50.

Both L and T modes are infinitely degenerate for eachJ
while theSmode is a nondegenerate state. It is noted that
effect of the image potential does not appear in theL mode.
This situation is also found for confined excitons having
nite translational mass, and its demonstration will be given
the next section.

V. THE CASE OF FINITE MASS

A. Energy levels

For a finite translational mass of exciton, the level stru
ture is obtained from numerical calculations, except for
pure L (J50, l 51) andT (J5l >1) modes discussed in
Sec. III C. Figure 1 shows the energy levels of an exci
with J51 as a function of radius. The relative dielectr
constante1 /e255.6 corresponds to the situation in which a
exciton is confined in a CuCl crystal and its surrounding
vacuum. The unit of radius\/A2MexDLT is chosen as the de
Broglie wavelength for a particle with massMex and energy
DLT . In the upper abscissa the radius is converted using
parameter for theZ3 exciton of CuCl, i.e.,DLT55.7 meV
and Mex52.3me . Although the number of basis in the ca
culation is only 29, the convergence is satisfied very w
except for the isolated level corresponding to theS mode in
the Mex5` limit, whose energy lies between 0 andDLT . If
we increase the number of bases, the additional levels
piled above the highest level of each branch approachinL
andT modes in theMex5` limit. In the figure, we can see
how the discrete size-quantized levels approach the bulL,
T, andS modes.

Figure 2 gives the result for some lower levels as a fu
tion of the inverse square of radius. The solid lines show
lowest three levels withJ51, and the dotted and dashe
lines show the lowest two levels of pureL and T modes,
respectively. The levels of pureL andT modes are linear in
the inverse square of radius and separated from each oth
DLT as shown in Sec. III C. It should be noted that the low
J51 level is isolated, while the higher members consist o
pair of levels with a splitting of the order ofDLT . Figure 3
shows the three lowest levels ofJ51 together with the hy-
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pothetical levels of pureT modes (\2kn0
2 /2Mex) and pureL

modes (\2kn0
2 /2Mex1DLT). The lowest and the third-lowes

levels lie between the energies ofL and T modes withl

50. The second-lowest level has energy betweenL and T
modes withl 52 which are not shown in this figure. Thes
results imply that exciton modes in a small sphere areLT
mixed states except for the pureL andT modes, which will
be explicitly shown in Figs. 6 and 7.

Figure 4 exhibits the energy levels of the exciton withJ
51 as functions of radius. The curves of\2kn0

2 /2Mex and
\2kn0

2 /2Mex1DLT are shown by dotted and dashed lines,
spectively, which exhibit good agreement with the numeri
calculation for sufficiently large spheres. However, one
ception can be seen around the energy of theS mode in the
Mex5` limit, where the levels show crossover behavi
Every level gets an appreciable mixture ofSmodes in such a
crossover region.

Figure 5 gives the energy levels of theJ51 exciton~solid
lines! and those obtained by eliminating the image-poten
part ~dashed lines!. As mentioned before, only theSmode is
affected by the image potential in theMex5` limit, and in
fact the energy of the isolated level corresponding to thS
mode in theMex5` limit is shown to be increased appre
ciably due to the image potential. The image-potential eff
also appear in the cross-over region having theS-like char-
acter. It should be noted that levels approaching theL mode
are not affected by the image potential.

FIG. 1. Calculated energy levels of a confined exciton withJ
51 as a function of radius of QD’s. Levels for pureT (l 51)
modes are not included. The radius unit\/A2MexDLT is the de
Broglie wavelength forDLT . In the upper abscissa the radius
given in units of Å by using the parameter for theZ3 exciton of
CuCl, i.e.,DLT55.7 meV andMex52.3me .
-
l
-

.

l

t

FIG. 2. Calculated lowest levels as a function of the inve
square of the radius.

FIG. 3. Calculated three lowest levels withJ51 as a function of
inverse square of the radius denoted by solid lines. Dotted
dashed lines represent hypothetical levels forL and T modes, re-
spectively.
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It is demonstrated generally that the effect of the ima
potential does not appear in theL mode of an exciton con
fined in an arbitrary shape. We rewrite the Schro¨dinger equa-
tion ~2.8! as

2
\2

2Mex
“

2P~r !2
e1DLT

4p
E~r !5EP~r !, ~5.1!

whereE(r ) is a static electric field produced by the induc
polarization charge as follows:

E~r !52“E dr 8F 1

e1

1

ur2r 8u
1Vim~r ,r 8!G@2“•P~r 8!#.

~5.2!

When a polarization wave is theL mode, we have“2P
5““•P2“3“3P5““•P. Taking the divergence of Eq
~5.2!, we get an equation for the polarization charge

F2
\2

2Mex
“

21DLTG“•P~r !5E“•P~r !, ~5.3!

where we use the fact that the image potential satisfies
Laplace equation, i.e.,

“

2F 1

e1

1

ur2r 8u
1Vim~r ,r 8!G52

4p

e1
d~r2r 8!. ~5.4!

Hence the equation“•P satisfies the Helmholtz equatio
(“21q2)“•P50, and we find the eigenenergy for theL
mode to beE5\2k2/2Mex1DLT , in which the effect of im-
age potential does not appear. Note that we do not use
information of the confinement shape in the demonstratio

FIG. 4. Calculated energy levels as a function of radius deno
by solid lines. Dotted and dashed lines represent levels appr
mated byL andT modes, respectively.
e

he

he
.

B. L and T components

Figure 6~b! exhibits *dr udiv P(r )u2 and 6~c!
*dr urotP(r )u2 of the levelsa, b, andg, which approach the
T mode in the large-radius limit as is shown in Fig. 6~a!. The
integration of the rotation is measured in units of that in t
Mex5` limit, i.e., *dr urotPJM

Tm(r )u25kmJ11
2 (umu2/a2).

Sharp peaks in Fig. 6~b! and dips in Fig. 6~c! occur at the
radii where the levelsb andg cross the levels approachin
the L mode. In the levela the divergence decreases wi
radius and becomes zero. On the other hand the rota
increases with radius and reaches the same value as th
the Mex5` limit. Therefore we conclude that the levela is
a LT mixed mode in sufficiently small QD’s, which become
a T mode with an increase of radius. Similarly the oth
levels approachingT modes areLT mixed modes for small
QD’s.

Vertical arrows denote the radii where each level cros
the energy of theS mode in theMex5` limit. Around the
radii indicated by the arrows the divergence and rotat
show the local maximum and local minimum, respective
This comes from the fact thatT andS modes are coupled in
the crossover region.

Figure 7~b! shows*dr udiv P(r )u2 and 7~c! *dr urotP(r )u2
of the levelsr, s, andt in Fig. 7~a!, which approach theL
mode in the large-radius limit. The integration of divergen
is measured in units of that in theMex5` limit, i.e.,
*dr udiv PJM

Lm(r )u25kmJ11
2 (umu2/a2). For each level the di-

vergence is less than that of theL mode and the rotation als
takes a finite value, and thus each level is aLT mixed mode.
With an increase of radius these levels get moreL-mode

d
i-

FIG. 5. Energy levels~solid lines! and those obtained by elimi
nating the image-potential part~dotted lines! are calculated as a
function of radius.
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character except for the crossing regions, where sharp dip
Fig. 7~b! and peaks in Fig. 7~c! appear.

C. Oscillator strength

In the long-wavelength approximation~LWA !, the one-
photon transition is characterized by oscillator strength. T
oscillator strength per unit volume of thenth-level exciton is
given by32

f JM
n 5

2vJM
n m0

\e2

1

V0
U E dr PJM

n ~r !U2

, ~5.5!

FIG. 6. ~a! Energy levels indicated bya, b, andg that approach
T modes in the infinite-mass limit.~b! CalculatedL component
@*dr udiv P(r )u2# of levels a, b, andg as a function of radius.~c!
CalculatedT component@*dr urot P(r )u2# of levelsa, b, andg as a
function of radius. Vertical arrows indicate radii where each le
crosses the energy of theS mode in the infinite-mass limit.
in

e

wherePJM
n is the polarization mode of thenth level,\vJM

n is
the excitation energy, andV0 is the volume of the sphere
Only the component withl 50 takes a finite value from the
integration of the angular part ofQJM

n (r ). Therefore the op-
tical transition is allowed only forJ51, and thus the transi
tions to pureL (J50, l 51) andT (J5l >1) modes are
forbidden for one-photon transitions within the LWA. Th
oscillator strength of the exciton withJ51 can be rewritten
as

f 1M
n 56U(

m

Cm0
n

km0
U2

f bulk , ~5.6!

l

FIG. 7. ~a! Energy levels indicated byr, s, and t, which ap-
proachL des in the infinite-mass limit.~b! CalculatedL component
@*dr udiv P(r )u2# of levels r, s, and t as a function of radius.~c!
CalculatedT component@*dr urot P(r )u2# of levelsr, s, andt as a
function of radius.
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whereCml
n is the expansion coefficients of thenth level with

bases QmJl M , and f bulk52v0m0 /\e2 is the oscillator
strength per unit volume for a bulk crystal. The sum rule
the oscillator strength is confirmed in the numerical calcu
tion, and for instance, it becomes about 0.976f bulk if the
number of basis is 50.

Figure 8 shows the calculated oscillator strength per u
volume for various levels from the lowest~solid line! to the
fourth-lowest~dash-dotted line! ones approachingT modes
as a function of radius. For small radii, the oscillator stren
is concentrated on the lowest level, and, as the radius
creases, it starts to decrease and eventually vanishes.
vertical arrows show the radii where the levels cross
energy of theS mode in theMex5` limit, and it is found
that the oscillator strength of the level 2, 3, or 4 takes
maximum around the energy of theS mode. This result
agrees with the theoretical analysis in the LWA by Ekim
et al.18

Figure 9 shows the oscillator strength per unit volume
various levels from the lowest~solid line! to the fourth-
lowest ~dash-dotted line! ones approachingL modes as a
function of radius. Since these levels areLT mixed modes,
the oscillator strengths take finite values. With an increas
radius the oscillator strengths decrease because the l
approach pureL modes as shown in Fig. 7.

VI. SUMMARY AND CONCLUSION

The energies and mode character of the excitons confi
in a sphere have been calculated in a weak-confinemen

FIG. 8. Calculated oscillator strength per unit volume for t
lowest four levels approachingT modes as a function of radius
Vertical arrows denote the radii in which each level cross the
ergy of theS mode in the infinite-mass limit.
f
-
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h
n-
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gime, including thee-h exchange interaction and image
potential energy. It is found that the states (J50, l 51) and
(J5l ) and L and T modes, respectively, independent
radius. The other states areLT mixed modes, and with the
increase of radius they approachL, T, andS modes, which
are in agreement with those obtained analytically in
Mex5` limit. The effect of the image potential manifes
itself mainly at the crossover region around the energy of
S mode in theMex5` limit.

We have also studied the oscillator strength per unit v
ume, which is meaningful only when the LWA is valid. Fo
sufficiently small radii~up to about 100 Å in the case of th
Z3 exciton in CuCl! the lowest level has the largest oscillat
strength and the states approaching theL mode take still
finite values. It is also found that the oscillator strength b
comes maximum around theS mode in agreement with the
analysis by Ekimovet al.
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APPENDIX: FORMULAS FOR SUMMATIONS
OF INFINITE SERIES

The orthonormality of the polarization vector ofL, T, and
S modes in theMex50 limit given in Eqs.~4.4!, ~4.8!, and
~4.9! is confirmed by using of the following formulas

-

FIG. 9. Calculated oscillator strength per unit volume for t
lowest four levels approachingL modes as a function of radius.
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(
n51

`
1

knJ21
2 5

1

2~2J11!
, ~A1!

(
n51

`
1

kmJ11
2 2knJ21

2 52
1

2kmJ11

j J~kmJ11!

j J21~kmJ11!
, ~A2!

(
n51

`
1

kmJ11
2 2knJ21

2

1

km8J11
2

2knJ21
2 50 ~mÞm8!,

~A3!

(
n51

`
1

~kmJ11
2 2knJ21

2 !2 5
1

4~2J11!2 . ~A4!

We shall prove the above formulas. We consider the
quence of contour integrals alongCn ,

I n5
1

2p i R
Cn

dz
1

z~z2z!

j J~z!

j J21~z!
, ~A5!

whereCn represents the circular path about origin includi
zeros of j J21(z), 6k1J21 ,...,6knJ21 , and not passing
through any other zeros, andz is any point insideCn other
than zeros. A residue integration gives

I n5
1

z

j J~0!

j J21~0!
2

1

z

j J~z!

j J21~z!
1 (

m51

n F 1

kmJ21~z2kmJ21!

2
1

kmJ21~z1kmJ21!G . ~A6!
n.

te

.

.

,

e-

Because ofl im
n→`

I n50 we finally obtain

(
n51

`
1

z22knJ21
2 52

1

2z

j J~z!

j J21~z!
. ~A7!

Substitutingz50 and z5kmJ11 , we have Eqs.~A1! and
~A2!, respectively. Formulas Eqs.~A3! and~A4! can be also
obtained in a similar way using contour integral

I n85
1

2p i R
Cn

dz
1

z~z2z1!~z2z2!

j J~z!

j J21~z!
. ~A8!

In the calculation of the divergence and the rotation
the polarization vector ofL, T, and S modes, we have a
useful formula:

(
n51

`
1

kmJ11
2 2knJ21

2

j J~knJ21x!

j J~knJ21!

52
1

2kmJ11

j J~kmJ11x!

j J21~kmJ11!
~0<x<1!. ~A9!

This is obtained from a sequence of contour integrals

I n95
1

2p i R
Cn

dz
1

z~z2z!

j J~zx!

j J21~z!
. ~A10!
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