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Thermodynamic and kinetic instabilities of lattice-matched alloy layers: Compositional
and morphological perturbations
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Boı̂te Postale 107, 92225 Bagneux Cedex, France
~Received 24 March 2000!

We study the compositional and morphological instabilities affecting epitaxial alloy layers lattice-matched to
their substrate and alloy half spaces under zero net strain. We first calculate analytically the elastically relaxed
state of such a system where a composition modulation is coupled to a surface undulation having either the
same wavelength or half the wavelength of the composition modulation. The calculations, carried out to second
order in undulation amplitude, prove that the coupling energy is nonzero in both cases. Analytical results for
undulations of finite amplitude are also obtained. We then use these calculations to study in a unified fashion
the thermodynamic and kinetic instabilities of these systems and to determine how compositional and mor-
phological perturbations affect each other. We find that, at variance with the case of lattice-mismatched layers,
the critical temperature for thermodynamic compositional instability of nongrowing layers is the same for
planar and nonplanar surfaces. For growing layers, we show that the kinetic compositional instability may
develop independently of any morphological perturbation. However, whether it is growing or not, a lattice-
matched alloy with a finite lateral composition modulation is always unstable against some undulations of its
free surface.
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I. INTRODUCTION

Composition variations and free-surface nonplanari
are two perturbations that commonly affect epitaxial all
layers. It is of both fundamental and practical interest
know if such layers are unstable with respect to such per
bations. In this context, two types of instability are now oft
considered. The notion ofthermodynamicinstability applies
to a static ~nongrowing! layer, a closed system containing
fixed number of atoms of each species, which is deem
unstable when the total energy of some perturbed state is
than the energy of a reference state, in which the alloy
homogeneous and has a planar free surface. This has
distinguished fromkinetic instabilities, which will only de-
velop in the open system constituted by agrowing layer onto
which new material is continuously added.1 We adopt these
terms in the following although thermodynamic instabiliti
can obviously only develop via kinetic processes and kin
instabilities have thermodynamic causes. As far as comp
tion is concerned, thermodynamic instabilities can actua
develop only if bulk atomic diffusion is effective, wherea
kinetic instabilities require only surface diffusion. On th
other hand, the development of morphological instabilit
does not require bulk diffusion, so that for them the distin
tion between thermodynamic and kinetic instabilities is le
pertinent.

Since in many alloys composition variations indu
stresses, careful consideration of the elastic effects is ne
sary, whatever the type of instability considered. After co
positional and morphological perturbations had been stud
independently for many years, it was demonstrated rece
that, in the case of a lattice-mismatched layer, they mod
each other. In particular, the thermodynamic instability
such a layer with respect to a composition modulation~CM!
PRB 620163-1829/2000/62~11!/7393~9!/$15.00
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coupled to a surface undulation~SU! differs greatly from its
instability with respect to each perturbation consider
independently.2 The reason for this coupling is that in th
case both perturbations induce elastic stress fields which
teract. In the present work, we concentrate on layers that
lattice matched to their substrate in their unperturbed hom
geneous state. Elastic coupling is then not obvious at fi
since the morphological perturbation alone does not gene
stresses. We show that it still exists in this case, howe
and results in an extension of the domain of morphologi
instability, whereas it does not affect the proper kinetic co
positional instability.

In Sec. II, we recall briefly the simple thermodynamic
description used for the alloy and situate our study in
context of experimental results and previous theoretical
proaches. In Sec. III, we calculate analytically to order 2
SU amplitude the coherent stress relaxation and the en
for an alloy layer where the SU has either the wavelength
half the wavelength of the CM. In Sec. IV, we discuss t
thermodynamic stability of such a layer against pure a
coupled compositional and morphological perturbations.
also show that in some cases exact results can be obta
for surface perturbations of arbitrary amplitudes. Finally,
show in Sec. V that, although they do not take growth p
cesses explicitly into account, our calculations provide a v
simple demonstration of the pure compositional kinetic
stability, besides allowing the inclusion of surface corrug
tions in the discussion of the latter.

II. PRESENTATION OF THE PROBLEM

A. Thermodynamic description of the alloy

Although the effects studied are not expected to dep
on the particular description chosen for the alloy, their d
7393 ©2000 The American Physical Society
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7394 PRB 62FRANK GLAS
cussion is simplified by specifying one. We summarize h
the basic hypotheses retained. We consider a binaryAcB12c
or pseudobinaryAcB12cC cubic alloy whose stress-free~SF!
lattice parametera depends on compositionc according to
Vegard’s law witha21da/dc5hÞ0. The bulk and the sur
face of the alloy are treated as continua. With application
semiconductors in mind, we suppose that the volume den
of the chemical and entropic contributions to the free
thalpy is given by the regular solution model:3

v~c!5Vc~12c!1RT@c ln c1~12c!ln~12c!#, ~1!

wherec is the local alloy composition,T the temperature,R
the gas constant, andV the interaction parameter. The e
ergy of a portionS of free surface isGS, with G the surface
energy.h, V, andG are supposed independent of compo
tion, orientation, and stress. Any composition inhomogene
induces a spatial variation of the SF strain. In this work,
consider the coherent relaxation of the latter, and in part
lar the nonuniform relaxation near the free surface, us
isotropic elasticity with Young modulusE and Poisson
ratio n.

B. Independent morphological and compositional instabilities
and joint instabilities in lattice-mismatched layers

The first theoretical studies of alloys with a free surfa
were devoted to thermodynamic instabilities affecting ind
pendently either composition or surface morphology. Wh
surface nonplanarities are ignored, the alloy of average c
positionc̄ may be unstable with respect to CM’s under so
critical temperature ifV.0. We originally evaluated the
critical temperature relative to CM’s with wave vectors pa
allel to the surface in an elastically isotropic epitaxial lay
~mismatched or not!.3 Ipatova, Malyshkin, and Shchukin4 ex-
tended the calculation to arbitrary CM’s in a semi-infin
elastically anisotropic half space. A similar calculation in t
isotropic case yields

Tc
i ~ c̄!5~12Eh2/2V!Tc

b~ c̄!, ~2!

whereTc
b( c̄)52c̄(12 c̄)V/R is the ‘‘chemical’’ critical tem-

perature for the bulk alloy without elastic effects (h50).
These critical temperatures are maximum forc50.5. When
on the other hand the possible composition variations
ignored, one may apply the general result5,6 for a half space
submitted to biaxial stresss̄ or for an epitaxial layer lattice
mismatched byē with respect to its substrate, which thu
induces a biaxial stresss̄52Eē/(12n): the planar free
surface is then unstable with respect to SU’s with wave nu
bers less than a critical value kc52(11n)(1
2n)E21G21s̄252(11n)(12n)21EG21ē2.

The proportionality ofTc
b2Tc

i and kc to E signals that
elastic effects play a prominent part in both compositio
and morphological instabilities. Indeed, they induce the la
whereas they inhibit the former. It is only recently, howev
that the possible coupling of the two instabilities has be
investigated. In a misfitting alloy layer with joint CM an
SU, coupling arises because the elastic energy is not sim
the sum of those associated separately with each pertu
tion. This question was investigated from the point of vie
of kinetics by Guyer and Voorhees7 and Léonard and Desai,8
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who studied in particular the effects of the deposition r
and sign of the misfit on the homogeneity and planarity
the growing layer. We adopted a different approach:2 after
calculating the energy of a misfitting compositionally mod
lated and nonplanar film@Fig. 1~a!#, we determined in which
parameter range the homogeneous planar system is the
dynamically unstable with respect to coupled CM’s and SU
having the same wave number, irrespective of the partic
growth and diffusion conditions that may or may not allow
actually to become inhomogeneous and nonplanar. Whe
when coupling is ignored, the system is separately unsta
with respect to CM’s of arbitrary wave number forT,Tc

i

and to SU’s fork,kc at any temperature, when coupling
duly taken into account, it is unstable at any temperature
range 0,k, k̃c(T) of joint CM’s and SU’s having the sam
wave numberk.

C. Coupling of composition modulation and surface
undulation in lattice-matched layers: Introduction

In mismatched layers, SU’s are frequently observed9 and
the coupling between a CM and a SU with the same w
number has been reported.10 This is interpretable in the the
oretical framework recalled above. On the other hand, lo
wavelength CM’s have repeatedly been observed in ap
ently flat lattice-matched layers and it has been demonstr
that they appear during growth well aboveTc

i (c0),c0 being

FIG. 1. Schematics of composition modulation coupled to s
face undulation with~a! identical wavelength, and with half wave
length with~b! crests and~c! troughs at composition extrema~black
and white!.
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the composition of the lattice-matched film.11 Moreover, cor-
related CM’s and SU’s have recently been reported in no
nally lattice-matched films.12,13 From the thermodynamic
point of view, these observations are puzzling because,
cording to the previous models, CM’s are then energetic
unfavorable both for planar surfaces, for whichTc

i is rel-
evant, and for undulated ones, sincek̃c(T) vanishes withē.

Several theoretical attempts have been made to exp
the observation of CM’s forē50. A first kinetic approach
neglects possible surface nonplanarities and considers th
velopment of a CM in material deposited on an alrea
modulated underlying layer~the existence of which can b
somewhat justified by the statistical alloy composition flu
tuations!. This follows our original suggestion3 that, once a
CM is initiated, it remains frozen under the newly deposit
material but might be amplified in the latter due to the pr
erential attachment of like atoms to like atoms on the s
face. Malyshkin and Shchukin1 first calculated the corre
sponding kinetic instability temperature, higher thanTc

i and
even thanTc

b . Ipatovaet al.14 recently developed this idea i
detailed calculations. The dependence of the latter result
several poorly known quantities makes the comparison w
experiments difficult.

A second type of approach considers the coupling o
CM with a SU, the underlying assumption being that,
samples where CM’s have been observed, a small-ampli
SU might have remained undetected. Guyer and Voorhe15

predicted a kinetic joint instability below a ‘‘deposition
critical temperature, which we found to coincide, somew
surprisingly, with the critical temperature for pure compo
tional instability.1 The results of Ref. 15 were obtained und
the hypothesis of local vapor/solid equilibrium, the validi
of which remains to be assessed for the various growth m
ods. Léonard and Desai8 also studied the problem takin
growth and diffusion into account but without resorting
local equilibrium. For nongrowing lattice-matched film
they find the planar surface stable at any temperature and
alloy compositionally unstable only belowTc

i ( c̄) @the intro-
duction of a critical value ofh in Ref. 8 is simply another
way of expressing our Eq.~2!#. They also predict the plana
surface of growing films to be always stable so that, for th
authors, there is no specifically kinetic joint instability fo
lattice-matched alloy films. Finally, Venezuela and Tersof16

concluded that a possible kinetic coupled instability exi
when the atoms involved have different surface mobiliti
without, however, considering the compositional stres
~which is equivalent to settingh50!.

In view of these diverging results and unexpected coin
dences, we reexamine here the compositional and mor
logical thermodynamic and kinetic instabilities of lattic
matched epitaxial layers and alloy half spaces under zero
stress~a thick plastically relaxed alloy layer grown on
lattice-mismatched substrate is a close approximation of
latter!. In such studies, it is essential to calculate the ela
cally relaxed state of the system. For undulated surfaces,
can generally be done only to a given order in SU amplitu
Up to now, all calculations of the elastic fields in alloys ha
been performed to order 1 in SU amplitude~calculations to
order 2 exist for homogeneous materials17! and for CM’s and
SU’s having the same wave vector. This is adequate foē
Þ0 since the first-order stress then couples to the ave
i-

c-
ly

in

de-
y

-

d
-
r-

on
h

a

de

t
-
r

h-

he

e

s
,
s

i-
o-

et

e
i-
is
.

ge

strain,2 whereas forē50 the elastic energy of the syste
contains no coupling term. However, we expect some ela
coupling to subsist even then since the relaxation of the c
positionally modulated thin film is partly determined by th
boundary conditions on the free surface and cannot be
same whether the latter is planar or not~if hÞ0!. We thus
consider a lattice-matched system with joint CM and S
having identical or different wavelengths, and first calcula
the first terms nonlinear in SU amplitude of the strain a
stress fields and the total energy of the system, before sh
ing that these results provide a means of studying in a uni
fashion the questions of stability.

III. CALCULATION OF THE ELASTICALLY RELAXED
STATE AND OF THE ENERGY

OF THE PERTURBATION

A. Composition modulation and surface undulation with the
same wavelength

We first study the coupling of a CM with a SU having th
same wave numberk @Fig. 1~a!#. This is by far the case mos
frequently considered theoretically and encountered exp
mentally. Consider a CMc(x,z)5c01h21ecm(z)sinkx in-
ducing a SF strain modulation

e i j
SF~x,z!5d i j ecm~z!sinkx. ~3!

Here, m describes the depth dependence of the C
amplitude.2 This formulation encompasses alloy half spac
but also alloy layers grown on a substrate extending up
z5t0 @m(z)50 for z<t0#, although distinction is unneces
sary in practice for layer thicknesses large with respect to
wavelengths of the perturbations considered.2 The surface
undulates around average heightt: z5t1h(x)5t
1D sinkx. We first calculate the coherent stress relaxat
with respect to the SF state when CM~3! occurs in a half
space with planar free surface atz5t1D:2,18

sxx
p 522F„4m~z!22k$@2k~z2t2D!13#I ~k,t1D!

1I ~k,z!1G~k,z,t1D!%ekz
…ec sinkx,

syy
p 522F@4m~z!28nkI~k,t1D!ekz#ec sinkx,

szz
p 524Fk$@2k~z2t2D!21#I ~k,t1D!1I ~k,z!

1G~k,z,t1D!%ece
kz sinkx,

sxz
p 524Fk$@2k~z2t2D!11#I ~k,t1D!2I ~k,z!

1G~k,z,t1D!%ece
kz coskx, ~4!

with F5E/8(12n) and

I ~k,z!5e2kzE
2`

z

m~j!ek~j2z!dj,

G~k,z1 ,z2!5E
z1

z2
m~j!e2kjdj. ~5!

These formulas are valid for any CM amplitudeec provided
linear elasticity applies. In the presence of the SU,
boundary conditions becomes i j nj50 on the undulated sur
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7396 PRB 62FRANK GLAS
face for the total stress field. Sinces i j
p usually does not sat

isfy these conditions, additional stressess i j
A5s i j 2s i j

p ap-
pear, which can be taken as deriving from an Airy stre
function

x~x,z!5(
n

@~An1Bnz!sinnkx

1~An81Bn8z!cosnkx#enk~z2t !:

sxx
A 5k(

n
n@~nkAn12Bn1nkBnz!sinnkx

1~nkAn812Bn81nkBn8z!cosnkx#enk~z2t !,

sxz
A 5k(

n
n@2~nkAn1Bn1nkBnz!cosnkx

1~nkAn81Bn81nkBn8z!sinnkx#enk~z2t !,

szz
A 52k2(

n
n2@~An1Bnz!sinnkx

1~An81Bn8z!cosnkx#enk~z2t !. ~6!

The calculations can usually only be performed at a giv
order in D. Since s i j

A50 for D50, the coefficients
An ,Bn ,An8 ,Bn8 are of order 1 at least. Since the elastic ene
must be even inD, we perform calculations to order 2~Ap-
pendix A! which show that in order to satisfy the bounda
conditions terms up ton53 must be included inx. The only
coefficients of order 1 or 2 are

A15A3/25FP~ t !ecD
2,

B152F$24P~ t !1@3P~ t !2Q~ t !#kD%ecD,

B352F@2P~ t !2Q~ t !#eckD2, B28524FP~ t !ecD,
~7!

with P(t)5m(t)22kI(k,t)ekt and 2Q(t)5k21m8(t)
2m(t). Equations~6!, ~7!, and ~4! @valid for any D and
developed as Eq.~A2!# solve the problem at order 2 inD.

The elastic energy per unit surface is3,2

We5
k

4p E
0

2p/kE
2`

h~x!

2e i j
SF~x,z!~s i j

p 1s i j
A !~x,z!dx dz.

~8!

To second order inD,

2e i j
SF~s i j

p 1s i j
A !52Fec

2m~z!„4m~z!~12cos 2kx!

1~11n!$24J1~ t !1@P~ t !

23Q~ t !#k2D2%ek~z2t !~12cos 2kx!

14~11n!e2k~z2t !P~ t !kD~sin 3kx

2sinkx!23~11n!e3k~z2t !k2D2@2P~ t !

2Q~ t !#~cos 2kx2cos 4kx!…

and
s

n

y

We54Fec
2k21@J2~ t !2~11n!J1

2~ t !#1Fec
2kD2$~11n!J1~ t !

3@5m~ t !23k21m8~ t !22J1~ t !#22~11n!m2~ t !

13m~ t !k21m8~ t !% ~9!

with

Jn~ t !5kE
2`

t

mn~z!e~22n!k~z2t !dz for n51,2. ~10!

From Eq.~1!, the chemical energy comprises a volume de
sity v(c0) and a surface density

Wc5
k

2p E
0

2p/kE
2`

t1h~x!H FV~122c0!1RT lnS c0

12c0
D Gdc

1S 2V1
RT

2c0~12c0! D ~dc!2J dx dz, ~11!

wheredc(x,z)5c(x,z)2c0 . To second order inD,

E
0

2p/kE
2`

t1h~x!

dc dx dz5pk21h21m~ t !ecD,

E
0

2p/kE
2`

t1h~x!

~dc!2dx dz5pk22h22

3@J21 3
4 m~ t !m8~ t !kD2#ec

2.

In the homogeneous planar reference state, the chem
energy comprises volume densityv(c0) and surface density
Wc

ref5$V(122c0)1RT ln@c0 /(12c0)#%m(t)ecD/2h canceling
exactly the first-order term ofWc , whereas the elastic energ
is zero. The difference of free enthalpy per unit surface
tween the state with joint CM and SU and this reference s
is thus

dH1~h,ec ,D!5 1
2 k21@a~ t !1g~ t !k2D2#ec

21 1
4 Gk2D2

~12!

with

a~ t !54~12n!FS J2~ t !
dT

dT0
1

11n

12n
@J2~ t !22J1

2~ t !# D ,

g~ t !5~12n!FS 3m~ t !k21m8~ t !
dT

dT0

1
11n

12n
P~ t !e2kt@6Q~ t !2P~ t !e2kt# D ,

dT5T2Tc
i ~c0!. dT05Tc

b~c0!2Tc
i ~c0!. ~13!

Equation~12! is exact inec as long as linear elasticity ap
plies. This should hold in practice because the CM’s m
sured in coherent epitaxial layers induce fairly weak
strains~below 1%!.

B. Surface undulation with half the wavelength
of the composition modulation

The coupling of a CM with a SU having half its wave
length@Figs. 1~b! and 1~c!# is also worth investigating. Con
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sidering independently the chemical and elastic energies
gests that such coupling might destabilize the alloy m
than the coupling studied in Sec. III A. From the pure
chemical point of view (h50), a compositionally modu-
lated alloy is trivially unstable forT,Tc

i (c0)5Tc
b(c0) with

respect to SU’s having crests in the regions of high and
deviation fromc0 , simply because such SU’s increase t
volume of material with nonaverage composition in the th
compositionally unstable alloy. The reverse holds forT
.Tc

i (c0). The kinetic aspects of this problem were inves
gated by Le´onard and Desai.19 Conversely, ifhÞ0, when a
CM appears in a planar half space under zero net stress
regions of maximal deviation from the average composit
are the most highly stressed~under tensionand compres-
sion!. A SU with crests in these regions and troughs in
nearly lattice-matched zones should be favored with res
to a SU having troughs in the high-stress regions, since cr
are known from the study of the standard morphological
stability to be regions of easy elastic relaxation.
th
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Consider @Figs. 1~b! and 1~c!# a SU z5t1h(x)5t
1D sin 2kxcoupled to a CM inducing a SF strain modulatio
with extrema at the crests:e i j

SF(x,z)5d i j m(z)(sinkx
1coskx). D.0 and D,0 correspond, respectively, t
maxima@Fig. 1~b!# and minima@Fig. 1~c!# at the crests. The
calculation proceeds as in Sec. III A. Stresses in the pla
half spacez<t1D are obtained by replacing sinkx and
coskx by (sinkx1coskx) and (coskx2sinkx) in Eq. ~4!.
From the calculations at order 2 inD made in Appendix B,

A15A1852A552A58522A352A3852FP~ t !ecD
2,

B15B18522F$2P~ t !1@3P~ t !12Q~ t !#kD%ecD,

B352B3852F$2P~ t !1@P~ t !/61Q~ t !#kD%ecD,

B55B5852F@31P~ t !/102Q~ t !#eckD2. ~14!

The elastic energy is given by Eq.~8!. To second order in
D,
2e i j
SF~s i j

p 1s i j
A !516Fec

2m2~z!~11sin 2kz!14~11n!Fec
2$24J1~ t !22P~ t !kD1@7P~ t !22Q~ t !#k2D2%m~z!ek~z2t !

3~11sin 2kx!22~11n!Fec
2$12P~ t !1kD@P~ t !16Q~ t !#%kDm~z!e3k~z2t !~sin 2kx2cos 4kx!

22~11n!Fec
2k2D2@31P~ t !210Q~ t !#m~z!e5k~z2t !~cos 4kx1sin 6kx!
III
e

a
is

the

-

and

We58Fec
2k21@J2~ t !2~11n!J1

2~ t !#14Fec
2D@m2~ t !

22~11n!m~ t !J1~ t !12~11n!J1
2~ t !#

12Fec
2kD2$2m~ t !k21m8~ t !24~11n!m2~ t !

1~11n!J1~ t !@15m~ t !22k21m8~ t !114J1~ t !#%.

~15!

The surface density of chemical energy is given by Eq.~11!.
To second order inD.

E
0

2p/kE
2`

t1h~x!

dc dx dz50,

E
0

2p/kE
2`

t1h~x!

~dc!2dx dz5pk22h22@2J21m2~ t !kD

1m~ t !k21m8~ t !k2D2#ec
2.

Since the CM wavelength is twice the SU wavelength,
composition of the reference state isexactly c0 so that the
surface densities of elastic energy and chemical energy
ish. Hence, the free-enthalpy difference between the
turbed state and the reference state is

dH2~ t,ec ,D!5k21@a8~ t !1b8~ t !kD1g8~ t !k2D2#ec
2

1Gk2D2 ~16!

with
e

n-
r-

a8~ t !5a~ t !,

b8~ t !52~12n!FS m2~ t !
dT

dT0
1

11n

12n
P2~ t ! D ,

g8~ t !52~12n!FS m~ t !k21m8~ t !
dT

dT0

1
11n

12n
$m~ t !k21m8~ t !22m2~ t !1J1~ t !@15m~ t !

22k21m8~ t !114J1~ t !#% D . ~17!

IV. THERMODYNAMIC COMPOSITIONAL INSTABILITY
AND MORPHOLOGICAL INSTABILITY

We first consider the implications of the results of Sec.
for the thermodynamic stability of static films, for which th
relevant energy isdH1 or dH2 ~since stability is gauged with
respect to the reference state! and for morphological instabil-
ity. It should be borne in mind that in inhomogeneous films
SU always alters the composition distribution so that it
usually impossible to distinguish the energetic effect of
SU proper from the effect of this alteration.

A. Composition modulation and surface undulation with the
same wavelength

Equation ~12! shows that CM and SU are cou
pled. The coupling coefficient isg5gch1ge , with
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gch53(12n)Fm(t)k21m8(t)dT/dT0 and ge5(1
1n)FP(t)e2ktb6Q(t)2P(t)e2ktc. gch describes the ef-
fect of the purely compositional change induced by the
andge its elastic effects. As expected, the coupling energ
of order 2 inD and in ec . Consequently, the stability with
respect to CM and SU~joint or not! of the homogeneous
planar alloy layer is governed bya. This coefficient is the
same as that found in the analysis of the planar half sp
with CM only.2,4 The Schwarz theorem proves thatJ1

2(t)
<J2(t)/2 for any functionm, equality being reached for CM
m(z)5ekz, which we shall call critical. Hence, forT
.Tc

i (c0), the homogeneous alloy is thermodynamica
stable with respect to both CM and SU.

For T,Tc
i (c0), the system is thermodynamically unstab

with respect to all CM’s such thata,0 ~including the criti-
cal CM!. At a given temperature, this is a condition on t
depth dependencem of the CM. The range of unstable CM’
increases whenT decreases. The result is that a system wh
a CM of finite amplitudeec has developed is in additio
unstable with respect to a SU, with the same wavelen
providedg,0 and 2k21G21uguec

2.1. ForT given, this is a
condition on the amplitude, the wavelength, and the de
dependence of the CM. Such modulations exist: consider
for instance, the class of CM’sm(z)5(11rz)ekz, one
readily finds a range of values ofr for which a,0 andg
,0. The condition 2k21G21uguec

2.1 links this result to the
usual morphological instability5,6 and to the coupled compo
sitional instability of misfitting alloy layers,2 since it can be
rewritten as k, k̂c(T), where k̂c(T) is a temperature-
dependent critical wave vector. For the critical CM,k̂c(T)
5 3

8 @(12n)/(11n)# (dT/dT0)(ec / ē)2kc , where kc is the
‘‘morphological’’ critical wave vector for misfitē ~see Sec.
II B !.

Above or below Tc
i (c0), the criteria g,0,

2k21G21uguec
2.1 also determine the morphological inst

bility of a system which, through some growth proce
would have been frozen in a CM state. This could apply
spontaneous kinetic CM’s~see Sec. V! or to artificial later-
ally modulated structures.

B. Surface undulation with half the wavelength
of the composition modulation

Equation~16! shows that CM and SU are also coupled
this case. ForT.Tc

i (c0), the system is again stable wit
respect to both CM and SU. However, the interaction ene
is now of order 1 inD, as expected from the obvious asym
metry between SU’s having opposite signs ofD. As a con-
sequence, another effect appears: unlessb850, the system
with a CM of finite amplitude is always unstable with respe
to some SU’s. b8,0 induces a SU with crests in the re
gion of extreme deviation from the average composition@D
.0; Fig. 1~b!#, whereasb8.0 favours troughs in these re
gions@D,0; Fig. 1~c!#. The sign ofb8 depends onT and on
the depth dependencem of the CM. b8 can be rewritten as
b85bch8 1be8 , with bch8 52(12n)Fm2(t)dT/dT0 and be8
52(11n)FP2(t). As mentioned in Sec. III B,bch8 , favors
crests at the CM extrema@Fig. 1~b!# for T,Tc

i (c0) and
troughs@Fig. 1~c!# for T.Tc

i (c0). On the other hand, sinc
be8.0 ~unless the CM is critical, in which casebe850!, the
s

ce

re

th

th
g,

,
o

y

t

formation of a SU with crests at the CM extrema alwa
increases the elastic energy. ForT.Tc

i (c0), this reinforces
the tendency of the alloy not to form zones of extreme co
position. However, this increase is simply due to the
creased volume of zones of nonaverage composition, wh
also produces a change in chemical energy. Alternativ
starting from a planar half space, we may compare
changes of elastic energy associated with, respectively, a
~with crests at the CM extrema! and a perturbation of the CM
~without SU! producing the same chemical energy chan
We have checked that for a wide range of CM’s~including
the critical one!, the SU costs less elastic energy than t
simple CM perturbation. This reflects the easier stress re
ation if crests appear at the CM extrema.

C. The critical compositional modulation and the question
of metastability

We have shown that forē50 the static system is thermo
dynamically stable with respect to CM’s aboveT.Tc

i even
if its surface is allowed to undulate with an infinitesim
amplitude. Is this only metastability, or would some surfa
perturbations offinite amplitude reduce the total enthalpy o
the system with respect to the homogeneous planar state
general answer to this question is yet available. In this
spect, however, it is interesting to return to the critical C
m(z)5ekz, remarkable not only for being the CM with re
spect to which the planar system becomes thermodyna
cally unstable against CM atTc

i , but also becausesxx
p

5szz
p 5sxz

p 50 @from Eq. ~4!#. Hence any surface with nor
mal in thexz plane is stress free andx50. One then easily
shows that for any CM amplitudeh21ec and any free-
surface profilez5t1h(x) whose period alongx is p/nk
with n integer, one has~omitting the positive surface energ
term!

dH~ec!5
1

4p

dT

dT0
ec

2E
0

2p/k

e2kh~x! sin2 kx dx. ~18!

The system is thus thermodynamically stable aboveTc
i (c0)

with respect to this CM even if its surface is allowed to ha
finite deviations with respect to planarity.

V. KINETIC INSTABILITY

A. Compositional instability without coupling: Critical growth
temperature and optimal modulation

Although apparently pertaining to static layers, the calc
lations of Sec. III also allow the study of the kinetic inst
bility. We are now interested in the evolution of the allo
upon deposition of extra material~exactly lattice matched on
average! on its free surface, assuming that, due to lack
bulk diffusion, the underlying CM remains unaltered. Co
sider first a half space with CM~3! and planar free surface a
z5t (D50). Since the elastic and chemical energies per u
surface are zero in the reference state, the total enthalpyH(t)
of the systems is equal todH1 and its rate of change upo
addition of a thin alloy layer is]H/]t5k21(]a/]t)ec

2/2.
Since ]J1 /]t5k@m(t)2J1(t)# and ]J2 /]t5km2(t), we
have
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]H/]t52~12n!FS m2~ t !
dT

dT0
1

11n

12n
@m~ t !

22J1~ t !#2D k21ec
2.

Minimizing this quantity with respect to the depth variatio
m of the CM amplitude gives the optimum depth variati
m̃(t). Since

]~]H/]t !/]@m~ t !#54~12n!FS m~ t !
dT

dT0
1

11n

12n
@m~ t !

22J1~ t !# D k21ec
2,

the integral J̃1(t) associated with m̃ satisfies J̃1(t)
1k21] J̃1(t)/]t52J̃1(t)/@11f(T)#, where f(T)5@(1
2n)/(11n)# dT/dT0 . Thus J̃1(t)5 J̃1(0)exp(kzt) and
m̃(t)5$2J̃1(0)/@11f(T)#%exp(kzt), with kz5$@12f(T)#/
@11f(T)#%k. Hence, f(T)51 defines a kinetic critica
growth temperatureTc

k(c0) under which pure composition
perturbations increase exponentially upon deposition of n
material. ForTc

i (c0)<T<Tc
k(c0), the layer is kinetically but

not thermodynamically unstable. We find

Tc
k~c0!5Tc

b~c0!12c0~12c0!
n

12n

Eh2

R

5Tc
i ~c0!1c0~12c0!

11n

12n

Eh2

R
, ~19!

kz5
Tc

k~c0!2T

T2Tc
c~c0!

k. ~20!

The reduced amplification wave numberkz /k is thus a
characteristic of the system that depends only on its ther
dynamic and elastic properties and on temperature, but
on growth velocity. In particular,kz /k51 for T5Tc

i (c0).
Typical variations with temperature and composition for
III-V alloy are represented in Fig. 2.

B. Discussion

We thus recover in a very simple fashion the kinetic cr
cal temperature first calculated by Malyshkin and Shchuk1

for pure compositional instability~in the elastically aniso-
tropic case! and then by Guyer and Voorhees15 for coupled
instability. Note that our only two hypotheses have alrea
been made by these authors: the continuous selection o
optimal CM amplitude profilem̃ during growth correspond
to fast surface diffusion1 and the existence of an initial CM
of finite amplitude had to be assumed in Refs. 1, 14, and
The present results, however, are obtained without explic
taking deposition fluxes and surface diffusion into accou
and in particular without assuming either local vapor/so
equilibrium15 or step flow growth.14 Nor did we assumea
priori1 thatm varies exponentially withz; instead, we calcu-
lated the optimum profile. Moreover, the results are obtai
for a planar free surface.
w

o-
ot

y
he

5.
ly
t,

d

This widens considerably the domain of occurrence of
kinetic compositional instability. First, this instability shou
appear whatever the growth method. CM’s have inde
been observed aboveTc

i (c0) in semiconductor alloy layers
grown by all the usual epitaxy techniques.11 Second, Guyer
and Voorhees associate the occurrence of the kinetic in
bility with a coupling between CM and SU; the instabilit
corresponds to a phase shift between CM and SU and
CM amplitude is explicity coupled to the SU amplitude~pro-
portional to it whenG50!. We demonstrate here that th
kinetic composition instability does not require any morph
logical surface perturbation to develop. Because of this
because it applies as long as linear elasticity holds,
present calculation is also not limited to the initial stage
instability development. On the other hand, the calculatio
of Sec. III, which take explicitly into account nonplanar fre
surfaces, also extend the domain of occurrence of the c
positional kinetic instability with respect to the work o
Malyshkin and Shchukin,1 who assumed a planar surfac
Indeed, the results of Sec. V A are still valid for a nonplan
layer with a SU amplitude remaining constant during grow
~the reference-state energy is then constant!. Hence, layers
with corrugated surfaces are also kinetically unstable w
respect to CM’s forT,Tc

k(c0).
Finally, we may consider the evolution of smal

amplitude SU’s during growth. For a sinusoidal SU havi
the same wave vector as the CM, an increase of amplit
produces a change of the average composition of either
newly deposited or the already deposited material, wh
thereby deviates from strict lattice matching~as previously
noticed2 and as appears from the proportionality ofWc

ref to
D!. Although probably important in practice,12,13 the former
case is out of the scope of the present study, whereas
latter corresponds to thermodynamical instability~Sec.
IV !. SU amplification is, however, compatible with lattic
matching for SU’s having half the wavelength of the CM
Then, ]H/]D5b8(t)ec

2 and the discussion of the morpho
logical instability in Sec. IV B shows that the surface pertu
bation will tend to develop once a finite-amplitude CM h

FIG. 2. Variation with temperature of the amplification wav
number along growth direction divided by the CM lateral wa
number, for various average alloy compositions. Interce
with horizontal axis giveTc

k(c0). Material parameters are fo
IncGa12c As alloys ~Ref. 3!.
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appeared, which is anyway also a prerequisite for the de
opment of the kinetic compositional instability. For the op
mal CM m̃, b8(t).0 in the domain of pure kinetic compo
sitional instability (Tc

i <T<Tc
k), so that we expect half

wavelength SU’s with troughs in the regions of extrem
deviation from average composition. That only coupling b
tween perturbations with identical wavelengths seems
have been actually observed so far might be related to
residual lattice mismatch of the layers. To summarize, b
instabilities should develop together, although a finite CM
needed for the SU to appear whereas no SU is needed fo
CM to grow.

VI. SUMMARY AND CONCLUSIONS

We performed an analytical calculation of the elastic
laxation of a lateral composition modulation coupled to
surface undulation of equal or half wavelength in a lattic
matched epitaxial alloy layer or alloy half space. The co
pling energy between the two perturbations, calculated u
second order in undulation amplitude, is nonzero in b
cases. These calculations allowed us to treat in a uni
fashion the instabilities affecting the compositional homo
neity as well as the surface planarity of the layer, whet
thermodynamic~in the case of a closed system! or kinetic
~for an open system!. In particular, we determined how thes
perturbations condition or affect each other. In sharp cont
to the case of lattice-mismatched layers, the thermodyna
critical temperatureTc

i below which the static layer become
unstable with respect to composition variations is identi
for corrugated layers and for planar ones. The kinetic criti
temperatureTc

k , below which composition modulations ge
amplified during growth, lies well aboveTc

i . It is an intrinsic
property of the system independent of any particular gro
method or growth mode. The development of the kine
composition modulations does not require any surface n
planarity. However, because of the aforementioned coupl
a layer where such a composition modulation has starte
develop becomes in turn unstable with respect to surf
undulations. Whereas the details of the development or i
bition of the kinetic instability can probably be obtained on
through consideration of the particular processes operatin
given growth conditions,14–16 our calculations underline th
universal character of the instability, independent of th
details.

APPENDIX A

Stresses are calculated to second order inD on the free
surfacez5t1h(x), on which the boundary conditions ar
(sxx

p 1sxx
A )h8(x)2(sxz

p 1sxz
A )50, (sxz

p 1sxz
A )h8(x)2(szz

p

1szz
A )50. With terms up ton53 included in the Airy func-

tion x, whose coefficients are at least of order 1 inD,

sxx
A h8~x!2sxz

A 5k(
n51

4

cn
1 cosnkx1sn

1 sinnkx,

sxz
A h8~x!2szz

A 5k(
n51

4

cn
2 cosnkx1sn

2 sinnkx ~A1!

with
l-

-
to
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c1
15B11kA122kD~B281kA28!,

c1
25kA181kD~B212kA2!,

c2
152B214kA21kD~2B181kA1826B3829kA38!,

c2
254kA282kD~B11kA123B329kA3!,

c3
153@B313kA312kD~B281kA28!#,

c3
253@3kA382kD~B212kA2!#,

c4
156kD~2B3813kA38!, c4

2526kD~B313kA3!.

sn
j is obtained fromcn

j by exchangingAi andAi8 andBi and
Bi8 , respectively, and multiplying each coefficient by
(21) j 1n1 i . Then

I „k,t1h~x!…5I ~k,t !1P~ t !e2kth~x!

1k@Q~ t !2P~ t !#e2kth2~x!1O~D3!,

G„k,t1h~x!,t1D…5@D2h~x!#m~ t !e2kt1kQ~ t !e2kt

3@D22h2~x!#1O~D3!,

m„t1h~x!…5m~ t !1h~x!m8~ t !1m9~ t !h2~x!/21O~D3!,
~A2!

where P(t)5m(t)22kI(k,t)ekt and Q(t)5@m8(t)
2km(t)#/2k. Consequently,

sxx
p h8~x!2sxz

p 5FeckD„$8P~ t !2kD@15P~ t !22Q~ t !#%

3coskx13kD@P~ t !12Q~ t !#

3cos 3kx22P~ t !~122kD!sin 2kx…,

sxz
p h8~x!2szz

p 52Feck
2D2~8 cos 2kx15 sinkx

23 sin 3kx!P~ t !.

Writing the boundary conditions in terms of the Airy func
tion coefficients, we readily find thatA2 ,B2 ,A18 ,B18 ,A38 ,B38
are of order 3 inD at least. The six remaining coefficien
satisfy the following system, whose solution is given by E
~7!:

B11kA122kDB252Fec$8P~ t !

1kD@2Q~ t !215P~ t !#%D,

B313kA312kDB2852Fec@P~ t !12Q~ t !#kD2,

22B2824kA2812kDB158FecP~ t !~122kD!D,

~4A282DB1!/85~A12DB28!/552~3A31DB28!

5FecP~ t !D2. ~A3!

APPENDIX B

With terms up ton55 in x, Eq. ~A1! still holds with now
terms up ton57 in the sum and
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c1
15B11kA11kD~2B181kA1826B3829kA38!/2,

c1
25kA182kD~B11kA123B329kA3!/2,

c2
152@B212kA224kD~B4812kA48!#,

c2
254@kA281kD~B414kA4!#,

c3
153@B313kA31kD~2B181kA18210B58225kA58!/2#,

c3
253@3kA382kD~B11kA125B5225kA5!/2#,

c4
154@B414kA412kD~B281kA28!#,

c4
254@4kA482kD~B212kA2!#,

c5
155@B515kA513kD~2B3813kA38!/2#,

c5
255@5kA5823kD~B313kA3!/2#,

c6
1524kD~B4812kA48!, c6

25212kD~B414kA4!,

c7
1535kD~2B5815kA58!/2, c7

25235kD~B515kA5!/2.

sn
j is obtained fromcn

j by exchangingAi andAi8 andBi and
Bi8 , respectively, and multiplying each coefficient by

(21) j 1n81 i 8 wheren85n/2 for n even,n85(n21)/2 for n
odd, i 85 i /2 for i even, andi 85( i 21)/2 for i odd. More-
over, on the free surfacez5t1h(x),

sxx
p h82sxz

p 52FeckD„$2P~ t !2kD@P~ t !22Q~ t !#%~coskx

2sinkx!2$6P~ t !2kD@10P~ t !23Q~ t !#%

3~cos 3kx1sin 3kx!1kD@2P~ t !15Q~ t !#

3~cos 5kx2sin 5kx!…,
l.

i

s

sxz
p h82szz

p 55Feck
2D2P~ t !@22~coskx1sinkx!

23~cos 3kx1sin 3kx!1cos 5kx1sin 5kx#.

We find thatA2 ,B2 ,A4 ,B4 ,A28 ,B28 ,A48 ,B48 are of order 3 at
least and the 12 remaining coefficients satisfy the follow
system, whose solution is given by Eq.~14!:

B11kA11kDB1823kDB38

5B181kA181kDB113kDB3

524Fec$P~ t !2kD@P~ t !2Q~ t !#%,

3B319kA313kDB18

52~3B3819kA3823kDB1!

52FeckD$6P~ t !2kD@10P~ t !23Q~ t !#%,

2~15kDB3815B5125kA5!

515kDB325B58225kA58

52FeckD2@2P~ t !15Q~ t !#,

22A181DB123DB3

522A11DB1813DB385220FecP~ t !D2,

6A382DB152~6A31DB18!510FecP~ t !D2,

3DB3210A5852~3DB38110A5!52FecP~ t !D2.
~B1!
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