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We study the compositional and morphological instabilities affecting epitaxial alloy layers lattice-matched to
their substrate and alloy half spaces under zero net strain. We first calculate analytically the elastically relaxed
state of such a system where a composition modulation is coupled to a surface undulation having either the
same wavelength or half the wavelength of the composition modulation. The calculations, carried out to second
order in undulation amplitude, prove that the coupling energy is nonzero in both cases. Analytical results for
undulations of finite amplitude are also obtained. We then use these calculations to study in a unified fashion
the thermodynamic and kinetic instabilities of these systems and to determine how compositional and mor-
phological perturbations affect each other. We find that, at variance with the case of lattice-mismatched layers,
the critical temperature for thermodynamic compositional instability of nongrowing layers is the same for
planar and nonplanar surfaces. For growing layers, we show that the kinetic compositional instability may
develop independently of any morphological perturbation. However, whether it is growing or not, a lattice-
matched alloy with a finite lateral composition modulation is always unstable against some undulations of its
free surface.

[. INTRODUCTION coupled to a surface undulatig8U) differs greatly from its
instability with respect to each perturbation considered
Composition variations and free-surface nonplanaritiesndependently. The reason for this coupling is that in this
are two perturbations that commonly affect epitaxial alloycase both perturbations induce elastic stress fields which in-
layers. It is of both fundamental and practical interest toteract. In the present work, we concentrate on layers that are
know if such layers are unstable with respect to such perturattice matched to their substrate in their unperturbed homo-
bations. In this context, two types of instability are now oftengeneous state. Elastic coupling is then not obvious at first,
considered. The notion dhermodynamidnstability applies ~ SiNce the morphological p_ertqrbatpn a_Ione_does not generate
to a static (nongrowing layer, a closed system containing a stresses. W_e show thatllt still exists in '.[hIS case, howeyer,
fixed number of atoms of each species, which is deemeﬁnd results in an extension of the domain of morphological
unstable when the total energy of some perturbed state is Ieg?tab'“ty' whereas it does not affect the proper kinetic com-

. : - positional instability.
than the energy of a reference state, in which the alloy i In Sec. I, we rgcall briefly the simple thermodynamical
homogeneous and has a planar free surface. This has to 88 C

R SR . . scription used for the alloy and situate our study in the
d|st|ng_u|shed fromkinetic |nstab_|l|t|es, Wh'Ch. will only de- context of experimental results and previous theoretical ap-
velop in the open system constituted bgrawinglayer onto

) I X proaches. In Sec. lll, we calculate analytically to order 2 in
which new material is continuously addedve adopt these gy amplitude the coherent stress relaxation and the energy
terms in the following although thermodynamic instabilities ¢5; g alloy layer where the SU has either the wavelength or
can obviously only develop via kinetic processes and kinetig,if the wavelength of the CM. In Sec. IV, we discuss the
instabilities have thermodynamic causes. As far as Compos’ihermodynamic stability of such a layer against pure and
tion is concerned, thermodynamic instabilities can actuallycoupled compositional and morphological perturbations. We
develop only if bulk atomic diffusion is effective, whereas also show that in some cases exact results can be obtained
kinetic instabilities require only surface diffusion. On the for surface perturbations of arbitrary amplitudes. Finally, we
other hand, the development of morphological instabilitiesshow in Sec. V that, although they do not take growth pro-
does not require bulk diffusion, so that for them the distinc-cesses explicitly into account, our calculations provide a very
tion between thermodynamic and kinetic instabilities is lessimple demonstration of the pure compositional kinetic in-
pertinent. stability, besides allowing the inclusion of surface corruga-
Since in many alloys composition variations inducetions in the discussion of the latter.
stresses, careful consideration of the elastic effects is neces-
sary, whatever the type of instability considered. After com-
positional and morphological perturbations had been studied Il. PRESENTATION OF THE PROBLEM
independently for many years, it was demonstrated recently
that, in the case of a lattice-mismatched layer, they modify
each other. In particular, the thermodynamic instability of Although the effects studied are not expected to depend
such a layer with respect to a composition modulatiGiv) on the particular description chosen for the alloy, their dis-

A. Thermodynamic description of the alloy
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cussion is simplified by specifying one. We summarize here 7
the basic hypotheses retained. We consider a biAgBy _ . z=t+h(x) 2m/k

or pseudobinanA.B; _.C cubic alloy whose stress-fré8F) (a) +—> X
lattice parameten depends on composition according to =t

Vegard's law witha~'da/dc= +#0. The bulk and the sur-
face of the alloy are treated as continua. With applications to |
semiconductors in mind, we suppose that the volume density |
of the chemical and entropic contributions to the free en-
thalpy is given by the regular solution model: :

w(c)=Qc(l-c)+RTcInc+(1—-c)in(1—-c)], (1)

wherec is the local alloy composition] the temperatureR

the gas constant, and the interaction parameter. The en-
ergy of a portionS of free surface i4'S, with I" the surface
energy.n, ), andI’ are supposed independent of composi-
tion, orientation, and stress. Any composition inhomogeneity
induces a spatial variation of the SF strain. In this work, we
consider the coherent relaxation of the latter, and in particu-
lar the nonuniform relaxation near the free surface, using
isotropic elasticity with Young modulu€ and Poisson
ratio v.

¢2|A|

B. Independent morphological and compositional instabilities
and joint instabilities in lattice-mismatched layers

The first theoretical studies of alloys with a free surface
were devoted to thermodynamic instabilities affecting inde-
pendently either composition or surface morphology. When
surface nonplanarities are ignored, the alloy of average com- FIG. 1. Schematics of i dulati led t
positionc may be unstable with respect to CM’s under some - L >chematics of composition modufation coupied to sur-

. . p face undulation with@) identical wavelength, and with half wave-
critical temperature ifQ>0. We originally evaluated the . "

. . Lo length with(b) crests andc) troughs at composition extrentllack
critical temperature relative to CM’s with wave vectors par- and white
allel to the surface in an elastically isotropic epitaxial layer '

(mismatched or nof Ipatova, Malyshkin, and ShchuKiex- o . .
tended the calculation to arbitrary CM’s in a semi-infinite Who studied in particular the effects of the deposition rate

elastically anisotropic half space. A similar calculation in the@"d sign of the misfit on the homogeneity and planarity of
isotropic case yields the growing layer. We adopted a different approaciter

calculating the energy of a misfitting compositionally modu-
Ti (©)=(1— EnZ/ZQ)Tb(a, 2) lated and nonplanar filifFig. 1(a)], we determined in WhiCh
¢ ¢ parameter range the homogeneous planar system is thermo-
whereT?(E) =2¢(1-C)Q/R is the “chemical” critical tem-  dynamically unstable with respect to coupled CM’s and SU’s
perature for the bulk alloy without elastic effecty+0).  having the same wave number, irrespective of the particular
These critical temperatures are maximum ¢er0.5. When ~ growth and diffusion conditions that may or may not allow it
on the other hand the possible composition variations ar@ctually to become inhomogeneous and nonplanar. Whereas
ignored, one may apply the general re3fifor a half space When coupling is ignored, the system is separately unstable
submitted to biaxial stress or for an epitaxial layer lattice With respect to CM’s of arbitrary wave number for<Tg
mismatched bye with respect to its substrate, which thus and to SU’s fork<k. at any temperature, when coupling is
induces a biaxial stress=—Ee/(1—v): the planar free duly taken into account, it is unstable at any temperature to a
surface is then unstable with respect to SU’s with wave numrange 0<k<k.(T) of joint CM’s and SU’s having the same
bers less than a critical valuek,=2(1+7»)(1  wave numbek.
—V)E T to?=2(1+v)(1—-v) Er T
The proportionality ofT2—T. and k. to E signals that
elastic effects play a prominent part in both compositional
and morphological instabilities. Indeed, they induce the latter
whereas they inhibit the former. It is only recently, however, In mismatched layers, SU’s are frequently obsehart
that the possible coupling of the two instabilities has beerthe coupling between a CM and a SU with the same wave
investigated. In a misfitting alloy layer with joint CM and number has been report&iThis is interpretable in the the-
SU, coupling arises because the elastic energy is not simplgretical framework recalled above. On the other hand, long-
the sum of those associated separately with each perturbaavelength CM’s have repeatedly been observed in appar-
tion. This question was investigated from the point of viewently flat lattice-matched layers and it has been demonstrated
of kinetics by Guyer and Voorhekand Lenard and Desdi, that they appear during growth well aboVg(c,),c, being

C. Coupling of composition modulation and surface
undulation in lattice-matched layers: Introduction
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the composition of the lattice-matched filhMoreover, cor-  strain? whereas fore=0 the elastic energy of the system
related CM’s and SU’s have recently been reported in nomicontains no coupling term. However, we expect some elastic
nally lattice-matched film&2'® From the thermodynamic coupling to subsist even then since the relaxation of the com-
point of view, these observations are puzzling because, agositionally modulated thin film is partly determined by the
cording to the previous models, CM’s are then energeticalljpoundary conditions on the free surface and cannot be the
unfavorable both for planar surfaces, for whigh is rel-  same whether the latter is planar or tift #0). We thus
evant, and for undulated ones, sifc€T) vanishes withe. consider a lattice-matched system with joint CM and SU,
Several theoretical attempts have been made to explaipaving identical or different wavelengths, and first calculate
the observation of CM’s foe=0. A first kinetic approach the first terms nonlinear in SU amplitude of the strain and
neglects possible surface nonplanarities and considers the dgiress fields and the total energy of the system, before show-
velopment of a CM in material deposited on an alreadying that these results provide a means of studying in a unified
modulated underlying layefthe existence of which can be fashion the questions of stability.
somewhat justified by the statistical alloy composition fluc-

tuations. This follows our original suggestidrthat, once a Ill. CALCULATION OF THE ELASTICALLY RELAXED
CM is initiated, it remains frozen under the newly deposited STATE AND OF THE ENERGY
material but might be amplified in the latter due to the pref- OF THE PERTURBATION

erential attachment of like atoms to like atoms on the sur-
face. Malyshkin and Shchukirfirst calculated the corre-
sponding kinetic instability temperature, higher thignand
even tharT{ . Ipatovaet al** recently developed this ideain ~ We first study the coupling of a CM with a SU having the
detailed calculations. The dependence of the latter results o¥Rme wave numbée[Fig. 1(a)]. This is by far the case most
several poorly known quantities makes the comparison witiirequently considered theoretically and encountered experi-
experiments difficult. mentally. Consider a CM(x,z) =co+ 7~ te.m(z)sinkx in-
A second type of approach considers the coupling of &lucing a SF strain modulation

CM with a SU, the underlying assumption being that, in )

: ; €(x,2) = 8 e.m(z)sinkx 3
samples where CM’s have been observed, a small-amplitude ij ij€c '
SU might have remained undetected. Guyer and Vootfeesyere m describes the depth dependence of the CM

predicted a kinetic joint instability below a “deposition”  amplitude? This formulation encompasses alloy half spaces
critical temperature, which we found to coincide, somewhag,; giso alloy layers grown on a substrate extending up to
s_urprlsmgly,_\_/vnlh the critical temperature for pure composi-,— ' [m(z)=0 for z<t,], although distinction is unneces-
tional instability The results of Ref. 15 were obtained under g5ryin practice for layer thicknesses large with respect to the
the hypothesis of local vapor/solid equilibrium, the validity wavelengths of the perturbations considetethe surface

of which remains to be assessed for the various growth meth;nqulates  around average height z=t+h(x)=t

ods. Lenard and Desdialso studied the problem taking | A sinkx We first calculate the coherent stress relaxation
growth and diffusion into account but without resorting to,iih respect to the SF state when Ol occurs in a half
local equilibrium. For nongrowing lattice-matched films, sgace with planar free surfacezt t+ A:218

they find the planar surface stable at any temperature and th

A. Composition modulation and surface undulation with the
same wavelength

alloy compositionally unstable only beloW.(c) [the intro- b =—2F(4m(z)— 2k{[2k(z—t—A)+3]I(K,t+A)
duction of a critical value ofp in Ref. 8 is simply another

way of expressing our Eq2)]. They also predict the planar +1(k,2) + G(k,z,t+A)}e9) e, sinkx,

surface of growing films to be always stable so that, for these

authors, there is no specifically kinetic joint instability for of),=—2F[4m(z) —8vkI(k,t+A)e*]e; sinkx,

lattice-matched alloy films. Finally, Venezuela and Ter¥off

concluded that a possible kinetic coupled instability exists ~ o%,= —4Fk{[2k(z—t—A)—1]I(k,t+A)+1(k,2)

when the atoms involved have different surface mobilities, Kz

without, however, considering the compositional stresses +G(k.zt+A)}eesinkx,

(which is equivalent to settingg=0).
In view of these diverging results and unexpected coinci- ~AFki[2k(z-t=A)+1]I(k,t+A)=1(k,2)

dences, we reexamine here the compositional and morpho- +G(k,z,t+A)}ee5%coskx, (4)

logical thermodynamic and kinetic instabilities of lattice-

matched epitaxial layers and alloy half spaces under zero n#fith F=E/8(1—v) and

stress(a thick plastically relaxed alloy layer grown on a

lattice-mismatched substrate is a close approximation of the |(k,z):e—szz

latten. In such studies, it is essential to calculate the elasti-

cally relaxed state of the system. For undulated surfaces, this

can generally be done only to a given order in SU amplitude. 2] ke

Up to now, all calculations of the elastic fields in alloys have G(k.z1,25)= L m(§)e "d¢. ®)

been performed to order 1 in SU amplitu@@lculations to '

order 2 exist for homogeneous matertdlsind for CM’s and ~ These formulas are valid for any CM amplituégprovided

SU’s having the same wave vector. This is adequateefor linear elasticity applies. In the presence of the SU, the

#0 since the first-order stress then couples to the averaggoundary conditions becomsg;n;=0 on the undulated sur-

p
Oxz

m(£)e =2 de,
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face for the tota_l stress fiel_q. Sined; usually does not sat-  W,=4F 2k~ 1[J,(t) — (1+ »)I2(t) ]+ Fe2kA%{(1+ 1) J; (1)
isfy these conditions, additional stresseﬁzaij—oi‘} ap- i )
pear, which can be taken as deriving from an Airy stress X[5m(t) =3k~ "m’(t) —2J,() ] - 2(1+ »)m(t)

function +3m(t)k tm’(t)} ©)
x(X,2)=Z[(A,+B,z)sinnkx with
n

t
+ (A +B/z)cosnkx]e"kzV: Jn(t)=kf m'(z)e?~MkzYdz for n=1,2. (10)
From Eq.(1), the chemical energy comprises a volume den-

A _ .
Txx= k; N[(nkAy+2B,+nkByz)sinnkx sity w(cy) and a surface density

+ KA + 2B’ +nkB’ Kk nk(z—t) k 27@lk (t4+h(x) C
(nkAy+2B;+nkB,z)cosnkx]e , W.=— f Q(1-2¢y)+RTIn| —=—| | sc
2 0 —oo 1_C0
O'QZ=k; n[ — (nkA,+B,+nkB,z)cosnkx 0 RT s02) dx d 11
TR 2ei=c) (6c)7jdx dz D

+(nkA,+ B/ +nkB;z)sinnkx]e"#"V, |
where 8c(x,z) =c(x,z) —cy. To second order in,

o= k2§n: n?[(A,+Bpz)sinnkx fZW/kft+h(X) scdxdz=7k 1y Im(t)eA,
0 — 0

+ (A}, +B/z)cosnkx]e"™ ™V, (6)

2wk [t+h(x)
2 -2, -2
The calculations can usually only be performed at a given fo f_m (6c)%dxdz=mk g

order in A. Since crﬁ=0 for A=0, the coefficients

A,.B,,A/ B/ are of order 1 at least. Since the elastic energy X[Jp+ 2m(t)m’ () kA2]€2.

must be even in\, we perform calculations to order(2p- )
pendix A which show that in order to satisfy the boundary N the hom_ogeneous planar _reference state, the ch¢m|cal
conditions terms up ta=3 must be included iry. The only ~ €Nergy comprises volume densityc,) and surface density

coefficients of order 1 or 2 are W= {Q(1~2co) + RTIn[co/(1—Co) J}m(t) e:A/277 canceling

exactly the first-order term &l , whereas the elastic energy

A1=A3/2=FP(t)e.A?, is zero. The difference of free enthalpy per unit surface be-
tween the state with joint CM and SU and this reference state

B,=2F{—4P(1)+[3P(t)—Q(t)]kA}e:A, is thus
Bs=2F[2P(t)—~ Q(t)]eckA2, Bj=—4FP(t)eA, SHi(hec,8) =3k Ta(t) + Y (OK*A%]e+ GTK?A?
) (12

with

with  P(t)=m(t)—2klI(k,t)ek' and 2Q(t)=k *m’(t)

—m(t). Equations(6), (7), and (4) [valid for any A and ST 1+

developed as EqA2)] solve the problem at order 2 ifs. a(t)=4(1—- v)F(JZ(t) —+ —[Jz(t)—ZJf(t)]),
The elastic energy per unit surfacés oTo 1-v

oT
k 2m/k (h(x) 1 —1. o
We=—o f —efix,2)(of + o) (x,2)dx dz r=(1 ”)F(3m(t)" M 5T,
4 0 —
(8) + 1 p(tye M[6Q(1) - P(ve ]
— e - e ,
To second order i, 1-v
— (o + o)) =2F €2m(2)(4m(2) (1 - cos %X) ST=T-TL(cy). 6To=T2(co)—Th(Co). (13
+(1+ ) {— 43, () +[P(t) Equation(12) is exact ine. as long as linear elasticity ap-
plies. This should hold in practice because the CM’s mea-
—3Q(t)k*A%}eX* V(1 ~cos %x) sured in coherent epitaxial layers induce fairly weak SF

. strains(below 1%.
+4(1+ v)e?Z VP(t)kA(sin 3kx ( %
—sinkx) —3(1+ v)e3*Z YVk2A2[ 2P(t) B. Surface undulation with half the wavelength
of the composition modulation

—Q(t)](cos Xx—cos &x)) , . ) ,
The coupling of a CM with a SU having half its wave-

and length[Figs. 1b) and Xc)] is also worth investigating. Con-



PRB 62 THERMODYNAMIC AND KINETIC INSTABILITIES OF . .. 7397

sidering independently the chemical and elastic energies sug- Consider [Figs. 1b) and Xc)] a SU z=t+h(x)=t
gests that such coupling might destabilize the alloy more+ A sin Zx coupled to a CM inducing a SF strain modulation
than the coupling studied in Sec. IIlA. From the purely with extrema at the crests:eﬁF(x,z):5ijm(z)(sinkx
chemical point of view ¢=0), a compositionally modu- +coskx. A>0 and A<O0 correspond, respectively, to
lated alloy is trivially unstable folf <T.(co)=T2(co) with  maxima[Fig. 1(b)] and minima[Fig. 1(c)] at the crests. The
respect to SU’s having crests in the regions of high and lowcalculation proceeds as in Sec. Il A. Stresses in the planar
deviation fromcg, simply because such SU's increase thehalf spacez<t+A are obtained by replacing dixt and
volume of material with nonaverage composition in the thencoskx by (sinkx+coskx) and (cokx—sinkX) in Eq. (4).
compositionally unstable alloy. The reverse holds for From the calculations at order 2 inmade in Appendix B,
>Ti(co). The kinetic aspects of this problem were investi-
gated by Lenard and Desd? Conversely, ifp#0, when a

CM appears in a planar half space under zero net stress, the
regions of maximal deviation from the average composition

AL=A]=2A5=2AL=—2A;=2A,=2FP(t)€e.A?,

By=B}=—2F{2P(t) +[3P(t) +2Q(t) KA} €A,

are the most highly stressddnder tensionand compres- _ _pr_
sion). A SU with crests in these regions and troughs in the Bs By=2F{2P(+[P)/6TQ(D]KA} €A,
nearly lattice-matched zones should be favored with respect Bs=B{=2F[31P(1)/10— Q(1)]eKA2. (14)

to a SU having troughs in the high-stress regions, since crests
are known from the study of the standard morphological in- The elastic energy is given by E@). To second order in
stability to be regions of easy elastic relaxation. A,

— € (o +0of) =16F e2m?(2)(1+sin 2kz) + 4(1+ v)F e5{ —4J1(t) — 2P() KA + [ 7P(t) — 2Q(t) [k?A%}m(z) k=Y
X (1+sin 2kx) — 2(1+ v)F €2{12P(t) + KA[ P(t) + 6Q(t) ]}kAm(z)e3(? Y (sin 2kx— cos &x)
—2(1+ v)Fe2k?A?[31P(t) — 10Q(t) Jm(2) e Y(cos &x+ sin 6kx)

and a'(t)=a(t),
We=8F €2k [ J,(t) — (14 1) J2(t) ]+ 4F 2A[ m?(t) 14
» ﬂ’(t)=2(1—v)F(m2(t)—+—Pz(t) :
—2(1+ v)mM(t)Jq (1) +2(1+ ) I3(1)] o 1-v
+2F e2kA%{2m(t)k~*m’ (1) —4(1+ v)mA(t)
+(1+ v)Jy(t)[15m(t) — 2k~ Im’ (t) + 143, (t)]}.
(15

The surface density of chemical energy is given by @4).
To second order im.

27k [t+h(x)
j f ocdx dz=0,
0 — o0

oT

v (t)=2(1- v)F( m(t)k~tm’(t) 5T
0

1+v
+ E{m(t)k’lm’(t) —2mA(t)+J,(t)[15m(t)
—2k‘1m’(t)+14J1(t)]}). (17

IV. THERMODYNAMIC COMPOSITIONAL INSTABILITY
2alk [t+h(x) AND MORPHOLOGICAL INSTABILITY
f f (6c)?dx dz=mk 29~ 2[2J,+m?(t)kA
0 —o We first consider the implications of the results of Sec. Il
for the thermodynamic stability of static films, for which the
relevant energy i$H; or SH, (since stability is gauged with

Since the CM wavelength is twice the SU wavelength therGSpeCt to the referenqe Stmd for_mp rphological instqbil—
composition of the reference statedgactly ¢ so that the ity. It should be borne in mind that in inhomogeneous films a

surface densities of elastic energy and chemical energy vans-U always alters the composition distribution so that it is

ish. Hence, the free-enthalpy difference between the pe%ﬁualrlz 'gpffgﬁ:btlﬁetzf?;?nogfliﬁg ;Tti rz?_grngetlc effect of the
turbed state and the reference state is prop ! on.

+m(t)k~tm’ (1) k?A?] €.

SHy(t,ec,A)=k a'(t)+ B ()kA+ 5 (t)k?A?] eg A. Composition modulation and surface undulation with the

K2A2 same wavelength
+T'k“A 16 .
(16) Equation (12) shows that CM and SU are cou-

with pled. The coupling coefficient isy= 7yt ye, With
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Yer=3(1—v)Fm(t)k 1m’(t) 5T/6T, and Ye=(1 formation of a SU with crests at the CM extrema always
+)FP(t)e X6Q(t)—P(t)e ¥|. 1y, describes the ef- increases the elastic energy. ForT(cy), this reinforces
fect of the purely compositional change induced by the Suthe tendency of the alloy not to form zones of extreme com-
and vy, its elastic effects. As expected, the coupling energy igposition. However, this increase is simply due to the in-
of order 2 inA and ine,. Consequently, the stability with creased volume of zones of nonaverage composition, which
respect to CM and SUjoint or not of the homogeneous also produces a change in chemical energy. Alternatively,
planar alloy layer is governed by. This coefficient is the starting from a planar half space, we may compare the
same as that found in the analysis of the planar half spacghanges of elastic energy associated with, respectively, a SU
with CM only?* The Schwarz theorem proves thﬁ(t) (with crests at the CM extremand a perturbation of the CM
<J,(t)/2 for any functionm, equality being reached for CM (without SU producing the same chemical energy change.
m(z)=e*%2 which we shall call critical. Hence, fom  We have checked that for a wide range of CNiiscluding

>Ti(co), the homogeneous alloy is thermodynamically the critical ong, the SU costs less elastic energy than the

stable with respect to both CM and SU. smplg CM perturbation. This reflects the easier stress relax-
ForT<Ti(c,), the system is thermodynamically unstable &tion if crests appear at the CM extrema.

with respect to all CM’s such that<<0 (including the criti-

cal CM). At a given temperature, this is a condition on the C. The critical compositional modulation and the question

depth dependenae of the CM. The range of unstable CM'’s of metastability

increases whef decreases. The result is that a system where

a CM of finite amplitudee. has developed is in addition d

unstable with respect to a SU, with the same wavelengtti} its surface is allowed to undulate with an infinitesimal

. — — 2 . . .

prowdgdy<0 and X 1.F Y[7|ec>1. ForT given, this is a amplitude. Is this only metastability, or would some surface
condition on the amplitude, the Wave_length,_and the_ de_pt&Berturbations ofinite amplitude reduce the total enthalpy of
dependence of the CM. Such modulations exist: I((:Zon5|der|n he system with respect to the homogeneous planar state? No
for instance, the class of CM $n(z)=(_1+rz)e , one general answer to this question is yet available. In this re-
readily finds a range of yaluesz offor which a<0 andy  gpact however, it is interesting to return to the critical CM
<0. The condition R 'T"~%|y|e5>1 links this result to the m(2)=e*% remarkable not only for being the CM with re-
usual morphological instabilitf’ and to the coupled compo- spect to which the planar system becomes thermodynami-
S|t|or.1al |nstab|I|tyA of misfitting aIJoy Iay.eré,smce it can be cally unstable against CM 4T, but also becauser?,
rewritten as k<k(T), where k.(T) is a temperature- =P =P =0 [from Eq.(4)]. Hence any surface with nor-
dependent critical wave vector. For the critical CN(T) mal in thexz plane is stress free ang=0. One then easily
=3[(1—v)/(1+v)] (8T/6To)(e. €)%k, wherek, is the  shows that for any CM amplitude; e, and any free-
“morphological” critical wave vector for misfite (see Sec. surface profilez=t+h(x) whose period along is =/nk
[1B). . with n integer, one hagmitting the positive surface energy

Above or below Tg(cg), the criteria y<0, term)
2k ' y|e2>1 also determine the morphological insta-
bility of a system which, through some growth process, 1 oT , [27lk oKN(X) i
would have been frozen in a CM state. This could apply to oH(e)= 71— 57 € e sifkxdx (18
spontaneous kinetic CM'é&see Sec. Yor to artificial later- 0 0
ally modulated structures.

We have shown that far=0 the static system is thermo-
ynamically stable with respect to CM’s aboVe> T, even

The system is thus thermodynamically stable abﬁ&@o)
with respect to this CM even if its surface is allowed to have

B. Surface undulation with half the wavelength finite deviations with respect to planarity.

of the composition modulation

Equation(16) shows that CM and SU are also coupled in
this case. FoiT>T(cy), the system is again stable with
respect to both CM and SU. However, the interaction energy?. Compositional instability without coupling: Critical growth
is now of order 1 inA, as expected from the obvious asym- temperature and optimal modulation

metry between SU'’s having opposite signsfofAs a con- Although apparently pertaining to static layers, the calcu-
sequence, another effect appears: unfgss 0, the system |ations of Sec. Il also allow the study of the kinetic insta-
with a CM of finite amplitude is always unstable with respectp;jity \We are now interested in the evolution of the alloy
to some SU's. B'<0 induces a SU with crests in the re- ypon deposition of extra materigéxactly lattice matched on
gion of extreme deviation from the average composifidn  ayerage on its free surface, assuming that, due to lack of
>0; Fig. 1(b)], whereass’>0 favours troughs in these re- py|k diffusion, the underlying CM remains unaltered. Con-
gions[A<0; Fig. c)]. The sign ofg” depends off and on  sider first a half space with CKB) and planar free surface at
the depth dependence of the CM. B’ can be rewritten as  z=t (A=0). Since the elastic and chemical energies per unit
B' =Bt Be, With Bi=2(1—v)Fm*(t)6T/6To and B;  surface are zero in the reference state, the total entia(py
=2(1+v)FP?(t). As mentioned in Sec. IIIBB,,, favors  of the systems is equal t8H, and its rate of change upon
crests at the CM extremfFig. 1(b)] for T<T(co) and addition of a thin alloy layer issH/dt=k *(daldt)e?/2.
troughs[Fig. 1(c)] for T>T,(c,). On the other hand, since Since 4J;/dat=k[m(t)—J,(t)] and 4J,/at=km?(t), we
B.>0 (unless the CM is critical, in which cag#,=0), the  have

V. KINETIC INSTABILITY
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oT 1+v 2.0 T T T T
HIgt=2(1—v)F| m3(t) s+ 1—V[m(t)
o 1o

—2Jl(t)]2)kle§.

Minimizing this quantity with respect to the depth variation
m of the CM amplitude gives the optimum depth variation
m(t). Since

ST  1+v
d(aH/ot)l[m(t)]=4(1— V)F( m(t) —+ E[m(t)
0

1000 1200

—2J1<t>]) k~teZ,
T (K)

the iniegral Jl(tl associated withfn  satisfies J(t) FIG. 2. Variation with temperature of the amplification wave
+k 93y (t)/at=23,(t)/[1+ #(T)], where ¢(T)=[(1  number along growth direction divided by the CM lateral wave
—v)/(1+v)] 6T/6T,. Thus J,(t)=J,(0)expkt) and number, for various average alloy compositions. Intercepts
ﬁ1(t)={231(0)/[1+qS(T)]}eXp(th), with k,={[1—&(T)]/ with horizontal axis giveT'é(cO). Material parameters are for
[1+ &(T)]}k. Hence, ¢(T)=1 defines a kinetic critical N:Ga ¢ As alloys (Ref. 3.

growth temperaturé¢(Co) under which pure composition  Ths widens considerably the domain of occurrence of the

perturbations iincrease exkponentially upon deposition of NeW;inetic compositional instability. First, this instability should
material. FOfT (co) <T<Tc(co), the layer is kinetically but  gppear whatever the growth method. CM's have indeed

not thermodynamically unstable. We find been observed abovE.(c,) in semiconductor alloy layers
) grown by all the usual epitaxy techniquésSecond, Guyer
TX(co) = TO(Co) + 2o(1—C )L En” and Voorhees associate the occurrence of the kinetic insta-
cto i -0 0 “1-» R bility with a coupling between CM and SU; the instability
14y En? corresponds tq a phgge shift between CM and _SU and the
:TL(C0)+CO(1_CO) - _77, (19 CM 'amplltud.e is explicity coupled to the SU amplitu@®o-
1-» R portional to it whenI'=0). We demonstrate here that the
kinetic composition instability does not require any morpho-
T‘é(co)—T logical surface perturbation to develop. Because of this and
ZZTE(CO) . (20) because it applies as long as linear elasticity holds, the

present calculation is also not limited to the initial stage of
instability development. On the other hand, the calculations

The reduced amplification wave numbles/k is thus a ; o
characteristic of the system that depends only on its thermoQf Sec. lll, which take explicitly into account nonplanar free

dynamic and elastic properties and on temperature, but n&urf.?_ces,l alLSO ?Xt?ndt tgﬁ.tdom_?;]n of occntJr[entche of thi c?m-
on growth velocity. In particulark,/k=1 for T=T(co). positional Kinetic nstabliity with respect o the work o

- o . C Malyshkin and Shchukih,who assumed a planar surface.
Typical variations with temperature and composition for a : .
R Indeed, the results of Sec. V A are still valid for a nonplanar
[1I-V alloy are represented in Fig. 2.

layer with a SU amplitude remaining constant during growth
. . (the reference-state energy is then congtadénce, layers
B. Discussion with corrugated surfaces are also kinetically unstable with

We thus recover in a very simple fashion the kinetic criti- respect to CM'’s foiT < Tg(co).
cal temperature first calculated by Malyshkin and Shchukin ~ Finally, we may consider the evolution of small-
for pure compositional instabilityin the elastically aniso- amplitude SU’s during growth. For a sinusoidal SU having
tropic case and then by Guyer and Voorhéagor coupled the same wave vector as the CM, an increase of amplitude
instability. Note that our only two hypotheses have alreadyproduces a change of the average composition of either the
been made by these authors: the continuous selection of thiewly deposited or the already deposited material, which
optimal CM amplitude profilén during growth corresponds thereby deviates from strict lattice matchit@s previously
to fast surface diffusichand the existence of an initial CM noticed and as appears from the proportionality Wf*' to
of finite amplitude had to be assumed in Refs. 1, 14, and 15)). Although probably important in practicé!® the former
The present results, however, are obtained without explicithcase is out of the scope of the present study, whereas the
taking deposition fluxes and surface diffusion into accountatter corresponds to thermodynamical instabili($ec.
and in particular without assuming either local vapor/solidlV). SU amplification is, however, compatible with lattice
equilibriumt® or step flow growth* Nor did we assume  matching for SU’s having half the wavelength of the CM.
priori' thatm varies exponentially witlz; instead, we calcu- Then, 9H/dA=B’(t)e? and the discussion of the morpho-
lated the optimum profile. Moreover, the results are obtainedbgical instability in Sec. IV B shows that the surface pertur-
for a planar free surface. bation will tend to develop once a finite-amplitude CM has



7400 FRANK GLAS PRB 62

appeared, which is anyway also a prerequisite for the devel- ci=B;+kA;—2kA(B,+kA)),
opment of the kinetic compositional instability. For the opti-
mal CM m, B'(t)>0 in the domain of pure kinetic compo- c2=KkA;+KkA(By+2kA,),

sitional instability (I'icsTsT'é), so that we expect half-
wavelength SU’s with troughs in the regions of extreme C5=2B,+4kA,+ KA (2B} + kA —6B5—9KA}),
deviation from average composition. That only coupling be-

tween perturbations with identical wavelengths seems to c5=4kA,—KkA(B;+kA;—3B3;—9kA,),
have been actually observed so far might be related to the

residual lattice mismatch of the layers. To summarize, both c3=3[B3+3kA;+2kA(B,+kA))],
instabilities should develop together, although a finite CM is

needed for the SU to appear whereas no SU is needed for the 0523[3“%_ KA(B,+2kAy)],

CM to grow.

ci=6kA(2B3+3kA}), c2=—6KA(B3+3kA;).
VI. SUMMARY AND CONCLUSIONS ) )
sl is obtained front!, by exchangingh; andA{ andB; and
B/, respectively, and multiplying each coefficient by
(—21)I*"*1 Then

We performed an analytical calculation of the elastic re-
laxation of a lateral composition modulation coupled to a
surface undulation of equal or half wavelength in a lattice-
matched epitaxial alloy layer or alloy half space. The cou- L(k,t+h(x))=1(k,t)+ P(t)e~Kth(x)
pling energy between the two perturbations, calculated up to
second order in undulation amplitude, is nonzero in both +k[Q(t)—P(t)Je Kth?(x) + O(A?®),
cases. These calculations allowed us to treat in a unified
fashion the instabilities affecting the compositional homoge- G(k,t+ h(x),t+A)=[A—h(x)]m(t)e K+ kQ(t)e K
neity as well as the surface planarity of the layer, whether 2 12 3
thermodynamid(in the case of a closed systgrmr kinetic X[AT=h"(x)]+0O(A%),

(for an open systejmlin particular, we determined how these , .

perturbations condition or affect each other. In sharp contrastM(+h0x))=m(t)+h(x)m’(t) +m (Dh?(x)/2+O(A?),
to the case of lattice-mismatched layers, the thermodynamic (A2)
critical temperaturd, below which the static layer becomes where  P(t)=m(t)—2kI(k,t)e! and Q(t)=[m’(t)
unstable with respect to composition variations is identical-km(t)]/2k. Consequently,

for corrugated layers and for planar ones. The kinetic critical

temperatureTk, below which composition modulations get ~ o%,h' (X) — o%,=FeckA({8P(t) —kA[15P(t) —2Q(1) ]}
amplified during growth, lies well abovE, . It is an intrinsic

property of the system independent of any particular growth X coskx+3kALP(1) +2Q(1)]
method or growth mode. The development of the kinetic X c0s kx— 2P (t)(1— 2kA)sin 2kx),
composition modulations does not require any surface non-

planarity. However, because of the aforementioned coupling, ol h'(x)— of,= —Fe.k?A?(8 cos kx+5 sinkx
a layer where such a composition modulation has started to

develop becomes in turn unstable with respect to surface —3sin Xx)P(1).

undulations. Whereas the details of the development or inhi,, ... " . . i
bition of the kinetic instability can probably be obtained OnIyz\(l)rr:ngget#iii:r?tl;m\j/\?éyrggdni?;tlgr?j ,12 a;errgs zf, trée, ﬁl\r’y élfnc
H ’ 2:092,1\1,P1,M\3,P3

through consideration of the particular processes operating in . : v -
given growth conditiond*~16 our calculations underline the are of order 3 inA at least. The six remaining coefficients

universal character of the instability, independent of thes %t}sfy the following system, whose solution is given by Eq.
details. .
Bl+ kAl_ ZkABZZ - F€C{8P(t)

+KA[2Q(t)—15P(t)]}A,

APPENDIX A

Stresses are calculated to second ordeA ian the free

surfacez=t+h(x), on which the boundary conditions are Bat 3kAs+ 2kAB.= — F 2
, ; 3 3 2= ~Fe[P(1)+2Q(t) kA,
(oft RN () = (04 0%) =0, (0%, + T)h’(x) = (o, i
+04,)=0. With terms up ta=3 included in the Airy func- — 2B}~ 4kA,+2KAB; = 8F €.P(t)(1— 2kA)A,
tion x, whose coefficients are at least of order 1Ain
4 (4A,—AB,)/8=(A;—AB,)/5= —(3A3+AB))
o h’(x)— oh= anl ¢t cosnkx+ st sinnkx, Fep(t)a? 83)
= =Fe, )
4
APPENDIX B

o' (X)— oh=k >, c2cosnkx+s?sinnkx (A1)
=t With terms up tan=5 in x, Eq. (A1) still holds with now
with terms up ton=7 in the sum and
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cl=B,+kA,;+kA(2B}+kA,—6B,—9kA})/2, 0P h'— 0P =5F ¢ .k?A?P(t)[ — 2(coskx+ sinkx)
1 1 1 1 1 3 3 XZ zz c
ci=KA;—KA(B;+kA; —3B3—9kAs)/2, —3(cos Kx+ sin 3kx) + cos &x+ sin 5kx].
c3=2[B,+2kA,— 4kA (B, + 2kA})], We find thatA,,B,,A,,B4,A},B5,A} B} are of order 3 at
) least and the 12 remaining coefficients satisfy the following
Co=4[kA;+KA(B,+4kA,)], system, whose solution is given by H34):

1 ’ ’ ’ ’
C1=3[By+ 3kAg+ kA (2B]+ KA, — 10B]— 25KAL)/2],
37 3BT AT AR KA~ A2 A 2] B,+kA,+KAB]— 3kAB}

c3=3[3kA;— kA (B;+kA;—5B5— 25kAs)/2], — B+ KA+ KAB, + 3KAB,
C4=4[By+4kA,+ 2KA(B)+KAY)], = —4Fe{P(t)—KA[P() - Q(DT},

ci=4[4kA,— KA (B,+2kAy)],
3B;+9kA;+3kAB;
ci="5[Bs+5kAs+ 3kA (2B + 3kA})/2],
=—(3B4+9kA,—3kAB;)
2__ r_
C5=5[5kAs —3KA(B3+3kAg)/2], — 2F e.kA{BP(t)—KA[10P(t)—3Q(1) ]},

Ci=24kA(B,+2kA}), ci=—12kA(B,+4kA,),
— (15KABS+5B5+ 25k As)
C3=35KA(2B.+5kAL)/2, c5=—35kA(Bs+5kAs)/2.

sl is obtained fronc), by exchanging; andA; andB; and

B/, respectively, and multiplying each coefficient by =2F e.kA?[2P(t)+5Q(1)],

(—1)1*""*1" wheren’ =n/2 for n even,n’ =(n—1)/2 forn

odd,i'=i/2 for i even, and'=(i—1)/2 fori odd. More-
over, on the free surface=t+h(x),

=15KAB;— 5B, — 25kA,

=—2A,+AB;+ f=— 2
ab.h'—oP,=2F e kA({2P(t) —KA[ P(t) —2Q(t)]}(coskx 2A1+AB +3AB;= —20F&P(DA%,

—sinkx) —{6P(t) —kA[10P(t)—3Q(t)]}
X (€0s Kx+sin 3kx) +KA[2P(t)+5Q(t)]

6A;—AB,=—(6A3+AB])=10Fe.P(t)A2,

X (cos &x—sin 5kx)), 3AB;—10A,=—(3AB5+10A5) =2F ¢ P(1)A2.
(B1)
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