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Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large
acoustic mismatch
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The finite-difference time-domain method is applied to the calculation of dispersion relations of acoustic
waves in two-dimensional2D) phononic lattices, i.e., periodic solid-solid, solid-liquid, and solid-vacuum
composites, for which the conventional plane-wave-expansion method fails or converges very slowly. Numeri-
cal examples are developed for 2D structures with polyethylene, mercury, and vacuum cylinders forming a
square lattice in an aluminum matrix. The implication of the calculated dispersion relations for ultrasound
transmission experiments is discussed.

I. INTRODUCTION the cylinder material is a nonviscous fllior vacuum which
does not support the propagation of transvdmseboth the
There has been a growing interest in recent years in th#zansverse and longitudinakaves, the PWE fails by produc-

study of two-dimensional2D), periodic, dielectric struc- ing unphysical flat frequency bands. Thus more efficient
tures, so-called photonic crystdlé.The existence of com- Mmethods beyond the PWE scheme are necessary for the cal-
plete band gapsphotonic band gapsof electromagnetic culation. of the dispersion relations in some interesting
waves in these structures can lead to a variety of phenomerf40nonic crystals. _ o
of both fundamental and practical interest. The analogy be- 1he purpose of the present study is to calculate realistic
tween photons and phonons suggests the consideration BfSPersion refations of phonons in a variety of 2D phononic
periodic elastic composites of two or more vibrating materi-CTyStals for which the conventional PWE method is not ap-

als called phononic crystals or phononic lattices. By appropIicabIe. This is carried out by solving the elastic wave equa-

priate modulation of elastic properties in the constituent mapons by ,the finite-difference time-domain(FDTD)

terials, forbidden frequency gap&coustic stop bands method:>"" The FDTD method is a popular numerical

. AL scheme for the solution of many problems in electromagnet-
exte_nd|n96 throug_hout th? E_:rllloum zone can also beics. It is especially effective for a large-scale simulation of a
realized””® A possible application of such phononic crystals giie complex system, and has recently been applied to the
is designing phonon filters or heat insulators, which selec

X ) - Study of both the transmission and frequency spectra of elec-
tively reflect phonons in desirable frequency ranges.  yromagnetic waves in photonic crysta(slery recently, this

To probe the acoustic band structure of these compositegcheme has been applied to the calculation of transmission
ultrasound transmission experiments in both the bulk and ofgtes in 3D-phononic crystaté) More explicitly, we calcu-
the surface of the structures have been perforfi&dThe |ate the acoustic band structures of the 2D elastic composites
dimension of the phononic crystals used in the experimentgonsisting of cylinders of a solid, fluid, or vacuum arranged
is typically in the range of millimeters and a composite struc-periodically in an aluminum substrate. The results obtained
ture is made by drilling in a solid substrate a periodic arrayare compared with the published ultrasound transmission ex-
of cylinders. The simplest structure should be the one withperiments.
vacuum or air-filled cylindrical holes. Intuitively, these holes

should scatter acoustic waves strongly, and the transmission Il. FORMULATION
of ultrasound through the structure is expected to be small or o _ _
even prohibited for a large cross section of the cylinders. A. Finite-difference time-domain (FDTD) method

Another interesting and still easily accessible structure is that We consider 2D composite structures consisting of a pe-
of cylinders filled with a liquid or a low-melting-point riodic array of cylindergdenoted byA) embedded in a back-
polymer (which may solidify at room temperatuleghese  ground elastic materiadenoted byB). The cylinder mate-
composites are characterized by a large acoustic mismat@iy| A can be an elastic medium like a solid or liquid, or just
between the cylinder and substrate materials, or by the fagfacuum. The equation governing the motion of lattice dis-

that two modes of acoustic wavésansverse modesire not  placement(r,t) in this inhomogeneous system is given by
allowed to exist in the cylinders.

So far, several authors have calculated acoustic band p(X)Ui(r,t)=d; a7 (1), (1)
structurses of 2D phononic crystals for both the Bufkand o
14 ; ; ;
surfacé>!* vibrations with a plane-wave-expansiéRWE) 73 (1, 1) = Cijmn(0) AnUn(T 1), )

method. This simple method usually works very well. How-

ever, within this framework a large number of plane waves isvherer =(x,z) =(X,y,z) (thez axis is taken to be parallel to
required to obtain a reliable band structure for a composite othe cylinder axig p(x) and cjjma(X) are the position-
elastic media with a large acoustic mismatch. Moreover, ifdependent mass density and elastic stiffness tensor of the
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system, respectively, and;(r,t) is the stress tensor. Note WhereG=(Gy,Gy) is a 2D reciprocal-lattice vector analis
thatp andc;jm,, do not depend oz because of the homoge- an angular frequency. The Bloch theorem is again used for
neity of the system along the cylinder axis. The summatiorthe displacement vectar in Eq. (7). For a square lattice
convention over repeated indices is assumed in the presewhere circular cylinders of radius, are embedded periodi-
paper. cally in a background material with spaciagthe reciprocal-
For the propagation of bulk acoustic waves in thelane lattice vector isG=(27N;/a,27N,/a) with N; and N,
normal to the axis of the cylinders, we may find solutionsintegers. The Fourier coefficients of the mass density and
homogeneous in the direction, i.e.,u;(r,t)=u;(x,t) and elastic stiffness tensors are thus given by
g i(r,t)=0;;(x,t). Owing to the periodicity within thex
plane, the lattice displacement and the stress tensor take the fap+(1-f)ag for G=0,

forms satisfying the Bloch theorem “e™ (ap—ag)F(G) for G#0, (10
ui(x,t)=e'k*XU;(x,t), (3)  where a=(p,c’'™), f=nr¥a? (the maximum value is
" f max=4=0.785) is the filling fraction which defines the
aij(x,t) =e""§;;(x,1), (4)  cross-sectional area of a cylinder relative to the unit-cell
where k= (k,,k,) is a Bloch wave vector antd(x,t) and area, and
Sj(x,t) are periodic functions satisfyingU(x+a,t) f
i _ | . 213,(|G|ro)
=U(x,t) and §;;(x+a,t)=S;(x,t) with a a lattice transla- F(G)=——=——— (11
tion vector. Thus Eq9.1) and(2) are rewritten as |Glro
. ) with J;(x) a Bessel function. Thus truncating the expansions
p()Ui(x,1) =ik;S;j (x,1) + ;S (X, 1), ®)  (7)=(9) by keeping\ x N=N?2 reciprocal-lattice vectoré.e.,
, N? plane wavegs Eq. (7) gives N? eigenfrequencieso
S (XD = Cijmn(X)[IKUm(X,) +dqUm(x,D]. (6) =, (1=1-3N?) for a given 2D wave vectok.
Now we try to solve these equations with respect to the re-
duced fieldsU;(x,t) and S;;(x,t) within a unit cell of the [1l. NUMERICAL EXAMPLES

structure. For th i ‘ " in el
First we specify a 2D wave vectdrin the first Brillouin I?r the Pf9pa§a 'If)ndo ar::ous Ic w:;]ves In ¥p Tn? ngr_—
zone. Once appropriate initial and boundary conditions argha! 1o the axis or cylin erethezaxis), the wave polarized in

., - the z direction[a transversé€T) wave] is decoupled from the
specified, Egs(5) and(6) can be solved numerically for each o
ngrmal modqe by discretizing both the time andyspace d09ther two modesthe otherT and longitudinalL) modeg of

mains.[The explicit expressions for the discretized versionsthe waves polarized in theplane. We call the former mode

of Egs. (5) and (6) are given in the AppendikMore explic- of the wave the “single” mode and the latter two modes

itly, when the displacement fields are specified at an instan(fOUpled to each other the “mixed” mode. In the numerical

t=0, their spatial derivatives are determined using Simplecalculation, polycrystalline aluminurfelastically isotropit

finite-difference formulas. Equatioris) and(6) then give us 'S assu_med for the bgckgrqund ma“?@] and.we cqnsider
the time derivative of the disqplacerlge)nt fiéiu)which%"ows three kinds of 2D Iattlce§ W't.h the CV"”de(@ f|lled W'th..(.')
us to updataJ(x,t) for small but positive. In this way, the polyethylene(a soft solid, (ii) mercury (liquid), and iii)

displacement field&J(x,t;) at discretized points on the time vacuum,_respectw_e!%/". n the_FDTD scheme for wave
axist, (i=1,2, ... ) aredetermined for many 2D grid points propagation, we divide the unit cell of a 2D square lattice

: - into a grid ofnXn (n=100-200) points and simulate the
sampled in thex plane. For a sufficiently large number of .. . o 20/ .
theseU data on the time axis, the displacement fields aret'me evqlutlon over /(=524 288)-2"(=1 048 576) time
teps with each time step 0.G03,, wherev, is the sound

Fourier-transformed into the frequency space. The position§

of the existing peaks in the frequency spectra are then ideﬁ'—eloc'ty of the transverse mode in the background material.

tified as the eigenfrequencies of the normal vibrational

modes for a given wave vectér A. PolyethylengAl lattices
First we consider a 2D polyethylene/Al square lattice. The
B. Plane-wave expansio(PWE) method PWE method is still applicable to this lattice but its conver-

For comparison we also briefly recapitulate the PWEJENCe is slow. Figure 1 illustrates the FDT@t9 and PWE
method for solving the wave equatiof® and (2). In this (solid lineg calculations of the dispersion relations for the

scheme we expand the position-dependent quantities as acoustic waves along the boundary of the irreducible part of
the Brillouin zone §=0.4). Only frequencies of the mixed

(Kt G xi mode are plotted. The FDTD scheme assumes a grid of
u(x,t)= % glkr@xivtgy, (7)  xn=120 points in a unit cell and the PWE method assumes
NxN=41?=1681 plane waves, or reciprocal lattice vectors.
The latter results lie slightly above the frequencies obtained
p(x)=2>, e®%pg, (8) by the FDTD scheme. A large acoustic mismatch between
= polyethylene(PE) and aluminum Zpg/Z=0.1 for the lon-
gitudinal mode!® makes the convergence of the PWE calcu-
- _ iG-x~ijmn lation very slow, as shown in the inset of Fig. 1. This is
Cijmn(X) % €t © mainly due to the fact that a large number of plane waves is
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0 20 N30 40 i displacementu, (the component perpendicular to the cylindrical
1 axis) in the polyethylene/Al phononic lattice, same as for Fig. 1.

The selected wave vector and frequenaa(v,=1.92) are those
corresponding to the point indicated by the open circle in Fia 1
point on a flat branch The center of the cylinders are located at
(ma,na), wherem andn are integers.
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) ) _ ) If the cylinders embedded in a solid substrate are filled
FIG. 1. Dispersion relations of the mixed modgse coupled \yith nonviscous liquid, the simple PWE method for calcu-
longitudinal and transverse acoustic wavissa two-dimensional  |5¢ing acoustic-wave dispersion relations fails. This is be-
squar_e_lattice cc_)nsisting of polyethylene cylinde_rs inan Al substrate. o <o 5 transverse vibration does not exist inside a liquid, but
with filling fraction f=0.4. (o, =3.11X10° cm/s is the transverse o <o nventional PWE method still assumes a finite displace-
sound velocity in Al anda is the lattice spacingy.Dots and solid ment amplitude for this vibrational mode in the cylinders
lines are the FDTwith a grid ofnX =120 points in a unit ce)l The calculated dispersion relation for the mixed médset .

and PWE(with Nx N= 412 plane wavekscalculations, respectively. . - .
The wave-vector direction is perpendicular to the cylinder axis. TheOf Fig. 3, for example exhibits many flat branches like the

inset compares the convergence of both the Foid@s and PWE ~ ON€S i the _precedlng subsection. But in this lattice they are
(open squardscalculations for the frequency marked by the crossfictitious. This can be seen from the fact that the number of
on the flat branch at th¥ point. The irreducible part of the Bril-
louin zone is also displayed.

required[in the expansiong8) and (9)] to reproduce the
spatial profiles of the mass density and elastic constants : A
changing abruptly in space. In contrast, the FDTD calcula- g 3 !::;::f:;;izzsm..r;
tion is substantially converged far as large asi=50. The 5§ T e, "
CPU times to calculate eigenfrequencies for a given wave J\é
vector are typically 160 sec for the FDTD scheme with 4g§ 1l
=41 and with 2° time steps, and 320 sec for the PWE § H 2
method withN=41 on a HITACHI SR8000 supercomputer. Y, R Cat— ) R
In Fig. 1, we observe no complete gap in the frequency i ’
range plotted in spite of the large acoustic mismatch between 25‘--. oo
the constituent materials and also the large filling fracfion
assumed. A remarkable feature of the dispersion relation in T Tl “ Jo2
this lattice is the appearance of a number of optical-like flat i T
branches. The existence of these flat branches is another
characteristic feature of a composite structure constituted
from materials with a large acoustic mismafcht frequen-
cies on these branches, lattice vibrations are localized in the ,~ o rp1p resultstwith a grid of nxn=12 points in a

glasucally softer medllun(lpolyethyler!e which f,'"S t,he (?yl- unit cell) for the dispersion relations of the mixed modesupled
inders. As shown in Fig. 2, the amplitude of vibration is well |5 qitdinal and transverse acoustic wavésa two-dimensional
concentrated at the positions of the cylinders and it is veryg are lattice consisting of mercury circular cylinders in an Al sub-
small in the substrate medium. We expect that the transmisgyrate with filling fractionf = 0.4. (v,=3.11x 10° cm/s is the trans-
sion of an acoustic wave is resonantly enhanced when itgerse sound velocity in Al and is the lattice spaciny.Hatched
frequency coincides with one of these branches. At the sam@gion is the frequency range where large transmission dips are
time, a large time delay should accompany theobserved for the longitudinal sour{®ef. 6. Inset compares the
transmissiorf® Unfortunately, there is no ultrasound trans- frequencies obtained by the FDTD calculati@ots and the PWE
mission experiment to be compared with these calculateehethod (solid lineg with NxXN=112 plane waves in thd —X
frequency spectra. direction.

(zHIN) Aouanbayy

obe 4 0.0
r X M r
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flat branches increases as the number of plane waves kept in 8
the PWE calculation is increased. We have already shown
that at a frequency on a flat branch, the amplitude in the
softer material is much larger than that in the harder material.
In the present structure the amplitude of transverse vibrations
obtained by the PWE scheme is finite inside the cylinders but

. . . . d > &
effectively zero outside at a frequency in a flat branch. Evi- - f o % ‘reﬁ«ocgo‘d ]
dently this is physically unacceptable. In contrast, the FDTD E 4iWw%W%W§WMWWmE

calculation gives dispersion relations free of such flat
branches as shown in Fig. 3 for the mixed longitudinal and
transverse modes. The real structure of the dispersion curves
obtained by the FDTD method is recognized only indis-
tinctly in the PWE calculation.

An ultrasonic transmission experiment of the longitudinal
mode with a 2D phononic lattice has been done by Espinosa
et al. with a structure consisting of an aluminum alloy plate
with a square periodic arrangement of cylindrical holes filled
with mercury’ Transmission dips are found in certain fre- ~ FIG. 4. FDTD resultswith a grid of nxn=20¢ points in a
quency ranges, e.g., 0.6—1.1 MHz in {1&0] direction unit cell) for the dispersion relationslof the coupled longitudinal and
—X direction for f=0.4. A similar measurement in the transverse mode¢dots and the single transverse modepen
[110] direction T —M direction suggests the existence of a c!rcles) in a two-d!mensmnal square Ia_ttlce_ _consustmg of vacuum
full band gap(extending from 1.0 to 1.1 MHzfor longitu- circular cylinders in an Al substrate with filling fr_act_|0h:0.5_5.
dinal ultrasound in the Hg/Al square lattice. Unexpectedly,(vt:?".11>< 10 c.mls Is the transverse Sour.]d velocity in Al ."md;

. . the lattice spacing.Also plotted by the solid and dashed lines are
in the frequency range suggested by the experiment no COMke PWE calculationgwith NXN=41? plane waveks for the
plgte frequency gap is found m. the Calc'ﬁjlated dlspe'rsmn re‘(':oupled and single modes, respectively. The hatched region shows
Iatlon_s O.f the m.|XEd mode which co_ntalns the Iong'tUdmal_the complete gap for three acoustic modes. The inset shows the
Fuodl?nr;a;'gghgw]s tg(e)ze;brc])(\)/tenferggﬁtsa?]rcl:y grelfgig g:?]t Lﬁggggg@dth Aw of thg complete gap versus fi_IIing_fractidn Eor f>f,

- : args ] A = (0.62(the vertical dashed lingthe gap width is determined by the
through this lattice. For the branches existing in the claimegighest frequency of the single mode in the first band and the lowest
frequency range, we have to carefully check the polarizatiofrequency of the mixed mode in the second band. fof, it is
of the waves. This is, however, beyond the scope of thejetermined by the highest and lowest frequencies of the mixed
present work. Evidently, a direct calculation of the transmis-mode in the first and the second bands.
sion rate is necessary to resolve this apparent discrepancy.

JvuirZDTD calculation of the transmission will appear else_tion of the filling fractionf. The gap widthAw increases

It should also be noted that the amalgam of the mercur@MOSt monotonically withf for both the mixedL-T and
and aluminum might be formed at the boundaries of the HgsmgIeT mode;. ) ]
cylinders and Al background of the structure. If this is indeed AN interesting observation is the fact that the PWE
the case, the transition regions of a finite thickness shoul@€thod is applicable with some manipulation to the calcula-
exist near the boundary of the Cy”nders for both the densit)ﬁion of the diSperSion relations for a 2D phononic lattice with
and elastic constants and thus the f||||ng fractfomay be vacuum cylinders. In this lattice both the mass density and
changed effectively. The consideration of such effects willelastic constants are zero in the cylinder regions. A question

also be interesting. is how to take the limitsp,, ci™"—0, in cylinders(A) in
the framework of the PWE methodn the FDTD scheme,
C. VacuunvAl lattices no elastic medium is assumed at the grid points inside the

it nothing is filled in the cviind i cylinders) If we take these limits by assuming,/ci™"
nothing 1s filled n th€ cylinders, acouslic waves propa-_, 4 1he gispersion curves obtainadith Nx N=412 plane

gate in a 2D phononic lattice only through the substrate ma- . o
terial. This means that the acoustic wave with a given wave. aveg are those displayed in Fig. 4 by the sofidr the

. . ixed modé and dashedfor the single modglines, respec-
ly f h I f h .
vector is scattered strongly from the cylinder surfaces as t "E:/ely. The agreement between the FDTD and PWE results is

filling fraction f increases. Thus acoustic stop bands extend )
excellent. Here we note that the spurious flat branches of

ing over entire region of the Brillouin zone are expected to N
appear for some range &f both the longitudinal and transverse modes expected to ap-

The dispersion relations of both the mixéiled circleg ~ Pear in the PWE calculation are now pushed out to the very
and single(open circles modes calculated by the FDTD high-frequency region. Thus they do not interact with real
method(with a grid of nx n=200 points in a unit ce)l are branches of the system at a finite frequency range. This is
shown in Fig. 4 for a 2D vacuum/Al lattice forf quite different from the case for the PWE calculation applied
=0.55 (r,/a=0.42). We really find the existence of a com- to the liquid/solid lattice(the preceding subsectipnwhere
plete frequency gap which prohibits the propagation of alithe mass density of the liquittylinder material is not a
three polarizations simultaneously in any direction. Thedisposal parameter and the flat branches stay at the finite
width of this complete gap is plotted in the inset as a func{frequency region.
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IV. CONCLUDING REMARKS APPENDIX A

In the present work we have calculated the dispersion In this appendix, we give the explicit expressions for the
relations of the bulk acoustic waves in 2D phononic latticesdiscretized versions of Eq&) and (6):
consisting of periodic arrays of circular cylinders embedded
in a background substance. The lattices considered are those I,m

with a large acoustic mismatch between their constituent ma- P SULmntL_ oyl mng ylmn-1)

terials, and also the cases where the transverse or both the (AD

longitudinal and transverse modes of vibrations do not exist — K@ min - gl - (V2)min

inside cylinders. For these lattices the conventional PWE e LU

method for the calculation of the dispersion relations is usu- +Ky St AN K5 g (2n (A1)

ally not very reliable and an alternative approach is required.
The numerical approach based on the FDTD method is | ) m (1)

proved to be very efficient for these cases. [ULF@Wame W2+l _ oyl (U2)m+(1/2)n
Contrary to the recent ultrasound transmission (At)? 2 2

experiment, no complete frequency gap is found in the LUl @2 m2m- 1y

claimed region of a 2D square phononic lattice with mercury 2

cylinders embedded in an aluminum matrix. The polarization _ K+SI2+1,m+(1/2);n+ K—SI2,m+(1/2);n

of the branches found in this frequency region is important 1eat 1eat

for a comparison of the transmission and frequency spectra. +Kj SpMamiling ko gy (A2)mn (A2)

For a more direct comparison, the calculation of the trans-
mission rate is necessary. For photonic crystals, the theoret-

. - X | +(1/2),m;n _ ~1+(1/2),m +l+1m;n —l,m;n
ical transmission rate of electromagnetic waves has been S =Cn [KiU; +KL U]

given by Sakodd with the PWE method and also by Fan +CI+(1/2),m[K+UI+(1/2),m+(1/2);n
et al?? with the FDTD method. A similar calculation of the 12 2=2
transmission rate with the FDTD method is currently under- +K, ULt (W2 m=(/2yn (A3)

way for phononic lattices.
Another interesting subject is the calculation of the band

. . . | +(1/2),m;n _ ~1+(1/2), I+1m; = lm;
structure of surface acoustic waves in 2D phononic crystals. Sy, (HAmin= iy M KU K U™
The distribution of the frequency band of surface acoustic +C'+(1’2)'m[K+U'+(1’2)'m+(1’2)3“
waves is usually well separated from those of bulk waves, 1 2>2
and their stop-band distribution has been observed by both +K, UL 2=y (A4)

surface wave transmission and imaging experim&ntsAn
attenuation associated with the Rayleigh surface wave propa-
gation has been measured in a 2D triangular and honeycomb
(hexagonallattice with vacuum cylinders drilled in a marble
quarry'* and also with polymer cylinders drilled in an alumi-

SI1,£n+(l/2);n: SIﬂn-%—(l/Z);n

_ C|4,21+(1/2)[ K UI2+(1/2),m+(1/2);n

num substraté’ The attenuation in transmission spectra in T+ KU @2 m@2)in g e+ hmtLin
the former lattice suggests the existence of absolute band 1e2 27t
gaps for the surface waves. However, the measurements are +K, U™y, (A5)

sometimes compared with a theoretical calculation with a

simple scalar-wave model. We also plan to apply the FDTDyhere (,m) defines a 2D grid pointgrid spacings are\x
method for the calculation of the dispersion relation of sur-5,q Ay), n specifies the time step with an intervat, and

face localized vibrations in 2D periodic structures. K; =(kAx=2)/28x and Kj =(kAy=2)/24y. In the
above equations, the coefficiel@lg are related to the elastic
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