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Band structure of acoustic waves in phononic lattices: Two-dimensional composites with larg
acoustic mismatch

Yukihiro Tanaka, Yoshinobu Tomoyasu, and Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 30 March 2000!

The finite-difference time-domain method is applied to the calculation of dispersion relations of acoustic
waves in two-dimensional~2D! phononic lattices, i.e., periodic solid-solid, solid-liquid, and solid-vacuum
composites, for which the conventional plane-wave-expansion method fails or converges very slowly. Numeri-
cal examples are developed for 2D structures with polyethylene, mercury, and vacuum cylinders forming a
square lattice in an aluminum matrix. The implication of the calculated dispersion relations for ultrasound
transmission experiments is discussed.
th

-

e
b
n
ri
ro
a

be
ls
ec

ite
o

n
c

ra
it

es
si
ll
rs

th

at
fa

a

w-
s i
e
,

-
nt
cal-

ing

stic
nic
p-

ua-

al
et-

f a
the
lec-

sion

ites
ed
ed
ex-

pe-
-

st
is-
y

the
I. INTRODUCTION

There has been a growing interest in recent years in
study of two-dimensional~2D!, periodic, dielectric struc-
tures, so-called photonic crystals.1,2 The existence of com
plete band gaps~photonic band gaps! of electromagnetic
waves in these structures can lead to a variety of phenom
of both fundamental and practical interest. The analogy
tween photons and phonons suggests the consideratio
periodic elastic composites of two or more vibrating mate
als called phononic crystals or phononic lattices. By app
priate modulation of elastic properties in the constituent m
terials, forbidden frequency gaps~acoustic stop bands!
extending throughout the Brillouin zone can also
realized.3–6 A possible application of such phononic crysta
is designing phonon filters or heat insulators, which sel
tively reflect phonons in desirable frequency ranges.

To probe the acoustic band structure of these compos
ultrasound transmission experiments in both the bulk and
the surface of the structures have been performed.7–12 The
dimension of the phononic crystals used in the experime
is typically in the range of millimeters and a composite stru
ture is made by drilling in a solid substrate a periodic ar
of cylinders. The simplest structure should be the one w
vacuum or air-filled cylindrical holes. Intuitively, these hol
should scatter acoustic waves strongly, and the transmis
of ultrasound through the structure is expected to be sma
even prohibited for a large cross section of the cylinde
Another interesting and still easily accessible structure is
of cylinders filled with a liquid7 or a low-melting-point
polymer12 ~which may solidify at room temperatures!. These
composites are characterized by a large acoustic mism
between the cylinder and substrate materials, or by the
that two modes of acoustic waves~transverse modes! are not
allowed to exist in the cylinders.

So far, several authors have calculated acoustic b
structures of 2D phononic crystals for both the bulk3–6 and
surface13,14 vibrations with a plane-wave-expansion~PWE!
method. This simple method usually works very well. Ho
ever, within this framework a large number of plane wave
required to obtain a reliable band structure for a composit
elastic media with a large acoustic mismatch. Moreover
PRB 620163-1829/2000/62~11!/7387~6!/$15.00
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the cylinder material is a nonviscous fluid~or vacuum! which
does not support the propagation of transverse~or both the
transverse and longitudinal! waves, the PWE fails by produc
ing unphysical flat frequency bands. Thus more efficie
methods beyond the PWE scheme are necessary for the
culation of the dispersion relations in some interest
phononic crystals.

The purpose of the present study is to calculate reali
dispersion relations of phonons in a variety of 2D phono
crystals for which the conventional PWE method is not a
plicable. This is carried out by solving the elastic wave eq
tions by the finite-difference time-domain~FDTD!
method.15–17 The FDTD method is a popular numeric
scheme for the solution of many problems in electromagn
ics. It is especially effective for a large-scale simulation o
finite complex system, and has recently been applied to
study of both the transmission and frequency spectra of e
tromagnetic waves in photonic crystals.~Very recently, this
scheme has been applied to the calculation of transmis
rates in 3D-phononic crystals.18! More explicitly, we calcu-
late the acoustic band structures of the 2D elastic compos
consisting of cylinders of a solid, fluid, or vacuum arrang
periodically in an aluminum substrate. The results obtain
are compared with the published ultrasound transmission
periments.

II. FORMULATION

A. Finite-difference time-domain „FDTD… method

We consider 2D composite structures consisting of a
riodic array of cylinders~denoted byA) embedded in a back
ground elastic material~denoted byB). The cylinder mate-
rial A can be an elastic medium like a solid or liquid, or ju
vacuum. The equation governing the motion of lattice d
placementu(r ,t) in this inhomogeneous system is given b

r~x!üi~r ,t !5] js i j ~r ,t !, ~1!

s i j ~r ,t !5ci jmn~x!]num~r ,t !, ~2!

wherer5(x,z)5(x,y,z) ~thez axis is taken to be parallel to
the cylinder axis!, r(x) and ci jmn(x) are the position-
dependent mass density and elastic stiffness tensor of
7387 ©2000 The American Physical Society
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7388 PRB 62TANAKA, TOMOYASU, AND TAMURA
system, respectively, ands i j (r ,t) is the stress tensor. Not
that r andci jmn do not depend onz because of the homoge
neity of the system along the cylinder axis. The summat
convention over repeated indices is assumed in the pre
paper.

For the propagation of bulk acoustic waves in thex plane
normal to the axis of the cylinders, we may find solutio
homogeneous in thez direction, i.e.,ui(r ,t)5ui(x,t) and
s i , j (r ,t)5s i , j (x,t). Owing to the periodicity within thex
plane, the lattice displacement and the stress tensor tak
forms satisfying the Bloch theorem

ui~x,t !5eik•xUi~x,t !, ~3!

s i j ~x,t !5eik•xSi j ~x,t !, ~4!

where k5(kx ,ky) is a Bloch wave vector andU(x,t) and
Si j (x,t) are periodic functions satisfyingU(x1a,t)
5U(x,t) and Si j (x1a,t)5Si j (x,t) with a a lattice transla-
tion vector. Thus Eqs.~1! and ~2! are rewritten as

r~x!Ü i~x,t !5 ik jSi j ~x,t !1] jSi j ~x,t !, ~5!

Si j ~x,t !5ci jmn~x!@ iknUm~x,t !1]nUm~x,t !#. ~6!

Now we try to solve these equations with respect to the
duced fieldsUi(x,t) and Si j (x,t) within a unit cell of the
structure.

First we specify a 2D wave vectork in the first Brillouin
zone. Once appropriate initial and boundary conditions
specified, Eqs.~5! and~6! can be solved numerically for eac
normal mode by discretizing both the time and space
mains.@The explicit expressions for the discretized versio
of Eqs.~5! and~6! are given in the Appendix.# More explic-
itly, when the displacement fields are specified at an ins
t50, their spatial derivatives are determined using sim
finite-difference formulas. Equations~5! and~6! then give us
the time derivative of the displacement fieldU, which allows
us to updateU(x,t) for small but positivet. In this way, the
displacement fieldsU(x,t i) at discretized points on the tim
axis t i ( i 51,2, . . . ) aredetermined for many 2D grid point
sampled in thex plane. For a sufficiently large number o
theseU data on the time axis, the displacement fields
Fourier-transformed into the frequency space. The positi
of the existing peaks in the frequency spectra are then id
tified as the eigenfrequencies of the normal vibratio
modes for a given wave vectork.

B. Plane-wave expansion„PWE… method

For comparison we also briefly recapitulate the PW
method for solving the wave equations~1! and ~2!. In this
scheme we expand the position-dependent quantities as

u~x,t !5(
G

ei (k1G)•x2 ivtaG , ~7!

r~x!5(
G

eiG•xrG , ~8!

ci jmn~x!5(
G

eiG•xcG
i jmn , ~9!
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whereG5(Gx ,Gy) is a 2D reciprocal-lattice vector andv is
an angular frequency. The Bloch theorem is again used
the displacement vectoru in Eq. ~7!. For a square lattice
where circular cylinders of radiusr 0 are embedded periodi
cally in a background material with spacinga, the reciprocal-
lattice vector isG5(2pN1 /a,2pN2 /a) with N1 and N2
integers. The Fourier coefficients of the mass density
elastic stiffness tensors are thus given by

aG5H f aA1~12 f !aB for G50,

~aA2aB!F~G! for GÞ0,
~10!

where a5(r,ci jmn), f 5pr 0
2/a2 ~the maximum value is

f max5p/450.785) is the filling fraction which defines th
cross-sectional area of a cylinder relative to the unit-c
area, and

F~G!5
2 f J1~ uGur 0!

uGur 0
~11!

with J1(x) a Bessel function. Thus truncating the expansio
~7!–~9! by keepingN3N5N2 reciprocal-lattice vectors~i.e.,
N2 plane waves!, Eq. ~7! gives 3N2 eigenfrequenciesv
5v l ( l 5123N2) for a given 2D wave vectork.

III. NUMERICAL EXAMPLES

For the propagation of acoustic waves in thex plane nor-
mal to the axis of cylinders~thez axis!, the wave polarized in
thez direction@a transverse~T! wave# is decoupled from the
other two modes@the otherT and longitudinal~L! modes# of
the waves polarized in thex plane. We call the former mode
of the wave the ‘‘single’’ mode and the latter two mod
coupled to each other the ‘‘mixed’’ mode. In the numeric
calculation, polycrystalline aluminum~elastically isotropic!
is assumed for the background material~B! and we consider
three kinds of 2D lattices with the cylinders~A! filled with ~i!
polyethylene~a soft solid!, ~ii ! mercury ~liquid!, and ~iii !
vacuum, respectively.19 In the FDTD scheme for wave
propagation, we divide the unit cell of a 2D square latti
into a grid of n3n (n51002200) points and simulate th
time evolution over 219(5524 288)2220(51 048 576) time
steps with each time step 0.003a/v t , wherev t is the sound
velocity of the transverse mode in the background mater

A. PolyethyleneÕAl lattices

First we consider a 2D polyethylene/Al square lattice. T
PWE method is still applicable to this lattice but its conve
gence is slow. Figure 1 illustrates the FDTD~dots! and PWE
~solid lines! calculations of the dispersion relations for th
acoustic waves along the boundary of the irreducible par
the Brillouin zone (f 50.4). Only frequencies of the mixe
mode are plotted. The FDTD scheme assumes a grid on
3n51202 points in a unit cell and the PWE method assum
N3N541251681 plane waves, or reciprocal lattice vecto
The latter results lie slightly above the frequencies obtain
by the FDTD scheme. A large acoustic mismatch betwe
polyethylene~PE! and aluminum (ZPE/ZAl50.1 for the lon-
gitudinal mode!19 makes the convergence of the PWE calc
lation very slow, as shown in the inset of Fig. 1. This
mainly due to the fact that a large number of plane wave
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required @in the expansions~8! and ~9!# to reproduce the
spatial profiles of the mass density and elastic const
changing abruptly in space. In contrast, the FDTD calcu
tion is substantially converged forn as large asn550. The
CPU times to calculate eigenfrequencies for a given w
vector are typically 160 sec for the FDTD scheme withn
541 and with 219 time steps, and 320 sec for the PW
method withN541 on a HITACHI SR8000 supercompute

In Fig. 1, we observe no complete gap in the frequen
range plotted in spite of the large acoustic mismatch betw
the constituent materials and also the large filling fractiof
assumed. A remarkable feature of the dispersion relatio
this lattice is the appearance of a number of optical-like
branches. The existence of these flat branches is ano
characteristic feature of a composite structure constitu
from materials with a large acoustic mismatch.6 At frequen-
cies on these branches, lattice vibrations are localized in
elastically softer medium~polyethylene! which fills the cyl-
inders. As shown in Fig. 2, the amplitude of vibration is w
concentrated at the positions of the cylinders and it is v
small in the substrate medium. We expect that the transm
sion of an acoustic wave is resonantly enhanced when
frequency coincides with one of these branches. At the s
time, a large time delay should accompany t
transmission.20 Unfortunately, there is no ultrasound tran
mission experiment to be compared with these calcula
frequency spectra.

FIG. 1. Dispersion relations of the mixed modes~the coupled
longitudinal and transverse acoustic waves! in a two-dimensional
square lattice consisting of polyethylene cylinders in an Al subst
with filling fraction f 50.4. (v t53.113105 cm/s is the transverse
sound velocity in Al anda is the lattice spacing.! Dots and solid
lines are the FDTD~with a grid ofn3n51202 points in a unit cell!
and PWE~with N3N5412 plane waves! calculations, respectively
The wave-vector direction is perpendicular to the cylinder axis. T
inset compares the convergence of both the FDTD~dots! and PWE
~open squares! calculations for the frequency marked by the cro
on the flat branch at theX point. The irreducible part of the Bril-
louin zone is also displayed.
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B. HgÕAl lattices

If the cylinders embedded in a solid substrate are fil
with nonviscous liquid, the simple PWE method for calc
lating acoustic-wave dispersion relations fails. This is b
cause a transverse vibration does not exist inside a liquid,
the conventional PWE method still assumes a finite displa
ment amplitude for this vibrational mode in the cylinder
The calculated dispersion relation for the mixed mode~inset
of Fig. 3, for example! exhibits many flat branches like th
ones in the preceding subsection. But in this lattice they
fictitious. This can be seen from the fact that the number

te

e

FIG. 2. Pseudo-three-dimensional representation of the la
displacementuy ~the component perpendicular to the cylindric
axis! in the polyethylene/Al phononic lattice, same as for Fig.
The selected wave vector and frequency (va/v t51.92) are those
corresponding to the point indicated by the open circle in Fig. 1~a
point on a flat branch!. The center of the cylinders are located
(ma,na), wherem andn are integers.

FIG. 3. FDTD results~with a grid of n3n51202 points in a
unit cell! for the dispersion relations of the mixed modes~coupled
longitudinal and transverse acoustic waves! in a two-dimensional
square lattice consisting of mercury circular cylinders in an Al su
strate with filling fractionf 50.4. (v t53.113105 cm/s is the trans-
verse sound velocity in Al anda is the lattice spacing.! Hatched
region is the frequency range where large transmission dips
observed for the longitudinal sound~Ref. 6!. Inset compares the
frequencies obtained by the FDTD calculation~dots! and the PWE
method ~solid lines! with N3N5112 plane waves in theG2X
direction.
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flat branches increases as the number of plane waves ke
the PWE calculation is increased. We have already sho
that at a frequency on a flat branch, the amplitude in
softer material is much larger than that in the harder mate
In the present structure the amplitude of transverse vibrat
obtained by the PWE scheme is finite inside the cylinders
effectively zero outside at a frequency in a flat branch. E
dently this is physically unacceptable. In contrast, the FD
calculation gives dispersion relations free of such
branches as shown in Fig. 3 for the mixed longitudinal a
transverse modes. The real structure of the dispersion cu
obtained by the FDTD method is recognized only ind
tinctly in the PWE calculation.

An ultrasonic transmission experiment of the longitudin
mode with a 2D phononic lattice has been done by Espin
et al. with a structure consisting of an aluminum alloy pla
with a square periodic arrangement of cylindrical holes fil
with mercury.7 Transmission dips are found in certain fr
quency ranges, e.g., 0.6–1.1 MHz in the@100# direction (G
2X direction! for f 50.4. A similar measurement in th
@110# direction (G2M direction! suggests the existence of
full band gap~extending from 1.0 to 1.1 MHz! for longitu-
dinal ultrasound in the Hg/Al square lattice. Unexpected
in the frequency range suggested by the experiment no c
plete frequency gap is found in the calculated dispersion
lations of the mixed mode which contains the longitudin
polarization. This does not necessarily mean that the lo
tudinal sound in the above frequency range can propa
through this lattice. For the branches existing in the claim
frequency range, we have to carefully check the polariza
of the waves. This is, however, beyond the scope of
present work. Evidently, a direct calculation of the transm
sion rate is necessary to resolve this apparent discrepa
The FDTD calculation of the transmission will appear els
where.

It should also be noted that the amalgam of the merc
and aluminum might be formed at the boundaries of the
cylinders and Al background of the structure. If this is inde
the case, the transition regions of a finite thickness sho
exist near the boundary of the cylinders for both the den
and elastic constants and thus the filling fractionf may be
changed effectively. The consideration of such effects w
also be interesting.

C. VacuumÕAl lattices

If nothing is filled in the cylinders, acoustic waves prop
gate in a 2D phononic lattice only through the substrate m
terial. This means that the acoustic wave with a given w
vector is scattered strongly from the cylinder surfaces as
filling fraction f increases. Thus acoustic stop bands exte
ing over entire region of the Brillouin zone are expected
appear for some range off.

The dispersion relations of both the mixed~filled circles!
and single~open circles! modes calculated by the FDTD
method~with a grid of n3n52002 points in a unit cell! are
shown in Fig. 4 for a 2D vacuum/Al lattice forf
50.55 (r 0 /a50.42). We really find the existence of a com
plete frequency gap which prohibits the propagation of
three polarizations simultaneously in any direction. T
width of this complete gap is plotted in the inset as a fu
t in
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tion of the filling fraction f. The gap widthDv increases
almost monotonically withf for both the mixedL-T and
singleT modes.

An interesting observation is the fact that the PW
method is applicable with some manipulation to the calcu
tion of the dispersion relations for a 2D phononic lattice w
vacuum cylinders. In this lattice both the mass density a
elastic constants are zero in the cylinder regions. A ques
is how to take the limitsrA , cA

i jmn→0, in cylinders~A! in
the framework of the PWE method.~In the FDTD scheme,
no elastic medium is assumed at the grid points inside
cylinders.! If we take these limits by assumingrA /cA

i jmn

→0, the dispersion curves obtained~with N3N5412 plane
waves! are those displayed in Fig. 4 by the solid~for the
mixed mode! and dashed~for the single mode! lines, respec-
tively. The agreement between the FDTD and PWE result
excellent. Here we note that the spurious flat branches
both the longitudinal and transverse modes expected to
pear in the PWE calculation are now pushed out to the v
high-frequency region. Thus they do not interact with re
branches of the system at a finite frequency range. Thi
quite different from the case for the PWE calculation appl
to the liquid/solid lattice~the preceding subsection!, where
the mass density of the liquid~cylinder material! is not a
disposal parameter and the flat branches stay at the fi
frequency region.

FIG. 4. FDTD results~with a grid of n3n52002 points in a
unit cell! for the dispersion relations of the coupled longitudinal a
transverse modes~dots! and the single transverse mode~open
circles! in a two-dimensional square lattice consisting of vacuu
circular cylinders in an Al substrate with filling fractionf 50.55.
(v t53.113105 cm/s is the transverse sound velocity in Al anda is
the lattice spacing.! Also plotted by the solid and dashed lines a
the PWE calculations~with N3N5412 plane waves! for the
coupled and single modes, respectively. The hatched region sh
the complete gap for three acoustic modes. The inset shows
width Dv of the complete gap versus filling fractionf. For f . f 0

50.62~the vertical dashed line!, the gap width is determined by th
highest frequency of the single mode in the first band and the low
frequency of the mixed mode in the second band. Forf , f 0, it is
determined by the highest and lowest frequencies of the mi
mode in the first and the second bands.
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IV. CONCLUDING REMARKS

In the present work we have calculated the dispers
relations of the bulk acoustic waves in 2D phononic lattic
consisting of periodic arrays of circular cylinders embedd
in a background substance. The lattices considered are t
with a large acoustic mismatch between their constituent
terials, and also the cases where the transverse or both
longitudinal and transverse modes of vibrations do not e
inside cylinders. For these lattices the conventional PW
method for the calculation of the dispersion relations is u
ally not very reliable and an alternative approach is requir
The numerical approach based on the FDTD method
proved to be very efficient for these cases.

Contrary to the recent ultrasound transmiss
experiment,7 no complete frequency gap is found in th
claimed region of a 2D square phononic lattice with merc
cylinders embedded in an aluminum matrix. The polarizat
of the branches found in this frequency region is import
for a comparison of the transmission and frequency spec
For a more direct comparison, the calculation of the tra
mission rate is necessary. For photonic crystals, the theo
ical transmission rate of electromagnetic waves has b
given by Sakoda21 with the PWE method and also by Fa
et al.22 with the FDTD method. A similar calculation of th
transmission rate with the FDTD method is currently und
way for phononic lattices.

Another interesting subject is the calculation of the ba
structure of surface acoustic waves in 2D phononic cryst
The distribution of the frequency band of surface acou
waves is usually well separated from those of bulk wav
and their stop-band distribution has been observed by b
surface wave transmission and imaging experiments.11,12 An
attenuation associated with the Rayleigh surface wave pr
gation has been measured in a 2D triangular and honeyc
~hexagonal! lattice with vacuum cylinders drilled in a marbl
quarry11 and also with polymer cylinders drilled in an alum
num substrate.12 The attenuation in transmission spectra
the former lattice suggests the existence of absolute b
gaps for the surface waves. However, the measurement
sometimes compared with a theoretical calculation with
simple scalar-wave model. We also plan to apply the FD
method for the calculation of the dispersion relation of s
face localized vibrations in 2D periodic structures.
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APPENDIX A

In this appendix, we give the explicit expressions for t
discretized versions of Eqs.~5! and ~6!:

r l ,m

~Dt !2 @U1
l ,m;n1122U1

l ,m;n1U1
l ,m;n21#

5K1
1S11

l 1(1/2),m;n1K1
2S11

l 2(1/2),m;n

1K2
1S12

l ,m1(1/2);n1K2
2S12

l ,m2(1/2);n , ~A1!

r l 1(1/2),m1(1/2)

~Dt !2 @U2
l 1(1/2),m1(1/2);n1122U2

l 1(1/2),m1(1/2);n

1U2
l 1(1/2),m1(1/2);n21#

5K1
1S21

l 11,m1(1/2);n1K1
2S21

l ,m1(1/2);n

1K2
1S22

l 1(1/2),m11;n1K2
2S22

l 1(1/2),m;n , ~A2!

S11
l 1(1/2),m;n5C11

l 1(1/2),m@K1
1U1

l 11,m;n1K1
2U1

l ,m;n#

1C12
l 1(1/2),m@K2

1U2
l 1(1/2),m1(1/2);n

1K2
2U2

l 1(1/2),m2(1/2);n#, ~A3!

S22
l 1(1/2),m;n5C12

l 1(1/2),m@K1
1U1

l 11,m;n1K1
2U1

l ,m;n#

1C11
l 1(1/2),m@K2

1U2
l 1(1/2),m1(1/2);n

1K2
2U2

l 1(1/2),m2(1/2);n#, ~A4!

S12
l ,m1(1/2);n5S21

l ,m1(1/2);n

5C44
l ,m1(1/2)@K1

1U2
l 1(1/2),m1(1/2);n

1K1
2U2

l 2(1/2),m1(1/2);n1K2
1U1

l ,m11;n

1K2
2U1

l ,m;n#, ~A5!

where (l ,m) defines a 2D grid point~grid spacings areDx
and Dy), n specifies the time step with an intervalDt, and
K1

65(kxDx62)/2Dx and K2
65(kyDy62)/2Dy. In the

above equations, the coefficientsCi j are related to the elasti
stiffness tensorci jmn in a usual manner. The initial condi
tions ~the displacement fields att50) are chosen such tha
U1

l ,m;05d l ,l 0
dm,m0

andU2
l 11/2,m11/2;050, where the 2D grid

point (l 0 ,m0) is selected at random in the unit cell.
h-

.
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