PHYSICAL REVIEW B VOLUME 62, NUMBER 11 15 SEPTEMBER 2000-I
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The properties of scattering phases in quantum dots are analyzed with the help of lattice models. We first
derive expressions relating the different scattering phases and the dot Green functions. We analyze the Friedel
sum rule in detail, and discuss the deviation of the phase of the transmission amplitude from the Friedel phase
at the zeros of the transmission. The occurrence of such zeros is related to the parity of the isolated dot levels.
A statistical analysis of the isolated dot wave functions reveals the absence of significant correlations in the
parity for large disorder, and the appearance, for weak disorder, of certain dot states which are strongly coupled
to the leads. It is shown that large differences in the coupling to the leads give rise to an anomalous charging
of the dot levels. A mechanism for the phase lapse observed experimentally based on this property is discussed,
and illustrated with model calculations.

[. INTRODUCTION (this mechanism will be further analyzed in the present
work). In spite of all these efforts there is still the feeling that
Phase coherence is at the heart of most phenomena stualimore fundamental explanation is lacking. Each of the pro-
ied in mesoscopic physics. However, the behavior of thgposed mechanisms can be criticized as relying on some par-
electronic wave-function phadeself in an actual quantum ticular assumptions. Only the approximate sum rule pro-
transport device had not been studied until recent years. Iposed recently in Ref. 17 is supposed to be valid in a generic
the case of quantum dots, investigations were predominantlgchaotig situation. However, there is still no experimental
restricted to conductance measurementiich carry no in-  evidence of the near-resonance phase lapse predicted by this
formation on the transmission phase. It was not until themechanism.
experiments by Yacobgt al? that interest in the phase be-  On the other hand, the phase problem affects our knowl-
havior of quantum dots really started. In these experiments adge of generic properties of scattering phases. One funda-
qguantum dot was embedded in one of the arms of amnental relation, invoked in Ref. 3 in connection to this prob-
Aharonov-Bohm(AB) ring in an attempt to analyze the lem, is the Friedel sum rule which relates the phase of the
transmission phase evolution as a function of the dot gateigenvalues of the scattering matrix to the charge accumu-
voltage. Although these experiments were the first to demlated in the dot region. Being related to the dot charge, the
onstrate the presence of a coherent component in the curreRtiedel phase is a continuous function of the system param-
through a quantum dot in the Coulomb blockade regimeeters, and cannot exhibit an abrupt behavior like the one
they failed to give the complete evolution of the phase. Thisound in the experiments by Schusteral? However, as
limitation was explainetl as a consequence of the phasepointed out recently by Lé& and Taniguchi and one of the
locking (or phase rigidity that occurs in a two-terminal ge- authors:® the phase of the transmission amplitude can depart
ometry. It was showhthat the AB effect in such geometry is from the Friedel phase and exhibit a nonanalytic behavior at
characterized by parity: as a function of the AB flux the points where the modulus of the transmission vanishes. It is
conductance exhibits either a local maximum at zero fluxhus intersting to study the general conditions for the occur-
(positive parity or a local minimum(negative parity. An-  rence of zeros in transmission through a quantum dot.
other intriguing feature of the experimental results was the The aim of this paper is to investigate the behavior of the
“parity conservation” over a large sequence of Coulombdifferent scattering phases in quantum dots with the help of
blockade peaks, which reflected a similar evolution of thelattice models. These types of models allow one to describe a
phase over each peak. The complete evolution of the phasiot of arbitrary shape, and to study the influence of
was obtained in a subsequent experiment by Schestel  disorder’® We shall first derive expressions for the different
using a four-terminal geometry. This experiment confirmedscattering phases in terms of Green functions. These expres-
the expected evolution of the phase around the peaks, argions allow one to relate the occurrence of zeros in the trans-
revealed that an abrupt jump af occurs in the valleys be- mission with the parity of the isolated dot wave functions.
tween the peaks. We also study the statistical properties of dot wave functions
Since 1995 several theoretical efforts have been devoteih a disordered quantum dot, explicitly showing the absence
to explaining these observation3:31%%11-1"Ref. 3 pro-  of significant correlations in the chaotic case. On the other
posed a screening effect; Ref. 5 alluded to dot degeneracieland, as suggested in Ref. 16, for weak disorder one can
Refs. 6,9 and 11 associated the observed effect with aimlentify certain dot levels which are much more strongly
asymmetric deformation of the dot which leads to repeate@oupled to the leads than average. We shall show that in this
charging of the same dot level; and Ref. 16 pointed out someituation the dot levels are populated in an anomalous way as
special properties of the dot states in a semi chaotic situatioa function of the gate voltage. We shall finally discuss the
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Gr¥(w)=[w—Hgo— 2"} (w)] %, 1

whereH 4, is the one-electron part of the isolated dot Hamil-

P 5 T . tonian, and"? is the (retarded, advancgdelf-energy op-
L_;f 1 N 3R erator describing the coupling of the dot to the leads. In a

__________

. Fermi-liquid-like description, the self-energy should also

contain terms accounting for electron-electron interactfons.

We shall postpone its discussion to Sec. VI, and concentrate

on the one-electron properties of the quantum dot until then.

When the coupling to the leads is localized at sites 1dnd
FIG. 1. Schematic representation of a lattice model for a quanWe have

tum dot.

Sin(w)= 5|,ju5m,jatigr0)a(w), (2
E?jkfllgrlﬁ role of this type of correlation effect in the phasewhereazL,R, i =1jx=N, andg"* are the local Green

The outline of the paper is as follows: In Sec. Il we in- functions at the semi-infinite one-dimensional leads.

troduce a generic lattice model for a quantum dot coupled t tIT éerm? offthte tGreen Gperator ane can express the dot
single-moded leads. In Sec. Il we derive the expressions fo al density of statep(w) as

the different scattering phases in terms of Green functions. 1 A . 1 .

We discuss in particular the Friedel sum rule, and the rela-  p(w)==—TI[G* w)—G"(w)]=—Im TI[G* w)]. (3)

tion of the Friedel phase to the phase of the transmission 2 m

amplitude. In Sec. IV we study the conditions for the occur-we shall now discuss the connection of this quantity to the

rence of zeros in the transmission, and show that they arg.aitering matrivs(w), defined in terms of Green functions
independent of the strength of the coupling to the leads. ThBy means of the generalized Fisher-Lee relafibns
statistical properties of the isolated dot wave functions are

analyzed in Sec. V. Finally, in Sec. VI we discuss the role of Sup(®)= 8, 5~ 2i /FaFBG;a,iﬁ(‘”)v (4)
electron correlation effects. We end the paper with some
conclusions and final remarks. where we have introduced the tunneling rafes=t2Img? .

The unitarity ofS can be readily showrsee Appendix A
Il. GENERIC LATTICE MODEL We start by defining the quantit§: as

As a model for a two-dimensional quantum dot, we con- _ 0 _<a
sider a collection oN sites on a square lattidsee Fig. 1 Op(@)=IminDefw—Hgor—2%(w)]. ©
This model can represent a dot of arbitrary shape. The elec- The derivative with respect to the energy @f is then
trons in the dot are described by a tight-binding Hamiltoniangi\,en by
with site energies; and a constant hopping elementou-
pling nearest neighbors onlyt ill be taken as the unit of 90 { R a( gia)
G4 1-

. . . F
energy. The site energies are allowed to vary following an —=ImTr

T (6)

imposed electrostatic confining potential, and/or randomly, Jo

in order to study the influence of disorder. Thus, in the case when the energy dependence of the self-

On the other hand, electron-electron interactions can benergy can be neglected, one obtains the identity
included within the constant charging energy model by add-
ing a termV o, = Ec(Ndot—CVg/e)z, where Ny IS the 90
mean number of electrons in the dot, to the one-electron e~ TP(). @)
Hamiltonian. Its effect will be discussed in Sec. VI.

We shall consider that the dot is coupled to electron res- This case corresponds to a particular type of leads, having
ervoirs by two one-dimensional leads, as depicted in Fig. 1a large density of states, which can screen any deviation
We may assume that the coupling to the left and right leadfrom charge neutrality induced by the presence of the dot.
is restricted to two sites labeled by 1 aNdrespectively. The This type of leads can be called “nonpolarizable leads.” On
first site on each lead is connected to these two sites on thee other hand, it can be showsee appendix Bthat 6 can
dot by hopping elements andtg, respectively. As will be  pe expressed in terms of the scattering mafias
discussed below, this situation can be easily generalized to
the case where the first sites on the leads are connected to 1 .
several sites on the déhis multiple connection is illustrated Or(w) = 5-inDe{S(w)], 8
in Fig. 1 by dashed lings
and thus one obtains a relation between the dot total density
of states and the derivative of the scattering matrix with re-
spect to the energy:

The electronic properties of lattice models are conve-
niently given in terms of Green functions. We need to intro- 1 9 InDel S 9
duce the retarded and advanced Green operators given by plw)= 2 &_wn efS(w)]. ©

Ill. SCATTERING PHASES AND GREEN FUNCTIONS



PRB 62 SCATTERING PHASES IN QUANTUM DOTS: AN . .. 7309

Then, by integrating this expression up to the Fermi energy, 0.7
we obtain the generalized Friedel sum rule

1 0.6-1
Noor="—0r(Er). (10 )
g
We see tha¥ is an important scattering phase. As itis g 0.4~
f[) o
related to the dot charge, it should be a continuous function g
of the energy. It also has a simple relation to the eigenvalues 203
of the scattering matrix. Due to the unitarity 8fits eingen- 3 ’
&

values are of the forne?’é12 and thusfg= &, + &,.

It should be emphasized that relation E4j0) holds only
for the case of nonpolarizable leads. For a more general case
one should also include the charge induced on the leads in

the Friedel sum rule. The deviation between the dot total G- - \:'., _;-';_/ S

density of states and the derivative of the Friedel phase with ~ 90 l j '

respect to energy was also pointed out by Gaspaiat,> 04 045 z 0.5 0.55 06
nergy

who analyzed the connection between densities of states and

the scattering matrix for continuous models. In particular EQ. g1 2. Transmission probability vs energy for & 5-site dot

(14) in Ref. 23 can be written as with T =T'g=0.25 full line), 0.05(dotted lind, and 0.01(broken
line).
IO SLLT SRR
—=7mp(w)—Im —————]|, (11
dw 4o IV. CONDITIONS FOR ZEROS OF THE TRANSMISSION
which coincides with our E¢(6), provided that we make the  within lattice models one can establish precise conditions
approximation for the occurrence of zeros in the transmission amplitude
. oa through the dot. According to the Fisher-Lee relations the
9% _ilmx 12 condition for having a zero S at energyE, is that
Jw 2w 1n(Eo) =0. This gives
Another scattering phase which is relevant for the inter- C[En—H ., —3S(E
ference phenomena observed in the experiments is the phase G \(Eo) = il Eo _dot < (Eo)] =0, (15
of the transmission amplitudé,=argS, z. In some particu- DefEo—Hgor—2"(Eo)]

lar cases(for instance, in a one-dimensional problende

and 6, coincide. However, as noted recently by SomewhereC”(A) denotes the cofactor of the elementndj in
authorst®they are in general different. While:- is a con-  the matrixA. It is easy to see that the polynomial in the
tinuous function,d, may not be defined at certain energiesnumerator is real, and does not depend on the self-energy
where the transmission vanishes. In order to be more precisepupling of the dot to the leads at sites 1 @idThis is a

one can parametrize a general scattering matrix as direct consequence of having the coupling to the leads local-
o _ ' ized at these sites. We can thus reduce the condition for the
iel?Tedsing  e'(?*¢2cose 13 zeros, Eq(15), to the simpler expression

e'(?=¢2dcosgp ie'(?"¢lsing |’

Cin(Eo—Hgop =0. 16
with real phase9®, ¢;, ¢,, and¢. It is then easy to show iN(Eo~Haor (16)

that 6= 6+ 7/2. On the other hand, when time-reversal Equation(16) clearly shows that the zeros of the transmis-
symmetry holds, one h& g=Sg, and thusp,=0, inwhich  sjon are characteristic of the isolated dot structure, and do
case the argument of the transmission amplitude is related t@ot depend on the strength of the coupling to the leads. This
O by is illustrated in Fig. 2, where the transmission for x5
sites dot is shown for varying values bfwithin an energy
0,= O+ 7O (COSp) — ™ (14) range haviljg azero. One can ob_serve that w_h?le the shape of
the transmission varies substantially, the position of the zero
is not affected.

. f h i h L t points wh This property allows one to relate the zeros of the trans-
Jumps ofwr each fime co changes sign, I.e., at points where mission to the wave functions of the isolated dot. In the

there is a zero of the transmission. At these points the pha% P ;
. ) . ! eak-coupling limit, one can approxima@,y as
of the transmission amplitude deviates from the Friedel piing PP N

phase. Note that the abrupt jumpfof the phase of the AB -

oscillations between consecutive resonances is a central fea- ca~> YN (17)
ture of the experimental results of Schusééral* We thus N oA=L (D)2—iTRr(yD)?’

conclude that the study of the occurrence of zeroes of the

transmission is essential to understand the experimentallyhere\, and w}‘ denote the eigenvalues and amplitudes of
observed behavior. the corresponding wave function for the isolated dot. The

where O(x) is the step function. Therefore), exhibits
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condition to have a zero between two consecutive eigenvakoupled to the dot as voltage protfsThis effect is dis-
ues\, and A, is then simply given by ynyi tyl"t  cussed in the next subsection.
>0.

We can now identify the sign af ¢, as theparity of the
corresponding dot wave function. By this reasoning we con- A simple example which already exhibits a zero in the
clude that there should be a zero of the transmission in beransmission amplitude is the case of a four-site dot, Ne.,
tween dot states with the same paritygardless of the =4. In this model, sites 1 and 4 are the ones coupled to the
strength of the coupling to the leads leads. Sites 2 and 3 are coupled to sites 1 and 4 by hopping

In real systems, inelastic scattering would prevent the ocelementst, and we take the site energies on 1 and 4as
currence of exact zeros in the transmission. This situatior €,=0. The transmission amplitude for this model is given
can be described within our model by additional leadsby

A simple example

. 2t(w—e)
Sir=—2iVI' 'k : : — —, (18)
(0+iT ) (w+iTg)(w—€)(w—e3) —4t2(w—€)(w+il)

wheree= (e, + e3)/2 andT' = (I + ' r)/2. V. STATISTICAL ANALYSIS OF THE TRANSMISSION

For weak coupling andle,— e5|>t, the transmission has PHASE
two well-resolved resonances at=¢, 3. The modulus and

phase of5, are shown in Fig. 3. As can be observed, the eros in the transmissiofand the associated jump in the

phase of the transmission exhibits a similar evolution aroungl < iccion phasés related to the parity of the isolated dot
each resonance. At the point=e there is a zero of the wave functions on consecutive levels. In a similar way as
transmission, and its phase exhibits an abrupt jumprof  done by many authors for analyzing the mesoscopic conduc-
From Eq.(18) it is clear that the zero is not dependent on thetance fluctuations of quantum dots in the Coulomb blockade
strength of the coupling to the leads. regime?® the parity should be studied statistically over many
Inelastic scattering can be simulated by additional voltaggealizations of the dot potential.
probes coupled to sites 2 and 3. Let us denote the coupling to |n order to search for correlations of the parity of the dot
the additional lead by’ . It is easy to see that the zero of wave functions, we have numerically diagonalized dot lattice
the transmission now moves away from the real energy aXlﬁ]Ode|S up to 3 30 sites. The Conﬂmng potent|a| is as-
to e+|1“,ne| The jump in the phase of the transmission be-sumed to have the form of an isotropic parabola with curva-
comes smaller thamr, and it is no longer abrupt but has a ture «. We have investigated the influence of disorder and
finite width given byI';,.;. The width of the phase jump can also the influence of different models for coupling the dot to
thus be taken as a measure of broadening of the dot levetbe leads.

According to the discussion of Sec. IV, the occurrence of

due to inelastic scattering. Figure 4a) shows the spacing distribution between con-
o 10 secutive levels for various values of the disorder strenth
: ! ’ anda=0.01(in units oft/a2, wherea is the lattice spacing
One can note that the distribution approaches the Wigner
0.8 Lo distributior?®
g _ a _ a 2
2 0.6 0.6 & pP(s)=5sexp—7s
9 }
g E [plotted as a full line in Fig. @)] as the disorder strength
8 04+ ~0.4 o, increases. This agreement suggests that our resultgVfor
& >1 should be well described by random matrix theory.
For analyzing correlations in the parity of the wave func-
0.2 02 tions, in Fig. 4b) we plot the probability of finding consecu-
tive levels with the same parity as a function of level spac-
0.0 0.0 ing. As can be observed, this probability is almost constant

as a function of level spacing. Although the probability is

slightly larger than 0.5 for weak disordeYM=0.5), it ap-

proaches 0.5 as the disorder increases. This behavior indi-
FIG. 3. Modulus(broken ling and phaséfull line) of the trans- ~ Cates that correlations in the parity are negligible within this

mission amplitude for a four-site dot given by E@8) with I, ~ model.

=T'r=10 ande,= — e;=4. The dotted line corresponds to a phase  The previous results correspond to the case where the dot

when an inelastic tunneling ratg,=0.1 is introduced. is coupled to the leads at sites 1 dddand thus the parity of

Energy
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FIG. 5. Equal parity probability as a function df,qs for W
=0.5 (triangleg, 1.0 (boxeg, and 2.0(crosses
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Fig. 6 as a function of the level number for the c&¥g,qs
=5 and different values o#V. In the case of extended con-
. T . T tacts to the leads and weak disorder, one can clearly distin-
05 1.0 1’20 25 30 guish states which are more strongly coupled to the leads
Level spacing than the average. For the cagk=0.5, these states are indi-
- P : ... cated by arrows in Fig. 6. One can see from their level num-
FIG. 4. Level spacing distribution and equal parity probability . .
for 30x 30 sites for different values of the disorder strength0.5 bers (67,79,92,106.. .zj.tha: t?hey ?}pﬁ)leir mt a W?”'td?fmedth
(triangles, 1.0(boxesy, 2.0(crosseg and 3.0(circles. The full line sequence, corresponding to the sheill structure or states In the
- A isotropic two-dimensional harmonic oscillator. Contour plots
corresponds to the Wigner distribution. - .
of wave functions with level number 67 and the next three

. — C levels are shown in Fig. 7. Although they correspond to
n
the wave functions is given by arg{y). This situation can nearly degenerate levels, only the first one is strongly

be generalized to the case where many dot sites are coupI%
- : g upled to the leads.
to each lead, as indicated by the dotted lines in Fig. 1. We P
shall assum_e that _bOth _Ieads are COUp_|6d to the same nurr_1ber VI. EEFECTS DUE TO COULOMB INTERACTIONS
Nieads Of neighboring sites on each side of the dot. In this ) .
case the parity will be given by ar§{ ; 4" ¢! ), where Up to now we have neglected interactions and concen-
LARTILTIRY

L= denote the sites coupled to the left and right leads, regrated on the one-electron properties of the dot. As com-

spectively. It should be emphasized that the conditions for  0.12
the occurrence of zeros discussed in Sec. IV remains valid in

this case, the first sites on the leddandR playing the role 0.1 J
of sites 1 and\.

In Fig. 5 we show the total probability of finding consecu-
tive levels with the same parity as a function M, ;45 and
different values of the disorder strengtth For W=0.5 one
can note a slight decrease of the probability for increasing
Nieads- The probability nevertheless always remains close to
0.5, indicating the absence of significant parity correlations
even when changing the model for coupling the dot to the
leads.

These results demonstrate that it is very unlikely to find a
large sequence of dot levels with the same parity, and con-
sequently show the difficulty in accounting for the experi-
mental results of Ref. 4 within a one-electron model. There
are, however, some peculiarities of the dot states in the limit 60 70 80 90 100 110
of weak disorder which can give rise to correlation effects, as level number
discussed in the next Sec.VI. These correlation effects are FiG. 6. Strength of the coupling to the leads as a function of
associated with certain dot states which are strongly couplegvel number for the cash|.,q<=5 and different values ofv: 0.5
to the leads, as discussed below. (triangles, 1.0(boxes, and 2.0(crosses The arrows indicate states

The coupling strengtmn:|EijjR¢?sz?R| is shown in  with the strongest coupling to the leads for #he=0.5 case.
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responding to the upper level, =t,g=t. The energy levels
on the leads sites are taken as zero. Let us analyze how the
dot levels are populated as the gate voltage shift down the
energy levels frome;,e,>0 to €;,€,<<0.

Finding the ground state of this problem requires one, in
principle, to diagonalize the 6 matrix corresponding to
the system Hamiltonian in the bas|®,n,n ng) where
(nq,n,) are the occupation numbers for the dot levels, and
(n_,ng) correspond to the leads. The problem can, however,
be reduced by a basis change in which we replace the states
with one electron in the leads by its symmetric and antisym-
metric combination, i.e,1010, |1001), 0110, and|0101)
are replaced by [1010+[100D)/y2 and (0110
+ |010:I))/\/§. In this way, the initial 6<6 matrix is reduced
into two 3X 3 blocks: one block corresponds to empty dot
states which couple to the antisymmetric combinations, and
the other to doubly occupied dot state coupled to the sym-
metric combinations, having the form

El+ 62+ EC \/ET \/Et

HS: \/Et €o 0 ,
FIG. 7. Contour plots of the wave functions for tth&=0.5 case \/Et 0 €1
correspondingfrom bottom to top and from left to righto level
numbers 67, 68, 69, and 70. e 0 \/ET

mented upon in Sec. I, electron-electron interactions can be He=| O e V2t
included by means of the constant charging energy model. V2T 2t 0
Within the traditional description of Coulomb blockade in
quantum dots based on simple master equafibtise main

role of the charging energy is to open a gap between cons,
secutive dot levels, dot states being populated according to
the isolated dot ground state for each number of electrons.

In the limit A—0, i.e.,e,— ;= — Vg the ground state for
ch symmetry is given by

Within this picture, the evolution of the phase over a se- . —3VgtE. \/ —Vg+E¢ 2 A
quence of dot resonances will be fixed by the parity of the A - 2 T 2 +2(T7+19),
corresponding one-electron dot states. As discussed in

Sec.V, the parity of one-electron dot states does not exhibit

significant correlations, and therefore this picture is unable to 2 Vg \/ Vg\? 5 .2
account for the experimental results of Ref. 4. M=V 5| T2ATH.

The situation may change drastically when taking into

account the finite coupling to the leads beyond lowest-ordegy oy <0 the system starts in the anstisymmetric ground
perturbation theory. In this case correlation effects may lea 9

. ; tate, and the charge of the dot levels evolve Witraccord-
to a population of the dot levels different from the one pre-; g W

. ) ; . - ing to
dicted by simple master equations. This possibility was re- 9

cently pointed out by Silvestrov and Imt§and advanced as

an explanation for the experimental results on the phase of 272
the transmission through a quantum dot. The mechanism (ny)= Vot N2+ 2(T2412)
proposed by these authors takes place when there is a (Vg ) ( )
strongly coupled dot level followed by nearly degenerate

weakly coupled levels. This situation is characteristic of the 212
case of weak disorder discussed in Sec.V. (ny)= . N
The basic mechanism proposed by Silverstrov and Imry (Vg+ A +2(T+1t%)

can be understood by considering a simple four-site problem

with two (spinles$ electrons. We shall assume that two of which shows that the dot levels start populating whexi,

the sites correspond to the dot levels and the other two rep~T. However, ast<T, the charge in the weakly coupled
resent the left and right leads. Let us call and e, the level will be negligible as compared to the strongly coupled
one-electron energies of the isolated dot levels, Arde,  one.

—€;>0 the spacing between them. The lower level is sym- At Vy=E/2 there is a crossing betweat and\®. As a
metrically coupled to the leads by effective hopping ele-result the symmetric ground state becomes more stable, and
mentst;, =t;g=T which are much larger than elements cor-the charge on each dot level is now given by
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FIG. 8. Level charges as function of gate voltage for a 16-site §
cluster(see the parameters in the texthe full line corresponds to a 0.4+
the strongly coupled level and the dashed, dotted, and small dashed ,’é
lines correspond to the consecutive weakly coupled levels. g 0.2
8
2 2 5
S
(n)= 2t°+ (Vg+2A°) 0.0 | | : |
(Vg+N%2+2(T?+1t?) 0 1 2 3 4
Va
2T%+ (Vg +\9)2 FIG. 9. Phase and modulus of the transmission amplitude for the
(ng)= (Vg+)\5)2+ 2(T2+12) : model of Fig. 8 mapped into an effective one-electron problem.

One can note, however, that the jumps in the charge of the

Thus, when crossing,= E/2, the charge on the strongly strongly coupled level are not so abrupt, and become pro-
coupled state goes from-T?/(T?+t?) to ~t?/(T?+t?), gressively less pronounced.
while the charge on the weakly coupled level does the oppo- The next question is how this particular charging of the
site[we neglect small corrections of ordéF/E,)%]. We see dot levels affects the transmission amplitude and its phase. In
that nearly one electron is transferred from the stronglyorder to obtain the transmission through the interacting dot,
coupled level to the weakly coupled one in the middle of thewe map this finite-size cluster into an effective noninteract-
charging curve, the total charge in the dot remaining constarifig system with the same charge on each dot level for each
[up to order T/E.)?]. The strongly coupled level is again Vvalue of the gate voltage. In this effective system we use the
filled when Vy is close toE.. The situation is similar for Same hopping parameters as in the cluster calculation, but
finite A<T: the abrupt jump is also present, but shifted toreplace the leads by infinite one-dimensional chains. The ef-
Vy~Ed/2+A. fective dot levels are determined self-consistently to obtain

A more realistic description of the actual situation re-the correct level charges. The phase of the transmission am-
quires the inclusion of many sites to represent both the leadglitude and the transmission probability thus obtained are
and the dot levels. One would need a large number of sites ifhown in Fig. 9. As expected, the phase closely follows the
order to simulate a continuous density of states on the leadsharge of the strongly coupled level. It should be remarked
Using the Lanczos method we are able to numerically diagthat this behavior is not dependent on the parity of the
onalize interacting systems with up to 16 sites and e|ghweakly Coupled levels. On the other hand, the transmission
electrons. The dot levels charge as a function of gate voltagerobability exhibits broad peaks that can be associated with
for a system with six sites on a line for representing eactihe repeated charging of the strongly coupled level, together
lead, and four sites representing the dot levels, is shown iWith narrow satellite peaks corresponding to the charging of
Fig. 8. The dot levels are coupled symmetrically to the lead$he weakly coupled levels. These narrow peaks lie closer to
by hopping parametetts=0.1 andt,=t;=t,=0.02(all en- the broader peaks as the cycle number increases. In the
ergies are in units of the charging enerBy), while the fourth cycle the narrow peak can hardly be resolved.
hopping parameter within the leads is taken as 0.1. The
weakly coupled levels lie at 0.025, 0.030, and 0.035, respec-
tively, above the strongly coupled level. As can be observed,
the strongly coupled level is repeatedly charged and dis- To summarize, we analyzed the behavior of scattering
charged in a similar way as for the simple four-site model.phases in quantum dots using lattice models. We first studied

VII. CONCLUSIONS AND FINAL REMARKS
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the definition of the different scattering phases in terms of ACKNOWLEDGMENTS
Green functions. We showed that abrupt jumpsmoin the

phase of the transmission amplitude are associated with tr}ﬁscussions. One of UA.L.Y.) also acknowledges discus-
occurrence of transmission zeros. Then, we showed thali < \with F. Flores and J.A. VergeThis work was partially
within lattice models, assuming single-moded leads, the Zeéupported by the Spanish CICyT under Contract No. PB97-
ros are independent of the strength of the coupling to th@044' and the Swiss National Science Foundation.

leads?® This property allowed us to relate the occurrence of

Z ztero with the parity of consecutive dot states in the isolated APPENDIX A
ot.

We studied the statistical properties of the isolated dot In this appendix we show the unitarity of the scattering
states as a function of the disorder strength. This analysigatrix defined from the Fisher-Lee relations. One has
revealed that there are no significant parity correlations be-
tween consecutive dot levels. For moderate disorder there

The authors would like to thank T. Taniguchi for fruitful

appear states which are much more strongly coupled to the (5§'S)1,=|1-2iT G}y|?+ 4T T/Gy|%

leads than the average. We studied charging effects in this (A1)
situation, using an exact diagonalization of small clusters. (§'S)1,= —2i\I' TR (1+2iT' G2) Gy

We showed that the dot resonances as a function of gate

voltage may correspond to a strongly coupled level through —GiN(1-2iTrG ],

several cycles. o ) ayn e
The viability of this mechanism as a possible explanatior?"d Similar expressions folS{S)1 and (S'S),,. These ele-

for the “phase problem” deserves further discussion. TheMenNts can be rewritten as

presence of strongly coupled levels followed by many ate , a ; ) a2 - a1

weakly coupled levels is reminiscent of the integrable case,(S S)1=2il' [G],~ Gy~ 2il' |Gy~ 2ilR|Gy[“] +1,

which gradually disappears for increasing disor@e Fig. o (A2)

6). In this sense, the mechanism is not universal, as it would ~ (S'S)1,= —2i VI [g[G}y—Giy+2i[ G}Giy

not hold for a fully chaotic quantum dot. Thus this mecha- ) a r

nism could be tested experimentally by leading the dot into a +2IRGING -

fully chaotic situation(using, for instance, additional gates to . .
y " 9 g It is now easy to show that the expressions between

distort the dot shape, as in Ref.)2®n the other hand, the ket ish identically. This fact £ th
transmission as a function of the gate voltage exhibits narroﬁrac ets vanish identically. This factis a consequence of the

satellite peaks close to the broader Coulomb blockade peal'gentity
(see Fig. 9which are not observed experimentally. Being so na Ar Aarda SraAr
narrow, these peaks could be easily washed out by thermal G*-G'=G2*-X"]G, (A3)

broadening or due to the finite bias voltage used in the megghich follows from the definition of the Green operator.

surements. Of course if certain narrow peaks are not resolv<—:-plaking the matrix elementd,1) and (1N), one finds
in the experiment, a number of additional scenarios might ' '

account for parity conservation, even within a noninteracting 3 —Gh,=2iT G232+ 2iT RG22,
picture. Differing parity-conserving scenarios can then still (Ad)
be distinguished according to their phase evolution pattern. It 4 —Gi\y=2iI"' G},G/\+2iTrGE\Gn

is very unlikely that a noninteracting theory can generate a
phase evolution like that of Fig. 9, which closely resembles
that seen in the experiments.

One.should also comment about the role of spin, not in_- We show in this appendix thai 8= InDe{ S]. First note
cluded in the present analysis. At very low temperatures spig,5¢
degeneracy would lead to a Kondo effect. This effect was
recently observed experimentaffyput in .somewhat smaller . fc=ImIn Def w— gdot_za]
guantum dots, and would be reflected in the phase behavior
as a plateau at- /2 between a pair of resonances corre- 1 - A AT
sponding to the same dot level*! At temperatures larger =57 Def(w—Huo=29)G']. (B1)
than the Kondo temperature, spin degeneracy could at most
account for the similar phase behavior over two consecutive From the definition of the Green operator, one can rewrite
dot resonances. Other spin effects, like Hund’s rule, requirgéhis expression as
almost perfect symmetry leading to orbital degeneracy, and
so far have been observed only in ultrasmall quantum tots.

To conclude, we point out that our analysis has been re-
stricted to the case of single-moded leads. This is an assump-
tion which has been used implicitly in most theoretical mod-Finally, ~ using  that  E'—X9);;=—2iT'/§; 161
els of the probler®? following the characterization of the —Z2iI'rSndj N, ONe can easily check that
experimental set up given in Ref. 4. Nevertheless, the analy-
sis of what would be measured in a multichannel situation is 0 =£In De( S| (B3)
of interest, and deserves further theoretical investigation. F2i '

APPENDIX B

1
0F=Eln Def1+(Z'—2®)G"]. (B2)
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