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Scattering phases in quantum dots: An analysis based on lattice models

A. Levy Yeyati1 and M. Büttiker2
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The properties of scattering phases in quantum dots are analyzed with the help of lattice models. We first
derive expressions relating the different scattering phases and the dot Green functions. We analyze the Friedel
sum rule in detail, and discuss the deviation of the phase of the transmission amplitude from the Friedel phase
at the zeros of the transmission. The occurrence of such zeros is related to the parity of the isolated dot levels.
A statistical analysis of the isolated dot wave functions reveals the absence of significant correlations in the
parity for large disorder, and the appearance, for weak disorder, of certain dot states which are strongly coupled
to the leads. It is shown that large differences in the coupling to the leads give rise to an anomalous charging
of the dot levels. A mechanism for the phase lapse observed experimentally based on this property is discussed,
and illustrated with model calculations.
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I. INTRODUCTION

Phase coherence is at the heart of most phenomena
ied in mesoscopic physics. However, the behavior of
electronic wave-function phaseitself in an actual quantum
transport device had not been studied until recent years
the case of quantum dots, investigations were predomina
restricted to conductance measurements1 which carry no in-
formation on the transmission phase. It was not until
experiments by Yacobyet al.2 that interest in the phase be
havior of quantum dots really started. In these experimen
quantum dot was embedded in one of the arms of
Aharonov-Bohm~AB! ring in an attempt to analyze th
transmission phase evolution as a function of the dot g
voltage. Although these experiments were the first to de
onstrate the presence of a coherent component in the cu
through a quantum dot in the Coulomb blockade regim
they failed to give the complete evolution of the phase. T
limitation was explained3 as a consequence of the pha
locking ~or phase rigidity! that occurs in a two-terminal ge
ometry. It was shown3 that the AB effect in such geometry i
characterized by aparity: as a function of the AB flux the
conductance exhibits either a local maximum at zero fl
~positive parity! or a local minimum~negative parity!. An-
other intriguing feature of the experimental results was
‘‘parity conservation’’ over a large sequence of Coulom
blockade peaks, which reflected a similar evolution of
phase over each peak. The complete evolution of the ph
was obtained in a subsequent experiment by Schusteret al.4

using a four-terminal geometry. This experiment confirm
the expected evolution of the phase around the peaks,
revealed that an abrupt jump ofp occurs in the valleys be
tween the peaks.

Since 1995 several theoretical efforts have been dev
to explaining these observations:3,5–8,10,9,11–17Ref. 3 pro-
posed a screening effect; Ref. 5 alluded to dot degenera
Refs. 6,9 and 11 associated the observed effect with
asymmetric deformation of the dot which leads to repea
charging of the same dot level; and Ref. 16 pointed out so
special properties of the dot states in a semi chaotic situa
PRB 620163-1829/2000/62~11!/7307~9!/$15.00
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~this mechanism will be further analyzed in the prese
work!. In spite of all these efforts there is still the feeling th
a more fundamental explanation is lacking. Each of the p
posed mechanisms can be criticized as relying on some
ticular assumptions. Only the approximate sum rule p
posed recently in Ref. 17 is supposed to be valid in a gen
~chaotic! situation. However, there is still no experiment
evidence of the near-resonance phase lapse predicted by
mechanism.

On the other hand, the phase problem affects our kno
edge of generic properties of scattering phases. One fu
mental relation, invoked in Ref. 3 in connection to this pro
lem, is the Friedel sum rule which relates the phase of
eigenvalues of the scattering matrix to the charge accu
lated in the dot region. Being related to the dot charge,
Friedel phase is a continuous function of the system par
eters, and cannot exhibit an abrupt behavior like the o
found in the experiments by Schusteret al.4 However, as
pointed out recently by Lee18 and Taniguchi and one of th
authors,19 the phase of the transmission amplitude can dep
from the Friedel phase and exhibit a nonanalytic behavio
points where the modulus of the transmission vanishes.
thus intersting to study the general conditions for the occ
rence of zeros in transmission through a quantum dot.

The aim of this paper is to investigate the behavior of
different scattering phases in quantum dots with the help
lattice models. These types of models allow one to describ
dot of arbitrary shape, and to study the influence
disorder.20 We shall first derive expressions for the differe
scattering phases in terms of Green functions. These exp
sions allow one to relate the occurrence of zeros in the tra
mission with the parity of the isolated dot wave function
We also study the statistical properties of dot wave functio
in a disordered quantum dot, explicitly showing the abse
of significant correlations in the chaotic case. On the ot
hand, as suggested in Ref. 16, for weak disorder one
identify certain dot levels which are much more strong
coupled to the leads than average. We shall show that in
situation the dot levels are populated in an anomalous wa
a function of the gate voltage. We shall finally discuss t
7307 ©2000 The American Physical Society
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7308 PRB 62A. LEVY YEYATI AND M. BÜ TTIKER
possible role of this type of correlation effect in the pha
problem.

The outline of the paper is as follows: In Sec. II we i
troduce a generic lattice model for a quantum dot couple
single-moded leads. In Sec. III we derive the expressions
the different scattering phases in terms of Green functio
We discuss in particular the Friedel sum rule, and the re
tion of the Friedel phase to the phase of the transmiss
amplitude. In Sec. IV we study the conditions for the occ
rence of zeros in the transmission, and show that they
independent of the strength of the coupling to the leads.
statistical properties of the isolated dot wave functions
analyzed in Sec. V. Finally, in Sec. VI we discuss the role
electron correlation effects. We end the paper with so
conclusions and final remarks.

II. GENERIC LATTICE MODEL

As a model for a two-dimensional quantum dot, we co
sider a collection ofN sites on a square lattice~see Fig. 1!.
This model can represent a dot of arbitrary shape. The e
trons in the dot are described by a tight-binding Hamilton
with site energiese i and a constant hopping elementt cou-
pling nearest neighbors only. (t will be taken as the unit of
energy!. The site energies are allowed to vary following
imposed electrostatic confining potential, and/or random
in order to study the influence of disorder.

On the other hand, electron-electron interactions can
included within the constant charging energy model by a
ing a term Vcoul5EC(Ndot2CVg /e)2, where Ndot is the
mean number of electrons in the dot, to the one-elect
Hamiltonian. Its effect will be discussed in Sec. VI.

We shall consider that the dot is coupled to electron r
ervoirs by two one-dimensional leads, as depicted in Fig
We may assume that the coupling to the left and right le
is restricted to two sites labeled by 1 andN, respectively. The
first site on each lead is connected to these two sites on
dot by hopping elementstL and tR , respectively. As will be
discussed below, this situation can be easily generalize
the case where the first sites on the leads are connecte
several sites on the dot~this multiple connection is illustrated
in Fig. 1 by dashed lines!.

III. SCATTERING PHASES AND GREEN FUNCTIONS

The electronic properties of lattice models are con
niently given in terms of Green functions. We need to int
duce the retarded and advanced Green operators given

FIG. 1. Schematic representation of a lattice model for a qu
tum dot.
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Ĝr ,a~v!5@v2Ĥdot2Ŝ r ,a~v!#21, ~1!

whereĤdot is the one-electron part of the isolated dot Ham
tonian, andŜ r ,a is the ~retarded, advanced! self-energy op-
erator describing the coupling of the dot to the leads. In
Fermi-liquid-like description, the self-energy should al
contain terms accounting for electron-electron interaction21

We shall postpone its discussion to Sec. VI, and concent
on the one-electron properties of the quantum dot until th
When the coupling to the leads is localized at sites 1 andN,
we have

S l ,m
r ,a~v!5d l , j a

dm, j a
ta
2ga

r ,a~v!, ~2!

where a5L,R, j L51,j R5N, and ga
r ,a are the local Green

functions at the semi-infinite one-dimensional leads.
In terms of the Green operator one can express the

total density of statesr(v) as

r~v!5
1

2p i
Tr@Ĝa~v!2Ĝr~v!#5

1

p
Im Tr@Ĝa~v!#. ~3!

We shall now discuss the connection of this quantity to
scattering matrixŜ(v), defined in terms of Green function
by means of the generalized Fisher-Lee relations22

Sa,b~v!5da,b22iAGaGbGj a , j b
r ~v!, ~4!

where we have introduced the tunneling ratesGa5ta
2Imga

a .

The unitarity ofŜ can be readily shown~see Appendix A!.
We start by defining the quantityuF as

uF~v!5ImlnDet@v2Ĥdot2Ŝa~v!#. ~5!

The derivative with respect to the energy ofuF is then
given by

]uF

]v
5ImTrF ĜaS 12

]Ŝa

]v
D G . ~6!

Thus, in the case when the energy dependence of the
energy can be neglected, one obtains the identity

]uF

]v
5pr~v!. ~7!

This case corresponds to a particular type of leads, hav
a large density of states, which can screen any devia
from charge neutrality induced by the presence of the d
This type of leads can be called ‘‘nonpolarizable leads.’’ O
the other hand, it can be shown~see appendix B! thatuF can
be expressed in terms of the scattering matrixŜ as

uF~v!5
1

2i
lnDet@Ŝ~v!#, ~8!

and thus one obtains a relation between the dot total den
of states and the derivative of the scattering matrix with
spect to the energy:

r~v!5
1

2p i

]

]v
lnDet@Ŝ~v!#. ~9!

-
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Then, by integrating this expression up to the Fermi ene
we obtain the generalized Friedel sum rule

Ndot5
1

p
uF~EF!. ~10!

We see thatuF is an important scattering phase. As it
related to the dot charge, it should be a continuous func
of the energy. It also has a simple relation to the eigenva
of the scattering matrix. Due to the unitarity ofŜ, its eingen-
values are of the forme2i j1,2, and thusuF5j11j2.

It should be emphasized that relation Eq.~10! holds only
for the case of nonpolarizable leads. For a more general
one should also include the charge induced on the lead
the Friedel sum rule. The deviation between the dot to
density of states and the derivative of the Friedel phase w
respect to energy was also pointed out by Gasparianet al.,23

who analyzed the connection between densities of states
the scattering matrix for continuous models. In particular E
~14! in Ref. 23 can be written as

]uF

]v
5pr~v!2ImS sL,L1sR,R

4v D , ~11!

which coincides with our Eq.~6!, provided that we make the
approximation

]Ŝ

]v
'

i ImŜ

2v
. ~12!

Another scattering phase which is relevant for the int
ference phenomena observed in the experiments is the p
of the transmission amplitudeu t5argSLR . In some particu-
lar cases~for instance, in a one-dimensional problem!, uF
and u t coincide. However, as noted recently by som
authors,18,19 they are in general different. WhileuF is a con-
tinuous function,u t may not be defined at certain energi
where the transmission vanishes. In order to be more pre
one can parametrize a general scattering matrix as

Ŝ5S iei (u1w1)sinf ei (u1w2)cosf

ei (u2w2)cosf iei (u2w1)sinf D , ~13!

with real phasesu, w1 , w2, andf. It is then easy to show
that uF5u1p/2. On the other hand, when time-revers
symmetry holds, one hasSLR5SRL and thusw250, in which
case the argument of the transmission amplitude is relate
uF by

u t5uF1pQ~cosf!2
p

2
, ~14!

where Q(x) is the step function. Therefore,u t exhibits
jumps ofp each time cosf changes sign, i.e., at points whe
there is a zero of the transmission. At these points the ph
of the transmission amplitude deviates from the Frie
phase. Note that the abrupt jump ofp of the phase of the AB
oscillations between consecutive resonances is a central
ture of the experimental results of Schusteret al.4 We thus
conclude that the study of the occurrence of zeroes of
transmission is essential to understand the experimen
observed behavior.
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IV. CONDITIONS FOR ZEROS OF THE TRANSMISSION

Within lattice models one can establish precise conditio
for the occurrence of zeros in the transmission amplitu
through the dot. According to the Fisher-Lee relations
condition for having a zero inSLR at energyE0 is that
G1N

r (E0)50. This gives

G1N
r ~E0!5

C1N@E02Ĥdot2Ŝ r~E0!#

Det@E02Ĥdot2Ŝ r~E0!#
50, ~15!

whereCi j (Â) denotes the cofactor of the elementsi and j in
the matrix Â. It is easy to see that the polynomial in th
numerator is real, and does not depend on the self-en
coupling of the dot to the leads at sites 1 andN. This is a
direct consequence of having the coupling to the leads lo
ized at these sites. We can thus reduce the condition for
zeros, Eq.~15!, to the simpler expression

C1N~E02Ĥdot!50. ~16!

Equation~16! clearly shows that the zeros of the transm
sion are characteristic of the isolated dot structure, and
not depend on the strength of the coupling to the leads. T
is illustrated in Fig. 2, where the transmission for a 535
sites dot is shown for varying values ofG within an energy
range having a zero. One can observe that while the shap
the transmission varies substantially, the position of the z
is not affected.

This property allows one to relate the zeros of the tra
mission to the wave functions of the isolated dot. In t
weak-coupling limit, one can approximateG1N as

G1N
a '(

n

c1
ncN

n

v2ln2 iGL~c1
n!22 iGR~cN

n !2
, ~17!

whereln and c j
n denote the eigenvalues and amplitudes

the corresponding wave function for the isolated dot. T

FIG. 2. Transmission probability vs energy for a 535-site dot
with GL5GR50.25 ~full line!, 0.05~dotted line!, and 0.01~broken
line!.
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condition to have a zero between two consecutive eigen
uesln and ln11 is then simply given byc1

ncN
n c1

n11cN
n11

.0.
We can now identify the sign ofc1

ncN
n as theparity of the

corresponding dot wave function. By this reasoning we c
clude that there should be a zero of the transmission in
tween dot states with the same parityregardless of the
strength of the coupling to the leads.

In real systems, inelastic scattering would prevent the
currence of exact zeros in the transmission. This situa
can be described within our model by additional lea
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coupled to the dot as voltage probes.24 This effect is dis-
cussed in the next subsection.

A simple example

A simple example which already exhibits a zero in t
transmission amplitude is the case of a four-site dot, i.e.N
54. In this model, sites 1 and 4 are the ones coupled to
leads. Sites 2 and 3 are coupled to sites 1 and 4 by hop
elements,t, and we take the site energies on 1 and 4 ase1
5e450. The transmission amplitude for this model is giv
by
SLR522iAGLGR

2t2~v2 ē !

~v1 iGL!~v1 iGR!~v2e2!~v2e3!24t2~v2 ē !~v1 i Ḡ !
, ~18!
of
e
t
as
uc-
de

ny

ot
ice
-

va-
nd
to

n-

ner

h
r

c-
-
c-

ant
is

indi-
his

dot
whereē5(e21e3)/2 andḠ5(GL1GR)/2.
For weak coupling andue22e3u@t, the transmission ha

two well-resolved resonances atv.e2,3. The modulus and
phase ofSLR are shown in Fig. 3. As can be observed, t
phase of the transmission exhibits a similar evolution aro
each resonance. At the pointv5 ē there is a zero of the
transmission, and its phase exhibits an abrupt jump ofp.
From Eq.~18! it is clear that the zero is not dependent on t
strength of the coupling to the leads.

Inelastic scattering can be simulated by additional volta
probes coupled to sites 2 and 3. Let us denote the couplin
the additional lead byG inel . It is easy to see that the zero o
the transmission now moves away from the real energy
to ē1 iG inel . The jump in the phase of the transmission b
comes smaller thanp, and it is no longer abrupt but has
finite width given byG inel . The width of the phase jump ca
thus be taken as a measure of broadening of the dot le
due to inelastic scattering.

FIG. 3. Modulus~broken line! and phase~full line! of the trans-
mission amplitude for a four-site dot given by Eq.~18! with GL

5GR510 ande252e354. The dotted line corresponds to a pha
when an inelastic tunneling rateG inel50.1 is introduced.
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V. STATISTICAL ANALYSIS OF THE TRANSMISSION
PHASE

According to the discussion of Sec. IV, the occurrence
zeros in the transmission~and the associated jump in th
transmission phase! is related to the parity of the isolated do
wave functions on consecutive levels. In a similar way
done by many authors for analyzing the mesoscopic cond
tance fluctuations of quantum dots in the Coulomb blocka
regime,25 the parity should be studied statistically over ma
realizations of the dot potential.

In order to search for correlations of the parity of the d
wave functions, we have numerically diagonalized dot latt
models up to 30330 sites. The confining potential is as
sumed to have the form of an isotropic parabola with cur
ture a. We have investigated the influence of disorder a
also the influence of different models for coupling the dot
the leads.

Figure 4~a! shows the spacing distribution between co
secutive levels for various values of the disorder strengthW
anda50.01~in units of t/a2, wherea is the lattice spacing!.
One can note that the distribution approaches the Wig
distribution26

p~s!5
p

2
s expF2

p

4
s2G

@plotted as a full line in Fig. 4~a!# as the disorder strengt
increases. This agreement suggests that our results foW
.1 should be well described by random matrix theory.

For analyzing correlations in the parity of the wave fun
tions, in Fig. 4~b! we plot the probability of finding consecu
tive levels with the same parity as a function of level spa
ing. As can be observed, this probability is almost const
as a function of level spacing. Although the probability
slightly larger than 0.5 for weak disorder (W50.5), it ap-
proaches 0.5 as the disorder increases. This behavior
cates that correlations in the parity are negligible within t
model.

The previous results correspond to the case where the
is coupled to the leads at sites 1 andN, and thus the parity of
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the wave functions is given by arg(c1
ncN

n ). This situation can
be generalized to the case where many dot sites are coup
to each lead, as indicated by the dotted lines in Fig. 1. W
shall assume that both leads are coupled to the same num
Nleads of neighboring sites on each side of the dot. In thi
case the parity will be given by arg(( j L , j R

c j L

n c j R

n ), where

j L,R denote the sites coupled to the left and right leads, r
spectively. It should be emphasized that the conditions f
the occurrence of zeros discussed in Sec. IV remains valid
this case, the first sites on the leadsL andR playing the role
of sites 1 andN.

In Fig. 5 we show the total probability of finding consecu
tive levels with the same parity as a function ofNleads and
different values of the disorder strengthW. For W50.5 one
can note a slight decrease of the probability for increasin
Nleads. The probability nevertheless always remains close
0.5, indicating the absence of significant parity correlation
even when changing the model for coupling the dot to th
leads.

These results demonstrate that it is very unlikely to find
large sequence of dot levels with the same parity, and co
sequently show the difficulty in accounting for the experi
mental results of Ref. 4 within a one-electron model. The
are, however, some peculiarities of the dot states in the lim
of weak disorder which can give rise to correlation effects, a
discussed in the next Sec.VI. These correlation effects a
associated with certain dot states which are strongly coupl
to the leads, as discussed below.

The coupling strengthan5u( j L , j R
c j L

n c j R

n u is shown in

FIG. 4. Level spacing distribution and equal parity probability
for 30330 sites for different values of the disorder strengthW: 0.5
~triangles!, 1.0 ~boxes!, 2.0 ~crosses!, and 3.0~circles!. The full line
corresponds to the Wigner distribution.
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Fig. 6 as a function of the level number for the caseNleads
55 and different values ofW. In the case of extended con
tacts to the leads and weak disorder, one can clearly dis
guish states which are more strongly coupled to the le
than the average. For the caseW50.5, these states are ind
cated by arrows in Fig. 6. One can see from their level nu
bers ~67,79,92,106, . . .! that they appear in a well-define
sequence, corresponding to the shell structure of states in
isotropic two-dimensional harmonic oscillator. Contour plo
of wave functions with level number 67 and the next thr
levels are shown in Fig. 7. Although they correspond
nearly degenerate levels, only the first one is stron
coupled to the leads.

VI. EFFECTS DUE TO COULOMB INTERACTIONS

Up to now we have neglected interactions and conc
trated on the one-electron properties of the dot. As co

FIG. 5. Equal parity probability as a function ofNleads for W
50.5 ~triangles!, 1.0 ~boxes!, and 2.0~crosses!.

FIG. 6. Strength of the coupling to the leadsan as a function of
level number for the caseNleads55 and different values ofW: 0.5
~triangles!, 1.0~boxes!, and 2.0~crosses!. The arrows indicate state
with the strongest coupling to the leads for theW50.5 case.
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7312 PRB 62A. LEVY YEYATI AND M. BÜ TTIKER
mented upon in Sec. II, electron-electron interactions can
included by means of the constant charging energy mo
Within the traditional description of Coulomb blockade
quantum dots based on simple master equations,27 the main
role of the charging energy is to open a gap between c
secutive dot levels, dot states being populated accordin
the isolated dot ground state for each number of electro
Within this picture, the evolution of the phase over a s
quence of dot resonances will be fixed by the parity of
corresponding one-electron dot states. As discussed
Sec.V, the parity of one-electron dot states does not exh
significant correlations, and therefore this picture is unabl
account for the experimental results of Ref. 4.

The situation may change drastically when taking in
account the finite coupling to the leads beyond lowest-or
perturbation theory. In this case correlation effects may l
to a population of the dot levels different from the one p
dicted by simple master equations. This possibility was
cently pointed out by Silvestrov and Imry,16 and advanced a
an explanation for the experimental results on the phas
the transmission through a quantum dot. The mechan
proposed by these authors takes place when there
strongly coupled dot level followed by nearly degener
weakly coupled levels. This situation is characteristic of
case of weak disorder discussed in Sec.V.

The basic mechanism proposed by Silverstrov and Im
can be understood by considering a simple four-site prob
with two ~spinless! electrons. We shall assume that two
the sites correspond to the dot levels and the other two
resent the left and right leads. Let us calle1 and e2 the
one-electron energies of the isolated dot levels, andD5e2
2e1.0 the spacing between them. The lower level is sy
metrically coupled to the leads by effective hopping e
mentst1L5t1R5T which are much larger than elements co

FIG. 7. Contour plots of the wave functions for theW50.5 case
corresponding~from bottom to top and from left to right! to level
numbers 67, 68, 69, and 70.
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responding to the upper levelt2L5t2R5t. The energy levels
on the leads sites are taken as zero. Let us analyze how
dot levels are populated as the gate voltage shift down
energy levels frome1 ,e2@0 to e1 ,e2!0.

Finding the ground state of this problem requires one
principle, to diagonalize the 636 matrix corresponding to
the system Hamiltonian in the basisun1n2nLnR& where
(n1 ,n2) are the occupation numbers for the dot levels, a
(nL ,nR) correspond to the leads. The problem can, howev
be reduced by a basis change in which we replace the s
with one electron in the leads by its symmetric and antisy
metric combination, i.e,u1010&, u1001&, u0110&, and u0101&
are replaced by (u1010&6u1001&)/A2 and (u0110&
6u0101&)/A2. In this way, the initial 636 matrix is reduced
into two 333 blocks: one block corresponds to empty d
states which couple to the antisymmetric combinations,
the other to doubly occupied dot state coupled to the sy
metric combinations, having the form

Hs5S e11e21Ec A2T A2t

A2t e2 0

A2t 0 e1

D ,

Ha5S e1 0 A2T

0 e2 A2t

A2T A2t 0
D .

In the limit D→0, i.e.,e2→e152Vg the ground state for
each symmetry is given by

ls5
23Vg1Ec

2
2AS 2Vg1Ec

2 D 2

12~T21t2!,

la5
Vg

2
2AS Vg

2 D 2

12~T21t2!.

WhenVg!0 the system starts in the anstisymmetric grou
state, and the charge of the dot levels evolve withVg accord-
ing to

^n1&5
2T2

~Vg1la!212~T21t2!
,

^n2&5
2t2

~Vg1la!212~T21t2!
,

which shows that the dot levels start populating when2Vg
;T. However, ast!T, the charge in the weakly couple
level will be negligible as compared to the strongly coupl
one.

At Vg5Ec/2 there is a crossing betweenla andls. As a
result the symmetric ground state becomes more stable,
the charge on each dot level is now given by
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^n1&5
2t21~Vg1ls!2

~Vg1ls!212~T21t2!
,

^n2&5
2T21~Vg1ls!2

~Vg1ls!212~T21t2!
.

Thus, when crossingVg5Ec/2, the charge on the strongl
coupled state goes from;T2/(T21t2) to ;t2/(T21t2),
while the charge on the weakly coupled level does the op
site @we neglect small corrections of order (T/Ec)

2#. We see
that nearly one electron is transferred from the stron
coupled level to the weakly coupled one in the middle of
charging curve, the total charge in the dot remaining cons
@up to order (T/Ec)

2#. The strongly coupled level is agai
filled when Vg is close toEc . The situation is similar for
finite D!T: the abrupt jump is also present, but shifted
Vg;Ec/21D.

A more realistic description of the actual situation r
quires the inclusion of many sites to represent both the le
and the dot levels. One would need a large number of site
order to simulate a continuous density of states on the le
Using the Lanczos method we are able to numerically di
onalize interacting systems with up to 16 sites and ei
electrons. The dot levels charge as a function of gate volt
for a system with six sites on a line for representing ea
lead, and four sites representing the dot levels, is show
Fig. 8. The dot levels are coupled symmetrically to the le
by hopping parameterst150.1 andt25t35t450.02 ~all en-
ergies are in units of the charging energyEc), while the
hopping parameter within the leads is taken as 0.1.
weakly coupled levels lie at 0.025, 0.030, and 0.035, resp
tively, above the strongly coupled level. As can be observ
the strongly coupled level is repeatedly charged and
charged in a similar way as for the simple four-site mod

FIG. 8. Level charges as function of gate voltage for a 16-
cluster~see the parameters in the text!. The full line corresponds to
the strongly coupled level and the dashed, dotted, and small da
lines correspond to the consecutive weakly coupled levels.
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One can note, however, that the jumps in the charge of
strongly coupled level are not so abrupt, and become p
gressively less pronounced.

The next question is how this particular charging of t
dot levels affects the transmission amplitude and its phase
order to obtain the transmission through the interacting d
we map this finite-size cluster into an effective nonintera
ing system with the same charge on each dot level for e
value of the gate voltage. In this effective system we use
same hopping parameters as in the cluster calculation,
replace the leads by infinite one-dimensional chains. The
fective dot levels are determined self-consistently to obt
the correct level charges. The phase of the transmission
plitude and the transmission probability thus obtained
shown in Fig. 9. As expected, the phase closely follows
charge of the strongly coupled level. It should be remark
that this behavior is not dependent on the parity of
weakly coupled levels. On the other hand, the transmiss
probability exhibits broad peaks that can be associated w
the repeated charging of the strongly coupled level, toge
with narrow satellite peaks corresponding to the charging
the weakly coupled levels. These narrow peaks lie close
the broader peaks as the cycle number increases. In
fourth cycle the narrow peak can hardly be resolved.

VII. CONCLUSIONS AND FINAL REMARKS

To summarize, we analyzed the behavior of scatter
phases in quantum dots using lattice models. We first stud

e

ed

FIG. 9. Phase and modulus of the transmission amplitude for
model of Fig. 8 mapped into an effective one-electron problem
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the definition of the different scattering phases in terms
Green functions. We showed that abrupt jumps ofp in the
phase of the transmission amplitude are associated with
occurrence of transmission zeros. Then, we showed
within lattice models, assuming single-moded leads, the
ros are independent of the strength of the coupling to
leads.28 This property allowed us to relate the occurrence
a zero with the parity of consecutive dot states in the isola
dot.

We studied the statistical properties of the isolated
states as a function of the disorder strength. This anal
revealed that there are no significant parity correlations
tween consecutive dot levels. For moderate disorder th
appear states which are much more strongly coupled to
leads than the average. We studied charging effects in
situation, using an exact diagonalization of small cluste
We showed that the dot resonances as a function of
voltage may correspond to a strongly coupled level throu
several cycles.

The viability of this mechanism as a possible explanat
for the ‘‘phase problem’’ deserves further discussion. T
presence of strongly coupled levels followed by ma
weakly coupled levels is reminiscent of the integrable ca
which gradually disappears for increasing disorder~see Fig.
6!. In this sense, the mechanism is not universal, as it wo
not hold for a fully chaotic quantum dot. Thus this mech
nism could be tested experimentally by leading the dot int
fully chaotic situation~using, for instance, additional gates
distort the dot shape, as in Ref. 29!. On the other hand, the
transmission as a function of the gate voltage exhibits nar
satellite peaks close to the broader Coulomb blockade p
~see Fig. 9! which are not observed experimentally. Being
narrow, these peaks could be easily washed out by the
broadening or due to the finite bias voltage used in the m
surements. Of course if certain narrow peaks are not reso
in the experiment, a number of additional scenarios mi
account for parity conservation, even within a noninteract
picture. Differing parity-conserving scenarios can then s
be distinguished according to their phase evolution patter
is very unlikely that a noninteracting theory can generat
phase evolution like that of Fig. 9, which closely resemb
that seen in the experiments.

One should also comment about the role of spin, not
cluded in the present analysis. At very low temperatures s
degeneracy would lead to a Kondo effect. This effect w
recently observed experimentally,30 but in somewhat smalle
quantum dots, and would be reflected in the phase beha
as a plateau at;p/2 between a pair of resonances cor
sponding to the same dot level.15,31 At temperatures large
than the Kondo temperature, spin degeneracy could at m
account for the similar phase behavior over two consecu
dot resonances. Other spin effects, like Hund’s rule, req
almost perfect symmetry leading to orbital degeneracy,
so far have been observed only in ultrasmall quantum do32

To conclude, we point out that our analysis has been
stricted to the case of single-moded leads. This is an assu
tion which has been used implicitly in most theoretical mo
els of the problem33 following the characterization of the
experimental set up given in Ref. 4. Nevertheless, the an
sis of what would be measured in a multichannel situatio
of interest, and deserves further theoretical investigation
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APPENDIX A

In this appendix we show the unitarity of the scatteri
matrix defined from the Fisher-Lee relations. One has

~Ŝ†Ŝ!115u122iGLG11
r u214GLGRuG1N

r u2,
~A1!

~Ŝ†Ŝ!12522iAGLGR@~112iGLG11
a !G1N

r

2G1N
a ~122iGRGNN

r !#,

and similar expressions for (Ŝ†Ŝ)21 and (Ŝ†Ŝ)22. These ele-
ments can be rewritten as

~Ŝ†Ŝ!1152iGL@G11
a 2G11

r 22iGLuG11
a u222iGRuG1N

a u2#11,
~A2!

~Ŝ†Ŝ!12522iAGLGR@G1N
r 2G1N

a 12iGLG11
a G1N

r

12iGRG1N
a GNN

r #.

It is now easy to show that the expressions betwe
brackets vanish identically. This fact is a consequence of
identity

Ĝa2Ĝr5Ĝa@Ŝa2Ŝ r #Ĝr , ~A3!

which follows from the definition of the Green operato
Taking the matrix elements~1,1! and (1,N), one finds

G11
a 2G11

r 52iGLuG11
a u212iGRuG1N

a u2,
~A4!

G1N
a 2G1N

r 52iGLG11
a G1N

r 12iGRG1N
a GNN

r .

APPENDIX B

We show in this appendix that 2iuF5 lnDet@S#. First note
that

uF5Im ln Det@v2Ĥdot2Sa#

5
1

2i
ln Det@~v2Ĥdot2Sa!Ĝr #. ~B1!

From the definition of the Green operator, one can rew
this expression as

uF5
1

2i
ln Det@11~S r2Sa!Gr #. ~B2!

Finally, using that (S r2Sa) i , j522iGLd i ,1d j ,1
22iGRd i ,Nd j ,N , one can easily check that

uF5
1

2i
ln Det@S#. ~B3!
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