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Nonequilibrium tunneling into general quantum Hall edge states
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In this paper we formulate the theory of tunneling into general Abelian fractional quantum Hall edge states.
In contrast to the simple Laughlin states, a number of charge transfer processes must be accounted for.
Nonetheless, it is possible to identify a unique value corresponding to dissipationless transport as the
asymptotic large-V conductance through a tunneling junction, and find fixed points~conformal field theory
boundary conditions! corresponding to this value. The symmetries of a given edge tunneling problem deter-
mine the appropriate boundary condition, and the boundary condition determines the strong-coupling operator
content and current noise.
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I. INTRODUCTION

Tunneling into the edges of fractional quantum H
~FQH! states is important as the most experimentally acc
sible probe of the fractionally charged quasiparticles
lieved to exist in bulk FQH states. Although a large body
work has been carried out on tunneling between edge
Laughlin states, and more generally on tunneling betw
Luttinger liquids, a theoretical understanding of tunneli
into general FQH states is still missing beyond weak c
pling, where the comparison to experiment is puzzling.
opposed to the edges of Laughlin states@n51/(2q11)#,
general Abelian edge states such as the main sequenn
5p/(2pq11) contain several quasiparticle and electron o
erators and thus multiple tunneling processes transfer
different amounts of charge. The purpose of this paper i
develop a framework to study this multiple tunneling pro
lem.

The chiral-Luttinger-liquid~xLL ! model1 for incompress-
ible filling fractions2,3 and a composite-fermion theory fo
compressible states4 both predict that the tunneling expone
a in I}Va for tunneling into FQH edges has a plateau str
ture as a function ofn. Experiments by Graysonet al.5 show
a smooth dependencea'n21 for most samples, althoug
some samples do show a plateau structure nearn5 1

3 .6 Dif-
ferent theoretical scenarios have emerged,7 some predicting
a5n21. The natural question to ask is whether these th
ries will also survive other experimental tests. More p
cisely, these theories share the same weak-coupling pre
tions, but will not necessarily agree at strong coupling.
this paper we describe the strong-coupling physics for
xLL theory of edge states and show that the resulting va
of large-V conductance corresponds to a dissipationless z
temperature fixed point. The result should be comparabl
experiments on point tunneling between quantum Hall sta
and to other candidate theories.

The single-edge tunneling problem is known to contai
great deal of interesting physics. In tunneling between t
n5 1

3 edges, there are two starting points: electron~e! or
quasiparticle (e* 5e/3) tunneling. These two regimes a
connected by a weak-strong duality symmetry. In each
PRB 620163-1829/2000/62~11!/7298~5!/$15.00
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gime, there is only a single tunneling process~or operator!
that transfers the respective charge. An exact solution8 via
the thermodynamic Bethe ansatz completely describes
crossover between these two pictures, along the integr
trajectory. In tunneling between edges of the two-mode h
archy staten5 2

5 , there are two most relevant electron ope
tors ~chargee and fermionic statistics! in each edge, and
consequently four ways to transfer chargee between the
edges. At strong coupling there are both chargee/5 and
charge 2e/5 quasiparticles which can tunnel from one ed
to the other. We will show that the important properties~con-
ductance, noise, operator content! near the strong-coupling
fixed point can be determined without an exact solution
the crossover.

Just as interesting as tunneling between edges of the s
FQH state is the ‘‘mismatched’’ problem of tunneling b
tween different filling fractionsn1 ,n2 ,9,10 where new effec-
tive fractional charges appear in the strongly coupled sys
in the single-mode case;11 this case includes tunneling from
metal~which can be modeled by the Fermi liquidn51 state!
to a FQH state. In this problem, as in the case of same-e
tunneling, the hierarchical edge states contain several e
tron operators, and therefore there are many ways of tra
ferring charge from the Fermi liquid reservoir to the FQ
edges.

In this paper we address the problem of tunneling
tween hierarchical edge modes, using different approac
We start by giving in Sec. II an elementary argument th
two values of the junction conductance correspond to di
pationless transport, and determine the boundary condit
on bosonic modes in thexLL theory that correspond to thes
conductance. Then a conformal field theory calculation
the partition function is used in Sec. III to justify the stron
coupling duality picture of instantons between differe
minima of the tunneling operators. This calculation det
mines the operator content at strong coupling, which de
mines the noise and corrections to the tunneling curre
These corrections could in principle distinguish among d
ferent candidate theories, even when they share the s
asymptotic large-voltage conductance. Section IV contain
brief summary of our results.
7298 ©2000 The American Physical Society
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II. LARGE-VOLTAGE CONDUCTANCE

In this section we focus on the asymptotic large-volta
conductance for a general junction between two FQH sta
We start with an elementary argument based on energy
servation, and show that the value suggested by this a
ment corresponds to specific boundary conditions on
neutral modes in thexLL theory. ‘‘Neutral modes’’ here
refers to those that do not carry charge in their action on
complete system of two edges. For example, a mode
adds charge to one edge and removes an equal charge
the other is a neutral mode of the whole system, even tho
its restriction to either edge is charged. In other words, n
tral modes of the combined two-edge system need no
combinations of neutral modes from each multimode s
edge; they may also include charged modes from each
edge, as long as the total charge is zero.

A. Dissipation and conductance

A simple argument shows that an upper bound on
conductance through a junction between FQH edges foll
from the assumption that only one mode on each e
couples to the electric potential. In thexLL theory, this as-
sumption holds in the presence of either unscreened C
lomb interactions or random hopping at the edge, for b
nonchiral2 and chiral12 edges. Since in experiments the Co
lomb interaction is screened only at moderate distances,
impurities are present, we assume separation of charge
neutral modes on each edge. The currents labeled in F
are I 15n1V1 , I 25n2V2 , I 185n1V18 , I 285n2V28 ~here e2/h
51!. Current and energy conservation at the junction giv

n1~V12V18!1n2~V22V28!50, ~1!

n1~V1
22V18

2!1n2~V2
22V28

2!52P. ~2!

HereP is the power dissipated at the junction. In terms of t
two-terminal conductanceg5I t /(V12V2)5I t /V,

P5g2V2S 1

g
2

n1
211v2

21

2 D . ~3!

The dissipated power is zero forg50 or g5shm
52n1n2 /(n11n2), and positive for intermediate values; e
ergy conservation forbids valuesg>shm. The dissipated
power can go into excitations of the oscillator modes of
outgoing edges.10 The currently known fixed points for tun
neling between quantum Hall edges all have zero dissipa
at zero temperature except in the presence of exactly m
ginal operators~as in tunneling betweenn51 states!. We

FIG. 1. Schematic geometry for point tunneling between qu
tum Hall states.
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thus conjecture that, unless marginal tunneling operators
present, the conductance saturates for largeV12V2 at the
valueshm.

B. Boundary conditions and conductance

The two values of the dissipationless tunneling cond
tance result from imposing either Neumann~N! or Dirichlet
~D! boundary conditions on one of the neutral bosonic mo
in thexLL theory of the combined~two-edge! system. TheN
condition corresponds to no tunneling in the geometry
Fig. 1, henceg50, whereas theD condition saturates the
upper boundg5shm. There can be several boundary cond
tions with the same value of conductance: these differ in
conformally invariant boundary conditions of other neut
modes and in operator content. The total charge mode
ways has theN boundary condition from charge conserv
tion.

An edge of a state withn condensates is described by
universaln3n matrix K and chargen-vectort inherited from
the bulk Chern-Simons effective theory. For chiral edges~all
modes propagate in the same direction!, K is positive definite
and the scaling dimension of the vertex operatorOm
5exp(imjfj) is D(m)5 1

2 mTK21m. For nonchiral edges
such asn5 2

3 , the same holds but withK21 replaced by the
scaling-dimension matrix D.2,3 Define an enlarged
nK-dimensionalK matrix (nK5n11n2) that combines both
edges, one with ann13n1 matrix K1 and the other with an
n23n2 matrix K2 :

K5FK1 0

0 K2
G . ~4!

The conductance is obtained from the Kubo formula a
plied to the charge density operator on one edge.13,14 The
charge density for edge 1 is written asre15( i 51

nK t i
1r i , where

t1 is the charge vector for edge 1~notice thatt1 is padded
with n2 zeros to lengthnK!. The total charge mode~for the
combined system! is r t5( i 51

nK t ir i where the total charge
vector t5t11t2. We can now split the boson fields assoc
ated with these densities@through r5(1/2p)]xf# into
charged and neutral parts:fe15af t1( i 51

nK21l i
nf i , or, al-

ternatively,t15at1 ln. The requirement that the last term b
neutral implies1 thatQ( l n)5tTK21ln50, which is simply the
statement thatln corresponds to a neutral object. Thena is
fixed since tTK21t15atTK21t10. Now, using n1

5t1T
K21t1 ~and likewise forn2! and the definition ofK in

Eq. ~4!, we obtaina5n1 /(n11n2), and ln5n2t1/(n11n2)
2n1t2/(n11n2).

The conductance of the junction is given by the differen
between theN boundary condition~which corresponds to
decoupled edges or zero tunneling conductance! and theD
boundary condition~corresponding to strong coupling! ap-
plied to the neutral mode ln. This mode transfers charg
from one edge to the other but conserves total charge.
plicitly, in terms of correlations of the boson fields across t
tunneling site (x50),

gD
1 2gN

1 52
uvu
2p

@^ufe1
~v!u2& zD2^ufe1

~v!u2& zN#. ~5!

-
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For theN case we have

uvu
2p

^fe1
~v!fe1

~2v!&5a2tTK21t1 lnTK21ln

5t1T
K21t15n1 . ~6!

Now, for theD boundary condition we have

uvu
2p

^fe1
~v!fe1

~2v!&5a2tTK21t1zero

5a2~n11n2!5
n1

2

n11n2
. ~7!

Notice that becauseln was pinned to zero~D boundary con-
dition! its contribution to the correlation is null. It then fo
lows from Eqs.~5!–~7! that the conductance through th
junction in Fig. 1 is

g5gN
1 2gD

1 5
2n1n2

n11n2
5shm, ~8!

the harmonic average of the two filling factors. The two d
ferent boundary conditions onln correspond to the two val
uesg50 andshm for which the transport is dissipationles
The conductance is independent of the boundary condi
on neutral modesn with nTK21ln50, and it will be shown
below that, in tunneling between edges of the same s
some neutral modes retainN boundary conditions at stron
coupling. Because the strong-coupling conductance dep
only on the neutral modeln formed from the charge opera
tors on each edge, our result may well apply in other e
theories with the same charge mode as thexLL but different
neutral modes. However, only in bosonic theories such as
xLL are there known techniques~e.g., instanton expansion!
to calculate properties at strong coupling. If other theories
become calculable at strong coupling, there will likely
differences in operator content from thexLL predictions.

III. PROPERTIES OF THE STRONG-COUPLING FIXED
POINT

We now study the strong-coupling state for two illustr
tive cases~tunneling betweenn51 and n5 2

5 edges, and
tunneling between twon5 2

5 edges! using techniques tha
generalize directly to other cases. Forn51 to n5 2

5 the
strong-coupling properties correspond to the above con
tured fixed point withD conditions on the neutral modes o
the combined system. In a scaled and rotated b
(fc ,f1 ,f2) with K5I andf1 ,f2 neutral, the most relevan
electron tunneling operators at weak coupling are given
m65(0,A7/2,61/2) with scaling dimensionD(m6)52.
The action in this basis is

S5E
2L

0

dxE
0

T21

dtS ]tf i]tf i

2
1

]xf i]xf i

2

2d~x!G6 cos~A2pmj
6f j ! D . ~9!
n

te,

ds

e

he

o

c-

is

y

The cosines result from a tunneling term of the formc2
†c1

1H.c., where the electron operator on an edge is a sum o
operatorsOm with charge 1. The form Eq.~9! assumes tha
each edge has at mostn terms in the electron operator, s
that possible phases in the cosine term can be eliminate
translationsf→f1a.

At weak coupling the tunneling conductance scales w
voltage I}Va with a53, just as in tunneling betweenn
51 andn5 1

3 , since the most relevant tunneling operato
have scaling dimension 2, but for strong coupling differenc
emerge, for example, in the large-V conductance, which is
e2/2h for n5 1

3 but 4e2/7h for n5 2
5 . A simple picture of

what happens at strong coupling is that the coefficient of
cosine termG6 becomes large, trapping thef fields at
minima of the cosines; this corresponds to a change fromN
to D boundary conditions on the neutral modes of the co
bined system.

The joint minima in (f1 ,f2) space of the two tunneling
terms cos(A2pmi

6f i) are given by a rectangular lattic
A2p@n1(2/A7,0)1n2(0,2)# plus a single basis vecto
A2p(1/A7,1). Of course this lattice is also a Bravais latti
with ~nonorthogonal! vectors (1/A7,61). At strong cou-
pling f1 and f2 are trapped at minima of the cosines~Di-
richlet boundary conditions!, which are points on the recip
rocal lattice of the original operator lattice~Fig. 2!. The
operator content at strong coupling can be calculated via
instanton expansion:15 the operators correspond to tunnelin
paths between different minima. We will instead calcula
the partition function to find the~neutral! operator content,
which verifies the instanton picture and gives some ad
tional information. Because the instanton and partitio
function approaches agree, we expect the result to apply e
if strict conformal invariance is broken, e.g., by differe
mode velocities.

We can write the conformal field theory bounda
state16,17with f1 andf2 pinned at minima of the cosines a
up to translations of the rectangular lattice,

uB&5C^uf15f250&1uf15A2p/7, f25A2p&),
~10!

with C some overall constant determined by the normali
tion of the partition function. Here the notation is thatuf i
5a& is the eigenstate of the operatorf i(0,t) with eigenvalue
a. The partition function with both ends pinned can be

FIG. 2. The lattice of tunneling operators and its reciprocal l
tice for tunneling betweenn51 andn52/5. The scaling dimension
of an operator is its squared distance from the origin. The norm
ization for both lattices is such that length 1 corresponds to
self-dual radius (D51).
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rectly calculated from the boundary state~10! by a standard
technique16 ~a good pedagogical review of exactly this typ
of calculation is in Ref. 17!:

ZDD5^Buexp~2LH !uB&

5
1

h~q!2 F S (
n1

q4n1
2/7D S (

n2

q4n2
2D 1S (

n1

q4~n111/2!2/7D
3S (

n2

q4~n211/2!2D G . ~11!

Here q5e2p/LT is fixed by the system size andh(q)
5q1/24Pn51

` (12qn). There is an overall constant from th
charge mode~which always has free boundary conditio!
which is ignored. The partition function~11! cannot be writ-
ten as a product of the partition functions for two boso
with well-defined radii, and the strong-weak coupling dual
does not reduce to independent duality transformations
f1 and f2 . This results from the non orthogonality of th
basis vectors in Fig. 2.

The partition function with both ends pinned allows us
read off the scaling dimensions of neutral operators from
exponents ofq. The first scaling dimensions appearing a
D5 4

7 , 8
7, and 4, agreeing with lengths of vectors on the

ciprocal lattice. The fact that the most relevant tunnel
operator at strong coupling has scaling dimensionD5 4

7 is
additional evidence that the limiting conductance isshm
5 4

7 , since for charge-unmixed FQH edges the most relev
tunneling operator hasD5n5s.1 The strongly coupled stat
is not just an5 4

7 quantum Hall state, however, because
has a different spectrum of charge excitations away from
junction, which is not modified by the boundary interactio

The above boundary state has a ‘‘boundary entrop
which has a natural interpretation in terms of the lattice
minima. The boundary entropy is defined from the free
ergy in theL→` limit:

F52T ln Z52L f 2T ln ga2T ln gb ~12!

and ga and gb are the boundary contributions to theT→0
degeneracy. The pinned boundary stateuB& in Eq. ~10! has
entropy

DSB5 ln
gB

gfree
52 ln A, A5 l 1l 2/25

2

A7
. ~13!

Herel 1 ,l 2 are the lengths of the sides of the rectangular u
cell andA is the area of the true~nonrectangular! unit cell
indicated in Fig. 2. Intuitively, a smaller unit cell mean
more minima wheref1 ,f2 can be trapped, and hence
greater boundary entropy, in agreement with Eq.~13!. Since
A,I the stateuB& has greater entropy than the free state,
the renormalization-group~RG! flow should be fromuB& to
the free state, according to the principle that the RG redu
degrees of freedom. The same relationshipDSB52 ln A ap-
plies for more complicated lattices~edges with more modes!,
where nowA is a parallelogram in more dimensions.

Another way to calculate the conductance is from the
erator content atweak coupling, via a generalization of the
single-tunneling-operator result.8,10,12For tunneling between
edges with one mode on each side, so that the comb
s
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system has only one neutral moden, the conductance differ-
ence betweenN and D boundary conditions issD2sN
5(e* 2/h)D21(n), wheree* is the charge transferred by th
operatorOn . With several neutral modes, this becomes
sum over an orthogonal basis of neutral modes:

sD2sN5(
i

ei*
2

hD~ni !
. ~14!

The resultsD2sN5shm follows from evaluating the sum in
the basis discussed above, where only one neutral m
transfers charge.

For tunneling betweenn51 andn5 2
5 , it is instructive to

look at the conductance sum~14! in a different basis. TheK
matrix can be rotated to be diag~7

5, 4, 28!, with only the first
mode charged. The second mode is either of the two m
relevant tunneling operators, which have scaling dimensio
and transfer a single electron just as in tunneling betw
n51 and n5 1

3 . The third mode also transfers a sing
charge and has its scaling dimension 14 fixed by orthogo
ity. Then the strong-coupling conductance iss5 1

2 1 1
14 5 4

7 .
In this basis the different strong-coupling conductances
tunneling inton5 1

3 and n5 2
5 can be pictured as resultin

from the existence of an additional conduction channel in
n5 2

5 state.
The requirement that the conductance differences5 4

7 in
Eq. ~14! be the same when evaluated using the stro
coupling operator content for tunneling betweenn51 and
n5 2

5 suggests that the operator of scaling dimension4
7 found

above transfers chargee* 54e/7. If so, it seems likely that
the shot noise in the ‘‘backscattering’’ current for larg
V(I B5 4

7 V2I ) is S52(4e/7)I B .
Tunneling between edges of the same FQH staten differs

from the above in that the physical strong-coupling fix
point does not correspond toD boundary conditions on al
neutral modes. It was shown above that the asymptotic la
voltage conductance is sensitive to the boundary condi
on only one neutral mode of the joint system, the ‘‘char
transfer’’ mode. For point tunneling between similar edg
each withn modes,n neutral modes of the combined syste
~including the charge transfer mode! acquire D boundary
conditions while the charge mode andn21 neutral modes
stay withN. This results from the ‘‘folding’’ symmetry in the
action for the case ofn-n tunneling:17 we can form even and
odd combinations of the original fields, and only the ev
combinations couple to the impurity. The folding symmet
strictly exists only for exactly identical edges and an ide
ized point impurity, so it may be possible to access exp
mentally fixed points without this symmetry.

As an example of the above, consider tunneling betw
n5 2

5 states, where each subedge contains two modes~Fig.
3!. There is a three-dimensional subspace of neutral op
tors of the combined system~the four operators indicated in
Fig. 3 are linearly dependent!, andD boundary conditions on
all neutral modes corresponds to lattice duality in a thr
dimensional subspace and leading operator dimensions~2

5,
11
10 , . . . !, while the fixed point preserving the folding sym
metry corresponds to duality in a two-dimensional subsp
~two neutral modes getD! and leading operator dimension
~2

5,
3
5, . . . !, which are the dimensions of quasiparticle tunn

ing operators. The two modes that pass toD boundary con-



g
ng
th

g
m
in

e

e
he
o-
-

d
o

een
so-
es
and

let
ers
eak

lso
: the

m-
al-

an
ss
ent
h-

er-

able
x-
, and
pos-
.

or
and

n

u
o

7302 PRB 62JOEL E. MOORE, PRASHANT SHARMA, AND CLAUDIO CHAMON
ditions can be taken to bem1 andm2 in Fig. 3. The possi-
bility of different fixed points suggests that if the foldin
symmetry is broken, e.g., by having multiple tunneli
points, the true strong-coupling point could correspond to
full three-dimensional duality.

It is easy to prove that, with the restriction of foldin
symmetry, the dual of electron tunneling between the sa
staten is quasiparticle tunneling. The duality takes place
then-dimensional subspace of operators (m,2m) in our un-
folded notation, since only then even combinations coupl
to the impurity. In the case ofn51 to n5 2

5 tunneling dis-
cussed above, there is one neutral mode that can be eithN
or D without altering the value of the conductance. T
choice D taken above corresponds to duality in a tw
dimensional subspace, whileN gives a leading tunneling op
erator of dimension1

7 and transferred charge 2e/7, which
may be realizable if some tunneling operators are tune
zero. We see that the symmetries of a given tunneling pr

FIG. 3. One representation of the four operators tunneling q
siparticles between twon52/5 edges, each of which contains tw
branches of edge modes.
ett

tt.
e

e

r

to
b-

lem help determine which of thes5shm fixed points is
physically appropriate.

IV. CONCLUSIONS

Our approach has been to study edge tunneling betw
general quantum Hall states at three increasing levels of
phistication. A simple energy conservation argument giv
an upper bound on the conductance of a tunnel junction,
the Kubo formula applied to thexLL theory of the edge
modes indicates that the bound is saturated for Dirich
boundary conditions on the neutral mode that transf
charge between the edges. The same picture of strong-w
duality previously obtained for the single-mode case a
applies to the general case, but with some new features
duality in the multiple-mode case doesnot reduce to inde-
pendent dualities on individual neutral modes of the co
bined system, but instead is a multidimensional lattice du
ity. For tunneling between specific filling fractions, there c
be several different fixed points with the dissipationle
value of conductance corresponding to dualities on differ
sets of neutral modes; which fixed point is the physical hig
voltage limit can be determined from symmetry consid
ations. In sum, we have shown that thexLL model applied to
hierarchical edges has a consistent and physically reason
strong-coupling limit with interesting alterations from the e
actly solvable single-mode case. The conductance, noise
operator content at strong coupling can be compared to
sible experiments and to the predictions of other theories
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