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In this paper we formulate the theory of tunneling into general Abelian fractional quantum Hall edge states.
In contrast to the simple Laughlin states, a number of charge transfer processes must be accounted for.
Nonetheless, it is possible to identify a unique value corresponding to dissipationless transport as the
asymptotic large/ conductance through a tunneling junction, and find fixed pdicosmformal field theory
boundary conditionscorresponding to this value. The symmetries of a given edge tunneling problem deter-
mine the appropriate boundary condition, and the boundary condition determines the strong-coupling operator
content and current noise.

I. INTRODUCTION gime, there is only a single tunneling procées operator
that transfers the respective charge. An exact soltitidm
Tunneling into the edges of fractional quantum Hallthe thermodynamic Bethe ansatz completely describes the
(FQH) states is important as the most experimentally acceserossover between these two pictures, along the integrable
sible probe of the fractionally charged quasiparticles betrajectory. In tunneling between edges of the two-mode hier-
lieved to exist in bulk FQH states. Although a large body ofarchy stater= 2, there are two most relevant electron opera-
work has been carried out on tunneling between edges abrs (chargee and fermionic statistigsin each edge, and
Laughlin states, and more generally on tunneling betweegonsequently four ways to transfer chargebetween the
Luttinger liquids, a theoretical understanding of tunnelingedges. At strong coupling there are both chaef® and
into general FQH states is still missing beyond weak coucharge 2/5 quasiparticles which can tunnel from one edge
pling, where the comparison to experiment is puzzling. Asto the other. We will show that the important properiiesn-
opposed to the edges of Laughlin stafes=1/(2q+1)], ductance, noise, operator confenear the strong-coupling
general Abelian edge states such as the main sequencefixed point can be determined without an exact solution for
=p/(2pg+ 1) contain several quasiparticle and electron op-the crossover.
erators and thus multiple tunneling processes transferring Just as interesting as tunneling between edges of the same
different amounts of charge. The purpose of this paper is t¢QH state is the “mismatched” problem of tunneling be-
develop a framework to study this multiple tunneling prob-tween different filling fractions’; , v»,%*° where new effec-
lem. tive fractional charges appear in the strongly coupled system
The chiral-Luttinger-liquid(yLL) modef for incompress-  in the single-mode caséhis case includes tunneling from a
ible filling fractions*® and a composite-fermion theory for metal(which can be modeled by the Fermi liquic- 1 state
compressible statéboth predict that the tunneling exponent to a FQH state. In this problem, as in the case of same-edge
ain lcV* for tunneling into FQH edges has a plateau structunneling, the hierarchical edge states contain several elec-
ture as a function of. Experiments by Graysoet al> show  tron operators, and therefore there are many ways of trans-
a smooth dependence~»~* for most samples, although ferring charge from the Fermi liquid reservoir to the FQH
some samples do show a plateau structure meat.® Dif-  edges.
ferent theoretical scenarios have emerfsdme predicting In this paper we address the problem of tunneling be-
a=v"1. The natural question to ask is whether these theotween hierarchical edge modes, using different approaches.
ries will also survive other experimental tests. More pre-We start by giving in Sec. Il an elementary argument that
cisely, these theories share the same weak-coupling preditwo values of the junction conductance correspond to dissi-
tions, but will not necessarily agree at strong coupling. Inpationless transport, and determine the boundary conditions
this paper we describe the strong-coupling physics for then bosonic modes in thel L theory that correspond to these
xLL theory of edge states and show that the resulting valugonductance. Then a conformal field theory calculation of
of largeV conductance corresponds to a dissipationless zerahe partition function is used in Sec. Ill to justify the strong-
temperature fixed point. The result should be comparable tooupling duality picture of instantons between different
experiments on point tunneling between quantum Hall stateminima of the tunneling operators. This calculation deter-
and to other candidate theories. mines the operator content at strong coupling, which deter-
The single-edge tunneling problem is known to contain amines the noise and corrections to the tunneling current.
great deal of interesting physics. In tunneling between twdThese corrections could in principle distinguish among dif-
v=3 edges, there are two starting points: electfenor ferent candidate theories, even when they share the same
quasiparticle ¢* =e/3) tunneling. These two regimes are asymptotic large-voltage conductance. Section IV contains a
connected by a weak-strong duality symmetry. In each rebrief summary of our results.
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L [5 thus conjecture that, unless marginal tunneling operators are
present, the conductance saturates for large V, at the
value o,
Vi 1% T vy Va

B. Boundary conditions and conductance

I{ I, | The two values of the dissipationless tunneling conduc-
tance result from imposing either Neumagi) or Dirichlet
FIG. 1. Schematic geometry for point tunneling between quan{D) boundary conditions on one of the neutral bosonic modes

tum Hall states. in the yLL theory of the combinedtwo-edge system. The\
condition corresponds to no tunneling in the geometry of
Il. LARGE-VOLTAGE CONDUCTANCE Fig. 1, henceg=0, whereas théD condition saturates the

In this section we focus on the asymptotic Iarge—voltageUploer boundy= oy There can be several boundary condi-

conductance for a general junction between two FQH state%'.ons with the same value of conductance: these differ in the

We start with an elementary argument based on energy cofyenformally invariant boundary conditions of other neutral
modes and in operator content. The total charge mode al-

servation, and show that the value suggested by this argu—a s has the\ boundary condition from charae conserva-
ment corresponds to specific boundary conditions on th%v y y 9

. on.
neutral modes in theLL theory. “Neutral modes” here . . .

refers to those that do not carry charge in their action on thenie‘grgglgi zfn?afrtatﬁ ;Vr'ltg";;g;dg_‘j:é?;ﬁﬂ?}i?ﬁggifogy a
complete system of two edges. For example, a mode th bulk Chern-Simons effectivegtheor For chiral edgdls
adds charge to one edge and removes an equal charge fr Y.

the other is a neutral mode of the whole system, even thoquOdes propagate in the same direcljéis positive definite

its restriction to either edge is charged. In other words, neué—ind the SC"’!"”% d'm_e?s'?rll,?f thle: vertex hc_)p?rafgrn
tral modes of the combined two-edge system need not be eﬁpﬁmjfj)g Ifh (m)= 2hm|d b rtn 'ﬂ:[lnonlc |rad t? ?ﬁs
combinations of neutral modes from each multimode sub®Uc" =3, € same no Széj wite ~ replaced by the

caling-dimension matrix A.“® Define an enlarged

edge; they may also include charged modes from each suga . X .
edge, as long as the total charge is zero. ng-dimensionalk matrix (nx=n;+n,) that combines both

edges, one with an;Xn; matrix K; and the other with an

o N, X n, matrix K,:
A. Dissipation and conductance

4

A simple argument shows that an upper bound on the Ko O
conductance through a junction between FQH edges follows K= 0 K,
from the assumption that only one mode on each edge

couples to the electric potential. In th&L theory, this as- The conductance is obtained from the Kubo formula ap-
sumption holds in the presence of either unscreened Coljied to the charge density operator on one eddé The
lomb interactions or random hopping at the edge, for bo”bharge density for edge 1 is Writtenﬂ§=2?§1tilpi . where

. . 2 . . . _
nonchiraf and chiral? edges. Since in experiments the Cou % is the charge vector for edge (hotice thatt! is padded

lomb interaction is screened only at moderate distances, anv(\Zith n, zeros to lengty). The total charge modéor the

impurities are present, we assume separation of charge an . , ang h h | ch
neutral modes on each edge. The currents labeled in Fig. 9°mpined sysztebnls pr=2;,tip; where the total charge
are l,=1v,Vy, l,=wv,V,, I1=101V], l,=v,V} (heree?/h vectort=t'+t?. We can now split the boson fields associ-
—1). Current and energy conservation at the junction give 8ted Wwith these densitiegthrough P:gllew)‘9X¢] Into
charged and neutral partsipe; = a g+ X, I'¢;, or, al-

vi(V1—V1)+v,y(V,—V3) =0, (1) ternatively,t'=at+I". The requirement that the last term be
neutral implied thatQ(1")=t"K ~I"=0, which is simply the
vi(V2=Vi2) + 1,(VE— V%) =2P. (2)  statement thal” corresponds to a neutral object. Theris

fixed since t'K t'=at'"K"1t+0. Now, using v,

HereP is the power dissipated at the junction. In terms of the— 1" —1t1 (and likewise forv,) and the definition oK in

two-terminal conductancg=1,/(Vy—V,)=1,/V, Eq. (4), we obtaina= v, /(v{+v,), and|"= v, tY (v, + vy)
— vt (vy+ vy).

3) The conductance of the junction is given by the difference
between theN boundary condition(which corresponds to
decoupled edges or zero tunneling conductamrecel theD

The dissipated power is zero fog=0 or g=opn, boundary conditioncorresponding to strong couplingp-
=2v,v,/(v,+ v,), and positive for intermediate values; en- plied to the neutral mode I". This mode transfers charge
ergy conservation forbids valueg=o,,. The dissipated from one edge to the other but conserves total charge. Ex-
power can go into excitations of the oscillator modes of theplicitly, in terms of correlations of the boson fields across the
outgoing edge& The currently known fixed points for tun- tunneling site x=0),

neling between quantum Hall edges all have zero dissipation

at zero temperature except in the presence of exactly mar- 1 |l

95~ 9n=25_[{ be, (@)= (| ge, (@) D). (5)

ginal operatorgas in tunneling betweem=1 statez We b

1 vyittv,t
—2\y2| "2
P gV(g >
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For theN case we have Original lattice Reciprocal lattice
Lol —w))=a’tTK 1+ I"TK A" . A
om <d’e1(w)¢el( w)>_ 43
[ ] 2 * » o
=K Ll=yp,. (6) 1 .
Now, for theD boundary condition we have ’ V7 ) .2/277 * *

|l FIG. 2. The lattice of tunneling operators and its reciprocal lat-
5 (e, (0) be (—0))= a’t"K~1t+ zero tice for tunneling between= 1 andv= 2/5. The scaling dimension
™ of an operator is its squared distance from the origin. The normal-
ization for both lattices is such that length 1 corresponds to the
v2 self-dual radius £ =1).

()

2 _
=a“(vitvy)= .
()= =

. . The cosines result from a tunneling term of the foql@wl
Notice that becausé was pinned to zer¢D boundary con-  +H.c., where the electron operator on an edge is a sum over
dition) its contribution to the correlation is null. It then fol- operators0,, with charge 1. The form Eq9) assumes that
lows from Egs.(5—(7) that the conductance through the each edge has at mostterms in the electron operator, so

junction in Fig. 1 is that possible phases in the cosine term can be eliminated by
translationsp— ¢+ a.
1 1 2vivp At weak coupling the tunneling conductance scales with
9=On"90= ) T Thm ®)  yVoltage I<V* with a=3, just as in tunneling between

=1 andv=1%, since the most relevant tunneling operators
the harmonic average of the two filling factors. The two dif- have scaling dimension 2, but for strong coupling differences
ferent boundary conditions dfi correspond to the two val- emerge, for example, in the large-conductance, which is
uesg=0 anday,, for which the transport is dissipationless. e?/2h for v=13 but 4e?/7h for v=2. A simple picture of
The conductance is independent of the boundary conditiowhat happens at strong coupling is that the coefficient of the
on neutral modes with nTK~1"=0, and it will be shown cosine termI. becomes large, trapping the fields at
below that, in tunneling between edges of the same stateninima of the cosines; this corresponds to a change fxom
some neutral modes retalh boundary conditions at strong to D boundary conditions on the neutral modes of the com-
coupling. Because the strong-coupling conductance dependigned system.
only on the neutral mod& formed from the charge opera-  The joint minima in @, ,¢,) space of the two tunneling
tors on each edge, our result may well apply in other edgéerms cos(27m;" ¢;) are given by a rectangular lattice
theories with the same charge_mode a.f,)(thb bu.t different /27 n,(2/\7,0)+n,(0,2)] plus a single basis vector
neutral modes. However, only in bosonic theories such as thes7(1/,/7 1). Of course this lattice is also a Bravais lattice
xLL are there knovx_/n techniquee.g., instanton expans!):)n with (nonorthogonal vectors (147,+1). At strong cou-
to calculate properties at strong couplmg. If other_th_eones d?)ling &, and ¢, are trapped at minima of the cosinéi-
become calculable at strong coupling, there will likely be jcph et houndary conditionswhich are points on the recip-
differences in operator content from tiyeL predictions. rocal lattice of the original operator latticéFig. 2). The

operator content at strong coupling can be calculated via an
Ill. PROPERTIES OF THE STRONG-COUPLING FIXED instanton expansiot® the operators correspond to tunneling

POINT paths between different minima. We will instead calculate

the partition function to find théneutra) operator content,
which verifies the instanton picture and gives some addi-
X ) . tional information. Because the instanton and partition-
tunneling between twor=35 edges using techniques that g,0tion approaches agree, we expect the result to apply even

i i =2 . . . . . '
generalize directly to other cases. For1 0 v=5 the it qujct conformal invariance is broken, e.g., by different
strong-coupling properties correspond to the above conjegs,4e velocities

tured fixed point withD conditions on the neutral modes of We can write the conformal field theory boundary

the combine(_j system. In a scaled and rotated baSiétatéG’”with #, and ¢, pinned at minima of the cosines as,
(¢c,¢1,¢2) with K=1 and¢,, ¢, neutral, the most relevant |, 1 yransiations of the rectangular lattice,
electron tunneling operators at weak coupling are given by

*=(07/2,+1/2) with scaling dimensionA(m™)=2.

We now study the strong-coupling state for two illustra-

tive cases(tunneling betweerv=1 and v=% edges, and
2

The action in this basis is [B)=C(|p1=2=0)+|p1=~27/7, = V27T>),(10)
0 1 a.didb debiord _ _ _
Szf dxfT dr( ¢'2 i X¢'2 i with C some overall constant determined by the normaliza-
—-L 0

tion of the partition function. Here the notation is tHa;
=a) is the eigenstate of the operaipi(0,t) with eigenvalue
- 5(x)I" « cog \/qumji gb]-)). (9 a. The partition function with both ends pinned can be di-
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rectly calculated from the boundary stdi®) by a standard system has only one neutral modgthe conductance differ-
techniqué® (a good pedagogical review of exactly this type ence betweerN and D boundary conditions isop— oy

of calculation is in Ref. 1) =(e*?/h)A~Y(n), wheree* is the charge transferred by the
operatorO,. With several neutral modes, this becomes a
Zpp=(Blexp(—LH)|B) sum over an orthogonal basis of neutral modes:
7l 3oz | "
_ an,“/7 4n A(ny+1/2)%7 ;
= 2 g X gt |+ X gim ) <
7(q) [ Ny y n (TD—(TN—Zi RA(N)” (14)
x| > q4<“2+1/2>2”_ (1)  The resultop— on= oy, follows from evaluating the sum in
N2 the basis discussed above, where only one neutral mode

Here g=e~™'T is fixed by the system size ang(q) transfers charge. o _
=q¥241%_,(1—q"). There is an overall constant from the  FOr tunneling betweem=1 andv=%, it is instructive to
charge mode(which always has free boundary condition Iook_at the conductance suﬁhfl) in a differgnt basis. ThK
which is ignored. The partition functiof11) cannot be writ- Matrix can be rotated to be dig 4, 28, with only the first

ten as a product of the partition functions for two bosonsMode charged. The second mode is either of the two most
with well-defined radii, and the strong-weak coupling duality relevant tunnellng operators, Whlch hav_e scaling _dlmen5|on 2
does not reduce to independent duality transformations ofnd transfer alsmgle electron just as in tunneling between

#, and ¢,. This results from the non orthogonality of the »=1 and »=3. The third mode also transfers a single
basis vectors in Fig. 2. charge and has its scaling dimension 14 fixed by orthogonal-

P 1, 1 _ 4
The partition function with both ends pinned allows us to'ty: Then the strong-coupling conductanceois; + 7;=7.
read off the scaling dimensions of neutral operators from thd" this basis the different strong-coupling conductances for
exponents ofg. The first scaling dimensions appearing aretunneling intor=3 and »=5 can be pictured as resulting
A=%, & and 4, agreeing with lengths of vectors on the re-ffom the existence of an additional conduction channel in the

ciprocal lattice. The fact that the most relevant tunnelingVZ% state. _ .
operator at strong coupling has scaling dimension? is The requirement that the conductance dlff_erenee7 in
additional evidence that the limiting conductancedg, Ed- (14 be the same when evaluated using the strong-
=14 since for charge-unmixed FQH edges the most relevarﬁougl'”g operator content for tunneling betwees 1 and
tunneling operator has = »= . The strongly coupled state »= 5 suggests that the operator of scaling dimeniésund
is not just av=2% quantum Hall state, however, because itabove transf_ers phar@‘ =4e/7. If SO, it seems likely that
has a different spectrum of charge excitations away from th@€ shot noise in the “backscattering” current for large
junction, which is not modified by the boundary interaction. V(lg=7V—1) is S=2(4e/7)lg. .

The above boundary state has a “boundary entropy,” Tunneling between edges of the same FQH statdfers
which has a natural interpretation in terms of the lattice offom the above in that the physical strong-coupling fixed
minima. The boundary entropy is defined from the free enPoint does not correspond @ boundary conditions on all

ergy in theL— oo limit: neutral modes. It was shown above that the asymptotic large-
voltage conductance is sensitive to the boundary condition
F=—-TInZ=—-Lf-TIng,—TlIng, (120  on only one neutral mode of the joint system, the “charge

o transfer” mode. For point tunneling between similar edges,
andg, andg, are the boundary contributions to tie~0  each withn modesn neutral modes of the combined system
degeneracy. The pinned boundary st@ein Eq. (10) has  (including the charge transfer modacquire D boundary

entropy conditions while the charge mode and-1 neutral modes
stay withN. This results from the “folding” symmetry in the
.98 _ 2 action for the case of-» tunneling’’ we can form even and

ASg=In gfree__ln A A=lilf2= 7 (13 5dd combinations of the original fields, and only the even

combinations couple to the impurity. The folding symmetry

Herel 1,1, are the lengths of the sides of the rectangular unitstrictly exists only for exactly identical edges and an ideal-
cell andA is the area of the truénonrectangularunit cell  ized point impurity, so it may be possible to access experi-
indicated in Fig. 2. Intuitively, a smaller unit cell means mentally fixed points without this symmetry.
more minima whereg,,¢, can be trapped, and hence a As an example of the above, consider tunneling between
greater boundary entropy, in agreement with 8). Since  v=£ states, where each subedge contains two mdieigs
A<I the statgB) has greater entropy than the free state, s@). There is a three-dimensional subspace of neutral opera-
the renormalization-groupRG) flow should be fromB) to  tors of the combined systefthe four operators indicated in
the free state, according to the principle that the RG reduceBig. 3 are linearly dependentandD boundary conditions on
degrees of freedom. The same relationshigs=—InA ap-  all neutral modes corresponds to lattice duality in a three-
plies for more complicated latticéedges with more modgs  dimensional subspace and leading operator dimengifins
where nowA is a parallelogram in more dimensions. ,...), while the fixed point preserving the folding sym-

Another way to calculate the conductance is from the opmetry corresponds to duality in a two-dimensional subspace
erator content atveak couplingvia a generalization of the (two neutral modes gdd) and leading operator dimensions
single-tunneling-operator resit’!?For tunneling between (4, £, ...), which are the dimensions of quasiparticle tunnel-
edges with one mode on each side, so that the combinddg operators. The two modes that pastdoundary con-
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lem help determine which of the= oy, fixed points is
physically appropriate.

IV. CONCLUSIONS

Our approach has been to study edge tunneling between
general quantum Hall states at three increasing levels of so-
phistication. A simple energy conservation argument gives
an upper bound on the conductance of a tunnel junction, and
the Kubo formula applied to thglLL theory of the edge
modes indicates that the bound is saturated for Dirichlet
boundary conditions on the neutral mode that transfers
charge between the edges. The same picture of strong-weak
duality previously obtained for the single-mode case also

FIG. 3. One representation of the four operators tunneling quaapplies to the general case, but with some new features: the
siparticles between twe=2/5 edges, each of which contains two duality in the multiple-mode case doest reduce to inde-
branches of edge modes. pendent dualities on individual neutral modes of the com-
bined system, but instead is a multidimensional lattice dual-
ity. For tunneling between specific filling fractions, there can
be several different fixed points with the dissipationless
value of conductance corresponding to dualities on different
gets of neutral modes; which fixed point is the physical high-
voltage limit can be determined from symmetry consider-
ations. In sum, we have shown that tfld. model applied to
Iélierarchical edges has a consistent and physically reasonable
Strong-coupling limit with interesting alterations from the ex-
actly solvable single-mode case. The conductance, noise, and
operator content at strong coupling can be compared to pos-
sible experiments and to the predictions of other theories.

ditions can be taken to ba; andm, in Fig. 3. The possi-
bility of different fixed points suggests that if the folding
symmetry is broken, e.g., by having multiple tunneling
points, the true strong-coupling point could correspond to th
full three-dimensional duality.

It is easy to prove that, with the restriction of folding
symmetry, the dual of electron tunneling between the sam
statev is quasiparticle tunneling. The duality takes place in
the n-dimensional subspace of operatons, - m) in our un-
folded notation, since only the even combinations couple
to the impurity. In the case of=1 to v=% tunneling dis-
cussed above, there is one neutral mode that can be &ither
or D without altering the value of the conductance. The
choice D taken above corresponds to duality in a two- The authors wish to thank E. Fradkin and X.-G. Wen for
dimensional subspace, whikegives a leading tunneling op- helpful comments. Support was provided by the Fannie and
erator of dimension; and transferred chargeeZ, which  John Hertz Foundatiof).E.M), NSF Grant No. DMR-98-
may be realizable if some tunneling operators are tuned t6208(P.S. and C.Q, and the Alfred P. Sloan Foundation
zero. We see that the symmetries of a given tunneling prob¢C.C).
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