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Acoustoelectric effect in a finite-length ballistic quantum channel
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The dc current induced by a coherent surface acoustic \Wa&gV) of wave vectorg in a ballistic channel
of lengthL is calculated. The current contains two contributions, even and oddThe even current exists
only in a asymmetric channel, when the electron reflection coefficigngdr,, at both channel ends, are
different. The direction of the even current does not depend on the direction of the SAW propagation, but is
reversed upon interchangimg andr,. The direction of the odd current is correlated with the direction of the
SAW propagation, but is insensitive to the interchange,adndr,. It is shown that both contributions to the
current are nonzero only when the electron reflection coefficients at the channel ends are energy dependent.
The current exhibits geometric oscillations as a functiorgbf These oscillations are the hallmark of the
coherence of the SAW and are completely washed out when the current is induced by a flux of noncoherent
phonons. The results are compared with those obtained previously by different methods and under different
assumptions.

[. INTRODUCTION was represented by a phonon flux, instead of a classical
force. It is known(see, e.g. Ref.)9that for an infinite chan-
The acoustoelectric effect is the generation of a dc electrigel both representations of the acoustical wave are equivalent
current(the so-callechcoustoelectric currentin a nonbiased for the derivation of the acoustoelectric current. But, as fol-
device by a coherent acoustic wave or a flux of phononslows from our results, the SAW representation by a phonon
There has been recently a growing interest in observing thilux is not always adequate for a ballistic channel of a finite
effect in mesoscopic structures. In particular, the acoustoength.
electric current due to a surface acoustic wéSAW) was In what follows we consider the classical approach for a
investigated experimentally in a point contdB®tC) defined  ballistic channel of a finite length, representing the SAW by
in a GaAs/AlGaAs heterostructure by a split ghtéln me-  a classical force, and allowing for electron reflections from
soscopic structures one can expect to observe effects relatéfte channel ends. As has been observed in Ref. 1 and ex-
to ballistic transport, when the length of the PC charinid  plained in Refs. 1 and 5, the acoustoelectric current is high at
shorter than the electron mean-free plath the thresholds of the channel openings, i.e., at the steps of the
The theoretical considerations of the acoustoelectric effed?C quantized conductang¢giant acoustoelectric current os-
can be divided into two groups. The first one, based on &illations). In this situation the current is due to “resonant”
classical approach, uses the Boltzmann equation for the eleglectrons, whose velocitiesare of order of the SAW veloc-
trons, with the acoustic wave considered either as a classicly s. However, these slow electrons have short mean-free
coherent forcé;” or as a flux of noncoherent quasimonochro-paths and their propagation in most PC’s is not ballistic. We
matic phonons:® The classical approach for the description Will calculate the acoustoelectric current that corresponds to
of electrons is valid for not very low temperatures, when thethe plateaus of the quantized conductance, i.e., far from the
temperature smearing destroys the interference of the eleehannel opening threshold, wheye>s and a ballistic elec-
tron waves. For a ballistic PC the relevant interference is dugon propagation is more realistic. This current appears to be
to reflection from the channel ends, and one can use thk&rger when the PC is not symmetric, i.e., when the reflection
Boltzmann equation for the electrons whEr v/L, wherey coefficients from both channel ends are different.
is the relevant electron velocityf-or brevity here, as well as
in the following expressions, we piét=1.) For lower tem-
peratures the quantum approach has to be (8ed.
The situation considered in Refs. 1 and 4 does not corre- We consider a PC that is shaped by a split gate as a
spond to a ballistic electron propagation, since the channeklatively long and uniform channel, which opens(t@nbi-
was assumed to be infinitely long, which means thlatk L ased terminals, see Fig. 1. In the channel along xhdirec-
>1 andL>I, whereq is the wave vector of the SAW arid tion the electronic states are quantized in the transverse di-
is the relevant electron momentum. Nevertheless, it has begrctiony and as a result the electron energ¥jst €, where
conjectured that those results can be carried over to the bat labels the transverse modes dni the electron momen-
listic PC by replacing the mean-free pdthby the channel tum along the channek, is the threshold energy for theh
lengthL. As we show this is not totally correct. A ballistic mode ande,=k?/2m is the longitudinal electron energy. A
situation was considered in Refs. 5 and 6, where the SAWnhoden contributes to the current B,,<Eg, whereEg is the

Il. THE BOLTZMANN EQUATION
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L ; The linear responsf, contains Fourier components with fre-
. l J guenciest w, while f, contains the frequencies 0 and?w.
k : The dc part off, is the one yielding the dc acoustoelectric
'1C> d <ODn current.
T \ Expanding the Boltzmann equati¢h) and the boundary
conditions(3) we find the equations fof ,,
SAW
() AAY N|  ofr 3
ot TUax) T e T e ©
d N g\, Vv ofy .
FIG. 1. Upper panel—a sketch of the system under consider- at v x| % ax ak’ )

ation. An asymmetric channel of lengthand widthd is defined in .

a 2DEG by a split gater.; , are the electron reflection coefficients and the boundary conditions

from the channel’'s edges. Lower panel—a snapshot of the profile of _

the potential created by the SAW. Outside the channel the field is f, oK)= ( rifi=k)  (x=0,k>0), ®)
screened by the wide leads. L rofi(—k) (x=L, k<0).

Fermi energy in the device terminals. We assume that Oanxpressmg the linear response in &) as

the lowest transverse mode=0 is relevant, namely, tha&ig f(xkt)=e “% (kx)+c.c 9
is above the first thresholdhe PC pinch-off, but below the Xkt a(kX)+e.c. ©
next one. The electrons of the relevant mode are describewe find the equation for the linear-response amplitude,
by the distribution functionf(x,k,t), which satisfies the

. . . _ (9 .
Boltzmann equation. In the absence of scattering this equa (—iw-i—v—)fw(k,x): “igv,e®| - 2Ty, (0
tion is X
o ot oV of Introducing Eq.(9) into Eq.(7) and averaging the latter over
—tp——— =0 (1) time, we find the equation for the dc contribution fof
g Tax ax ok
. . . of, 17 .
wherev = de, /dk is the electron velocity and is the poten- v 2q e Im[Vie '¥f ]. 11

tial created by the SAW,

Integrating the last equation ovkrand noting that the right-
V(x,t)=V,expigx—iwt)+c.c., (2) hand side is a full derivative with respect kpone can see
that the time-averaged acoustoelectric current
with w=sg. We assume the SAW potential to be totally
screened in the terminals and not screened inside the chan- — f” dk T 12
nel. (For a more detailed consideration of the potential and =€ L 2ml'? (12
its screening see Refs. 10 and)1The boundary conditions
at the edges of the channel»at 0L are is constant along the channel.
Solving Eq.(10) one finds
tifo(k)+r.f(=k)  (x=0,k>0),

_ of
f(k)_[tzfo(k)+r2f(—k) (x=L, k<0). fw(k,x>=—iquw( - a—;)F(k,X) (13)

Heret; , andr , are the transmission and the reflection co-with
efficients for electrons approaching the ends of the channel,
which satisfy the normalizatioty ,+r; ;=1 and depend on

— Alpx
the electron energy,. In Eq. (3), F(kx)=¢

A(K)

el@-px_1
, (14

ECEE

wherep=w/v. The integration constam{(k) is determined

_ -1
fo(k)=f1(€)= exp{ m) + 1} (4) by the boundary condition) for f, giving, for k>0,

T
2ipL _
e“'Prryr ry¢_ A(k
is the equilibrium electron Fermi distribution in the absence A(k)= : kaL 19 X, A(—k)= A9 (15
of the SAW. The terms witli, represent electrons penetrat- 1-e“Prrar, M1

ing from the terminals into the channel, and the terms Witr\/vith
r, , describe electrons backscattered from the terminals.

For a weak SAW, Eq(l) can be solved by expanding the el@-pL_1q
distribution function in powers of the SAW potentié] d’k:W'

f(x,k,t)=fr(e)+F1(x,k ) +Ffo(x,kt)+---. (5 Introducing Eq.(13) into Eq.(11) we find

(16)
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of, e - af¢
2 _ —igx || _ 2T
v g?|V,,| LRe[e K e F(k,x)

Solving Eq.(17) we have

|

17

ofr
Jde

)G(k,x) +B(k)],

(18)

- Jd
vf2<k,x>=—(qL)2|vw|2[ﬂ(—
where

G(k,x)=2f:¥ Re[e "%F(k,x)]. (19

The integration constam(k) is determined by the boundary

conditions(8) for f,, to which enterss(k)=G(k,L). Using

Eq. (15) one finds after lengthy but straightforward calcula-

tions, fork>0,

G(K) =2 _[(141,r,)| 42~ 2r,Ci cospL]
|1—r,r,e?Pt|?
G(—k)= _u_:_%pqz[(l"‘ riro)lé_il?
—2r,Cycospl], (20
where
Cy=2(cospL—cosqL)/(g?— p?)L2. (21

Using EQq.(18) for x=0,L in the boundary condition¢)
for f, we find fork>0,
B(k)

MUt V) gy BY o)

B(k)= 1-rqry r

where

I[N
= ok Je '

IIl. THE ACOUSTOELECTRIC CURRENT

To obtain a symmetric expression for the current it is
convenient to calculate it as the average of its values at

=0 andx=L, which is

(1-ry)(1-r3)
1-rqr,

e o0
- 2 2
Va2 dk[

a( afT) _
X | =22 [IG(K +G(=k)]

o\ —
(——J[G(k)—G(—an. (24

ri—ry 0
L
1-rqr, dk

d

One can calculate the integral by parts, using @@t k) is

zero atk=0 and (—df;/de) is zero atk=co. Strictly speak-
ing, for electrons wittk=0, the inequality_>1 required for

ACOUSTOELECTRIC EFFECT IN A FINITE-LENGH . . .

7285

However, in any case the contribution frdas 0 is exponen-
tially small due to the factor { df1/de), for Ec—Eo>T.
After integration by parts, one can see that the acoustoelec-
tric current vanishes for an open channel=r,=0) or
when the electron reflection coefficients from the channel
ends are energy independent. This is a specific property of a
ballistic channel.

One may separate the acoustoelectric current given by Eq.

(29 into_ two contributions, thevencurrentﬂ, and theodd

currentj,. The even current does not change its sign upon
the replacement— —q, but changes the sign upon inter-
changingr, andr,. The odd current reverses its sign upon
the replacemeng— —q, but is symmetric with respect g
andr,. The correlation between the change of the propaga-
tion direction of the SAW and the interchange of the channel
ends follows from obvious symmetry considerations. Note
that only the odd current exists in a symmetric PC, as well as
in any homogeneous medium.

Simpler expressions for the acoustoelectric current can be
given far from the threshold. The scattering time for elec-
trons in a high-quality two-dimensional electron gabEG)
can be taken to be= 30 ps, which corresponds, for a Fermi
velocity ve=3x10" cm/s to a mean-free path=10 pm.

This means that channels with=3 um are ballistic far
from the threshold. The situation near the threshold where
v=s is less clear. Assuming thatis velocity independent
and usings=3X10° cm/s, we estimate the mean-free path
asl=0.1 um, which means that for resonant electrons most
channel-shaped PC’s with=1 yum are nonballistic. How-
ever, the specific velocity dependence of the relaxation rate
in quasi-one-dimensional channels is not known.

For estimates one can ukebetween 1um and 10um,
wl27 between 100 MHz and 1 GHz, and temperatuirel
K. The change opL in G(xk) within the thermal smearing
defined by df/de) is (Tleg)(s/lvg)ql. This is small
even for the highest frequencies and the longest channels
available at present time. Hence one can replace the integra-
tion over k by taking the integrand ak=kg. Then pL
=wlL/vg andp/g=s/vg are also small.

Based on these estimates we can simplify the expressions
for the even and odd currents usipd<1 andp<q. The
results are

je=(€|V,|?/m)B[1—cosqL], (25)

jo=signq (e|V,|%/m)a(slvg)
X[2(1—cosqL)—qgLsingL], (26)
where

29 ry—r,
(?6 (l_rl)(l_rz) '

B:[(l_rﬂ(l_rz)

1_r1r2

Cl4rgry 9 (1-rg)(1-rp)
T 1l-ryr,de  1-rqr,

(27)

o

are calculated at the Fermi energy. The odd current is smaller
by a factors/ve compared to the even one.

the channel to be ballistic may be not fulfilled. In this case  For short channels witqL<1 one findsj.~(qL)? and
the above solution of the Boltzmann equation is not valid.j,~ (qL)*, while for gL=1 both contributions to the acous-
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toelectric current show geometric oscillations as a function P |2 2[1—cogq=p)L] (2/L)?
of the productqL (gL oscillationg, similar to the result of K= 2] 2 - ‘
the quantum consideratiriThese oscillations are due to the (@=p)t (q=p)*+(21)*
coherence of the SAW and result from the compensation of,, qL>1 the term with|¢_ /2
the forces acting on the electrons in different half-waves of
the SAW. NoqgL oscillations are predicted when the acoustic
wave is described as a noncoherent flux of phorioirs,
which casej is simply proportional td..

Finally, let us specify the expression for a symmetric
channel withr;=r,=r, which is convenient for comparison

(32

does not contribute to the
ntegral in Eq.(28) and we obtain from this equation

— 2e|Vw|Zf°° dv (v/s)?R{r} ( afT)
= _7T

mS  Jo (1—v%s%)?°+ (4vlwlL)?\ Jd€

with the results obtained by previous approaches. After inte- RIT1— 2(1-r%) J1-r 33
gration by parts, Eq(24) reduces to {r}_|1—r2exp(2iwL/v)|2 MS ok 1+r° (33
— e o fr Comparing Eq.(33) and Eq.(31) one can see that in the
— 2 2 2 2
1= _7,|Vw| (qL) Jo dk( - I)(w’ﬂ ~lé-d®) resonance factor, indeed, as conjectured, the scattering time
7 is replacedup to a numerical factoby the lifetimeL/v of
1-r? g 1—r the electron in the open channel. However the result given by

(28)  Eq.(31) misses the crucial factd®{r}, which combines two
features:(i) When there is no reflection, or for an energy-

Disregarding the fact that for low-energy electrons realistiéf‘_dependem r_efleption, the ac_:oustoelectric current vanishes.
channels may be nonballistic, we can use &) to com- (")2 qL OSC'”a_t'ZO”S_ resulting from the factor|1

pare the values of the acoustoelectric current at the conduc-" exp(ZwL/p)l - Within the resonance factor width the
tance plateaus, i.e., between the thresholdsfen (where —€Xponent oscillates once, and hence some resglualscil-

A is a typical distance between the threshpldsid at the lations are present in the current given by E2f).
conductance steps, i.e., near the thresholdsefems2. To Next we compare our results with those obtained in Ref.
estimate the reflection coefficient and its derivative we us®» Where the acoustoelectric current is due to a monochro-
the results in the Appendix, assuming that the channel opefPatic flux of phonons with frequencyo=sq and the

ing are not adiabatic. At the plateau we find the following €/€ctron-phonon interaction is presented as an electron-
order of magnitude estimates=1 anddr/de=A "1, while phonon collision term in the Boltzmann equation for the

at the step we use E@A5). Replacing the Fermi function electrons. The comparison can be accomplished only up to

derivative by a delta function and assumigg=1, we ob- SOMe g-dependent factors: Ref. 6 considers bulk phonons,
tain at the plateau for which, as shown in Ref. 12, the electron-phonon interac-

tion matrix elements have a differegt dependence, com-
T 2 pared to surface phonons.
i=(eV.[*14) (slve) 29 The properties of the acoustoelectric current obtained in
(with mu2=A) and at the step Ref. 6 are dominated by the energy-momentum conservation
in the electron-phonon collision term. As a result only elec-
j_:(eIVwIZIA). (30) trons with k..=ms*qg/2 contribute to the current: an elec-
tron with k_ can absorb a phonon from the flux, being ex-

X o .
|1_r2e2ip|—|2 ok 1+r

The current at the plateau is smaller by the factos{A)"?  cited intok. , while an electron wittk, can omit a phonon

compared to that at the step. to the flux, being de-excited intio_ . It is now obvious that
the current is large only near the threshold of channel open-

IV. COMPARISON WITH PREVIOUS APPROACHES ing, whenvg is of orders (for zw=ms?, which is usually

. . o ) ) the casg Most importantly, this collision picture is valid
The aim of this section is a more detailed comparison Ofonly when the phonon energy is larger than the energy un-
our results with the results obtained in Refs. 4 and 6. FOgertainty of the electron state due to the finite escape time
simplicity we confine to a symmetric channel. The result forgom the channel, i.e., when>v/L. For resonant electrons
a (nonballistig infinite channel obtained in Ref. 4 can be ity , ~5 it meansw>s/L or, equivalently,qL>1. This
expressed as follows: latter condition, together witkL>1, allows the description
of the electron-phonon interaction adogal scattering term
(7fT) (31) in the Boltzmann equation, as used in Ref. 6.

— 2elV, %[~ dv (v/s)?

1= fo (1-02/5%) %+ (wT) "2 e Comparing our results with those of Ref. 6 one has to bear
in mind that the description of the acoustic wave as a clas-

The integrand is an overlap of two peaks, centered at sical force in the Boltzmann equation for electrons is valid

=vg andv=s. Hence the current is maximal wher=s,  only whenq<k andZw<¢. The latter condition allows us

i.e., near the channel opening threshold. When the scatterirtg neglect the discreteness of quantum transitions for phonon

is weak,wr— 9, only resonant electrons with=s contrib-  emission or absorption. For resonant electrons withs

ute to the current, which diverges as-. both these conditions hold as long &&<m$’ or, equiva-

Since Eq.(31) makes sense only whegqlL>1, consider lently g<ms.
the limit L—oo in Eq. (28). Using the representation of a  The flux of phonons can be considered as noncoherent
delta function in this limit we have when the channel is longer than the phonon coherence length

TS
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A=s/éw, wheredw ( smaller than the central frequenay

is the width of the phonon distribution or the SAW spectral )
width. The conditionA<L can be fulfilled only whermgL |
>1 and we may begin the comparison using our result in the :
form of Eqg. (33). To imitate the noncoherence of the d |

U=const

arctan (a/d)

phonons we average this equation owewith a Lorentzian

form factor havingdw as half-width at half-height. This cor- T

responds to a phonon field which can be obtained, for ex-

ample, by selecting from a thermal phonon distribution those

phonons, which have frequencies withda and wave vec-

tors along the channe_l direction. In the time representation it -~ » Opening of a semi-infinite channel of widthinto a
corresponds a quasimonochromatic wave with fluctuating,om with the opening angle defined by the ratid. Shown are the
amplitude and phase. The only factor to be averagdd is equipotential lines.

—r?exp(dwLiv)|~?, since the change of the width in the

resonance factor is small. The result of the averaging is g for the nonequilibrium part of the electron distribution
function contains no information about the boundary condi-

1 1+ ncose tions, while the right-hand side of E¢17) depends on the
Z 75 (34 " ; X
1-r*1+2ncosp+ 7y boundary conditions, because the linear respdnsis sen-
_ ) sitive to them.
where ¢=2wlL/v (with the central frequencys) and 7 As a result we have to conclude, that the acoustoelectric

= rzeXp(__25wL/U) (with v=s). For strong decoherencd, ¢ rents produced in a ballistic channel by a coherent SAW
<L, one finds7 to be exponentially small, and tgl. 0S- o 3 flux of noncoherent quasimonochromatic phonons are
cillations are totally suppressed. _ different. Even after destroying the coherence of the SAW
After this averaging, having in mind that for the compari- {he results are different priori there are no reasons why
son we are interested in the cape>1, the resonance factor oty representations of the SAW have to give the same re-

in Eqg. (33) can be replaced by a delta function, giving sults.
— d 1 d 1—r
= 2qL| — = ms— —— ACKNOWLEDGMENTS
J elv“’| qL( Jde U=S[2msc9k 1+r bs (39
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pared with Eq(35), since our approach, as mentioned above,

overlaps with the approach used in Ref. 6 only when APPENDIX: REFLECTION AT THE END
<ms. OF A CHANNEL

In Eq. (27) of Ref. 6 one finds the difference of the Fermi . ) , .
distributions atk=ms*q/2, which for g<ms reproduces To have an explicit expression for the reflection coeffi-

the derivative of the equilibrium distribution in E(85). The ~ Cientr entering the boundary condition for the electron dis-
acoustoelectric current is proportional toin both cases. tribution function, we calculate the reflection coefficient
However, there is a difference regarding the role of reflectiorffom the end of a channel. For that we use the following

from the channel ends. model for the confining potential, see Fig. 2.
According to Ref. 6, above theetenkov threshold the ) 5
acoustoelectric current is nonzero even for an open channel ) v) 1 [[=(xa)+(y/d)7] (x>0) A

r=0. As already mentioned, this does not contradict Eq. omd2 | (y/d)? (x<0)

(35). Below the @renkov threshold, the current is nonzero

only in the case of an energy dependent reflection, whicfrhis potential describes a semi-infinite waveguidg<0 of

agrees with Eq(35). Nevertheless, the details of the deriva- width d connected to a horn with an opening angdla at

tive function in this equation and in E427) of Ref. 6 are  x>0. The variablex andy can be separated and the solution

different. of the wave equation is of the fordr,(y) ¥(x), see Refs. 8
The physical origin of the discrepancy is as follows. Inand 13. Here®, is a normalized harmonic-oscillator wave

the Boltzmann equation used in Ref. 6 the electron-phonofunction with energyE,=A(n+ 1/2), whereA = 1/md?, and

collision term is local in space and is separated from then=0,1,2,... labels the modes in the waveguide and in the

boundary conditions, which are also local. The locality of thehorn. There is no channel mixing upon wave transmission

collision term is determined by the largest of the two wave-and reflection from the waveguide to the horn and vice versa.

lengths, 2r/k and 27/q, while the locality of the boundary To calculate the reflection amplitudefor the nth mode

condition is determined by2/k. They can be separated only for an electron energg we choose the wave function in the

when they are of the same order, i.e., whigak. However, waveguide ak<0 as

when <k, the electron-phonon scattering is nonlocal near _ _

the boundary. Formally, the right-hand side of E4).in Ref. P(x)=A(e*+Re ), k=[2m(E-E,)]"* (A2)



7288 O. ENTIN-WOHLMAN, Y. LEVINSON, AND YU. M. GALPERIN PRB 62

and in the horn ak>0 as theI" function, see Ref. 14. The reflection coefficient enter-
i ing the boundary conditions for the Boltzmann equation is
P(X)=BE(—g,&), é=(2[dL)Y%, e=(E—E,)/$é, r=|R2.
(A3) Close to the mode opening threshold one canepti0 in

where E is the complex Webéparabolic cylinder function o andI'. Far from the threshold one can use the asymptotic
as defined in Ref. 14 anf=1/mad (We use the notation E for I'(x+iy) aty—<, see Ref. 14. This gives
instead ofE to avoid confusion with the energys =0 cor-

responds to the threshold of tmth mode opening. As de- 1—cgll2 (e<1)

fined, ¢(x) at x>0 has only a wave propagating to r= s (A5)
=+, It is convenient to use the representation, see Ref. 14, (1/14)e (e>1).
E(—e,6)=0(e) "W(—2,8) +io(e) " W(—e,~ ), Herec=2T"(1/4)/T'(3/4)~5.92.
where W are the real Weber functions and Consider an electron with enerdy at the midpoint be-
oot tween the thresholdg, and E,, i.e., E-Ey=A/2. Fora
o(e)=(1+e ™) —e ™. >d the waveguide opening is adiabatic. In this ca@seA,

and for the chosen enerdgywe haves>1 andr is exponen-
tially small. However for a nonadiabatic opening, whan
1-ig(s) W (—g,0) =d, for the same energi we find 5=A. As a result we
TR 1’21 _ W 5 havee=1 andr=1.
+ tio(e) W(=e,0 Using these results we can estimate the derivativesid
(2 V21 —jg(e) |T(314—iel2) B, which determine the even and odd currdiiigs.(25) and
=i|— - — , (A4) (26)]. For channel openings that are not specially designed,
e/ 1tio(e) [I(1/4=iel2) a=d, and a typical Fermi energy in the midpoint between
where the prime denotes the derivative of YW ,&) with  the threshold&, andE; (at the center of quantized conduc-
respect tc¢, and we expressed W and'Vdt £=0 in terms of  tance plateauwill yield «,8=1.

Matching the logarithmic derivative at=0 one finds

1-R

——=—le
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