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Acoustoelectric effect in a finite-length ballistic quantum channel
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The dc current induced by a coherent surface acoustic wave~SAW! of wave vectorq in a ballistic channel
of lengthL is calculated. The current contains two contributions, even and odd inq. The even current exists
only in a asymmetric channel, when the electron reflection coefficientsr 1 and r 2, at both channel ends, are
different. The direction of the even current does not depend on the direction of the SAW propagation, but is
reversed upon interchangingr 1 andr 2. The direction of the odd current is correlated with the direction of the
SAW propagation, but is insensitive to the interchange ofr 1 andr 2. It is shown that both contributions to the
current are nonzero only when the electron reflection coefficients at the channel ends are energy dependent.
The current exhibits geometric oscillations as a function ofqL. These oscillations are the hallmark of the
coherence of the SAW and are completely washed out when the current is induced by a flux of noncoherent
phonons. The results are compared with those obtained previously by different methods and under different
assumptions.
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I. INTRODUCTION

The acoustoelectric effect is the generation of a dc elec
current~the so-calledacoustoelectric current! in a nonbiased
device by a coherent acoustic wave or a flux of phono
There has been recently a growing interest in observing
effect in mesoscopic structures. In particular, the acou
electric current due to a surface acoustic wave~SAW! was
investigated experimentally in a point contact~PC! defined
in a GaAs/AlGaAs heterostructure by a split gate.1–3 In me-
soscopic structures one can expect to observe effects re
to ballistic transport, when the length of the PC channelL is
shorter than the electron mean-free pathl.

The theoretical considerations of the acoustoelectric ef
can be divided into two groups. The first one, based o
classical approach, uses the Boltzmann equation for the e
trons, with the acoustic wave considered either as a clas
coherent force,1,4 or as a flux of noncoherent quasimonochr
matic phonons.5,6 The classical approach for the descripti
of electrons is valid for not very low temperatures, when
temperature smearing destroys the interference of the e
tron waves. For a ballistic PC the relevant interference is
to reflection from the channel ends, and one can use
Boltzmann equation for the electrons whenT@v/L, wherev
is the relevant electron velocity.~For brevity here, as well as
in the following expressions, we put\51.) For lower tem-
peratures the quantum approach has to be used.7,8

The situation considered in Refs. 1 and 4 does not co
spond to a ballistic electron propagation, since the chan
was assumed to be infinitely long, which means thatqL,kL
@1 andL@ l , whereq is the wave vector of the SAW andk
is the relevant electron momentum. Nevertheless, it has b
conjectured that those results can be carried over to the
listic PC by replacing the mean-free pathl by the channel
length L. As we show this is not totally correct. A ballisti
situation was considered in Refs. 5 and 6, where the S
PRB 620163-1829/2000/62~11!/7283~6!/$15.00
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was represented by a phonon flux, instead of a class
force. It is known~see, e.g. Ref. 9!, that for an infinite chan-
nel both representations of the acoustical wave are equiva
for the derivation of the acoustoelectric current. But, as f
lows from our results, the SAW representation by a phon
flux is not always adequate for a ballistic channel of a fin
length.

In what follows we consider the classical approach fo
ballistic channel of a finite length, representing the SAW
a classical force, and allowing for electron reflections fro
the channel ends. As has been observed in Ref. 1 and
plained in Refs. 1 and 5, the acoustoelectric current is hig
the thresholds of the channel openings, i.e., at the steps o
PC quantized conductance~giant acoustoelectric current os
cillations!. In this situation the current is due to ‘‘resonant
electrons, whose velocitiesv are of order of the SAW veloc-
ity s. However, these slow electrons have short mean-
paths and their propagation in most PC’s is not ballistic. W
will calculate the acoustoelectric current that correspond
the plateaus of the quantized conductance, i.e., far from
channel opening threshold, wherev@s and a ballistic elec-
tron propagation is more realistic. This current appears to
larger when the PC is not symmetric, i.e., when the reflect
coefficients from both channel ends are different.

II. THE BOLTZMANN EQUATION

We consider a PC that is shaped by a split gate a
relatively long and uniform channel, which opens to~nonbi-
ased! terminals, see Fig. 1. In the channel along thex direc-
tion the electronic states are quantized in the transverse
rectiony and as a result the electron energy isEn1ek , where
n labels the transverse modes andk is the electron momen
tum along the channel.En is the threshold energy for thenth
mode andek5k2/2m is the longitudinal electron energy. A
moden contributes to the current ifEn,EF , whereEF is the
7283 ©2000 The American Physical Society
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Fermi energy in the device terminals. We assume that o
the lowest transverse moden50 is relevant, namely, thatEF
is above the first threshold~the PC pinch-off!, but below the
next one. The electrons of the relevant mode are descr
by the distribution functionf (x,k,t), which satisfies the
Boltzmann equation. In the absence of scattering this eq
tion is

] f

]t
1v

] f

]x
2

]V

]x

] f

]k
50, ~1!

wherev5]ek /]k is the electron velocity andV is the poten-
tial created by the SAW,

V~x,t !5Vv exp~ iqx2 ivt !1c.c., ~2!

with v5sq. We assume the SAW potential to be tota
screened in the terminals and not screened inside the c
nel. ~For a more detailed consideration of the potential a
its screening see Refs. 10 and 11.! The boundary conditions
at the edges of the channel atx50,L are

f ~k!5H t1f 0~k!1r 1f ~2k! ~x50, k.0!,

t2f 0~k!1r 2f ~2k! ~x5L, k,0!.
~3!

Here t1,2 and r 1,2 are the transmission and the reflection c
efficients for electrons approaching the ends of the chan
which satisfy the normalizationt1,21r 1,251 and depend on
the electron energyek . In Eq. ~3!,

f 0~k!5 f T~ek!5FexpS ek1E02EF

T D11G21

~4!

is the equilibrium electron Fermi distribution in the absen
of the SAW. The terms withf 0 represent electrons penetra
ing from the terminals into the channel, and the terms w
r 1,2 describe electrons backscattered from the terminals.

For a weak SAW, Eq.~1! can be solved by expanding th
distribution function in powers of the SAW potentialV,

f ~x,k,t !5 f T~ek!1 f 1~x,k,t !1 f 2~x,k,t !1•••. ~5!

FIG. 1. Upper panel—a sketch of the system under consi
ation. An asymmetric channel of lengthL and widthd is defined in
a 2DEG by a split gate.r 1,2 are the electron reflection coefficien
from the channel’s edges. Lower panel—a snapshot of the profi
the potential created by the SAW. Outside the channel the fiel
screened by the wide leads.
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The linear responsef 1 contains Fourier components with fre
quencies6v, while f 2 contains the frequencies 0 and62v.
The dc part off 2 is the one yielding the dc acoustoelectr
current.

Expanding the Boltzmann equation~1! and the boundary
conditions~3! we find the equations forf 1,2,

S ]

]t
1v

]

]xD f 152
]V

]x S 2
] f T

]e D v, ~6!

S ]

]t
1v

]

]xD f 25
]V

]x

] f 1

]k
, ~7!

and the boundary conditions

f 1,2~k!5H r 1f 1,2~2k! ~x50, k.0!,

r 2f 1,2~2k! ~x5L, k,0!.
~8!

Expressing the linear response in Eq.~6! as

f 1~x,k,t !5e2 ivt f v~k,x!1c.c., ~9!

we find the equation for the linear-response amplitude,

S 2 iv1v
]

]xD f v~k,x!52 iqVveiqxS 2
] f T

]e D v. ~10!

Introducing Eq.~9! into Eq.~7! and averaging the latter ove
time, we find the equation for the dc contribution off 2,

v
] f 2̄

]x
52q

]

]k
Im@Vv* e2 iqxf v#. ~11!

Integrating the last equation overk and noting that the right-
hand side is a full derivative with respect tok, one can see
that the time-averaged acoustoelectric current

j̄ 5eE
2`

1` dk

2p
v f 2̄ ~12!

is constant along the channel.
Solving Eq.~10! one finds

f v~k,x!52 iqLVvS 2
] f T

]e DF~k,x! ~13!

with

F~k,x!5eipxFA~k!1
ei (q2p)x21

i ~q2p!L G , ~14!

wherep[v/v. The integration constantA(k) is determined
by the boundary conditions~8! for f 1 giving, for k.0,

A~k!5
e2ipLr 1r 2fk2r 1f2k

12e2ipLr 1r 2

, A~2k!5
A~k!

r 1
~15!

with

fk5
ei (q2p)L21

i ~q2p!L
. ~16!

Introducing Eq.~13! into Eq. ~11! we find

r-

of
is
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v
] f 2̄

]x
52q2uVvu2L ReH e2 iqx

]

]k F S 2
] f T

]e DF~k,x!G J .

~17!

Solving Eq.~17! we have

v f 2̄~k,x!52~qL!2uVvu2H ]

]k F S 2
] f T

]e DG~k,x!G1B~k!J ,

~18!

where

G~k,x!52E
0

x dx

L
Re@e2 iqxF~k,x!#. ~19!

The integration constantB(k) is determined by the boundar
conditions~8! for f 2, to which entersḠ(k)[G(k,L). Using
Eq. ~15! one finds after lengthy but straightforward calcu
tions, fork.0,

Ḡ~k!5
12r 1r 2

u12r 1r 2e2ipLu2
@~11r 1r 2!ufku222r 1Ck cospL#,

Ḡ~2k!52
12r 1r 2

u12r 1r 2e2ipLu2
@~11r 1r 2!uf2ku2

22r 2Ck cospL#, ~20!

where

Ck52~cospL2cosqL!/~q22p2!L2. ~21!

Using Eq.~18! for x50,L in the boundary conditions~8!
for f 2 we find for k.0,

B~k!5
r 1~r 2ck1c2k!

12r 1r 2
, B~2k!52

B~k!

r 1
, ~22!

where

ck5
]

]k F S 2
] f T

]e D Ḡ~k!G . ~23!

III. THE ACOUSTOELECTRIC CURRENT

To obtain a symmetric expression for the current it
convenient to calculate it as the average of its values ax
50 andx5L, which is

j̄ 52
e

4p
uVvu2~qL!2E

0

`

dkH ~12r 1!~12r 2!

12r 1r 2

3
]

]kF S 2
] f T

]e D @Ḡ~k!1Ḡ~2k!#G
1

r 12r 2

12r 1r 2

]

]kF S 2
] f T

]e D @Ḡ~k!2Ḡ~2k!#G J . ~24!

One can calculate the integral by parts, using thatḠ(6k) is
zero atk50 and (2] f T /]e) is zero atk5`. Strictly speak-
ing, for electrons withk50, the inequalityL@ l required for
the channel to be ballistic may be not fulfilled. In this ca
the above solution of the Boltzmann equation is not va
 .

However, in any case the contribution fromk50 is exponen-
tially small due to the factor (2] f T /]e), for EF2E0@T.
After integration by parts, one can see that the acoustoe
tric current vanishes for an open channel (r 15r 250) or
when the electron reflection coefficients from the chan
ends are energy independent. This is a specific property
ballistic channel.

One may separate the acoustoelectric current given by
~24! into two contributions, theevencurrent j̄ e , and theodd

current j̄ o . The even current does not change its sign up
the replacementq→2q, but changes the sign upon inte
changingr 1 and r 2. The odd current reverses its sign upo
the replacementq→2q, but is symmetric with respect tor 1
and r 2. The correlation between the change of the propa
tion direction of the SAW and the interchange of the chan
ends follows from obvious symmetry considerations. No
that only the odd current exists in a symmetric PC, as wel
in any homogeneous medium.

Simpler expressions for the acoustoelectric current can
given far from the threshold. The scattering time for ele
trons in a high-quality two-dimensional electron gas~2DEG!
can be taken to bet530 ps, which corresponds, for a Ferm
velocity vF533107 cm/s to a mean-free pathl 510 mm.
This means that channels withL&3 mm are ballistic far
from the threshold. The situation near the threshold wh
v.s is less clear. Assuming thatt is velocity independent
and usings533105 cm/s, we estimate the mean-free pa
as l 50.1 mm, which means that for resonant electrons m
channel-shaped PC’s withL.1 mm are nonballistic. How-
ever, the specific velocity dependence of the relaxation
in quasi-one-dimensional channels is not known.

For estimates one can useL between 1mm and 10mm,
v/2p between 100 MHz and 1 GHz, and temperatureT51
K. The change ofpL in Ḡ(6k) within the thermal smearing
defined by (2] f T /]e) is (T/eF)(s/vF)qL. This is small
even for the highest frequencies and the longest chan
available at present time. Hence one can replace the inte
tion over k by taking the integrand atk5kF . Then pL
.vL/vF andp/q.s/vF are also small.

Based on these estimates we can simplify the express
for the even and odd currents usingpL!1 andp!q. The
results are

j̄ e5~euVvu2/p!b@12cosqL#, ~25!

j̄ o5signq ~euVvu2/p!a~s/vF!

3@2~12cosqL!2qL sinqL#, ~26!

where

b5F ~12r 1!~12r 2!

12r 1r 2
G2 ]

]e

r 12r 2

~12r 1!~12r 2!
,

a5
11r 1r 2

12r 1r 2

]

]e

~12r 1!~12r 2!

12r 1r 2
, ~27!

are calculated at the Fermi energy. The odd current is sma
by a factors/vF compared to the even one.

For short channels withqL!1 one findsj̄ e;(qL)2 and
j̄ o;(qL)4, while for qL*1 both contributions to the acous
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toelectric current show geometric oscillations as a funct
of the productqL (qL oscillations!, similar to the result of
the quantum consideration.8 These oscillations are due to th
coherence of the SAW and result from the compensation
the forces acting on the electrons in different half-waves
the SAW. NoqL oscillations are predicted when the acous
wave is described as a noncoherent flux of phonons,6 in
which casej̄ is simply proportional toL.

Finally, let us specify the expression for a symmet
channel withr 15r 25r , which is convenient for compariso
with the results obtained by previous approaches. After in
gration by parts, Eq.~24! reduces to

j̄ 5
e

4p
uVvu2~qL!2E

0

`

dkS 2
] f T

]e D ~ ufku22uf2ku2!

3
12r 4

u12r 2e2ipLu2
]

]k

12r

11r
. ~28!

Disregarding the fact that for low-energy electrons realis
channels may be nonballistic, we can use Eq.~28! to com-
pare the values of the acoustoelectric current at the con
tance plateaus, i.e., between the thresholds fore.D ~where
D is a typical distance between the thresholds!, and at the
conductance steps, i.e., near the thresholds fore.ms2. To
estimate the reflection coefficient and its derivative we
the results in the Appendix, assuming that the channel op
ing are not adiabatic. At the plateau we find the followi
order of magnitude estimates:r .1 and]r /]e.D21, while
at the step we use Eq.~A5!. Replacing the Fermi function
derivative by a delta function and assumingqL.1, we ob-
tain at the plateau

j̄ .~euVvu2/D! ~s/vF! ~29!

~with mvF
2.D) and at the step

j̄ .~euVvu2/D!. ~30!

The current at the plateau is smaller by the factor (ms2/D)1/2

compared to that at the step.

IV. COMPARISON WITH PREVIOUS APPROACHES

The aim of this section is a more detailed comparison
our results with the results obtained in Refs. 4 and 6.
simplicity we confine to a symmetric channel. The result
a ~nonballistic! infinite channel obtained in Ref. 4 can b
expressed as follows:

j̄ 5
2euVvu2

ps E
0

` dv ~v/s!2

~12v2/s2!21~vt!22 S 2
] f T

]e D . ~31!

The integrand is an overlap of two peaks, centered av
5vF and v5s. Hence the current is maximal whenvF5s,
i.e., near the channel opening threshold. When the scatte
is weak,vt→`, only resonant electrons withv5s contrib-
ute to the current, which diverges asvt.

Since Eq.~31! makes sense only whenqL@1, consider
the limit L→` in Eq. ~28!. Using the representation of
delta function in this limit we have
n

of
f

-

c

c-

e
n-

f
r

r

ng

uf6ku25
2@12cos~q6p!L#

~q6p!2L2 → ~2/L !2

~q6p!21~2/L !2
. ~32!

For qL@1 the term withuf2ku2 does not contribute to the
integral in Eq.~28! and we obtain from this equation

j̄ 5
2euVvu2

ps E
0

` dv ~v/s!2 R$r %

~12v2/s2!21~4v/vL !2 S 2
] f T

]e D ;

R$r %5
2~12r 4!

u12r 2 exp~2ivL/v !u2
ms

]

]k

12r

11r
. ~33!

Comparing Eq.~33! and Eq.~31! one can see that in th
resonance factor, indeed, as conjectured, the scattering
t is replaced~up to a numerical factor! by the lifetimeL/v of
the electron in the open channel. However the result given
Eq. ~31! misses the crucial factorR$r %, which combines two
features:~i! When there is no reflection, or for an energ
independent reflection, the acoustoelectric current vanis
~ii ! qL oscillations resulting from the factor u1
2r 2 exp(2ivL/v)u22. Within the resonance factor width th
exponent oscillates once, and hence some residualqL oscil-
lations are present in the current given by Eq.~33!.

Next we compare our results with those obtained in R
6, where the acoustoelectric current is due to a monoch
matic flux of phonons with frequencyv5sq and the
electron-phonon interaction is presented as an elect
phonon collision term in the Boltzmann equation for t
electrons. The comparison can be accomplished only u
someq-dependent factors: Ref. 6 considers bulk phono
for which, as shown in Ref. 12, the electron-phonon inter
tion matrix elements have a differentq dependence, com
pared to surface phonons.

The properties of the acoustoelectric current obtained
Ref. 6 are dominated by the energy-momentum conserva
in the electron-phonon collision term. As a result only ele
trons with k65ms6q/2 contribute to the current: an elec
tron with k2 can absorb a phonon from the flux, being e
cited intok1 , while an electron withk1 can omit a phonon
to the flux, being de-excited intok2 . It is now obvious that
the current is large only near the threshold of channel op
ing, whenvF is of orders ~for \v&ms2, which is usually
the case!. Most importantly, this collision picture is valid
only when the phonon energy is larger than the energy
certainty of the electron state due to the finite escape t
from the channel, i.e., whenv@v/L. For resonant electron
with v.s it meansv@s/L or, equivalently,qL@1. This
latter condition, together withkL@1, allows the description
of the electron-phonon interaction as alocal scattering term
in the Boltzmann equation, as used in Ref. 6.

Comparing our results with those of Ref. 6 one has to b
in mind that the description of the acoustic wave as a c
sical force in the Boltzmann equation for electrons is va
only whenq!k and\v!ek . The latter condition allows us
to neglect the discreteness of quantum transitions for pho
emission or absorption. For resonant electrons withv.s
both these conditions hold as long as\v!ms2 or, equiva-
lently q!ms.

The flux of phonons can be considered as noncohe
when the channel is longer than the phonon coherence le
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L5s/dv, wheredv ~ smaller than the central frequencyv)
is the width of the phonon distribution or the SAW spect
width. The conditionL!L can be fulfilled only whenqL
@1 and we may begin the comparison using our result in
form of Eq. ~33!. To imitate the noncoherence of th
phonons we average this equation overv with a Lorentzian
form factor havingdv as half-width at half-height. This cor
responds to a phonon field which can be obtained, for
ample, by selecting from a thermal phonon distribution tho
phonons, which have frequencies withindv and wave vec-
tors along the channel direction. In the time representatio
corresponds a quasimonochromatic wave with fluctua
amplitude and phase. The only factor to be averaged isu1
2r 2 exp(2ivL/v)u22, since the change of the width in th
resonance factor is small. The result of the averaging is

1

12r 4

11h cosw

112h cosw1h2 , ~34!

where w52vL/v ~with the central frequencyv) and h
5r 2 exp(22dvL/v) ~with v.s). For strong decoherence,L
!L, one findsh to be exponentially small, and theqL os-
cillations are totally suppressed.

After this averaging, having in mind that for the compa
son we are interested in the caseqL@1, the resonance facto
in Eq. ~33! can be replaced by a delta function, giving

j̄ 5euVvu2qLS 2
] f T

]e D
v5s

F1

2
ms

]

]k

12r

11r G
v5s

. ~35!

This result has to be compared with Eq.~27! of Ref. 6, which
corresponds to phonon momentaq below the C̆erenkov
thresholdq52ms. The current given by Eq.~15! of Ref. 6,
for phonon momentaq above the threshold, cannot be com
pared with Eq.~35!, since our approach, as mentioned abo
overlaps with the approach used in Ref. 6 only whenq
!ms.

In Eq. ~27! of Ref. 6 one finds the difference of the Ferm
distributions atk5ms6q/2, which for q!ms reproduces
the derivative of the equilibrium distribution in Eq.~35!. The
acoustoelectric current is proportional toL in both cases.
However, there is a difference regarding the role of reflect
from the channel ends.

According to Ref. 6, above the C˘ erenkov threshold the
acoustoelectric current is nonzero even for an open cha
r 50. As already mentioned, this does not contradict E
~35!. Below the C̆erenkov threshold, the current is nonze
only in the case of an energy dependent reflection, wh
agrees with Eq.~35!. Nevertheless, the details of the deriv
tive function in this equation and in Eq.~27! of Ref. 6 are
different.

The physical origin of the discrepancy is as follows.
the Boltzmann equation used in Ref. 6 the electron-pho
collision term is local in space and is separated from
boundary conditions, which are also local. The locality of t
collision term is determined by the largest of the two wav
lengths, 2p/k and 2p/q, while the locality of the boundary
condition is determined by 2p/k. They can be separated on
when they are of the same order, i.e., whenq.k. However,
when q!k, the electron-phonon scattering is nonlocal ne
the boundary. Formally, the right-hand side of Eq.~4! in Ref.
l

e

x-
e

it
g

,

n

el
.

h

n
e

-

r

6 for the nonequilibrium part of the electron distributio
function contains no information about the boundary con
tions, while the right-hand side of Eq.~17! depends on the
boundary conditions, because the linear responsef v is sen-
sitive to them.

As a result we have to conclude, that the acoustoelec
currents produced in a ballistic channel by a coherent SA
or a flux of noncoherent quasimonochromatic phonons
different. Even after destroying the coherence of the SA
the results are different.A priori there are no reasons wh
both representations of the SAW have to give the same
sults.
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APPENDIX: REFLECTION AT THE END
OF A CHANNEL

To have an explicit expression for the reflection coe
cient r entering the boundary condition for the electron d
tribution function, we calculate the reflection coefficie
from the end of a channel. For that we use the followi
model for the confining potential, see Fig. 2.

U~x,y!5
1

2md2 H @2~x/a!21~y/d!2# ~x.0!

~y/d!2 ~x,0!.
~A1!

This potential describes a semi-infinite waveguide atx,0 of
width d connected to a horn with an opening angled/a at
x.0. The variablesx andy can be separated and the soluti
of the wave equation is of the formFn(y)c(x), see Refs. 8
and 13. HereFn is a normalized harmonic-oscillator wav
function with energyEn5D(n11/2), whereD51/md2, and
n50,1,2, . . . labels the modes in the waveguide and in
horn. There is no channel mixing upon wave transmiss
and reflection from the waveguide to the horn and vice ve

To calculate the reflection amplitudeR for the nth mode
for an electron energyE we choose the wave function in th
waveguide atx,0 as

c~x!5A~eikx1Re2 ikx!, k5@2m~E2En!#1/2 ~A2!

FIG. 2. Opening of a semi-infinite channel of widthd into a
horn with the opening angle defined by the ratioa/d. Shown are the
equipotential lines.
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and in the horn atx.0 as

c~x!5BE~2«,j!, j5~2/dL!1/2x, «5~E2En!/d,
~A3!

where E is the complex Weber~parabolic cylinder! function
as defined in Ref. 14 andd51/mad. ~We use the notation E
instead ofE to avoid confusion with the energy.! «50 cor-
responds to the threshold of thenth mode opening. As de
fined, c(x) at x.0 has only a wave propagating tox
51`. It is convenient to use the representation, see Ref.

E~2«,j!5s~«!21/2W~2«,j!1 is~«!1/2W~2«,2j!,

where W are the real Weber functions and

s~«!5~11e22p«!1/22e2p«.

Matching the logarithmic derivative atx50 one finds

12R

11R
52 i«21/2

12 is~«!

11 is~«!

W8~2«,0!

W~2«,0!

5 i S 2

« D 1/212 is~«!

11 is~«!
UG~3/42 i«/2!

G~1/42 i«/2!
U, ~A4!

where the prime denotes the derivative of W(2«,j) with
respect toj, and we expressed W and W8 at j50 in terms of
4,

the G function, see Ref. 14. The reflection coefficient ent
ing the boundary conditions for the Boltzmann equation
r 5uRu2.

Close to the mode opening threshold one can put«50 in
s andG. Far from the threshold one can use the asympto
for G(x1 iy) at y→`, see Ref. 14. This gives

r 5H 12c«1/2 ~«!1!,

~1/4!e22p« ~«@1!.
~A5!

Herec52G(1/4)/G(3/4)'5.92.
Consider an electron with energyE at the midpoint be-

tween the thresholdsE0 and E1, i.e., E2E05D/2. For a
@d the waveguide opening is adiabatic. In this cased!D,
and for the chosen energyE we have«@1 andr is exponen-
tially small. However for a nonadiabatic opening, whena
.d, for the same energyE we find d.D. As a result we
have«.1 andr .1.

Using these results we can estimate the derivativesa and
b, which determine the even and odd currents@Eqs.~25! and
~26!#. For channel openings that are not specially design
a.d, and a typical Fermi energy in the midpoint betwe
the thresholdsE0 andE1 ~at the center of quantized condu
tance plateau! will yield a,b.1.
*Permanent address: School of Physics and Astronomy, Raymo
and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv Univer
sity, Tel-Aviv 69978, Israel.
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