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Magnetic phase transitions and time-dependent tunneling in a coupled quantum well system
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In this work, we have numerically integrated in space and time the effective-mass nonlineadiSpéro
equation for an electron wave packet in a bilayer electron system. Considering both polarized and unpolarized
magnetic phases, we have calculated the tunneling dynamics between the two quantum wells when an external
bias is applied. In our coupled quantum well system, we have considered a magnetic phase transition from the
usual spin-polarized ground state to an unpolarized one. We have found the possibility of having a shift in the
position of the resonant tunneling peak when the magnetic phase transition occurs.

I. INTRODUCTION many-body interactions in such low-dimensional electronic
systems have also been the object of a great atteftion.

The search for systems that exhibit unusual spin instabili- The tunneling between two parallel 2D electron gases
ties is an area of active research. These instabilities illustrateave been recently investigated as a function of the carrier
the qualitatively new state of matter that may result in simpledensity and temperatuf@.In such an experiment, the carrier
systems through the presence of electron-electron interadensities in both semiconductor layers were independently
tions. In addition, they lead to interesting phases with uniqueontrolled by two different applied biases. In this way,
potentially useful properties. One class of systems considfurneret all? investigated the zero-field differential tunnel-
ered for serious exploration has been single and double quaing conductance as a function of the applied interlayer volt-
tum well structures at low electronic density. These low-age. From a theoretical point of view, the electron dynamics
dimensional structures restricts the phase space available fbetween parallel two-dimensional electron gases has recently
electron-electron scattering enhancing the potential for interstudied in a coupled quantum well systéhConsidering a
esting phase transitions. Devices of ultrapure modulationHartree potential, and with the using of a time-dependent
doped GaAs/Ga ,Al,As heterostructures may be fabricated wave function for the charge density in the semiconductor
with precisely controlled dimensions. Recently, Das Sarmarowth direction, the tunneling rate values between the two
and Tamborenézhave predicted an antiferromagnetic phasequantum wells have been obtained at different electron sheet
transition to occur in double quantum well heterostructuresdensities. Due to nonlinear effects, there is a possibility of
They studied the magnetic instabilities of semiconductohaving a suppression of the tunnelling current in a bilayer
quantum wells within the local-density approximation to electron systenht
both density-functional and Hartree-Fock theories. In addi- However, we know that Hartree theory neglects contribu-
tion to this, calculations of novel magnetic instabilities in tions to the energy beyond the exchange term and is there-
semiconductor double quantum wells have been also prdere expected to overestimate the electron-electron potential
sented by Reboredo and Proetto. value in a quantum well systetAOne of the most important

From an experimental point of view, we note that at leastapproaches to the electron many-body problem is the local-
an experimental group has investigated the possibility of amlensity approximation(LDA) of the density-functional
antiferromagnetic phase transition by performing resonantheory® The LDA formalism is based on the self-consistent
inelastic light-scattering measurements on double quantursolution of the Kohn-Sham equation coupled with the Pois-
well structures’ In the last few years, the physics of strongly son equation and a local exchange-correlation potential. In
coupled two-dimensiongRD) electron gases have attracted order to study the different populations of the spin orienta-
considerable interest for possible 2D-2D tunneling devices.tions on double quantum wells, a generalization of the local-
With the application of parallel and perpendicular magneticdensity approximation has been recently introduedhe
fields to such bilayer heterostructures, a variety of new phelocal-spin-density approximatiofLSDA) is also based on
nomena has been observed at several electron sheet densitiég self-consistent solution of the ScHiager-like Kohn-

In the experiments, most magnetotransport measurements @nam equation. The main technical difference between
double quantum wells have been for high magnetic fieldd SDA and LDA is that the effective exchange-correlation
perpendicular to the growth plane, where the electronic kipotential in LSDA depends on the local spin polarization as
netic energy is quenched and Coulomb interactionsvell as the electron density.

dominate>® In such a case, interesting phenomena arise from In view of the above comments and from a theoretical
the combined effect of tunneling and electron-electronpoint of view, in this work we shall study the time-dependent
interactions. In addition, and when the magnetic field is ap- evolution of an electron wave packet considering the LSDA
plied in the growth plane, recent work has also investigatedn a coupled quantum well system. The method of calcula-
the magnetotransport properties in which case single-particléon will be based on the discretization of space and time for
tunneling dynamics dominate the interactions between botthe carrier wave functions. As the sheet density is raised, we
electron semiconductor layetsAt zero magnetic field, have considered a magnetic phase transition from the usual
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spin-polarized ground state to an unpolarized one. In such a
case, we shall show that the system resonant condition can t=1.2 ps
be strongly modified due to effective spin-dependent
exchange-correlation potential. In this way, the possible an-
tiferromagnetic phase transitibgould be also investigated
by performing resonant tunneling current measurements.

Il. MODEL

In order to study the charge-density dynamics in the struc-
ture growth direction, we need to solve the time-dependent
Schralinger equation associated with an spinless electron in -
a double quantum well potential. Assuming translation sym-
metry of the system in they plane perpendicular to the
growth directionz, the wave functiony will be given by the
nonlinear Schrdinger equatiotf

90 n & t=2.4 ps
|haz,/;(z,t)=[—WE+VH(|¢/I2)+V;’C(|¢|2)

¥(z,1), oY)

+Vau(2)

wherem* is the GaAs electron effective mass avgl(z) is

the double quantum well potential. Thg andVy, terms are

the self-consistent Hartree and exchange-correlation poten- Z\
tials, respectively. Th&, term is the potential given by the L
electron-electron interaction in the heterostructure region.
Such a many-body potential is given by Poisson’s equation

2
FVH(ZJ):_

2
e‘n

: [(z,1)|?, (2 FIG. 1. Conduction-band potential and wave function at differ-
& ent times. We have taken an initial 2D electron sheet density equal
to ng=1.0x 10'*cm2 and an applied bias equal to 0.5 mV.

wheree is the GaAs dielectric constant ang is the initial
carrier sheet density. In the exchange-correlation potentiadition, we have also solved Poisson’s equation associated
V., o denotes the spin orientation, which can be(#p or  with V,; using another standard tridiagonal numerical
down (—). In our calculations we use the parametrization ofmethod for each value!®

the Vy, potential for the 3D electron gas obtained by Ceper- In the tunneling experiment§, the carrier densities in

ley and Adler® both semiconductor layers were independently controlled by
two different applied biases. Taking this into account, we

Cod 1+ LB et 4B s have taken two Gaussian wave packets centered in both
e=—+7 : — (3)  quantum wells as our initial wave function. In our model, we

s 0 (141t Bory) have an initial symmetric wave function, i.e., both Gaussian

i , , , wave packets are identical. If an interlayer voltagés ap-
wherei=U (unpolarized or i =P (polarized. The param-  pyjieq, the bottom of both quantum wells are shifted a quan-
eters in the previous expressions, as used by Radtke, Tanﬂfy equal toeV.
borenea, an% Das Sarﬁ%’}; are d’= _1-U2218' d” In Fig. 1, it is shown the amplitude of the wave function
= 1.5393, i —0.1423, y = 0.0843, 51 =1.0529, |42 and the conduction band potential at several times. We
B1=1.3981, B;=0.3334, andp,=0.2611. Finally, we have numerically integrated Eqd)—(3) using an initial 2D
should point out that in Eq1) the Vy, and theV, potentials  electron sheet density equal p=1.0x10cm 2 and ng
are wave-dependent quantities. Such a result is given by Eqs:3.0x 10'*cm™2 for the two quantum wells. In Figs. 1 and
(2) and (3), where bothVy; andV,. depend on the wave- 2, we have taken an applied voltage equal to 0.5 mV. Then,
function form. the equations are numerically solved using a spatial mesh

Now we discretize time by a superscript and spatial  size of 0.5 A and a time mesh size of 0.2 a.u. and a finite box
position by a subscrigt Thus,y— glr}?. The variougz values (4000 A) large enough as to neglect border effects. We have
becomeg 6z in the conduction band, wheid is the mesh considered a GaAs/Ga,Al,As double quantum well sys-
width. Similarly, the time variable takes the valuésst, tem which consists of two 140-A-wide quantum wells sepa-
where 6t is the time step. In this way, and to treat the timerated by a barrier of thickness equal to 40 A. The barrier
development, we have used a unitary propagation scheme foeight is taken to be 220 meV. A0, we have assumed a
the evolution operator obtaining a tridiagonal linear systemsymmetric wave function that is created in the center of both
that can be solved by standard numerical metHfds.ad-  quantum wells.
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FIG. 2. Probability density in the left quantum welPf) vs
time for different spin polarizations. We have taken an initial 2D FIG. 3. Amplitude of the tunneling oscillations % We have
electron sheet density equalrig=0.1x 10 cm~2 and applied bias taken different spin polarizations. We have taken an initial 2D elec-
equal to 0.5 mV. tron sheet density equal t,=0.1x 10"t cm™2

lll. RESULTS AND DISCUSSION then the tunneling process is not allowed. Such an effect is
clearly shown in the numerical data plotted in Fig. 3. We
have found the existence of oscillations up to a certain value
of the applied voltagéresonantV) for both spin-polarized
and unpolarized phases. Taking into account the relation be-
b tween the tunneling amplitude and the electric current we
Payb(t)zf dZy(z,1)|?, (4)  can see that our results are consistent with the experimental
a data obtain?(c)i by Eisenstein, Pfeiffer, and Westhd by
where[a,b] are the quantum well limits. In Fig. 2, we have Tumer et al: _In the experlments,_ the authors four!d a
peaked tunneling conductance\at-0 in absence of applied

plotted the probability densiti,  in the left quantum well magnetic field. In our model, the peak characteristics is given
versus time. The total probability density in both quantumby the amplitude peak positiofFig. 3.

wells has been taken to be 1. In our calculations, two differ- ) . .
In Fig. 4, we have plotted the position of the tunneling

ent spin polarizations have been considered. We have taken .
an initial 2D electron sheet density equal ta, peaks(resonantV) versus the electron sheet density. We

~0.1x 10" cm 2 and an applied bias equal to 0.5 mV. The have considered a magnetic phase transition from the usual

existence of the tunneling oscillations between the two quan-

tum wells is clearly shown in Fig. 2. 1.5
In Fig. 3, we have plotted the amplitude of the tunneling

oscillations versusv for different spin polarizations. We

have considered a ferromagnetic transition as a function of

the electron densityg in a coupled doubled quantum well

system. As in the 3D case, a fully polarized phase is ex-

pected at low density and a normal unpolarized phase a high

density. For our particular choice of parametet$we have

assumed that the transition occurs aroundg

~1x10%cm 2 at zero temperature. For both spin-polarized

and unpolarized phases we have found that the amplitude of

the tunneling oscillations is increased as we incraasg to

a certain value of the applied voltagieig. 3). Such a result

can be easily explained as follows. The electron energy lev-

els of both wells are exactly aligned ¥t=0. Therefore, if 0.0 R T T TTTTH

V~0 the charge density will oscillate between both wells 0.01 0.10 1.00

with a certain tunnelling period. ¥ is increased, the ampli- 1 2

tude of the oscillations will also be increased due to the ne (10 cm )

. . . - S

field-induced tunneling process. However, we know that if

the potential difference between both wells is higher than the FIG. 4. ResonanV vs electronic sheet density;. We have

level splitting, the resonant condition is not obtained, andconsidered a magnetic phase transitiomgat 0.1x 10 cm 2.

The numerical integration in time allows us to obtain the
probability of finding the charge densify, , inside a quan-
tum well region[a,b] at any timet:

I

resonant V (mV)
i
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spin-polarized ground state to an unpolarized onenat System. Consequently, the reson&hvalue is increased as
=0.1x 10" cm 2 In Fig. 4, we note two new effects. First, we increasa,.'! In addition, and at low electronic densities
the amplitude peak position is shifted to a higher resoivant (ns<0.1x10'cm™?), the exchange-correlation potential
value atng=0.1x 10" cm 2. Second, at higing values the becomes important when the total electron charge density is
resonant applied bias is strongly increased as we increase located in one quantum well and our nonlinear dynamics is
This shift in the amplitude peak position can be easily ex-given by two different competing potentials.
plained as follows. Aing=0.1x10"cm 2 we have calcu- In summary, in this work we have numerically integrated
lated the resonant applied bias considering both polarizeph space and time a nonlinear effective mass Sdimger
and unpolarized ground statéBig. 4). Consequently, we equation in a double quantum well system. Electron-electron
have used in Eq(3) two different exchange-correlation po- interaction effects have been considered in our model
tentials (v} andVyy), respectively. As a result, a shiftin the through a Hartree potential and the local spin-density ap-
position of the tunneling peak is obtained due to the potentiahroximation. We have considered a magnetic phase transi-
form of the local spin-density approximation. tion from the usual spin-polarized ground state to an unpo-
Let us study the second effect. In Fig. 4, we have founqgarized one ah = 0.1x 10" cm~2 When the magnetic phase
that the peak position is strongly increased as we increase thgnsition occurs, we have found the possibility of having a
2D sheet densityr(;>0.125< 10" cm™?). We shall explain  ghift in the position of the resonant tunneling peak. In this
this result considering the Hartree potential effect on the Cafyay, the possible antiferromagnetic phase transitioould

rier dynamics, Eq(1). The nonlinear dynamics of an elec- pe also investigated by performing resonant tunneling cur-
tron that is localized in our double quantum well system iSyent measurements.

determined by two different competing potentiafg, and
V,c. At high electron densities, the Hartree potential domi-

nates and we have fieId—in_ducc_ad tunneling oscillations due to ACKNOWLEDGMENT
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