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Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot
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The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are
determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show
Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations,
including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a
basis of localized one-electron Hartree states. The hopping matrix eléc@nprises the usual kinetic energy
term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact
results. The phase ofgives rise to the usual Peierls factor, related to the flux through a square defined by the
peaks of the Hartree wave functions. The magnitudedscreases slowly with magnetic field as the Hartree
functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations.

[. INTRODUCTION directions, and the parabolic approximation is unrealistic
since the potential is essentially flat within the dot, rising
Advances in the fabrication of semiconductor nanostrucsharply at the dot boundary. A square well bounded by infi-
tures have made it possible to construct devices, termedite potential barriers provides a simple, though idealized,
“quantum dots”, in which a small number of electrons can model of this form of confinement. In contrast to rotationally
be confined to regions of the order of the Fermi wavelengthsymmetric potentials, angular momentum is not a good quan-
Due to this confinement the electronic spectrum of a quantum number for the square-well system except in the limit of
tum dot is composed of discrete levels, which have beenery high fields, and accordingly even the single-particle
studied in detail by conductance and spectroscopic measurproblem is nonintegrable. Another consequence of the square
ments. Interactions between electrons have been shown to Bgmmetry is that this system can exhibit many-body effects
of major importance in determining the electronic propertiesthat are not readily observed in parabolically confined dbts,
of these systems, and the effects of the strong correlatiorgs the abrupt boundaries mean that the spatial coordinates
between particles has attracted intense experimental and theannot be split into center of mass and relative coordinates,
oretical attention. A particular motivation for studying the and hence Kohn’s theorem is not applicable.
properties of few electron quantum dots is their relevance to In this paper we consider the case of two electrons con-
the rapidly developing field of quantum computihgs the fined to a square-well quantum dot in the presence of a mag-
entangled states of the electrons confined in a quantum daoietic field. In a square-well potential the kinetic energy
can give a physical realization of a quantum bit or “qubit.” scales like 1.2 and the interaction energy likel1/whereL
A convenient probe to study quantum dots is the applications the side length of the well. The competition between these
of a magnetic field that has revealed numerous dramatic arteérms determines the nature of the electron system. For small
novel quantum effects, such as parity oscillations of thel the Coulomb energy is insignificant in comparison to the
ground staté and the phenomenon of magic numbém.  single-particle kinetic energies and the electrons behave like
variety of techniques have been developed to treat these sysncorrelated independent particles. Asncreases the Cou-
tems, including the numerical quantum Monte Carlo methodomb term becomes increasingly dominant and the many-
(QMC),*® Hartree-Fock diagonalizatidhand the direct di- particle states become correlated and cannot be described in
agonalization of the many-body HamiltonidThe majority ~ terms of an independent-electron picture. In this limit the
of these treatments, however, have concentrated on circularglectrons will form a quasicrystalline state to minimize their
symmetric dots with a parabolic confining potential. This iselectrostatic energy, termed a “Wigner molecule” in anal-
indeed a reasonable approximation to the potential found exagy with the formation of a Wigner crystal in an infinite
perimentally in large dots produced by “soft” confinement, system** This observation is the key to a method developed
and it is appealing from the theoretical point of view becausdo treat the strongly correlated situation by mapping the low-
the rotational symmetry of the potential renders the singleenergy spectrum of the system to an effective lattice model
particle problem completely integrablé, giving a natural  of the Hubbard typé? where the lattice points are identified
basis to describe the many-patrticle situation. In real devicesyith the peaks in the charge density of the Wigner molecule
however, one must expect deviations from perfect symmetnystate. In the absence of a magnetic field this technique has
which can have profound effects on their spectrlfor ex-  been successfully used to treat one-dimensional quantum
ample, “hard confined” quantum dots produced by Stranski-dots containing up to six electrof$,and also for two-
Krastanov growth has abrupt heterojunction interfaces in altlimensional polygonal dots containing two electrohst
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this mapping to a lattice model indeed captures the basic Br

physics of the system, we should expect it to also reproduce 0.7 for r<a

the dominant effects of an applied magnetic field by the in- A=(A, Ay = ) 2
clusion of a Peierls factor in the intersite hopping terms. 0—| r>a.

We test this expectation here by comparing the predictions of "2r

the lattice model modified in this way with results obtained . ever to simplify the numerical investigation it was de-

by the explicit diagonalization of two-electron quantum dotSgjgeq to use an analytic form for the vector potential:
pierced by a variety of different magnetic flux distributions.

We find that in all cases the Peierls substitution gives the BaZ r
correct qualitative behavior of the energy levels, and be- AgZT
comes precise in the limit of an Aharonov-Bohm flux line.

Quantitative accuracy for physically realizable magneticwhich has the same behavior as E®) at small and large
fields may be obtained by minor renormalizations of the pavalues ofr but does not have a cusprata and is therefore
rameters of the effective lattice model, arising from the in-more amenable to a numerical treatment. Aligning the flux
creased localization of the electron wave functions producetube with the center of the dot allows us to easily compare
by a physical magnetic field. We further justify this picture the results obtained as the magnetic field is changed from the
by explicitly constructing localized Hartree basis functions.uniform case §—«) toward the limit of an Aharonov-
The Hamiltonian is then diagonalized using the lowest fourBohm flux line @=0) by altering the value o&.

Hartree basis functions, corresponding to an electron local- To find the eigenvalues of the Hamiltoniéh) we chose
ized near one of the four corners of the square. This givet use a basis of states/n(x)¥m(y)} for each electron,
good agreement with the exact results. Furthermore, retaiwhere

3

r2+a?’

ing only nearest-neighbor hopping and diagonal Coulomb 5
repulsion terms also gives good quantitqtive agrgement with P (X)= \ﬁsin(@), 0o<x<L (%)
the exact result, provided that the hopping term includes an L L

important contribution from the Coulomb interaction. This 534 | is the side length of the square dot, which are the
gives explicit justification of the simple extended HUbbardeigenstates of the noninteracting system in the absence of a
model and correctly reproduces the detailed dependence giagnetic field. For the specific case of a uniform magnetic
the energy levels on the applied field. Finally we discuss thgield the matrix elements of all the single-electron terms in
relevance of these results to the phenomena predicted to ogre Hamiltonian(1) can be calculated analytically in this
cur in quantum dot arrays,which can also be described by basis. For the other field configurations, however, it was nec-
a mapping to a lattice model of Hubbard type. essary to calculate these matrix elements numerically, and a
NAG routine was used to evaluate the two-dimensional inte-
grals. The matrix elements of the Coulomb interaction were
Il. LOW-ENERGY EIGENSTATES also obtained numerically. Up to eight basis functions per
direction were used for each particle to obtain the matrix

We consider a square quantum dot, described by th1“'0rm of the Hamiltonian, which was then block-diagonalized

Hamiltonian into singlet and triplet subspaces and treated by a standard
eigenvalue routine. In all cases the dot material was taken to
L 2 o2 . be GaAs, with an effective mass® =0.067m, and a relaqt’i\ée
_ . 2 permittivity e,=10.9, giving an effective Bohr radius
= ﬁ |:El (1Y +eA)™+ V() I+ darege, [11—1y|" =8.8 nm.
(1) We first consider the case of noninteracting electrons in

the presence of a uniform magnetic field in order to under-

stand the single-patrticle effects of the magnetic field, before
whereV(r) is the confinement potential adlis the vector introducing the additional complication of strong correla-
potential of the applied magnetic fieBl We assume that the tions. We show in Fig. 1 the dependence of the energies of
electrons are confined by infinite walls, and that they can be¢he low-lying eigenstates on the strength of the applied field
described by the effective-mass approximation. The two simB, for the two noninteracting electrons. At low field
plest forms of applied magnetic field are a uniform fiesd, strengths the spectrum is extremely complex, with some lev-
perpendicular to the plane of the dot and, at the other exels showing a linear dependence on the field and others a
treme, an Aharonov-Bohm flux line in which the magnetic quadratic dependence. Many level crossings occur, and also
field is zero throughout the dot except at a single point, buthe phenomenon of “avoided crossings” or level repulsion
phase interference effects arise from the particles’ interacean be clearly seen. This is a typical signature of the pres-
tions with the vector potential. We may interpolate betweerence of quantum chaos and arises here because of the non-
these cases by using a flux tube of radiyfside which the integrability of the single-particle problem in a square
magnetic field is uniform and outside of which the field is boundary. Such avoided crossings are not seen, for example,
zero. This is equivalent to the field produced by an infinitelywhen the confining boundary is rotationally symmetric.
long solenoid of radius. In the symmetric gauge it can Avoided crossings have also been seen in experiments, such
easily be shown that the vector potential corresponding tas in Ref. 16, in which electron micrographs of the quantum
this field is given by dots clearly show deviation from circular symmetry. At high
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FIG. 1. Energy levels of two noninteracting electrons in a FIG. 3. Energy levels of a two-electron square-well quantum dot
800 nm square-well qguantum dot. Dots and open circles indicatén a uniform magnetic field. Filled and open circles indicate singlet
singlet and triplet levels, respectively. Each triplet level is degenerand triplet levels, respectively.
ate with a singlet level. Dashed lines show the lowest two Landau
levels. netic field. The dot size was taken to be=800 nm, which

is well within the Wigner molecule regime. We see that there
magnetic fields the spectrum simplifies considerably, and iis a low-lying multiplet of two singlet and two triplet states
can be seen that the two-electron energy levels start to conthat are relatively well separated from higher-lying states and
dense into highly degenerate Landau levels with a linear desscillate with field, with an overall energy increase. To show
pendence on the fiel&,=(n+1)Aw., wherew.=eB/m* these oscillations more clearly we subtract the average en-
is the cyclotron frequency. It should be noted that the groungrgy of the multipletEq(B), from the eigenenergies, which
state experiences no level crossings and evolves smoothhas an approximately quadratic dependence on applied field
into the lowest Landau level, remaining a spin singlet for all(see also Sec. IV The fine details of the oscillations in en-
values of magnetic field. ergy are then seen clearly, as shown in Fig. 4. In particular,

We now consider the effect of turning on the Coulombwe see that the oscillations have a definite frequency and a
interaction. As was stated earlier, the physical sizef the  gradually decaying envelope. It follows that the ground-state
dot determines the relative importance of the kinetic ancenergy oscillates between singlet and triplet with increasing
Coulomb energies of the system, and when the mean elefield. We note that the Zeeman term has been neglected in
tron separation exceeds a critical vahyghe electron charge the initial Hamiltonian(1). This would, of course, produce
density becomes localized in space, forming a Wigner molsmall splittings between the constituent states of each triplet,
ecule. It was found in Ref. 13 that for a two-electron polygo-but otherwise does not change the results in an essential way.
nal dotr .~ 10ag. We show in Fig. 2 the ground-state charge  The rest of the paper will focus mainly on this low-lying
densities in zero magnetic field for two extreme cakes
<r.andL>r to show how the structure of the ground state 0.004 ' .
alters as . is exceeded.

In Fig. 3 we show the evolution of the lowest-energy
levels as a function of the field strength of a uniform mag-
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FIG. 2. Ground-state charge-density distributions obtained by
exact diagonalzation fa@) L=10 nm,(b) L=1600 nm, showing FIG. 4. Dependence of the lowest-lying energy levels on mag-
the transition from a weakly interacting case to a sharply peakedetic field, with the average increadg,(B) ] with field subtracted.
Wigner crystal. These peaks define the lattice points that are used Filled and open circles indicate singlet and triplet levels, respec-
the construction effective charge-spin modelee Sec. I\ tively.
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manifold of states and in the next section we show how iffor the triplets, where we have set |t|e'?. These solutions
may be described in terms of effective charge-spin modelsare obtained using tota$, and fourfold symmetry, which
which in turn explains why the manifold is isolated from reduces the Hamiltonian matrix to block diagonal form with
higher-lying states, the nature of the oscillations with appliecho more than X2 submatrices. Sincl|<V, we may ex-
field, and how they may be interpreted in terms of quasi-onepand the square root in E¢$) and(7). To second order this
dimensional persistent currents. gives for the lowest manifold of states:

Ill. EFFECTIVE CHARGE-SPIN MODELS AND Es=Eo*2A cos 2¢,
PERSISTENT CURRENTS _

=E,+
The existence of the strongly correlated Wigner molecule Ei=Eo=24 sin2¢, ®
state is the criterion for the validity of mapping the low-lying whereA = 2|t|2/V andE(,: Ey,—2A. We can, in fact, derive
states of the quantum dot to an effective lattice model, wherenis result in a different way, which emphasizes the nature of
the lattice sites are given by the location of the peaks of thehe low-lying eigenstates. The excited states corresponding
Wigner molecule state shown in Fig. 2. In Ref. 12 it wasto the two electrons on neighboring sites are eliminated by
conjectured that the appropriate effective lattice model tajegenerate perturbation theory. To second order, the
describe the low-energy manifold of a system of stronglyt\/-Hamiltonian is then transformed into the effective
interacting electrons in a quantum dot is an extended singlg4amiltoniant?13
band Hubbard model. If, for this case of two electrons, we
neglect direct exchange and set the Hubbdrénergy to Heg=Eo+ (A€'?!R_,+H.C), 9
infinity (equivalent to forbidding double occupation of “lat- )
tice” sites and neglecting superexchangaen the extended whereR,, rotates the two electrons at opposite corners of

Hubbard model takes on the particularly simple form: the square on a diagonal by/2. Diagonalization ofH
yields directly the singlet and triplet energi€8). In this

effective model the pair of electrons thus tunnel between the
HVY=Eo+P| > (tc],cjp+H.c)+Vnn;|P. (5 base states with an amplitude modulated by a Peierls factor,
tdye e'2%, with twice the phase angle of the underlying extended
HereP is a projection operator that eliminates doubly occu-Hubbard model, since it involves two electron hops. Al-
pied lattice sitest is a nearest-neighbor hopping term, and thoughH ¢« reproduces the low-energy multiplet of H§) to
is the difference in Coulomb energy between states when thgood accuracy, it is instructive to calculate the néatrth-
two electrons occupy neighboring sites and when they arerdel correction. This renormalizes, andA, and also in-

diagonally opposite each other. troduces a Heisenberg spin-exchange term:
The energyEq=2¢4+V, is the ground-state energy in
the “atomic limit”, where g, is the on-site energy and, is Js 3+ %4], (10

the Coulomb energy between the two electrons on diagonall%here J=
opposite sites. The energy parametggs V, andt depend on this is a small correction, it is not negligible and accounts,

the magnitude of the magnetic field, anu general is com- for example, for the small asymmetry of the singlet-triplet
plex. One can see on inspection that the spectrum of the Pie, Y y 9 P

Hamiltonian(5) must consist of a low-lying manifold of two Splittings atB=0. The fourth-order effective Hamiltonian

singlets and two triplets, corresponding to the electrons beinﬁas’. in fact, the most general form, since higher orders can-
on diagonally opposite sites, and a higher-lying manifold ot introduce qualitatively different terms. Thus we see that

consisting of four singlets and four triplets, corresponding tothe low-energy manifold can be generally described by a

the two electrons being on neighboring sites. Furthermore, iﬁ?ﬁﬁe'osﬂgig?ggr 'ne\)’(\':#;?] tgeﬁl]?scuggzr;?t:;; é{f\’/'glyH:r?ﬂ
the strong correlation regime for whick>t, the lower 9 9 ge. 9

manifod should have energyEq wih the highertying Rl ot T s S e nd &
manifold at energy~E+ V. This is indeed the case as can P gy sp P

be seen from the exact analytic solutions that take the for hysical picture of the nature of the states. It is emphasized,
y owever, that such an accurate representation is only valid

1 for the lowest multiplet and that higher-lying states resulting
Ec—Eo==[V*+VV2+16t|%(1—cos2p)], from the solution of the single-band Hubbard mogiggs.

2 (5)—(7)] are not only less accurate but also incomplete.
1 (There exist further excited states of energy relative to
Trva A2 2 the ground manifold that are not contained within the ap-
2[V_\/V +16/t]%(1+cos2p)], V., V © proximation of a single-band Hubbard modlel.

It is easily verified that Eq(9) has the correct form to
describe the pattern of oscillations seen in Fig. 4 with the
1 quantity ¢ being the phase acquired by an electron hopping
E,— Eo==[V+V2+16t[%(1+sin 2¢)], between two adjacent sites of the lattice on which the effec-

2 tive t-V model is defined. The total phase angle acquired
when an electron hops once around the square ds 4
=27®/d,, wheredy=h/e is the fundamental flux quan-
tum and®=Br? is the total enclosed flux for an effective

—(16t|*/V3)cos 4p (ferromagnetit. Although

for the singlets and

;[w JWV2+16]t[2(1-sin2¢)], V, V (7)
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0.004 ' . model in zero field? This is due to the fact that at this value

of flux the Aharonov-Bohm phase acquired by the electrons
when they exchange positions compensates for the sign aris-
ing from their fermionic statistics, and hence the magnetic

0.002 . . ) ;

_ field can be viewed as converting the electrons into “com-

%é posite bosons”.

= A consequence of the oscillations in energy of the singlet

oF 0 and triplet states in the lowest multiplet is that the parity of

= the ground state periodically changes from symmetric to an-

:;j tisymmetric. Similar parity oscillations were observed by
0,002 Wagneret al.and Peeters and Schweiddrt the spectrum of

two-electron quantum dots with rotationally symmetric po-
tentials and also by Ugajtfiin a numerical study of square
dots of small size. As the ground state does not flip parity in

-0.004 : : the noninteracting case, this behavior is clearly a conse-
0 0.02 0.04 0.06 . .
BT quence of the Coulomb interaction.

FIG. 5. Comparison of exact calculatigaircles and diagonal- IV. CONSTRUCTION OF EFFECTIVE CHARGE-SPIN
ization within the space of one Hartree state per fitangles. MODELS USING A HARTREE BASIS
Filled and open symbols indicate singlets and triplets, respectively.
The overall increase in energy with fie[d€y(B)] has been re- Although the Peierls substitution accounts for the oscilla-
moved. tory behavior of the lowest-energy levels, the precise details

of their behavior such as the decay in amplitude of the os-
lattice parameter,_ . By measuring the distance between thecillations, the marginal increase in their perigdpparent
peaks in the ground-state charge distribution we obtain #om a close examination of Fig)4and the overall increase
value ofr =495 nm for an 800 nm dot. Thus a magnetic of the energy levels with the field, require additional expla-
field of 0.0095 T corresponds to a magnetic flux of nation. This may be achieved by deriving suitable localized
1.11d /2, which agrees well with the value dfy/2 that Eqs.  basis functions, and explicitly calculating the energy param-
(8) predict for the form of the spectrum to become inverted.eters of the resulting tight-bindingextended Hubbaid
This close agreement, obtained witlo adjustable param- model. We have shown that this gives high accuracy for a
eters, fully endorses interpreting the results at nonzero magdsasis set constructed from Hartree functions in the following
netic field within the framework of the lattice model in way. We first fix the position of one electron in one corner of
which the hopping terms are modified by phase factors. Anhe square. The one-electron Safirmer equation is then
alternative interpretation of this behavior is that the two elecsolved for the other electron, giving a set of one-electron
trons are hopping around the four sites of the square, givingtates. For the Wigner regime considered here, the low-lying
rise to a persistent curreht= —JE/9d. This is periodic in  states, and in particular the ground-state, are localized near
the enclosed flux but with half the period of two noninteract-the corner of the square diagonally opposite the fixed elec-
ing electrons on a ring, due to the correlated positions of théron. We then solve the Schilimger equation for the first
rotating electrons, described by E@®) It is interesting to  electron under the influence of the probability charge density
note that the inverted spectrum that occurs after a quartesf the other, in the sense of the Hartree method. This proce-
cycle is the result that would be obtained fobasonic tV ~ dure is iterated to convergence, yielding two sets of one-

0.004 T T 0.004 T T

0.002 0.002

Energy—E (B) (meV)
o

Energy—E (B) (meV)
o

-0.002 -0.002

-0.004 0 -0.004

0.02 0.04 0.06 0 0.02 0.04 0.06
B(M B(T

FIG. 6. Nearest-neighbarV Hubbard modeltriangles with (a) kinetic hopping only andb) Coulomb-induced effective hopping
included. Exact resultgcircles are shown for comparison. Open and filled symbols indicate singlet and triplet levels, respectively. The
overall increase in energy with fie[dy(B)] has been removed.
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electron wave functions that may be mapped into one annalized Hartree states and determine which are essential to
other by a rotation ofr. Clearly two further sets may be reproduce the exact results to good accuracy. If we retain
deduced for the remaining corners of the square by a rotatiognly the largestdiagona) Coulomb matrix elements and the
of m/2. Each of these four sets is composed of mutuallyone-electron matrix elements of the kinetic energy and con-
orthogonal single-electron wave functions, but wave funcining potential, then the second quantized Hamiltonian has
tions from different sets are not necessarily orthogonal tdrecisely the form of Eq(5) provided we preclude double
each other. A complete orthonormal set may be constructe@ccupation of a localized orbital, which is equivalent to set-
progressively by first mutually orthogonalizing the groundting the intra-“site” Coulomb matrix element() to infin-
state from each set using wdin's'” method. These states Y- The low-energy manifold within this approximation is
alone enable the extended Hubbard model to be constructdt®tted in Fig. Gfa)' t_ogether ‘.N'th the numerical solutions of
and, as we will show, reproduce the exact results to goo e_exact Ham|lt0n|a.n,.obta|ned in Sec. I We see that Fhe
accuracy. The remaining Hartree excited states may then %Bam source (.)f error is in the phase of the psc:|llat|ons, which
orthogonalized to these lowest states by the Schmidt proc lave a S|gn|f|c§1ntly reduced frequenqy. Since we havg only
dure. Their effect may be accounted for later by perturbatiomegleCted off-diagonal Coulomb matrix elements in this ap-

theory, where, for the regime of interest, they give sma”proximatiqn, the source of the_ error must arise from
corrections. Coulomb-induced effective hopping. There are many such

Restricting ourselves to the lowest four orthogonalizedterms’ most of them small. One class of terms that is not

Hartree states we may construct all two-electron symmetriémaII mvolve; three sites w!thout Spin fl!ps. The sum of'aII
(singled and antisymmetrictriplet) orbital states and within such_terms gives the following contribution to the effective
this two-electron basis diagonalize the Hamiltonjan The ~ Hamiltonian:

results of this calculation for the lowest multiplet are shown

in Fig. 5 in which we also plot the exact results for compatri- Hagie= P E (ik|g|jk)ciT Cl \ChyCigP

son. The overall increase in energy with field, which is well ijkoo’ ket
reproduced by the Hartree calculation, has been removed i#j#k

from Fig. 5. This increase in energy and the decrease in

amplitude of oscillations with field may be simply related to =P > (iklglik)cl,c;ncP

the change in shape of the one-electron Hartree functions, i;‘ﬁ-‘gk

which become more localized with increasing magnetic field,

thereby increasing the one-electron energy while decreasing ZPE [tScl ¢, +H.c]P (11)
overlaps. We emphasize the importance of using Hartree (5o - e '

rather than Hartree-Fock base states. While the latter will
always give the lowest estimate of the ground-state energ?hereg is the Coulomb term in Ec(1). The restriction that
for a single Slater determinant, it does not necessadty all three sites be different follows from the constraint of no
even usually give a very accurate estimate of a low-lying double occupation, enforced by the projection opera®yr,
multiplet when there is near-degeneracy. This is indeed thé;=(ik|g|jk), independent ofk, and we have used
case for two electrons in a square dot. If we take the lowesP=nP=1. Thus the effect of these Coulomb terms is to
four Hartree-Fock stateéwhich are of course orthogonal simply renormalize the one-electron hopping Plots of the
and form all two-electron states from these and diagonalizéow-energy manifold are again shown in Figbfand we see
the Hamiltonian within this set, then, apart from the groundthat the correct Aharonov-Bohm oscillations are reproduced
state, the low-lying multiplet is a very poor approximation toto good accuracy. Thus we see that the simple nearest-
the exact result, with level separations that can be many omeighbort-V Hubbard model withU=c describes accu-
ders of magnitude too large. This also gives rise to spuriougately the low-energy physics provided that the Coulomb
qualitative errors, such as lifting the degeneracy of the twecontribution to the hopping is included.
triplets atB=0. The reasons for this are as follows. The first ~ Within thet-V model we see thd&-dependent terms arise
two Hartree-Fock states are localized on opposite corners df two different ways. The Peierls factet® comes solely
a diagonal and are similar to the Hartree states. However, tHeom the magnetic flux enclosed by the lattice, whereas the
next two Hartree-Fock states, which are localized near theelf-energy and the renormalization of thé/ parameters
other two diagonal corners of the square, are less localizedriginate from the physical interaction of the electrons with
due to the increased kinetic energy needed to ensure orthogtite magnetic field. As we reduce the size of the flux tube and
nality. This increased width of the excited states gives rise t@pproach the limit of an Aharonov-Bohm flux line, we
enhanced tunneling between the low-energy two-electroshould therefore expect the latter effects to vanish but the
states, leading to a large increase in level separation since tiReierls factors to remain. To check this supposition we dis-
tunneling matrix elements are very sensitive to the width ofplay in Fig. 7 the behavior of the energy levels for flux tubes
the localized states. Furthermore, as the symmetry of thef radiusL/2, L/4, andL/16. It can be clearly seen that as the
square geometry is lost, degeneracies arising from this symradius of the flux tube is reduced, the overall increase of all
metry are lifted. Conversely, the lowest one-electron Hartre¢he energies with increasing field is reduced, corresponding
states, located near each corner of the square, are sufficiently the reduction in magnitude of the self-energy. The energy-
localized to account for most of the Coulomb and kineticlevel oscillations remain, as expected, and their amplitude
energy, while still maintaining the correct symmetry. decays less rapidly. In the limit of an Aharonov-Bohm flux
We now consider in more detail the matrix elements ofline it is clear that the amplitude of the oscillations will re-
the Hamiltonian within the basis set of the lowest orthogo-main constant, and that no overall increase of energies will
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FIG. 7. Energy levels of a two-electron square-well quantum dot pierced by a flux tube. Flux-tube rddi latZ (b) L/4; (c) L/16.
Filled and open circles indicate singlet and triplet levels, respectively.

occur, meaning that the system can indeed be modeled kslectrons are located close to their electrostatic minima, near
making a pure Peierls substitution in th& Hamiltonian. diagonally opposite corners of the square. Within this frame-
The parallels between these results and those obtainedork, the overall increase in energy with magnetic field is
recently by Kotlyaret al® for an array of coupled quantum mainly due to the increase in the one-electron Hartree energy
dots holding a small number of electrons, are striking. In thewhile the reduction in amplitude of the Aharonov-Bohm os-
guantum-dot arrays, electron localization is achieved by coneillations is due to the increased sharpness of the localized
fining electrons to individual quantum dots, which are con-states, which reduces the single-electron hopping. The
nected to their neighbors by leads. Exactly the same proAharonov-Bohm oscillations are themselves a consequence
cesses of localization and hopping are present in the singlef the phase change when moving from one localized state to
guantum-dot system we consider, but localization comesnother around the square, resulting in Peierls phase factors
from the electrostatic repulsion between the electrons, whicin the hopping matrix elements and persistent currents
for sufficiently large dots forces the electrons into a highlyaround the perimeter of the square. The system is thus
localized Wigner molecule state, and hopping occurs via tunequivalent to a tight-binding ring with four sites, the quasi-
neling processes between the various low-lying energy levene-dimensionality being a consequence of Coulomb repul-
els. We note, however, that the fabrication of a single largesion. Coulomb repulsion also has the effect of forcing the
guantum dot is considerably simpler than the process of linkelectrons to be diagonally opposite each other, causing them
ing individual dots with leads, and the creation of a dot withto rotate as a rigid pair, with an Aharonov-Bohm oscillation
the dimensions we discuss is well within current experimen-of twice the frequency of noninteracting electrons on a ring.
tal capabilities. A single dot may thus provide a more con-The mapping to an effective lattice model is thus a valuable
venient physical realization for studying strongly correlatedway of interpreting the phenomena revealed in the spectrum
mesoscopic systems than an array of dots. In addition, withiof the dot as the magnetic field is applied and provides, for
a single nanostructure it should be possible to maintain coexample, an appealing interpretation of the origin of the par-
herence of the electrons for longer time scales, which is oity oscillations of the ground state. This investigation has
relevance to the potential of these devices as elements a@bncentrated on the regime of weak to medium strength

guantum computers. magnetic fields, in which the magnetic length scale is com-
parable with the Coulomb interaction length. Accordingly
V. SUMMARY AND CONCLUSIONS the spectrum shows a rich structure arising from the interplay

between magnetic effects and correlations produced by the

We have studied the behavior of the low-lying energyCoulomb interaction. As the magnetic field is increased fur-
levels of a square-well quantum dot containing two electher magnetic effects will become dominant and the eigen-
trons, subject to a perpendicular magnetic field. It has beestates of the system will evolve toward Landau-level states.
shown in an earlier work that an effective lattice mod®|  Extending the range of magnetic field to study this transition
t-V mode) can be used successfully to treat the case of zergnd its relation to the quantum Hall effect is an exciting
magnetic field, and we find that by making a simple Peierlspyrospect for future investigation.
substitution this model also predicts the main qualitative
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