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Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot
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The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are
determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show
Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations,
including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a
basis of localized one-electron Hartree states. The hopping matrix elementt comprises the usual kinetic energy
term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact
results. The phase oft gives rise to the usual Peierls factor, related to the flux through a square defined by the
peaks of the Hartree wave functions. The magnitude oft decreases slowly with magnetic field as the Hartree
functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations.
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I. INTRODUCTION

Advances in the fabrication of semiconductor nanostr
tures have made it possible to construct devices, term
‘‘quantum dots’’, in which a small number of electrons ca
be confined to regions of the order of the Fermi waveleng
Due to this confinement the electronic spectrum of a qu
tum dot is composed of discrete levels, which have b
studied in detail by conductance and spectroscopic meas
ments. Interactions between electrons have been shown
of major importance in determining the electronic propert
of these systems, and the effects of the strong correlat
between particles has attracted intense experimental and
oretical attention. A particular motivation for studying th
properties of few electron quantum dots is their relevance
the rapidly developing field of quantum computing,1 as the
entangled states of the electrons confined in a quantum
can give a physical realization of a quantum bit or ‘‘qubit
A convenient probe to study quantum dots is the applica
of a magnetic field that has revealed numerous dramatic
novel quantum effects, such as parity oscillations of
ground state2 and the phenomenon of magic numbers.3 A
variety of techniques have been developed to treat these
tems, including the numerical quantum Monte Carlo meth
~QMC!,4,5 Hartree-Fock diagonalization,6 and the direct di-
agonalization of the many-body Hamiltonian.3 The majority
of these treatments, however, have concentrated on circu
symmetric dots with a parabolic confining potential. This
indeed a reasonable approximation to the potential found
perimentally in large dots produced by ‘‘soft’’ confinemen
and it is appealing from the theoretical point of view becau
the rotational symmetry of the potential renders the sing
particle problem completely integrable,7,8 giving a natural
basis to describe the many-particle situation. In real devi
however, one must expect deviations from perfect symme
which can have profound effects on their spectrum.9 For ex-
ample, ‘‘hard confined’’ quantum dots produced by Strans
Krastanov growth has abrupt heterojunction interfaces in
PRB 620163-1829/2000/62~11!/7249~8!/$15.00
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directions, and the parabolic approximation is unrealis
since the potential is essentially flat within the dot, risi
sharply at the dot boundary. A square well bounded by in
nite potential barriers provides a simple, though idealiz
model of this form of confinement. In contrast to rotationa
symmetric potentials, angular momentum is not a good qu
tum number for the square-well system except in the limit
very high fields, and accordingly even the single-parti
problem is nonintegrable. Another consequence of the sq
symmetry is that this system can exhibit many-body effe
that are not readily observed in parabolically confined dot10

as the abrupt boundaries mean that the spatial coordin
cannot be split into center of mass and relative coordina
and hence Kohn’s theorem is not applicable.

In this paper we consider the case of two electrons c
fined to a square-well quantum dot in the presence of a m
netic field. In a square-well potential the kinetic ener
scales like 1/L2 and the interaction energy like 1/L, whereL
is the side length of the well. The competition between th
terms determines the nature of the electron system. For s
L the Coulomb energy is insignificant in comparison to t
single-particle kinetic energies and the electrons behave
uncorrelated independent particles. AsL increases the Cou
lomb term becomes increasingly dominant and the ma
particle states become correlated and cannot be describ
terms of an independent-electron picture. In this limit t
electrons will form a quasicrystalline state to minimize th
electrostatic energy, termed a ‘‘Wigner molecule’’ in ana
ogy with the formation of a Wigner crystal in an infinit
system.11 This observation is the key to a method develop
to treat the strongly correlated situation by mapping the lo
energy spectrum of the system to an effective lattice mo
of the Hubbard type,12 where the lattice points are identifie
with the peaks in the charge density of the Wigner molec
state. In the absence of a magnetic field this technique
been successfully used to treat one-dimensional quan
dots containing up to six electrons,12 and also for two-
dimensional polygonal dots containing two electrons.13 If
7249 ©2000 The American Physical Society
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7250 PRB 62CREFFIELD, JEFFERSON, SARKER, AND TIPTON
this mapping to a lattice model indeed captures the b
physics of the system, we should expect it to also reprod
the dominant effects of an applied magnetic field by the
clusion of a Peierls factor14 in the intersite hopping terms
We test this expectation here by comparing the prediction
the lattice model modified in this way with results obtain
by the explicit diagonalization of two-electron quantum do
pierced by a variety of different magnetic flux distribution
We find that in all cases the Peierls substitution gives
correct qualitative behavior of the energy levels, and
comes precise in the limit of an Aharonov-Bohm flux lin
Quantitative accuracy for physically realizable magne
fields may be obtained by minor renormalizations of the
rameters of the effective lattice model, arising from the
creased localization of the electron wave functions produ
by a physical magnetic field. We further justify this pictu
by explicitly constructing localized Hartree basis function
The Hamiltonian is then diagonalized using the lowest fo
Hartree basis functions, corresponding to an electron lo
ized near one of the four corners of the square. This gi
good agreement with the exact results. Furthermore, ret
ing only nearest-neighbor hopping and diagonal Coulo
repulsion terms also gives good quantitative agreement
the exact result, provided that the hopping term includes
important contribution from the Coulomb interaction. Th
gives explicit justification of the simple extended Hubba
model and correctly reproduces the detailed dependenc
the energy levels on the applied field. Finally we discuss
relevance of these results to the phenomena predicted to
cur in quantum dot arrays,15 which can also be described b
a mapping to a lattice model of Hubbard type.

II. LOW-ENERGY EIGENSTATES

We consider a square quantum dot, described by
Hamiltonian

H5
1

2m*
(
i 51

2

@~2 i\¹ i1eA i !
21V~r i !#1

e2

4pe0e r

1

ur12r2u
,

~1!

whereV(r ) is the confinement potential andA is the vector
potential of the applied magnetic fieldB. We assume that the
electrons are confined by infinite walls, and that they can
described by the effective-mass approximation. The two s
plest forms of applied magnetic field are a uniform field,Bz ,
perpendicular to the plane of the dot and, at the other
treme, an Aharonov-Bohm flux line in which the magne
field is zero throughout the dot except at a single point,
phase interference effects arise from the particles’ inte
tions with the vector potential. We may interpolate betwe
these cases by using a flux tube of radiusa, inside which the
magnetic field is uniform and outside of which the field
zero. This is equivalent to the field produced by an infinite
long solenoid of radiusa. In the symmetric gauge it ca
easily be shown that the vector potential corresponding
this field is given by
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A5~Ar ,Au!5H S 0,
Br

2 D for r<a

S 0,
Ba2

2r D r .a.

~2!

However, to simplify the numerical investigation it was d
cided to use an analytic form for the vector potential:

Au5
Ba2

2

r

r 21a2
, ~3!

which has the same behavior as Eq.~2! at small and large
values ofr but does not have a cusp atr 5a and is therefore
more amenable to a numerical treatment. Aligning the fl
tube with the center of the dot allows us to easily comp
the results obtained as the magnetic field is changed from
uniform case (a→`) toward the limit of an Aharonov-
Bohm flux line (a50) by altering the value ofa.

To find the eigenvalues of the Hamiltonian~1! we chose
to use a basis of states$cn(x)cm(y)% for each electron,
where

cn~x!5A2

L
sinS npx

L D , 0<x<L ~4!

and L is the side length of the square dot, which are t
eigenstates of the noninteracting system in the absence
magnetic field. For the specific case of a uniform magne
field the matrix elements of all the single-electron terms
the Hamiltonian~1! can be calculated analytically in thi
basis. For the other field configurations, however, it was n
essary to calculate these matrix elements numerically, an
NAG routine was used to evaluate the two-dimensional in
grals. The matrix elements of the Coulomb interaction w
also obtained numerically. Up to eight basis functions p
direction were used for each particle to obtain the ma
form of the Hamiltonian, which was then block-diagonaliz
into singlet and triplet subspaces and treated by a stan
eigenvalue routine. In all cases the dot material was take
be GaAs, with an effective massm* 50.067me and a relative
permittivity e r510.9, giving an effective Bohr radius ofaB
58.8 nm.

We first consider the case of noninteracting electrons
the presence of a uniform magnetic field in order to und
stand the single-particle effects of the magnetic field, bef
introducing the additional complication of strong correl
tions. We show in Fig. 1 the dependence of the energie
the low-lying eigenstates on the strength of the applied fi
Bz for the two noninteracting electrons. At low fiel
strengths the spectrum is extremely complex, with some
els showing a linear dependence on the field and othe
quadratic dependence. Many level crossings occur, and
the phenomenon of ‘‘avoided crossings’’ or level repulsi
can be clearly seen. This is a typical signature of the pr
ence of quantum chaos and arises here because of the
integrability of the single-particle problem in a squa
boundary. Such avoided crossings are not seen, for exam
when the confining boundary is rotationally symmetr
Avoided crossings have also been seen in experiments,
as in Ref. 16, in which electron micrographs of the quant
dots clearly show deviation from circular symmetry. At hig
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PRB 62 7251MAGNETIC FIELD DEPENDENCE OF THE LOW-ENERGY . . .
magnetic fields the spectrum simplifies considerably, an
can be seen that the two-electron energy levels start to
dense into highly degenerate Landau levels with a linear
pendence on the field,En5(n11)\vc , wherevc5eB/m*
is the cyclotron frequency. It should be noted that the grou
state experiences no level crossings and evolves smoo
into the lowest Landau level, remaining a spin singlet for
values of magnetic field.

We now consider the effect of turning on the Coulom
interaction. As was stated earlier, the physical sizeL of the
dot determines the relative importance of the kinetic a
Coulomb energies of the system, and when the mean e
tron separation exceeds a critical valuer c the electron charge
density becomes localized in space, forming a Wigner m
ecule. It was found in Ref. 13 that for a two-electron polyg
nal dotr c'10aB . We show in Fig. 2 the ground-state char
densities in zero magnetic field for two extreme casesL
!r c andL@r c to show how the structure of the ground sta
alters asr c is exceeded.

In Fig. 3 we show the evolution of the lowest-ener
levels as a function of the field strength of a uniform ma

FIG. 1. Energy levels of two noninteracting electrons in
800 nm square-well quantum dot. Dots and open circles indic
singlet and triplet levels, respectively. Each triplet level is degen
ate with a singlet level. Dashed lines show the lowest two Lan
levels.

FIG. 2. Ground-state charge-density distributions obtained
exact diagonalzation for~a! L510 nm,~b! L51600 nm, showing
the transition from a weakly interacting case to a sharply pea
Wigner crystal. These peaks define the lattice points that are us
the construction effective charge-spin models~see Sec. III!.
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netic field. The dot size was taken to beL5800 nm, which
is well within the Wigner molecule regime. We see that the
is a low-lying multiplet of two singlet and two triplet state
that are relatively well separated from higher-lying states a
oscillate with field, with an overall energy increase. To sh
these oscillations more clearly we subtract the average
ergy of the multiplet,E0(B), from the eigenenergies, whic
has an approximately quadratic dependence on applied
~see also Sec. IV!. The fine details of the oscillations in en
ergy are then seen clearly, as shown in Fig. 4. In particu
we see that the oscillations have a definite frequency an
gradually decaying envelope. It follows that the ground-st
energy oscillates between singlet and triplet with increas
field. We note that the Zeeman term has been neglecte
the initial Hamiltonian~1!. This would, of course, produce
small splittings between the constituent states of each trip
but otherwise does not change the results in an essential

The rest of the paper will focus mainly on this low-lyin
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FIG. 3. Energy levels of a two-electron square-well quantum
in a uniform magnetic field. Filled and open circles indicate sing
and triplet levels, respectively.

FIG. 4. Dependence of the lowest-lying energy levels on m
netic field, with the average increase@E0(B)# with field subtracted.
Filled and open circles indicate singlet and triplet levels, resp
tively.
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7252 PRB 62CREFFIELD, JEFFERSON, SARKER, AND TIPTON
manifold of states and in the next section we show how
may be described in terms of effective charge-spin mod
which in turn explains why the manifold is isolated fro
higher-lying states, the nature of the oscillations with appl
field, and how they may be interpreted in terms of quasi-o
dimensional persistent currents.

III. EFFECTIVE CHARGE-SPIN MODELS AND
PERSISTENT CURRENTS

The existence of the strongly correlated Wigner molec
state is the criterion for the validity of mapping the low-lyin
states of the quantum dot to an effective lattice model, wh
the lattice sites are given by the location of the peaks of
Wigner molecule state shown in Fig. 2. In Ref. 12 it w
conjectured that the appropriate effective lattice model
describe the low-energy manifold of a system of stron
interacting electrons in a quantum dot is an extended sin
band Hubbard model. If, for this case of two electrons,
neglect direct exchange and set the HubbardU energy to
infinity ~equivalent to forbidding double occupation of ‘‘la
tice’’ sites and neglecting superexchange!, then the extended
Hubbard model takes on the particularly simple form:

HtV5E01PF (
^ i , j &s

~ tcis
† cj s1H.c.!1Vninj GP. ~5!

HereP is a projection operator that eliminates doubly occ
pied lattice sites,t is a nearest-neighbor hopping term, andV
is the difference in Coulomb energy between states when
two electrons occupy neighboring sites and when they
diagonally opposite each other.

The energyE052«01V0 is the ground-state energy i
the ‘‘atomic limit’’, where «0 is the on-site energy andV0 is
the Coulomb energy between the two electrons on diagon
opposite sites. The energy parametersE0 , V, andt depend on
the magnitude of the magnetic field, andt in general is com-
plex. One can see on inspection that the spectrum of
Hamiltonian~5! must consist of a low-lying manifold of two
singlets and two triplets, corresponding to the electrons be
on diagonally opposite sites, and a higher-lying manifo
consisting of four singlets and four triplets, corresponding
the two electrons being on neighboring sites. Furthermore
the strong correlation regime for whichV@t, the lower
manifold should have energy;E0 with the higher-lying
manifold at energy;E01V. This is indeed the case as ca
be seen from the exact analytic solutions that take the fo

Es2E05
1

2
@V6AV2116utu2~12cos2f!#,

1

2
@V6AV2116utu2~11cos2f!#, V, V ~6!

for the singlets and

Et2E05
1

2
@V6AV2116utu2~11sin 2f!#,

1

2
@V6AV2116utu2~12sin 2f!#, V, V ~7!
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for the triplets, where we have sett5utueif. These solutions
are obtained using totalSz and fourfold symmetry, which
reduces the Hamiltonian matrix to block diagonal form w
no more than 232 submatrices. Sinceutu!V, we may ex-
pand the square root in Eqs.~6! and~7!. To second order this
gives for the lowest manifold of states:

Es5Ẽ062D cos 2f,

Et5Ẽ062D sin 2f, ~8!

whereD52utu2/V andẼ05E022D. We can, in fact, derive
this result in a different way, which emphasizes the nature
the low-lying eigenstates. The excited states correspond
to the two electrons on neighboring sites are eliminated
degenerate perturbation theory. To second order,
tV-Hamiltonian is then transformed into the effectiv
Hamiltonian:12,13

Heff5Ẽ01~Dei2fRp/21H.c.!, ~9!

whereRp/2 rotates the two electrons at opposite corners
the square on a diagonal byp/2. Diagonalization ofHeff
yields directly the singlet and triplet energies~8!. In this
effective model the pair of electrons thus tunnel between
base states with an amplitude modulated by a Peierls fac
ei2f, with twice the phase angle of the underlying extend
Hubbard model, since it involves two electron hops. A
thoughHeff reproduces the low-energy multiplet of Eq.~5! to
good accuracy, it is instructive to calculate the next~fourth-
order! correction. This renormalizesẼ0 andD, and also in-
troduces a Heisenberg spin-exchange term:

J@s1•s31s2•s4#, ~10!

where J52(16utu4/V3)cos 4f ~ferromagnetic!. Although
this is a small correction, it is not negligible and accoun
for example, for the small asymmetry of the singlet-trip
splittings atB50. The fourth-order effective Hamiltonian
has, in fact, the most general form, since higher orders c
not introduce qualitatively different terms. Thus we see t
the low-energy manifold can be generally described by
charge-spin model in which the electrons rotate rigidly a
undergo Heisenberg exchange. This general effective Ha
tonian @Eqs. ~9! and ~10!# thus provides a complete and a
curate representation of the low-energy spin multiplet an
physical picture of the nature of the states. It is emphasiz
however, that such an accurate representation is only v
for the lowest multiplet and that higher-lying states resulti
from the solution of the single-band Hubbard model@Eqs.
~5!–~7!# are not only less accurate but also incomple
~There exist further excited states of energy;V relative to
the ground manifold that are not contained within the a
proximation of a single-band Hubbard model.!

It is easily verified that Eq.~9! has the correct form to
describe the pattern of oscillations seen in Fig. 4 with
quantityf being the phase acquired by an electron hopp
between two adjacent sites of the lattice on which the eff
tive t-V model is defined. The total phase angle acqui
when an electron hops once around the square isf
52pF/F0, whereF05h/e is the fundamental flux quan
tum andF5BrL

2 is the total enclosed flux for an effectiv
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lattice parameterr L . By measuring the distance between t
peaks in the ground-state charge distribution we obtai
value of r L5495 nm for an 800 nm dot. Thus a magne
field of 0.0095 T corresponds to a magnetic flux
1.11F0/2, which agrees well with the value ofF0/2 that Eqs.
~8! predict for the form of the spectrum to become inverte
This close agreement, obtained withno adjustable param
eters, fully endorses interpreting the results at nonzero m
netic field within the framework of the lattice model i
which the hopping terms are modified by phase factors.
alternative interpretation of this behavior is that the two el
trons are hopping around the four sites of the square, giv
rise to a persistent currentI 52]E/]F. This is periodic in
the enclosed flux but with half the period of two nonintera
ing electrons on a ring, due to the correlated positions of
rotating electrons, described by Eq.~8! It is interesting to
note that the inverted spectrum that occurs after a qua
cycle is the result that would be obtained for abosonic t-V

FIG. 5. Comparison of exact calculation~circles! and diagonal-
ization within the space of one Hartree state per site~triangles!.
Filled and open symbols indicate singlets and triplets, respectiv
The overall increase in energy with field@E0(B)# has been re-
moved.
a

f

.

g-

n
-
g

-
e

er

model in zero field.12 This is due to the fact that at this valu
of flux the Aharonov-Bohm phase acquired by the electro
when they exchange positions compensates for the sign
ing from their fermionic statistics, and hence the magne
field can be viewed as converting the electrons into ‘‘co
posite bosons’’.

A consequence of the oscillations in energy of the sing
and triplet states in the lowest multiplet is that the parity
the ground state periodically changes from symmetric to
tisymmetric. Similar parity oscillations were observed
Wagneret al.and Peeters and Schweigert2 in the spectrum of
two-electron quantum dots with rotationally symmetric p
tentials and also by Ugajin10 in a numerical study of squar
dots of small size. As the ground state does not flip parity
the noninteracting case, this behavior is clearly a con
quence of the Coulomb interaction.

IV. CONSTRUCTION OF EFFECTIVE CHARGE-SPIN
MODELS USING A HARTREE BASIS

Although the Peierls substitution accounts for the osci
tory behavior of the lowest-energy levels, the precise det
of their behavior such as the decay in amplitude of the
cillations, the marginal increase in their period~apparent
from a close examination of Fig. 4!, and the overall increase
of the energy levels with the field, require additional exp
nation. This may be achieved by deriving suitable localiz
basis functions, and explicitly calculating the energy para
eters of the resulting tight-binding~extended Hubbard!
model. We have shown that this gives high accuracy fo
basis set constructed from Hartree functions in the follow
way. We first fix the position of one electron in one corner
the square. The one-electron Schro¨dinger equation is then
solved for the other electron, giving a set of one-electr
states. For the Wigner regime considered here, the low-ly
states, and in particular the ground-state, are localized
the corner of the square diagonally opposite the fixed e
tron. We then solve the Schro¨dinger equation for the firs
electron under the influence of the probability charge den
of the other, in the sense of the Hartree method. This pro
dure is iterated to convergence, yielding two sets of o

y.
y. The

FIG. 6. Nearest-neighbort-V Hubbard model~triangles! with ~a! kinetic hopping only and~b! Coulomb-induced effective hopping

included. Exact results~circles! are shown for comparison. Open and filled symbols indicate singlet and triplet levels, respectivel
overall increase in energy with field@E0(B)# has been removed.
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7254 PRB 62CREFFIELD, JEFFERSON, SARKER, AND TIPTON
electron wave functions that may be mapped into one
other by a rotation ofp. Clearly two further sets may b
deduced for the remaining corners of the square by a rota
of p/2. Each of these four sets is composed of mutua
orthogonal single-electron wave functions, but wave fu
tions from different sets are not necessarily orthogona
each other. A complete orthonormal set may be constru
progressively by first mutually orthogonalizing the grou
state from each set using Lo¨wdin’s17 method. These state
alone enable the extended Hubbard model to be constru
and, as we will show, reproduce the exact results to g
accuracy. The remaining Hartree excited states may the
orthogonalized to these lowest states by the Schmidt pr
dure. Their effect may be accounted for later by perturbat
theory, where, for the regime of interest, they give sm
corrections.

Restricting ourselves to the lowest four orthogonaliz
Hartree states we may construct all two-electron symme
~singlet! and antisymmetric~triplet! orbital states and within
this two-electron basis diagonalize the Hamiltonian~1!. The
results of this calculation for the lowest multiplet are sho
in Fig. 5 in which we also plot the exact results for compa
son. The overall increase in energy with field, which is w
reproduced by the Hartree calculation, has been remo
from Fig. 5. This increase in energy and the decrease
amplitude of oscillations with field may be simply related
the change in shape of the one-electron Hartree functi
which become more localized with increasing magnetic fie
thereby increasing the one-electron energy while decrea
overlaps. We emphasize the importance of using Har
rather than Hartree-Fock base states. While the latter
always give the lowest estimate of the ground-state ene
for a single Slater determinant, it does not necessarily~or
even usually! give a very accurate estimate of a low-lyin
multiplet when there is near-degeneracy. This is indeed
case for two electrons in a square dot. If we take the low
four Hartree-Fock states~which are of course orthogona!
and form all two-electron states from these and diagona
the Hamiltonian within this set, then, apart from the grou
state, the low-lying multiplet is a very poor approximation
the exact result, with level separations that can be many
ders of magnitude too large. This also gives rise to spuri
qualitative errors, such as lifting the degeneracy of the t
triplets atB50. The reasons for this are as follows. The fi
two Hartree-Fock states are localized on opposite corner
a diagonal and are similar to the Hartree states. However
next two Hartree-Fock states, which are localized near
other two diagonal corners of the square, are less local
due to the increased kinetic energy needed to ensure orth
nality. This increased width of the excited states gives rise
enhanced tunneling between the low-energy two-elec
states, leading to a large increase in level separation sinc
tunneling matrix elements are very sensitive to the width
the localized states. Furthermore, as the symmetry of
square geometry is lost, degeneracies arising from this s
metry are lifted. Conversely, the lowest one-electron Hart
states, located near each corner of the square, are suffici
localized to account for most of the Coulomb and kine
energy, while still maintaining the correct symmetry.

We now consider in more detail the matrix elements
the Hamiltonian within the basis set of the lowest orthog
n-
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nalized Hartree states and determine which are essenti
reproduce the exact results to good accuracy. If we re
only the largest~diagonal! Coulomb matrix elements and th
one-electron matrix elements of the kinetic energy and c
fining potential, then the second quantized Hamiltonian
precisely the form of Eq.~5! provided we preclude double
occupation of a localized orbital, which is equivalent to s
ting the intra-‘‘site’’ Coulomb matrix element (U) to infin-
ity. The low-energy manifold within this approximation i
plotted in Fig. 6~a!, together with the numerical solutions o
the exact Hamiltonian, obtained in Sec. II. We see that
main source of error is in the phase of the oscillations, wh
have a significantly reduced frequency. Since we have o
neglected off-diagonal Coulomb matrix elements in this a
proximation, the source of the error must arise fro
Coulomb-induced effective hopping. There are many su
terms, most of them small. One class of terms that is
small involves three sites without spin flips. The sum of
such terms gives the following contribution to the effecti
Hamiltonian:

H3site5P (
i jkss8
iÞ j Þk

^ ikugu jk&cis
† cks8

† cks8cj sP

5P (
i jks

iÞ j Þk

^ ikugu jk&cis
† cj snkP

5P (
^ i j &s

@ t i j
Ccis

† cj s1H.c.#P, ~11!

whereg is the Coulomb term in Eq.~1!. The restriction that
all three sites be different follows from the constraint of
double occupation, enforced by the projection operator,P;
t i j
C5^ ikugu jk&, independent of k, and we have used

P(knkP51. Thus the effect of these Coulomb terms is
simply renormalize the one-electron hoppingt i j . Plots of the
low-energy manifold are again shown in Fig. 6~b! and we see
that the correct Aharonov-Bohm oscillations are reprodu
to good accuracy. Thus we see that the simple near
neighbor t-V Hubbard model withU5` describes accu-
rately the low-energy physics provided that the Coulom
contribution to the hopping is included.

Within the t-V model we see thatB-dependent terms aris
in two different ways. The Peierls factoreif comes solely
from the magnetic flux enclosed by the lattice, whereas
self-energy and the renormalization of thet-V parameters
originate from the physical interaction of the electrons w
the magnetic field. As we reduce the size of the flux tube a
approach the limit of an Aharonov-Bohm flux line, w
should therefore expect the latter effects to vanish but
Peierls factors to remain. To check this supposition we d
play in Fig. 7 the behavior of the energy levels for flux tub
of radiusL/2, L/4, andL/16. It can be clearly seen that as th
radius of the flux tube is reduced, the overall increase of
the energies with increasing field is reduced, correspond
to the reduction in magnitude of the self-energy. The ener
level oscillations remain, as expected, and their amplitu
decays less rapidly. In the limit of an Aharonov-Bohm flu
line it is clear that the amplitude of the oscillations will re
main constant, and that no overall increase of energies
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FIG. 7. Energy levels of a two-electron square-well quantum dot pierced by a flux tube. Flux-tube radii are~a! L/2; ~b! L/4; ~c! L/16.
Filled and open circles indicate singlet and triplet levels, respectively.
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occur, meaning that the system can indeed be modele
making a pure Peierls substitution in thet-V Hamiltonian.

The parallels between these results and those obta
recently by Kotlyaret al.15 for an array of coupled quantum
dots holding a small number of electrons, are striking. In
quantum-dot arrays, electron localization is achieved by c
fining electrons to individual quantum dots, which are co
nected to their neighbors by leads. Exactly the same p
cesses of localization and hopping are present in the sin
quantum-dot system we consider, but localization com
from the electrostatic repulsion between the electrons, wh
for sufficiently large dots forces the electrons into a high
localized Wigner molecule state, and hopping occurs via t
neling processes between the various low-lying energy
els. We note, however, that the fabrication of a single la
quantum dot is considerably simpler than the process of l
ing individual dots with leads, and the creation of a dot w
the dimensions we discuss is well within current experim
tal capabilities. A single dot may thus provide a more co
venient physical realization for studying strongly correlat
mesoscopic systems than an array of dots. In addition, wi
a single nanostructure it should be possible to maintain
herence of the electrons for longer time scales, which is
relevance to the potential of these devices as element
quantum computers.

V. SUMMARY AND CONCLUSIONS

We have studied the behavior of the low-lying ener
levels of a square-well quantum dot containing two el
trons, subject to a perpendicular magnetic field. It has b
shown in an earlier work that an effective lattice model~a
t-V model! can be used successfully to treat the case of z
magnetic field, and we find that by making a simple Peie
substitution this model also predicts the main qualitat
changes to the energy spectrum. This substitution gives e
results in the limit of an Aharonov-Bohm flux line, but t
obtain quantitatively accurate results for other flux distrib
tions the parameters of the model must be magnetic fi
dependent, resulting in an approximately quadratic incre
in average energy withB and a decrease in the amplitude
Aharonov-Bohm oscillations. We have justified this behav
by employing a single-electron Hartree basis in which
by
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electrons are located close to their electrostatic minima, n
diagonally opposite corners of the square. Within this fram
work, the overall increase in energy with magnetic field
mainly due to the increase in the one-electron Hartree ene
while the reduction in amplitude of the Aharonov-Bohm o
cillations is due to the increased sharpness of the local
states, which reduces the single-electron hopping.
Aharonov-Bohm oscillations are themselves a conseque
of the phase change when moving from one localized stat
another around the square, resulting in Peierls phase fac
in the hopping matrix elements and persistent curre
around the perimeter of the square. The system is t
equivalent to a tight-binding ring with four sites, the qua
one-dimensionality being a consequence of Coulomb re
sion. Coulomb repulsion also has the effect of forcing t
electrons to be diagonally opposite each other, causing t
to rotate as a rigid pair, with an Aharonov-Bohm oscillatio
of twice the frequency of noninteracting electrons on a rin
The mapping to an effective lattice model is thus a valua
way of interpreting the phenomena revealed in the spect
of the dot as the magnetic field is applied and provides,
example, an appealing interpretation of the origin of the p
ity oscillations of the ground state. This investigation h
concentrated on the regime of weak to medium stren
magnetic fields, in which the magnetic length scale is co
parable with the Coulomb interaction length. According
the spectrum shows a rich structure arising from the interp
between magnetic effects and correlations produced by
Coulomb interaction. As the magnetic field is increased f
ther magnetic effects will become dominant and the eig
states of the system will evolve toward Landau-level sta
Extending the range of magnetic field to study this transit
and its relation to the quantum Hall effect is an exciti
prospect for future investigation.
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