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Time-dependent screening of the carrier-phonon and carrier-carrier interactions
in nonequilibrium systems

Q. T. Vu and H. Haug
Institut für Theoretische Physik, J.W. Goethe-Universita¨t Frankfurt, Robert-Mayer Str. 8, D 60054 Frankfurt, Germany

~Received 7 February 2000!

For a nonequilibrium electron system in semiconductors the time-dependent screened effective interaction
due to longitudinal optical phonon and Coulomb scattering is derived. The polarization is described in terms of
a time-dependent random-phase approximation. The nonequilibrium electron propagators are expressed in
terms of the single-time density matrix by means of the genaralized Kadanoff-Baym approximation. We
illustrate the theory for a femtosecond-pulse-excited semiconductor by calculating the resulting two-time-
dependent interaction. Using an incomplete Fourier transformation we study the buildup of the phonon-
plasmon double resonance in time as a function of the excited carrier density.
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I. INTRODUCTION

In an equilibrium electron gas such as occurs, e.g.
heavily doped semiconductors, the longitudinal excitatio
of the optical phonons and plasmons have similar energ
Indeed, it is well-known that an effective screened inter
tion that combines the exchange of these two longitud
collective modes can be given elegantly in the random-ph
approximation~RPA!, in which the polarization diagram i
expressed by a pair of electron propagators~see, e.g., Ref. 1!.
The poles of the resulting screened effective interaction y
the well-known LO-phonon–plasmon mixed modes. D
grammatically the effective interaction is determined in t
approximation by the graphs of Fig. 1.

In nonequilibrium electron systems, which can be stud
most clearly in femtosecond laser pulse excit
semiconductors,2,3 the theory of the screened Coulomb inte
action requires the self-consistent calculation of a two-tim
dependent screened Coulomb potential.4 The time-dependen
RPA polarization bubble is expressed by a pair of two-tim
dependent electron propagators, which as a simplifica
have been expressed in terms of the one-time density ma
In this so-called generalized Kadanoff-Baym approximat
~GKBA! the buildup of the correlation in time is express
in terms of the retarded and advanced Green functions5 It
has been shown that for carrier densities of 101721018 cm3

excited with pulses of duration 10250 fs the buildup of
screening takes place in a time range of a few hundred f
toseconds. The order of buildup time is given by the inve
plasma frequency of the system of optically excited carrie
An attempt to extend the equilibrium Green function theo
of the joint treatment of the Coulomb interaction and t
interaction with LO phonons for nonequilibrium system
does not seem to be possible at first sight, because o
rather different time structures of the instantaneous b
Coulomb potential and the oscillatory behavior of the ph
non propagator. A closer inspection shows, however,
such an extension is possible, starting with a formulation
the Keldysh time contour6 for all involved propagators. Fo
the scattering kinetics one needs the lesser and greater
of the effective interactionW,(t,t8) andW,(t,t8), respec-
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tively. It will be shown in this paper that the greater part
the products of three propagators that occur in the diagr
matic equation for the effective interaction potentialW ~see
Fig. 1! can be conveniently evaluated using the Langr
theorem.7,3 The resulting equation for the effective two-time
dependent scattering potentialW.(t,t8) is simplified again
using the GKBA. The electron density matrix and the effe
tive scattering potential are self-consistently evaluated
the example of a femtosecond-pulse-excited two-band se
conductor. The semiconductor Bloch equations for the e
tron density matrix, which includes the delayed quantum
netic scattering integrals in terms of the self-consistentGW
approximation, are solved together with the equations of
effective scattering potentialsW, andW.. Finally, using an
incomplete Fourier transformation, we analyze the build
of the LO-phonon–plasmon double resonance structure
the resulting complex, time- and frequency-dependent
electric function of the effective interaction.

II. EFFECTIVE POTENTIAL FOR COMBINED LO-
PHONON–COULOMB SCATTERING

In the following we consider a spatially homogeneo
nonequilibrium electron system. The exchanged momen
in an interaction process is calledqW . For brevity the vector
character is specified only when necessary. Using t
arguments—abbreviated as numbers — on the Keld
contour6 that extends from2` to the largest time and bac
to 2`, the effective screened potentialWq(1,2) for the LO-
phonon and the Coulomb interactions obeys

Wq~1,2!5Wq
0~1,2!1Wq

0~1,3!Lq~3,4!Wq~4,2!, ~2.1!

FIG. 1. Graphs for the effective potentialW. Here V is the
Coulomb potential,D the phonon propagator,L the polarization
function, andg the matrix element of the electron-phonon intera
tion.
7179 ©2000 The American Physical Society
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7180 PRB 62Q. T. VU AND H. HAUG
whereLq(1,2) is the polarization propagator, which will b
approximated by the time-dependent RPA, also called
GG-approximation. The combined interaction potential is

Wq
0~1,2!5Vqd~1,2!1gq

2Dq~1,2![Vqd~1,2!1Dq~1,2!.
~2.2!

gq is the Froehlich coupling matrix element

gq
25a

4p\~\v0!3/2

~2m!1/2q2V . ~2.3!

Here v0 is the LO-phonon frequency andm is the reduced
electron-hole (e-h) mass. The dimensionless polaron co
pling constanta is given by

a5
e2

\ S m

2\v0
D 1/2S 1

e`
2

1

e0
D ~2.4!

with the high- and low frequency dielectric constantse` and
e0, respectively.Dq(1,2) is the free propagator of therm
LO phonons,Vq the bare Coulomb potential. Because t
LO phonons are treated explicitly, the dielectric constan
the bare Coulomb interaction is nowe` :

Vq5
4pe2

Ve`q2
. ~2.5!

Formally one gets
e

-

n

Wq~1,2!5Vqd~1,2!1Dq~1,2!1VqLq~1,3!Wq~3,2!

1Dq~1,3!Lq~3,4!Wq~4,2!. ~2.6!

The Langreth theorem7,3 allows one to get the real time com
ponents efficiently from contour time products. IfC(1,2)
5A(1,3)B(3,2) on the contour, one finds for real time
C.(t,t8)5Ar(t,t2)B.(t2 ,t8)1A.(t,t2)Ba(t2 ,t8), wheret2
has to be integrated from2` to 1`. Similarly, if on the
contour D5ABC, one gets for real timesD.5ArBrC.

1ArB.Ca1A.BaCa, where a matrix structure in the tim
arguments and integrations over repeated times are assu
Using the Langreth theorem we get the effective scatter
potential for LO-phonon and Coulomb interactions:

Wq
.5D q

.1Vq~Lq
r Wq

.1Lq
.Wq

a!1D q
r Lq

r Wq
.1D q

r Lq
.Wq

a

1D q
.Lq

aWq
a . ~2.7!

In this formulaVq is a constant in time. All other quantitie
depend on two time arguments. The advanced potentialsWq

a

can be represented as

Wq
a~ t1 ,t2!5Vqd~ t12t2!1u~ t22t1!

3@Wq
,~ t1 ,t2!2Wq

.~ t1 ,t2!#. ~2.8!

With the symmetry relationsWq

,
.(t1 ,t2)* 52Wq

,
.(t2 ,t1) and

Wq
.(t1 ,t2)5Wq

,(t2 ,t1) the equation for the effective scatte
ing potentialWq

.(t,t8)u t>t85wq
.(t,t8) becomes
wq
.~ t,t8!5D q

.~ t,t8!1Vq
2Lq

.~ t,t8!1VqS E
2`

t

dt1Lq
r ~ t,t1!Wq

.~ t1 ,t8!12E
2`

t8
dt1Lq

.~ t,t1!Re@Wq
.~ t8,t1!#

1E
2`

t

dt1D q
r ~ t,t1!Lq

.~ t1 ,t8!1E
2`

t8
dt1D q

.~ t,t1!Lq
a~ t1 ,t8! D 1E

2`

t

dt1D q
r ~ t,t1!E

2`

t1
dt2Lq

r ~ t1 ,t2!Wq
.~ t2 ,t8!

12E
2`

t

dt1D q
r ~ t,t1!E

2`

t8
dt2Lq

.~ t1 ,t2!Re@Wq
.~ t8,t2!#1E

2`

t8
dt1D q

.~ t,t1!E
t1

t8
dt2Lq

a~ t1 ,t2!Re@Wq
.~ t8,t2!#.

~2.9!

After some rearrangement in order to get definite time ordering between the timest,t8,t1, and t2, one finds the following
closed integral equation for the scattering potential:

wq
.~ t,t8!5D q

.~ t,t8!1Vq
2Lq

.~ t,t8!12FVqS E
2`

t8
dt1$Lq

.~ t,t1!Re@wq
.~ t8,t1!#2Re@Lq

.~ t,t1!#wq
.~ t8,t1!* %

1E
t8

t

dt1Re@Lq
.~ t,t1!#wq

.~ t1 ,t8!1E
t8

t

dt1Re@D q
.~ t,t1!#Lq

.~ t1 ,t8!1E
2`

t8
dt1$D q

.~ t,t1!Re@Lq
.~ t8,t1!#

2Re@D q
.~ t,t1!#Lq

.~ t8,t1!* % D 1E
2`

t8
dt1Re@D q

.~ t,t1!#@M1,q~ t8,t1!1M5,q~ t8,t1!#1E
t8

t

dt1Re@D q
.~ t,t1!#

3@M3,q~ t1 ,t8!1M2,q~ t1 ,t8!#1E
2`

t8
dt1D q

.~ t,t1!M4,q~ t8,t1!G ~2.10!

with

M1,q~ t8,t1!u t8>t1
5E

2`

t1
dt2$Lq

.~ t1 ,t2!Re@wq
.~ t8,t2!#2Re@Lq

.~ t1 ,t2!#wq
.~ t8,t2!* %,
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M2,q~ t1 ,t8!u t1>t85E
2`

t8
dt2$Lq

.~ t1 ,t2!Re@wq
.~ t8,t2!#,2Re@Lq

.~ t1 ,t2!#wq
.~ t8,t2!* %,

M3,q~ t1 ,t8!u t1>t85E
t8

t1
dt2Re@Lq

.~ t1 ,t2!#wq
.~ t2 ,t8!,

M4,q~ t8,t1!u t8>t1
5E

t1

t8
dt2Re@Lq

.~ t2 ,t1!#Re@wq
.~ t8,t2!#,

M5,q~ t8,t1!u t8>t1
5E

t1

t8
dt2Lq

.~ t2 ,t1!* Re@wq
.~ t8,t2!#. ~2.11!
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For the evaluation of this integral equation, we use the tim
dependent RPA polarization function

Lq~1,2!522i\(
kW

GkW~1,2!GkW2qW~2,1!. ~2.12!

In the scattering components of the polarization function,
two-time electron propagators will be expressed in terms
the one-time density matrix and the retarded and advan
Green functions. This so-called generalized Kadanoff-Ba
approximation5 is

Gq

,
.~ t,t8!57@Gq

r ~ t,t8!rq

,
.~ t8!2rq

,
.~ t !Gq

a~ t,t8!#,
~2.13!

where rq
,(t)5^aq

†(t)aq(t)&[rq(t) and rq
.(t)

5^aq(t)aq
†(t)&512rq(t). It has been shown for the ex

ample of LO-phonon scattering by direct numerical calcu
tion of the two-time propagators that in semiconductors w
relatively large dielectric constants, i.e., weak interactio
the GKBA yields extremely good results.8 Note that the
GKBA is exact for equal times, and thus its validity for sho
time intervals is particularly good. For the retarded and
vanced Green functions we will use the following appro
mation scheme. First, the unitary time development un
the time-dependent mean-field Hamiltonian will be calc
lated self-consistently.9 The decay of these functions will b
described by a hyperbolic secant law and not by a sim
exponential decay law. The hyperbolic secant connec
Gaussian decay for small times with an exponential one
larger times.10,11 This decay approximates the actual dec
very well11 qualitatively on the femtosecond time sca
These self-consistently determined retarded~and advanced!
Green functions take the form

GkW
r
~ t1 ,t2!52 iQ~ t12t2!

3@UkW~ t1!UkW~ t2!1#
1

cosha@v0~ t12t2!#
,

~2.14!

where the unitary time development is determined by

i\
dUkW~ t !

dt
5HkW

MF
~ t !UkW~ t ! ~2.15!
-
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with the initial condition UkW(t52`)51. The mean-field
Hamilton operator isHMF5H01SMF(t), whereH0 is the
Hamiltonian of the free particles interacting with a cohere
light field andSMF(t) is the mean-field self-energy. For th
example of a pulse-excited semiconductor, it contains
Coulomb exchange energies and the dipole interaction w
the laser field. Both terms contain the electron density ma
again. Therefore Eq.~2.10! for the effective screened inter
action and the equation for the retarded Green function b
contain the electron density matrix. The system of equati
has thus to be closed by the equation of motion for the e
tron density matrix containing both the mean-field develo
ment and the dissipative quantum kinetics in terms of
scattering self-energies in theGW approximation, whereW
is again the effective screened interaction potential int
duced above.

III. CALCULATION OF THE TIME-DEPENDENT
EFFECTIVE INTERACTION FOR A FEMTOSECOND-

PULSE-EXCITED SEMICONDUCTOR

Femtosecond pulses in the optical range are presentl
short as 5 fs.12 This time is shorter than the inverse frequen
of LO-phonon oscillations and the inverse plasma freque
for typical excitation densities of 101721018 cm23 assuming
resonant band-to-band excitation. Therefore femtosec
semiconductor spectroscopy is ideally suited to examine
quantum kinetic regime of phonon and Coulomb scatter
including the buildup of screening of the effective intera
tion. As mentioned above, the equations for the effect

scattering potentialW
.
,(t,t8) and for the retarded Gree

functionGr(t,t8) have to be closed by an equation of motio
for the electron density matrixr(t) in which the dissipative
quantum kinetic terms are given by the scattering self-ene

S
.
,(t,t8), which will be taken in the so-calledGW approxi-

mation. In this approximation vertex corrections are n
glected and the self-energy is given in terms of the effect
potential in the form

Sk

.
,~ t,t8!5 i\(

qW
Wq

.
,~ t,t8!G

kW1qW

,
. ~ t8,t !, ~3.1!

where again the GKBA is used to express the electron pro
gators in terms of the electron density matrix. The simpl
vertex correction with two crossed potential lines leads
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7182 PRB 62Q. T. VU AND H. HAUG
gether with Eq.~3.1! to the second Born approximation. I
nonequilibrium theory this vertex correction contains two a
ditional time integrations compared to Eq.~3.1!. In the fem-
tosecond regime these integrations over short time inter
reduce the contribution of this vertex correction strong
compared to Eq.~3.1!. In a two-band semiconductor wher
the optical transitions take place between the valence b
and the conduction band, all particle Green functions,
polarization, the unitary time development matrix, and
density matrix are 232 matrices in the band index. For
laser-pulse-excited semiconductor the density matrix eq
tion takes the form

]

]t
rkW~ t !5

]

]t
rkW~ t !U

coh

1
]

]t
rkW~ t !U

scatt

, ~3.2!

FIG. 2. Negative imaginary part of the inverse dielectric fun
tion versus frequency and wave number in units of the exciton B
radiusaB for the timest550,100,200,400 fs after a 11 fs pulse th
excites 1.131018 e-h pairs per cm3. The projection of the plasmon
resonance into thev-q plane is indicated by symbols.
-

ls

nd
e
e

a-

The coherent part of the equation is the so-called semic
ductor Bloch equation

i\
]

]t
rkW~ t !ucoh5@H01SMF~ t !#r~ t !2r~ t !@H01SMF~ t !#,

~3.3!

whereH0 is the free-particle Hamiltonian interacting with
coherent laser fieldE(t),

H05S Eg1
\2k2

2me
2

1

2
dE~ t !

2
1

2
dE~ t ! 2

\2k2

2mh

D , ~3.4!

-
r

FIG. 3. Negative imaginary part of the inverse dielectric fun
tion versus frequency and wave number in units of the exciton B
radiusaB for the timest550,100,200,400 fs after an 11 fs puls
that excites 5.531017 e-h pairs per cm3.
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whereEg is the energy gap,me,h are the effective masses o
electrons and holes, respectively, andd is the interband di-
pole matrix element. The mean-field self-energy contains
Hartree-Fock exchange energy,

Sk
MF~ t !

5S 2(
qW

Vqrcc,kW2qW~ t ! 2(
qW

Vqrcv,kW2qW~ t !

2(
qW

Vqrvc,kW2qW~ t ! 2(
qW

Vq~rvv,kW2qW~ t !21!
D ,

~3.5!

FIG. 4. Negative imaginary part of the inverse dielectric fun
tion versus frequency and wave number in units of the exciton B
radiusaB for the timet5400 fs after an 11 fs pulse that excites t
e-h densities (0.1,3.2,5.5,11)31017 per cm3. The corresponding
plasma frequencies are 5,28,36.5,52.5 meV.
e

where the exchange energy with all electrons of the full
lence band is subtracted, because it has been taken int
count already in the band structure calculation.

The quantum kinetic scattering integrals are given by

]

]t
rkW~ t !uscatt52

1

\E2`

t

dt8@SkW
.

~ t,t8!GkW
,

~ t8,t !

2SkW
,

~ t,t8!GkW
.

~ t8,t !2GkW
.

~ t,t8!SkW
,

~ t8,t !

1GkW
,

~ t,t8!SkW
.

~ t8,t !#. ~3.6!

In the following we will present numerical results from th
integration of this closed set of nonlinear integro-different
equations. We will assume a pulse with a widthdt511 fs
and a hyperbolic secant shape in the formE(t)
5@E0 /cosh(1.7627t/dt)#e2 ivt. The frequency is detuned
with respect to the band gap by\v2Eg550 meV. The ma-
terial parameters are those of GaAs and the phonon
temperature is 300 K.

IV. THE TIME-DEPENDENT INVERSE DIELECTRIC
FUNCTION

For a better understanding of the resulting effective int
action potentialWq

r (t,t8) we perform an incomplete Fourie
transform over the earlier timet8,

Wq
r ~ t,v!5E

2`

t

dt8Wq
r ~ t,t8!eiv(t2t8). ~4.1!

The complex dielectric function is then defined by

Wq
r ~ t,v!5

Vq

«q~ t,v!
. ~4.2!

In Fig. 2 we show the imaginary part of the inverse d
electric function versus wave number and frequency. T
pulse strength is chosen to excite 1.131018 e-h pairs per
cm3. For better visibility we plot2Im(1/«) for various

-
r

FIG. 5. Resulting electron distributions 300 fs after an 11
pulse that excitedn55.531017 cm23 carriers in various approxi-
mations: scattering with screened LO-phonon–Coulomb interac
~full line!, scattering with screened Coulomb interaction and u
screened phonon interaction~dashed line!, and scattering with only
screened Coulomb interaction~dotted line!.
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7184 PRB 62Q. T. VU AND H. HAUG
times after the pulse. One sees clearly the sharp resonan
the dispersionless LO phonon with an energy of 36 meV
the buildup of the plasmon resonance with a higher f
quency of\vpl552.5 meV. Its quadratic wave number d
pendence.vpl(11 1

2 q2/k2), wherek is an inverse screen
ing length, is seen from the projection of the maxima of t
plasmon resonance into thev-q plane.

At 50 fs the phonon resonance is sharp while the plasm
resonance is very broad because the buildup of screenin
only in its early phase. At 400 fs the stationary resona
structure is essentially reached. One sees that at small w
numbers most of the oscillator strength of the LO phonon
transfered to the plasmon. On the other hand the plas
amplitude falls off rapidly for larger momentum transfe
while the phonon amplitude is seen to increase with incre
ing q values. In Fig. 3 spectra of the negative imaginary p
of the inverse dielectric function are shown for a lower de
sity of excited carriers, namely, forn55.531017 cm23,
where the plasma frequency with\vpl536.5 meV is nearly
degenerate with the\v0536 meV LO-phonon frequency. In
comparison with Fig. 3 one sees that the phonon has ga
weight. This trend in the transfer of oscillator strength fro
the plasmon to the phonon with decreasing density is v
clearly seen in Fig. 4 where we compare at later timet
5400 fs! four spectra with densities ranging from 1
31018 to 0.131017 cm23. At the lowest density the oscilla

FIG. 6. Resulting incoherently summed interband polarizat
(kWupk(t)u versus time after an 11 fs pulse centered att50 that
excited n55.531017 cm23 carriers in various approximations
scattering with screened LO-phonon–Coulomb interaction~full
line!, scattering screened Coulomb interaction and with unscree
phonon interaction~dashed line!, and scattering with only screene
Coulomb interaction~dotted line!.
o

of
d
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e
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e
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ry

tor strength of the plasmon pole that lies on the low-ene
side of the phonon pole is transferred completely to the p
non. This fact explains why one sees in time-integrated fe
tosecond four-wave mixing with coherent control only osc
lations due to the upper branch of the mixed phono
plasmon mode, i.e., phonon oscillations at low densities
plasmon oscillations at high densities, because small w
number transfer dominates the dephasing scattering.13,14

Finally, in Figs. 5 and Fig. 6, we compare the resulti
relaxation and dephasing kinetics for three approximatio
one with the discussed combined effective screened
phonon–plasmon interaction~full lines!, one with screening
of the Coulomb interaction but unscreened phonon inter
tion ~dashed lines!, and finally one in which only the
screened Coulomb carrier-carrier interaction is taken into
count. In the relaxation of of the electron distribution~see
Fig. 5!, one sees that the carriers relax faster to the lo
energy states if the phonon scattering is also taken into
count. Screening of the phonon interaction~in addition to
that of the Coulomb interaction! makes the relaxation
slightly slower in comparison with the model of unscreend
LO-phonon scattering. Figure 6 shows correspondingly
same expected trends in the dephasing of the optically
duced interband polarization: The contribution of phon
scattering in addition to the screened Coulomb scatte
makes the dephasing faster, while screening also of the p
non interaction reduces its influence again in compari
with unscreened phonon scattering.

In conclusion, we have presented a self-consistent ca
lation of the combined screening of the carrier interactio
via LO phonons and via the Coulomb potential in noneq
librium electron systems, by making use of the Langre
theorem. The time dependence of the formation of
screened LO-phonon–plasmon pole structure of the effec
interaction has been calculated and discussed. We sho
that the oscillator strength at small momentum transfer
always concentrated at the resonance of the upper branc
the mixed modes. The influence of the screening of both
LO-phonon mediated interaction and the Coulomb inter
tion on the relaxation and dephasing kinetics after a sh
femtosecond pulse has been shown.
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