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Time-dependent screening of the carrier-phonon and carrier-carrier interactions
in nonequilibrium systems
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For a nonequilibrium electron system in semiconductors the time-dependent screened effective interaction
due to longitudinal optical phonon and Coulomb scattering is derived. The polarization is described in terms of
a time-dependent random-phase approximation. The nonequilibrium electron propagators are expressed in
terms of the single-time density matrix by means of the genaralized Kadanoff-Baym approximation. We
illustrate the theory for a femtosecond-pulse-excited semiconductor by calculating the resulting two-time-
dependent interaction. Using an incomplete Fourier transformation we study the buildup of the phonon-
plasmon double resonance in time as a function of the excited carrier density.

I. INTRODUCTION tively. It will be shown in this paper that the greater part of
the products of three propagators that occur in the diagram-
In an equilibrium electron gas such as occurs, e.g., irmatic equation for the effective interaction potentidl(see
heavily doped semiconductors, the longitudinal excitationd=ig. 1) can be conveniently evaluated using the Langreth
of the optical phonons and plasmons have similar energietheorem’:* The resulting equation for the effective two-time-
Indeed, it is well-known that an effective screened interacdependent scattering potenthl~(t,t") is simplified again
tion that combines the exchange of these two longitudinatSing the GKBA. The electron density matrix and the effec-

collective modes can be given elegantly in the random-phas’ijzve scattering potential are self-consistgntly evaluated for_
approximation(RPA), in which the polarization diagram is th€ €xample of a femtosecond-pulse-excited two-band semi-
expressed by a pair of electron propagatses, e.g., Ref.)1 conductor. The semiconductor Bloch equations for the elec-
The poles of the resulting screened effective interaction yiel(ﬁror.‘ density matrix, Wh'Ch. includes the delayed quantum ki-
the well-known LO-phonon—plasmon mixed modes. Dia-€UC scattering integrals in terms of the self-consis@h
grammatically the effective interaction is determined in thisappro_xmatlon, are solved_ tog<e ther W'ih the equatl_ons of the
approximation by the graphs of Fig. 1 effective scattering potential&~ andW~". Finally, using an

| ilibri lect ¢ hich be studi incomplete Fourier transformation, we analyze the buildup
N nonequiiibrium electron systems, which can be SIUGIEG, o LO-phonon—plasmon double resonance structure in
most clearly in femtosecond laser pulse excited

the resulting complex, time- and frequency-dependent di-
. ’3 . H
semiconductoré? the theory of the screened Coulomb inter- electric function of the effective interaction.

action requires the self-consistent calculation of a two-time-

dependen§ scr'eened Cou'lomb poteritiahe tlme.-depende.nt Il EFFECTIVE POTENTIAL FOR COMBINED LO-

RPA polarization bubble is expressed.by a pair qf twprtlm.e- PHONON—COULOMB SCATTERING

dependent electron propagators, which as a simplification

have been expressed in terms of the one-time density matrix. In the following we consider a spatially homogeneous
In this so-called generalized Kadanoff-Baym approximationnonequilibrium electron system. The exchanged momentum
(GKBA) the buildup of the correlation in time is expressedin an interaction process is calleij For brevity the vector

in terms of the retarded and advanced Green funcfidhs. character is specified only when necessary. Using time
has been shown that for carrier densities of’30L0'® cm®  arguments—abbreviated as numbers — on the Keldysh
excited with pulses of duration 3060 fs the buildup of contouf that extends from- to the largest time and back
screening takes place in a time range of a few hundred fente — o, the effective screened potentiad,(1,2) for the LO-
toseconds. The order of buildup time is given by the inversgphonon and the Coulomb interactions obeys

plasma frequency of the system of optically excited carriers.

An attempt to extend the equilibrium Green function theory Wq(1,2=Wq(1,2+W3(1,3)L4(3,9W4(4,2), (2.1)
of the joint treatment of the Coulomb interaction and the

interaction with LO phonons for nonequilibrium systems - W WO L W
does not seem to be possible at first sight, because of the.zzzzzzzzz = --ceovee-e RN O":"""
rather different time structures of the instantaneous bare

Coulomb potential and the oscillatory behavior of the pho- w?° 1% g D g

non propagator. A closer inspection shows, however, that
such an extension is possible, starting with a formulation on  FIG. 1. Graphs for the effective potentisV. Here V is the
the Keldysh time contofrfor all involved propagators. For Coulomb potential,D the phonon propagatot, the polarization
the scattering kinetics one needs the lesser and greater pafiigction, andg the matrix element of the electron-phonon interac-
of the effective interactioW=(t,t') andW=(t,t’), respec- tion.
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whereL (1,2) is the polarization propagator, which will be Wq(1,2) =V48(1,2 + Dy(1,2 + VLg(1,3Wy(3,2)
approximated by the time-dependent RPA, also called the
GG-approximation. The combined interaction potential is +Dg(1,3L4(3,HW4(4,2). (2.9

The Langreth theoreh? allows one to get the real time com-

_ 2 _
Wg(l’z)_Vq5(1*2)+quq(1'2)=Vq5(1-2)+Dq(1’2)- ponents efficiently from contour time products. @f(1,2)

(2.2 =A(1,3)B(3,2) on the contour, one finds for real times
g is the Froehlich coupling matrix element C7(t,t") =A(t,t2) B (to,t") + A7 (t,15) B¥(t,,t'), wheret,
has to be integrated from o to +o0. Similarly, if on the
) Arti(hwg)®? contour D=ABC, one gets for real time® =A'B'C~

9= 1o, (2.3 +A'B”C®+A~B3C? where a matrix structure in the time

a- @ 222y : . .
M arguments and integrations over repeated times are assumed.
Here w, is the LO-phonon frequency and is the reduced Using .the Langreth theorem we get th'e eﬁec?ive scattering
electron-hole ¢-h) mass. The dimensionless polaron cou-potential for LO-phonon and Coulomb interactions:

pling constantx is given by W§=D§+Vq(LgW§+Lq>W§)+D;L[‘Wq>+D;L§WZ

2 1/2
e 1 1
a=—| L) == (2.4) +D o LAWE. (2.7)
i | 2hwg €x € . . L .
In this formulaV,, is a constant in time. All other quantities

€o, respectively.Dq(1,2) is the free propagator of thermal can pe represented as

LO phonons,V,, the bare Coulomb potential. Because the
LO phonons are treated explicitly, the dielectric constant in Wg(tl,t2)=vq5(t1—t2)+ O(t,—tq)

the bare Coulomb interaction is nosy :
X[Wq (tg,t2) =W (tg,t)]. 2.9

47e? < <
q= > (2.5  With the symmetry relation\i!\/g(tl o) = —Wq>(t2 ,t1) and
Ve-q W (t1,t2) =W (t,,t,) the equation for the effective scatter-
Formally one gets ing potentialW, (t,t’)|t>t,=w§(t,t’) becomes

Wy (t,t) =D (t,t)+ Vel (tt)+V,

t r > t > >
LG t)WE (1) +2 | diylg (6t REWS (L t)]

t ' t t
+f dtlD;(t,tl)Lﬁ(tl,t’Hﬁ dtlDi(t,tl)Lg(tl,t’) +f dtlpa(tvtl)f ' dtzLa(tl,tz)Wg(tzyt’)

t r t > > et t > v a > a0
+2 [ dtyDg(tty) [ diplg (ty, 1) REW, (t',t) ]+ dt;Dg (t,ty) . dtoLg(t1, t) RE Wy (t',t5)].
(2.9

After some rearrangement in order to get definite time ordering between thettithgs, andt,, one finds the following
closed integral equation for the scattering potential:

Wq (t,t) =Dy (t,t)+ Vil (t,t)+2

Vq( fj’xdtl{LCT(t'tl)Re[Wg(t',tl)]—RG[L;(t,tl)]Wg(t’,tl)*}
t t v
+ft,dthq:L;(t,tl)]Wg(tl,t’)+J't’dthqu(t,tl)]Lg(tl,t’)+J'imdtl{D(T(t,tl)Rd:L(?(t/’tl)]

—RE D, (t,ty)]Lg (t',t)*}

’ t
+fﬁwdthe[Dé(t,tl)][M1,q(t’,t1)+Ms,q(t’,tl)]+ft,dthe[D(T(t,tm
X[Maq(ty ')+ Mz,q(tl,t')]+ft;dtlpg(t,tl)lvu,q(t',tl)} (2.10

with

ty
Mig(t',t)|or=e, = f_xdtz{Lg(tl.wRe[w;(t',tz)]—Re[L(T(tl,tznw;(t’,tz)*},
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t/
M2,q(t11t’)|tlzt’:J_ dtp{L g (tg,t) REW, (t',t5)], — Re[Lg (o) Jwg (t',t2)*},
’ ! > > ’
Maq(ts,t )|t1>t’: » dtRe[ L (ty,t5) Jwg (ta,t'),
t’
Mgt oo, = | QLR () R (1,01,
1

t'
MS,q(t’vtl)|t'>t1: Jl dtoLg (to,t) ¥R w, (t',1))]. (211
1

For the evaluation of this integral equation, we use the timewith the initial conditionUg(t=—)=1. The mean-field
dependent RPA polarization function Hamilton operator isHMF=H,+3MF(t), whereH, is the
Hamiltonian of the free particles interacting with a coherent
light field andSMF(t) is the mean-field self-energy. For the
example of a pulse-excited semiconductor, it contains the
Coulomb exchange energies and the dipole interaction with
In the scattering components of the polarization function, thehe |aser field. Both terms contain the electron density matrix
two-time electron propagators will be expressed in terms ofgain. Therefore E¢(2.10 for the effective screened inter-
the one-time density matrix and the retarded and advancegction and the equation for the retarded Green function both
Green functions. This so-called generalized Kadanoff-Bayntontain the electron density matrix. The system of equations

Lo(12=-2ih>, Gi(1,2G; 4(2.0). (212
k

approximatiof is has thus to be closed by the equation of motion for the elec-
_ - - tron density matrix containing both the mean-field develop-
Gq>(t,t’)=1[Ga(t,t')p§(t’)—pg(t)Gg(t,t’)], ment and the dissipative quantum kinetics in terms of the

(2.13 scattering self-energies in tH@W approximation, wher&V
is again the effective screened interaction potential intro-
where  pg (1) =(al(t)aq(t))=p4(t) and  pg(t)  duced above.
=<aq(t)a;(t)>=1—pq(t). It has been shown for the ex-

ample of LO-phonon scattering by direct numerical calcula- ll. CALCULATION OF THE TIME-DEPENDENT
tion of the two-time propagators that in semiconductors with EFFECTIVE INTERACTION FOR A FEMTOSECOND-
relatively large dielectric constants, i.e., weak interactions, PULSE-EXCITED SEMICONDUCTOR

the GKBA yields extremely good resuftsNote that the

GKBA is exact for equal times, and thus its validity for short ~Femtosecond pulses in the optical range are presently as
time intervals is particularly good. For the retarded and adshort as 5 fs? This time is shorter than the inverse frequency
vanced Green functions we will use the following approxi- of LO-phonon oscillations and the inverse plasma frequency
mation scheme. First, the unitary time development undefor typical excitation densities of $0-10'® cm™* assuming

the time-dependent mean-field Hamiltonian will be calcu-resonant band-to-band excitation. Therefore femtosecond
lated self-consistentlyy The decay of these functions will be Semiconductor spectroscopy is ideally suited to examine the
described by a hyperbolic secant law and not by a simpléuantum kinetic regime of phonon and Coulomb scattering
exponential decay law. The hyperbolic secant connects #cluding the buildup of screening of the effective interac-
Gaussian decay for small times with an exponential one foon. As mentioned above, the equations for the effective

larger times'®** This decay approximates the actual decayscattering potentialW=(t,t') and for the retarded Green
very welf qualitatively on the femtosecond time scale. functionG'(t,t') have to be closed by an equation of motion
These self-consistently determined retardadd advanced  for the electron density matrip(t) in which the dissipative
Green functions take the form quantum kinetic terms are given by the scattering self-energy

>
Grﬁ(tlitZ): —i0(t;—ty) E<(.t,t’), Whiqh will be t.aker_1 in the so—caIIeGW approxi-
mation. In this approximation vertex corrections are ne-
glected and the self-energy is given in terms of the effective

X[Ui(t)Ug(ty) "] potential in the form

cost{ wo(t;—t5)]’

> > <
(2.14 SEU)=ih2 Wo(tt)GE (), (3D
where the unitary time development is determined by q

where again the GKBA is used to express the electron propa-
2.15 gators in terms of the electron density matrix. The simplest
' vertex correction with two crossed potential lines leads to-

. dUg(t)
i dkt =HYF (Ut
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FIG. 2. Negative imaginary part of the inverse dielectric func-
tion versus frequency and wave number in units of the exciton Bohr
radiusag for the timest=50,100,200,400 fs after a 11 fs pulse that
excites 1.% 10'8 e-h pairs per cr. The projection of the plasmon
resonance into the-q plane is indicated by symbols. FIG. 3. Negative imaginary part of the inverse dielectric func-

tion versus frequency and wave number in units of the exciton Bohr

ether with Eq.(3.1) to the second Born approximation. In radiusaE.; for the timest=59,100,200,400 fs after an 11 fs pulse
g q43.1 bp that excites 5.% 10'7 e-h pairs per cr.

nonequilibrium theory this vertex correction contains two ad-
ditional time integrations compared to B@.1). In the fem-  The coherent part of the equation is the so-called semicon-
tosecond regime these integrations over short time intervalg,ctor Bloch equation

reduce the contribution of this vertex correction strongly

compared to Eq(3.1). In a two-band semiconductor where ¢ i ME ME

the optical transitions take place between the valence bandﬁapk(t”coh:[HO_"E (O 1p(t) —p(O[Ho+ 2" (D)],

and the conduction band, all particle Green functions, the (3.3
polarization, the unitary time development matrix, and the , , L , i
density matrix are X2 matrices in the band index. For a whereH, is the free-particle Hamiltonian interacting with a

laser-pulse-excited semiconductor the density matrix equatoherent laser fielé(t),

tion takes the form c #2Kk2 ldE
" om, T2 ()
S k0= 0|+ pa(t) (3.2 | e | B
— i) =—py(t +—pilt : : — ZdE(t -
at at coh at scatt 2 ®) 2m,
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FIG. 5. Resulting electron distributions 300 fs after an 11 fs
pulse that excited=5.5x 10*” cm™2 carriers in various approxi-
mations: scattering with screened LO-phonon—Coulomb interaction
(full line), scattering with screened Coulomb interaction and un-
screened phonon interactiddashed ling and scattering with only
screened Coulomb interactiddotted ling.

Im [ €] (@, 1)]

where the exchange energy with all electrons of the full va-
lence band is subtracted, because it has been taken into ac-

-3 ; :

,'3 m count already in the band structure calculation.

3 05 The quantum kinetic scattering integrals are given by
=~ 1

Y o 15 J 1t

w > <

~ ;5 qdg ﬁpﬁ(t”scattz_gfﬁmdt,[zﬁ(t't,)eli(t”t)

£

324G, () -G (Lt (1)

+Gg (LU)S (1, D]. (3.6

In the following we will present numerical results from the
integration of this closed set of nonlinear integro-differential
equations. We will assume a pulse with a widih=11 fs

and a hyperbolic secant shape in the fori(t)
=[Eq/cosh(1.7627 st)Je '“. The frequency is detuned
with respect to the band gap by —E,=50 meV. The ma-
terial parameters are those of GaAs and the phonon bath
ho (mev) temperature is 300 K.

Im [ €] (o, 1)]

FIG. 4. Negative imaginary part of the inverse dielectric func-
tion versus frequency and wave number in units of the exciton Bohr
radiusag for the timet=400 fs after an 11 fs pulse that excites the

i 7 ;
e;h de“fs'“es (011'3'2’5'?21;%215 gze;C”?'VThe corresponding For a better understanding of the resulting effective inter-
plasma frequencies are 5,£6,306.5,52.5 Mev. action potentiawa(t,t’) we perform an incomplete Fourier

. . transform over the earlier timg,
whereE, is the energy gapm, , are the effective masses of

electrons and holes, respectively, ahis the interband di- t _
pole matrix element. The mean-field self-energy contains the Wa(t""): f dtrW;(t,t/)e.w(t—tr)_ 4.2
Hartree-Fock exchange energy, —

IV. THE TIME-DEPENDENT INVERSE DIELECTRIC
FUNCTION

The complex dielectric function is then defined by

2T
Wi(t, )= Va (4.2
a(ts . .
=2 Vapeok-q(t) =2 Vapos k-q(t) gq(tw)
q q
= , In Fig. 2 we show the imaginary part of the inverse di-
— > Vepeica =2 Vo(posieat)—1) electric function versus wave number and frequency. The
q arvetd q K e pulse strength is chosen to excite X.10'® e-h pairs per

(3.5 cn. For better visibility we plot—Im(1/e) for various
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- - tor strength of the plasmon pole that lies on the low-energy
. side of the phonon pole is transferred completely to the pho-
i non. This fact explains why one sees in time-integrated fem-
tosecond four-wave mixing with coherent control only oscil-
lations due to the upper branch of the mixed phonon-
plasmon mode, i.e., phonon oscillations at low densities and
. plasmon oscillations at high densities, because small wave
] number transfer dominates the dephasing scattéfitfty.

Finally, in Figs. 5 and Fig. 6, we compare the resulting

‘ relaxation and dephasing kinetics for three approximations:
%% 0 50 100 150 200 250 300 one with the discussed combined effective screened LO-

t(fs) phonon—plasmon interactidifull lines), one with screening
of the Coulomb interaction but unscreened phonon interac-

FIG. 6. Resulting incoherently summed interband polarizationtion (dashed linegs and finally one in which only the
Silpk(t)| versus time after an 11 fs pulse centerectaD that  screened Coulomb carrier-carrier interaction is taken into ac-
excited n=5.5x 10" cm 3 carriers in various approximations: count. In the relaxation of of the electron distributitsee
scattering with screened LO-phonon-Coulomb interactibil  Fig. 5), one sees that the carriers relax faster to the low-
line), scattering screened Coulomb interaction and with unscreenegnergy states if the phonon scattering is also taken into ac-
phonon interactioridashed ling and scattering with only screened cont. Screening of the phonon interactiin addition to
Coulomb interactior(dotted lin. that of the Coulomb interactionmakes the relaxation

slightly slower in comparison with the model of unscreended
times after the pulse. One sees clearly the sharp resonanceldp-Phonon scattering. Figure 6 shows correspondingly the
the dispersionless LO phonon with an energy of 36 meV an§2@Me expected trends in the dephasing of the optically in-
the buildup of the plasmon resonance with a higher freduced _mterband _p_olanzatlon: The contribution of phonqn
quency offiwy,=52.5 meV. Its quadratic wave number de- scattering in addlt'lon to the sqreened Cpulomb scattering
pendence= (1 + 12/x?), wherex is an inverse screen- make_s the d_ephasmg fast_er, _wh|le screening f_;llso of the_pho-
ing length, is seen from the projection of the maxima of theNo" interaction reduces its mfll_Jence again in comparison
plasmon resonance into theq plane. with unscreer)ed phonon scattering. _

At 50 fs the phonon resonance is sharp while the pIasmoP In conclusion, we have presented a self-consistent calcu-
resonance is very broad because the buildup of screening -@tlon of the comblned. screening of the carrier '|nteract|on's
only in its early phase. At 400 fs the stationary resonanci}('a_l‘o phonons and via the Coulqmb potential in nonequi-
structure is essentially reached. One sees that at small way@Mum electron systems, by making use of the Langreth
numbers most of the oscillator strength of the LO phonon idhéorem. The time dependence of the formation of the
transfered to the plasmon. On the other hand the plasmopfréened LO-phonon—plasmon pole structure of the effective
amplitude falls off rapidly for larger momentum transfer, interaction h_as been calculated and discussed. We shovyed
while the phonon amplitude is seen to increase with increadhat the oscillator strength at small momentum transfer is
ing q values. In Fig. 3 spectra of the negative imaginary panalway_s concentrated at_the resonance of the upper branch of
of the inverse dielectric function are shown for a lower den-tN€ Mixed modes. The influence of the screening of both the
sity of excited carriers, namely, fon=5.5x 10" cm 3, ITO—phonon med|at9d interaction a_nd thg Cpulomb interac-
where the plasma frequency witho, = 36.5 meV is nearly tion on the relaxation and dephasing kinetics after a short
degenerate with thew, =36 meV LO-phonon frequency. In €Mtosecond pulse has been shown.
comparison with Fig. 3 one sees that the phonon has gained
weight. This trend in the transfer of oscillator strength from
the plasmon to the phonon with decreasing density is very We appreciate helpful discussions with P. Gartner and L.
clearly seen in Fig. 4 where we compare at later tirhe (Banyai, and the fruitful cooperation with M. Wegener. This
=400 f9 four spectra with densities ranging from 1.1 work was supported by the DFG-Schwerpunktprogramm
X 108 to 0.1x 10 cm™ 3. At the lowest density the oscilla- “Quantenkohaenz in Halbleitern.”
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