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Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model
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A simplified version of the symmetric Kondo lattice model, the Kondo necklace model, is studied by using
a representation of impurity and conduction electron spins in terms of local Kondo singlet and triplet operators.
Within a mean-field theory, a spin gap always appears in the spin triplet excitation spectrum in one dimension
(1D), leading to a Kondo spin liquid state for any finite values of coupling stretidtkwith t as hopping and
J as exchange in 2D and 3D cubic lattices the spin gaps are found to vanish continuously arol)d (
~0.70 and {/J).~0.38, respectively, where quantum phase transitions occur and the Kondo spin liquid state
changes into an antiferromagnetically long-range ordered state. These results are in agreement with variational
Monte Carlo, higher-order series expansion, and recent quantum Monte Carlo calculations for the symmetric
Kondo lattice model.

Since the discovery of the class of stoichiometric insulat-model is meaningful in gener& dimensions P=1,2,3) in
ing compounds known as Kondo insulatorhere has been its own right. Due to the suppression of charge fluctuations
revived interest in the symmetric Kondo lattice Hamiltonianin the symmetric model, the charge degrees of freedom are
frozen out, so the first term of Eq2) represents the spin
H=—t> (CiTon SFHC)+ID S'C?a%ﬁci s (D) degrees of freedom imitating the propagation of the conduc-
({5 R i ' ’ tion electrons. This can be clearly seen in the 1D case, where
as a model of concentrated magnetic impurity spins coupIeH1e first term is equi\{alent after a Jordan.—Wi_gner trans_forma-
to conduction electrons. One of the important issues is thd0n t© @ band of spinless fermions, which interact with lo-
interplay between the Kondo screening and the magnetic irfc@/ized spins via an AF spin-spin exchange COUFﬁ'”g-
teractions among localized spins mediated by the conduction Although the simplified model has only() spin sym-
electrons. The former effect favors a nonmagnetic Konddnetry, lower than S(2) for the Kondo lattice model, the
spin liquid (singled state, while the latter interactions tend to €ssential feature of these two models is kept. Thus, one
stabilize an antiferromagneticallfAF) long-range ordered Would expect that the main physical properties of the original
state. The character of such a transition between these twRymmetric Kondo lattice model should be maintained in the
distinct phases has been a long-standing issue since it w®ndo necklace model. However, most approaches used to
pointed out by Doniacﬁj’here have been a lot of investiga_ treat the 1D KondO_neCk|ace model, |nC|Ud|ng the Var|at|-0na|
tions for the Symmetric one-dimensior{dD) model, show- Mean-field calculatiof,approximate real-space renormaliza-
ing that its ground state is a disordered Kondo spin liquidtion group theory, and recent finite-size scaling analysfs,
two- and three-dimensional models, however, various aptJ/t)c~0.24-0.38, below which an AF quasi-long-range or-

proximate approaches, such as variational Monte Carl§ler state appears) contrast to J=0, the result of quantum
Ca|cu|ations’5, higher-order series expansio‘hsquantum Monte Carlo simulations for the 1D Kondo necklace méﬂel

Monte Carlo simulation§’ and infinite dimensional and the numerical result for the 1D symmetric Kondo lattice

calculationg suggest that the Kondo spin liquid state may model****Itis thus controversial whether the simplified spin
change into an AF long-range ordered state at certain valu@odel can be used to approximate the original symmetric
of the coupling strength at low temperatures. Kondo lattice model. In this paper, we try to resolve this
Since there are a lot of difficulties in directly attacking the iSsue, starting from the Kondo necklace model, using the
symmetric Kondo lattice model even in the 1D case, a simKondo spin singlet and triplet representations, to reproduce

plified version called the Kondo necklace model was intro-correct ground states of the symmetric Kondo lattice model.
duced by Doniacf, In the 1D case, the system is found to be in a Kondo spin

liquid state with a finite spin gap for any finitéJ, while on
B X X\ Yy 2D and 3D cubic lattices a quantum phase transition occurs
H—t02> (rirjitm Tj)""]Z ST, (2 around €/J).~0.70 and {/J).~0.38, respectively, where
! the Kondo spin liquid state changes into an AF long-range
where boths; and S are spin-1/2 Pauli operators, denoting ordered state, in excellent agreement with the variational
the conduction electron spin and impurity spin operators, reMonte Carlo calculation, higher-order series expansion,
spectively, and(i,j) means summation over the nearest-and recent quantum Monte Carlo simulatiéren the corre-
neighbor conduction electron sites. Actually this simplifiedsponding symmetric Kondo lattice model.
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Our starting point is the strong coupling linti= 0, where t
the lowest-energy state of the model Hamiltonian, E, o=~ 20 T AT (i byt ) — 1ttt
reduces to a sum over contributions from independent local (i)
Kondo spin singlet states at each lattice site. WheD, +t tjfyy)JrH_C_],

interactions between these independent local Kondo spin sin- Ly
glets are switched on. It will be seen later that this leads to |
very reasonable results even forJ, which is of interest t t t T

: — It ot gt +sit th ot +H.c.
here. Usually, for twos=1/2 spins7 and S placed on a 4 <|2]> a%y €aprl Siti.alj li 51 ali pliyHHCI,
lattice site, the local Hilbert space is spanned by four states (5)
consisting of one singlet and three triplet states defined as _ _ _ _
being created out of the vacul®) by the singlet and triplet Where a site-dependent chemical potengighas been intro-
creation operatorss)=s'|0) and|t,)=t!|0) (a=x,y,z). duced to impose the local constraint. Here the local spin
A representation of the impurity spins and conduction eleciriplet states are split into two parallel spin states with

tron spins in terms of these singlet and triplet operators is=*1 and an antiparallel spin state with;=0. H; de-
given by scribes the couplings between the singlet state and the paral-

lel spin triplet states, whilél, corresponds to the couplings
of the parallel spin and the antiparallel spin triplet stakes.
describes an interaction of one singlet boson and three dif-
ferent components of triplet bosons.
Tn,a:%(—Sgtn,a—t,ﬁ,asn—ieapyt;ﬁtn,,/), 3 The above Hamiltonian can be solved by a mean-field
decoupling of the quartic terms. It yields an effective Hamil-
whereea, B, andy represent components along they, and  tonian H,,; with only quadratic operators. We taKes?)

z axes, respectively, ane is the antisymmetric Levi-Civita =(s;)=s, which corresponds to eondensation of the local
tensor. This type of spin representation in terms of singlekondo spin singlets on each siteaccordance with the con-
and triplet(bond operators was first proposed by Sachdevfigyration of the ground state in the strong coupling limit,
and Bhatt to study the properties of dimerized phdsasd  ang the local chemical potential is replaced by a global one.
then it was successfully used to consider spin laddensd  \we will consider here only the terné, andH,, as it can be
s=1 antiferromagnetic Heisenberg spin chaifids shown  ghown that inclusion ofH, changes the results only
later, this representation faithfully describes the low-g|ightly!517 and all the decouplings df5 identically vanish
temperature physics in the symmetric Kondo lattice modelyjthin the present mean-field theory. After performing a
In order to restrict the physical states to either singlets Okqyrier transformation of the boson operators, ,
triplets, a local constraint is introduced§5n+2atg'atn,a =(LWN)Z,t, . e K71, the mean-field effective Hamiltonian
=1. Taking the singlet and triple operators at each site tqs given by

satisfy the bosonic commutation reIatior[$n,sl]:1,

[tna th 5= 84 p, and[s,,t] ,]=0, the SW2) algebra of 3
the spinss, andS, can be reproduced: Hm=N| — ZJSZ+M52—M

3=

Sn,a: % (S;tn,a—i_tg,asn_ [ eaﬁ"ytl,/}:tn,y)a

o2
2t

; tl,ztk,z

[Sha'Shsl=i€usvSn s [TnarT™el=1€asyTn + bt
,a B aByn,y n,a n,g aBy’n,y +k”32x'y [Aktk,ﬁtk,ﬁ+Ak(tk,ﬁtfk,ﬁ_l—tk,ﬁt*k,ﬁ)]’ (6)

: (@ with A =(I/4+ p)+3ts2\(k), A =1ts®\(k), and \(k)
= ESZ ,cosk,. The lattice spacing has been taken to be unity.

Substituting the operator representation of the impurity an(}_h'_S mean-field Ham!ltonl_an can be diagonalized by a Bo-
conduction electron spins, we obtain the following form of goliubov transformation into new boson operatots: s

[Sha:Tnpl=0, So=72=

M w

the model Hamiltonian: = uktk,ﬁ+vktikﬂ, where the coefficients, andv, are even
functions ofk, and are determined to he +vZ=cosh2j
H=Ho+H+H,+Hs, = A JVAR= (28] and Ay =sinh 2=

—2A /[ JAZ—(2A,)?]. Then we obtain
J
Homy 3 [ -ass+ 3 b

i Y Hmf: wOE tl,ztk,z+ 2 wk’\fl,ﬁﬁt‘k,ﬁ_k Eg ’ (7)
k k,B=x,y

+§i: i

s;‘si + Z tﬁati,a— 1) , wherewg=(J/4+ w) is the dispersionless energy level of the

antiparallel spin triplet excited state, = \/Akz— (2A,)? cor-
responds to the excitation spectrum of the parallel spin triplet
excited states, and the ground state energy of the system is

Eg=N(— 335+ us?— u) + Zy(w—Ay). By minimizing
: the ground-state energy with respectioands, we derive
ti ytj ) +H.c, the following saddle-point equations:

H1: E [SiTSjT(ti ,xtj ,x+ti ,yti ,y) + SiTSi(tivxtJTuX

t
4 1)
+
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FIG. 1. The variation of the spin gap upon increasing of the

coupling parametet/J of the 1D model aff =0. FIG. 2. The spin gap and the staggered magnetic moment at

zero temperature of the 2D Kondo necklace modelld line) in
comparison with results of recent quantum Monte Carlo simulation

Ay (Ref. 6 for the 2D Kondo lattice model.
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that any finite coupling strength delocalizes the local Kondo
singlets, reducing the magnitude of the gap but not closing it
completely.

Having secured the correct ground state for the 1D sym-
metric Kondo lattice model, we now turn to two- and three-

dimensional “Kondo necklace” models on a cubic lattice. In

's2 2D, the variational parameted; s°, and u/J can also be
calculated from the saddle-point equations. The minimum
spin gap appears in the parallel spin triplet excitatiork at
= (m,m):Agp=J(3 +ulJ)J1—2d, displayed in Fig. 2. The
most important feature here is that as the coupling parameter
t/J increases, the drop of the spin gap in the small values of

| o~

(3+uld)

is introduced, a self-consistent equation fbrcan be ob-
tained,

) O . S (9)

J 2N < 1+dn (k)]

t/J continues down to the point/J).~0.70 where the spin
gap actually vanishes. The critical couplingJ) .~ 0.70 cor-
responds to a quantum critical point for a phase transition
from the quantum disordered Kondo spin liquid to a mag-

to determine the variational parameterand . and the spin ; . :

i o L ) netically long-range ordered state. Surprisingly, the location
triplet excitation spectra:wo=J(7+x/J) and o =J3(i  of the critical point for the 2D Kondo necklace model is
+ plJ)y1+dh(k). There is a minimum spin gap in the par- precisely the value obtained from the variational Monte
allel spin triplet spectrum at the AF reciprocal vector mo-cCarlo calculatior, the higher-order series expansfband
mentumk=Q: Assz(%qL,u/J)\/l—zd/z, whereZ is the  recent quantum Monte Carlo simulatich&r the 2D sym-
total number of the nearest neighbors on the cubic lattice. metric Kondo lattice model. When a similar calculation is

In the 1D case, we first numerically calculate the paramcarried out in the 3D Kondo necklace model, the minimum

etersd, s?, and u/J for a range of the coupling strength 0 spin  gap appears atk=(m,m,m) and Ay =J(3
<t/J<5, and the minimum spin gapAg,=J(; T #/J)y1—3d, shownin Fig. 3. Ad/J grows, the spin gap
+1/3)y1—d is evaluated in the range of0t/J<5, which decreases and exhibits a critical valueJj.~0.38, where

has been delineated in Fig. 1. The dispersive band can aldB€ SPin gap disappears completely, showing a quantum
be parametrized by a spin density wave with a velocity given

by vs=J(%+ w/J)/d/2. A linear drop of the spin gap is seen
for small values oft/J. As t/J gets larger, the spin gap de-
viates considerably from the linear behavior and there is no
indication at all suggesting a critical value fgd where the
gap would vanish. Since the excitation spectra are real and
positive everywhere in the Brillouin zone, the system will be
in a quantum disordered Kondo spin liquid state fimite
values of the coupling strengtitJ, and the spin-spin corre-
lation function decays exponentially at large distances with a
correlation lengtié=v/Ag,. This is indeed consistent with
both quantum Monte Carlo simulations for the 1D Kondo
necklacé! and numerical results for the 1D symmetric
Kondo lattice modet?*® Thus, starting from the limit/J FIG. 3. The spin gap and the staggered magnetic moment at
=0 with localized Kondo spin singlets on each site, we seeero temperature for 3D Kondo necklace model.
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phase transition from the quantum disordered Kondo spitthen the remaining part of the magnetic impurities on differ-

liquid to a magnetically long-range ordered state as wellent |attice sites starts to develop long-range correlatians (
This transition point is in the same range as the higher-ordeg 0y mediated by the conduction electron spifiSuch a
series expansidrfor the 3D symmetric Kondo lattice model: magnetically long-range ordered state might be related to the
(t/3)c~0.50. _ ground states of the U-based heavy fermion compounds
Moreover, the present mean-field theory can also be agURy,Si, and UP$) with a very small magnitude of induced
plied to the magnetically long-range ordered phase in the 2[3taggered magnetic moments. In order to determine the pa-

and 3D Kondo necklace models. If we assume that not °n|¥ameters§andt_ we minimize the ground-state energy, de-
do the local Kondo spin singletss (bosons condense, but ;e the saddle-point equations, and finally obtain

one of the local Kondo spin triplets,(, boson$ condenses
as well on the AF reciprocal vectdy =Nt q+ 7,
corresponding tdixing the orientation of the localized spins 214 i_ i N
along the x directionit will lead to another mean-field ef- s=1 Zt 2N 1+2n(kyiz,
fective Hamiltonian

Hr,nf: Eé+wO§k: tl,ztk,z+; wk(Tl,ka,y+77I,x77k,x)7 t_2= _i_i 2 ; ( 1)
Zt 2N % \1+2)n(k)/Z
S §J§2+M§2—M+ £+,u— Ezgz)t—z} The AF order parameter is defined by=s-t, leading to
g 4 4 2 the following expressions:
+3 (oA (10) ) )
= Wk k/s mg= 0.35712—E 0.52095|—E , for 2D,

where w, has the same form as in the Kondo spin liquid
case, andy, , and 7, , are the transverse spin triplet excita-
tion modes. When the order parametelis nonzero, the mg= \/(0-44234—
saddle-point equation fot vyields u=3Zts?—J/4, which , o
makes the parallel spin triplet excitation spectrgapless 1 hese results have also been displayed in Figs. 2 and 3,

o = %Zt? 1+ 2x(K)/Z. The ground state corresponds to arespectlvely. In Fig. 2, our results are also compared with the

magnetically long-range ordering state with a maximum mO_numerlcal results for the spin gap and staggered moment of

- the magnetic impurity spins in the recent quantum Monte
mentumg=Q, and the mean field represents the AF order carlo simulation on the 2D symmetric Kondo lattice model
parameter. A very appealing physical picture of forming AF 5t ,er0 temperatur®.

long-range order in the Kondo necklace or the symmetric |, summary, we have presented a mean-field theory for
Kondo lattice models has been suggested: wiigns small,  the Kondo necklace model in 1D, 2D, and 3D and have
the conduction electron spins are locked and the impurityptained their correct ground states corresponding to the re-
spins are screened completely, and the ground state is a progsective Kondo lattice model. A long-standing controversial
uct of the local Kondo spin singlet quantum disorderedissye has been thus resolved regarding the relationship be-
phase® As t/J becomes larger and larger, the conductionyyeen these two models. As far as the spin part of the
electrongthe spin degrees of freedgrave more possibility  ground-state properties is concerned, the Kondo necklace
to propagate to the nearest-neighbor sites, and the localizgflodel can reproduce the correct phase diagrams of the sym-
magnetic impurity spin is onlyartially screened §#0);  metric Kondo lattice model at zero temperature.

J J
a)(0.51263+— a), for 3D.
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