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Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model
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A simplified version of the symmetric Kondo lattice model, the Kondo necklace model, is studied by using
a representation of impurity and conduction electron spins in terms of local Kondo singlet and triplet operators.
Within a mean-field theory, a spin gap always appears in the spin triplet excitation spectrum in one dimension
~1D!, leading to a Kondo spin liquid state for any finite values of coupling strengtht/J ~with t as hopping and
J as exchange!; in 2D and 3D cubic lattices the spin gaps are found to vanish continuously around (t/J)c

'0.70 and (t/J)c'0.38, respectively, where quantum phase transitions occur and the Kondo spin liquid state
changes into an antiferromagnetically long-range ordered state. These results are in agreement with variational
Monte Carlo, higher-order series expansion, and recent quantum Monte Carlo calculations for the symmetric
Kondo lattice model.
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Since the discovery of the class of stoichiometric insu
ing compounds known as Kondo insulators,1 there has been
revived interest in the symmetric Kondo lattice Hamiltoni

H52t(
^ i , j &

~Ci ,s
† Cj ,s1H.c.!1J(

i
Si•Ci ,a

† sabCi ,b ~1!

as a model of concentrated magnetic impurity spins coup
to conduction electrons. One of the important issues is
interplay between the Kondo screening and the magnetic
teractions among localized spins mediated by the conduc
electrons. The former effect favors a nonmagnetic Kon
spin liquid ~singlet! state, while the latter interactions tend
stabilize an antiferromagnetically~AF! long-range ordered
state. The character of such a transition between these
distinct phases has been a long-standing issue since it
pointed out by Doniach.2 There have been a lot of investiga
tions for the symmetric one-dimensional~1D! model, show-
ing that its ground state is a disordered Kondo spin liq
state forany finite values of the coupling strengtht/J.3 For
two- and three-dimensional models, however, various
proximate approaches, such as variational Monte C
calculations,5 higher-order series expansions,4 quantum
Monte Carlo simulations,6,7 and infinite dimensiona
calculations,8 suggest that the Kondo spin liquid state m
change into an AF long-range ordered state at certain v
of the coupling strength at low temperatures.

Since there are a lot of difficulties in directly attacking t
symmetric Kondo lattice model even in the 1D case, a s
plified version called the Kondo necklace model was int
duced by Doniach,2

H5t(
^ i , j &

~t i
xt j

x1t i
yt j

y!1J(
i

Si•ti , ~2!

where bothti and Si are spin-1/2 Pauli operators, denotin
the conduction electron spin and impurity spin operators,
spectively, and^ i , j & means summation over the neare
neighbor conduction electron sites. Actually this simplifi
PRB 620163-1829/2000/62~1!/69~4!/$15.00
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model is meaningful in generalD dimensions (D51,2,3) in
its own right. Due to the suppression of charge fluctuatio
in the symmetric model, the charge degrees of freedom
frozen out, so the first term of Eq.~2! represents the spin
degrees of freedom imitating the propagation of the cond
tion electrons. This can be clearly seen in the 1D case, wh
the first term is equivalent after a Jordan-Wigner transform
tion to a band of spinless fermions, which interact with l
calized spins via an AF spin-spin exchange coupling.2

Although the simplified model has only U~1! spin sym-
metry, lower than SU~2! for the Kondo lattice model, the
essential feature of these two models is kept. Thus,
would expect that the main physical properties of the origi
symmetric Kondo lattice model should be maintained in
Kondo necklace model. However, most approaches use
treat the 1D Kondo necklace model, including the variatio
mean-field calculation,2 approximate real-space renormaliz
tion group theory,9 and recent finite-size scaling analysis10

have found a finite critical value of the coupling streng
(J/t)c;0.24–0.38, below which an AF quasi-long-range o
der state appears,in contrast to Jc50, the result of quantum
Monte Carlo simulations for the 1D Kondo necklace mode11

and the numerical result for the 1D symmetric Kondo latt
model.12,13It is thus controversial whether the simplified sp
model can be used to approximate the original symme
Kondo lattice model. In this paper, we try to resolve th
issue, starting from the Kondo necklace model, using
Kondo spin singlet and triplet representations, to reprod
correct ground states of the symmetric Kondo lattice mod
In the 1D case, the system is found to be in a Kondo s
liquid state with a finite spin gap for any finitet/J, while on
2D and 3D cubic lattices a quantum phase transition occ
around (t/J)c;0.70 and (t/J)c;0.38, respectively, where
the Kondo spin liquid state changes into an AF long-ran
ordered state, in excellent agreement with the variatio
Monte Carlo calculation,5 higher-order series expansion4

and recent quantum Monte Carlo simulations,6 on the corre-
sponding symmetric Kondo lattice model.
69 ©2000 The American Physical Society
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Our starting point is the strong coupling limitt50, where
the lowest-energy state of the model Hamiltonian, Eq.~2!,
reduces to a sum over contributions from independent lo
Kondo spin singlet states at each lattice site. WhentÞ0,
interactions between these independent local Kondo spin
glets are switched on. It will be seen later that this leads
very reasonable results even fort>J, which is of interest
here. Usually, for twos51/2 spinsti and Si placed on a
lattice site, the local Hilbert space is spanned by four sta
consisting of one singlet and three triplet states defined
being created out of the vacuumu0& by the singlet and triplet
creation operators:us&5s†u0& and uta&5ta

† u0& (a5x,y,z).
A representation of the impurity spins and conduction el
tron spins in terms of these singlet and triplet operators
given by

Sn,a5 1
2 ~sn

†tn,a1tn,a
† sn2 i eabgtn,b

† tn,g!,

tn,a5 1
2 ~2sn

†tn,a2tn,a
† sn2 i eabgtn,b

† tn,g!, ~3!

wherea, b, andg represent components along thex, y, and
z axes, respectively, ande is the antisymmetric Levi-Civita`
tensor. This type of spin representation in terms of sing
and triplet ~bond! operators was first proposed by Sachd
and Bhatt to study the properties of dimerized phases14 and
then it was successfully used to consider spin ladders15 and
s51 antiferromagnetic Heisenberg spin chains.16 As shown
later, this representation faithfully describes the lo
temperature physics in the symmetric Kondo lattice mod
In order to restrict the physical states to either singlets
triplets, a local constraint is introduced:sn

†sn1(atn,a
† tn,a

51. Taking the singlet and triple operators at each site
satisfy the bosonic commutation relations@sn ,sn

†#51,
@ tn,a ,tn,b

† #5da,b , and @sn ,tn,a
† #50, the SU~2! algebra of

the spinstn andSn can be reproduced:

@Sn,a ,Sn,b#5 i eabgSn,g , @tn,a ,tn,b#5 i eabgtn,g ,

@Sn,a ,tn,b#50, Sn
25tn

25
3

4
. ~4!

Substituting the operator representation of the impurity a
conduction electron spins, we obtain the following form
the model Hamiltonian:

H5H01H11H21H3 ,

H05
J

4 (
i

S 23si
†si1(

a
t i ,a
† t i ,aD

1(
i

m i S si
†si1(

a
t i ,a
† t i ,a21D ,

H15
t

4
(̂
i j &

@si
†sj

†~ t i ,xt j ,x1t i ,yt j ,y!1si
†sj~ t i ,xt j ,x

†

1t i ,yt j ,y
† !1H.c.#,
al

in-
o

s
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-
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t
v

-
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r

o
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f

H252
t

4
(̂
i j &

@ t i ,z
† t j ,z

† ~ t i ,xt j ,x1t i ,yt j ,y!2t i ,z
† t j ,z~ t i ,xt j ,x

†

1t i ,yt j ,y
† !1H.c.#,

H35
i t

4
(̂
i j &

(
a,b,g

eabg@si
†t i ,at j ,b

† t j ,g1sj
†t j ,at i ,b

† t i ,g1H.c.#,

~5!

where a site-dependent chemical potentialm i has been intro-
duced to impose the local constraint. Here the local s
triplet states are split into two parallel spin states withms
561 and an antiparallel spin state withms50. H1 de-
scribes the couplings between the singlet state and the p
lel spin triplet states, whileH2 corresponds to the coupling
of the parallel spin and the antiparallel spin triplet states.H3
describes an interaction of one singlet boson and three
ferent components of triplet bosons.

The above Hamiltonian can be solved by a mean-fi
decoupling of the quartic terms. It yields an effective Ham
tonian Hm f with only quadratic operators. We takêsi

†&
5^si&5 s̄, which corresponds to acondensation of the loca
Kondo spin singlets on each sitein accordance with the con
figuration of the ground state in the strong coupling lim
and the local chemical potential is replaced by a global o
We will consider here only the termsH0 andH1, as it can be
shown that inclusion ofH2 changes the results onl
slightly15,17 and all the decouplings ofH3 identically vanish
within the present mean-field theory. After performing
Fourier transformation of the boson operators,t i ,a

5(1/AN)(ktk,a e2 ik"r i, the mean-field effective Hamiltonian
is given by

Hm f5NS 2
3

4
Js̄21m s̄22m D1S J

4
1m D(

k
tk,z
† tk,z

1 (
k,b5x,y

@Lktk,b
† tk,b1Dk~ tk,b

† t2k,b
† 1tk,bt2k,b!#, ~6!

with Lk5(J/41m)1 1
2 t s̄2l(k…, Dk5 1

4 t s̄2l(k), and l(k)
5(a51

d coska . The lattice spacing has been taken to be un
This mean-field Hamiltonian can be diagonalized by a B
goliubov transformation into new boson operators:t̃ k,b

5uktk,b1vkt2k,b
† , where the coefficientsuk andvk are even

functions ofk, and are determined to beuk
21vk

25cosh2uk

5Lk /@ALk
22(2Dk)

2# and 2ukvk5sinh 2uk5

22Dk /@ALk
22(2Dk)

2#. Then we obtain

Hm f5v0(
k

tk,z
† tk,z1 (

k,b5x,y
vk t̃ k,b

† t̃ k,b1Eg , ~7!

wherev05(J/41m) is the dispersionless energy level of th
antiparallel spin triplet excited state,vk5ALk

22(2Dk)
2 cor-

responds to the excitation spectrum of the parallel spin trip
excited states, and the ground state energy of the syste
Eg5N(2 3

4 Js̄21m s̄22m)1(k(vk2Lk). By minimizing
the ground-state energy with respect tom and s̄, we derive
the following saddle-point equations:
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1

N (
k

Lk

ALk
22~2Dk!2

5~22 s̄2!,

t

N (
k
ALk22Dk

Lk12Dk
l(k)52JS 3

4
2

m

J D . ~8!

When a dimensionless parameter

d5
t

J

s̄2

~ 1
4 1u/J!

is introduced, a self-consistent equation ford can be ob-
tained,

d5
2t

J F12
1

2N (
k

1

A11dl~k…
G , ~9!

to determine the variational parameterss̄ andm and the spin

triplet excitation spectra:v05J( 1
4 1m/J) and vk5J( 1

4

1m/J)A11dl(k…. There is a minimum spin gap in the pa
allel spin triplet spectrum at the AF reciprocal vector m

mentumk5Q: Dsp5J( 1
4 1m/J)A12Zd/2, whereZ is the

total number of the nearest neighbors on the cubic lattic
In the 1D case, we first numerically calculate the para

etersd, s̄2, andm/J for a range of the coupling strength

,t/J,5, and the minimum spin gap Dsp5J( 1
4

1m/J)A12d is evaluated in the range of 0,t/J,5, which
has been delineated in Fig. 1. The dispersive band can
be parametrized by a spin density wave with a velocity giv

by vs5J( 1
4 1m/J)Ad/2. A linear drop of the spin gap is see

for small values oft/J. As t/J gets larger, the spin gap de
viates considerably from the linear behavior and there is
indication at all suggesting a critical value fort/J where the
gap would vanish. Since the excitation spectra are real
positive everywhere in the Brillouin zone, the system will
in a quantum disordered Kondo spin liquid state forfinite
values of the coupling strengtht/J, and the spin-spin corre
lation function decays exponentially at large distances wit
correlation lengthj5vs /Dsp . This is indeed consistent with
both quantum Monte Carlo simulations for the 1D Kon
necklace11 and numerical results for the 1D symmetr
Kondo lattice model.12,13 Thus, starting from the limitt/J
50 with localized Kondo spin singlets on each site, we s

FIG. 1. The variation of the spin gap upon increasing of
coupling parametert/J of the 1D model atT50.
-

-

lso
n

o

nd

a

e

that any finite coupling strength delocalizes the local Kon
singlets, reducing the magnitude of the gap but not closin
completely.

Having secured the correct ground state for the 1D sy
metric Kondo lattice model, we now turn to two- and thre
dimensional ‘‘Kondo necklace’’ models on a cubic lattice.
2D, the variational parametersd, s̄2, and m/J can also be
calculated from the saddle-point equations. The minim
spin gap appears in the parallel spin triplet excitation ak
5(p,p):Dsp5J( 1

4 1m/J)A122d, displayed in Fig. 2. The
most important feature here is that as the coupling param
t/J increases, the drop of the spin gap in the small value
t/J continues down to the point (t/J)c'0.70 where the spin
gap actually vanishes. The critical coupling (t/J)c'0.70 cor-
responds to a quantum critical point for a phase transit
from the quantum disordered Kondo spin liquid to a ma
netically long-range ordered state. Surprisingly, the locat
of the critical point for the 2D Kondo necklace model
precisely the value obtained from the variational Mon
Carlo calculation,5 the higher-order series expansion,4 and
recent quantum Monte Carlo simulations,6 for the 2D sym-
metric Kondo lattice model. When a similar calculation
carried out in the 3D Kondo necklace model, the minimu

spin gap appears atk5(p,p,p) and Dsp5J( 1
4

1m/J)A123d, shown in Fig. 3. Ast/J grows, the spin gap
decreases and exhibits a critical value (t/J)c'0.38, where
the spin gap disappears completely, showing a quan

FIG. 2. The spin gap and the staggered magnetic momen
zero temperature of the 2D Kondo necklace model~bold line! in
comparison with results of recent quantum Monte Carlo simulat
~Ref. 6! for the 2D Kondo lattice model.

FIG. 3. The spin gap and the staggered magnetic momen
zero temperature for 3D Kondo necklace model.



p
el
rd
l:

a
2
n

s
-

id
a-

a
o

r
F

tri

rit
r

ed
on

liz

er-
(

the
nds
d
pa-

e-

d 3,
the
t of

nte
el

for
ve
re-

ial
be-

the
lace
ym-

72 PRB 62BRIEF REPORTS
phase transition from the quantum disordered Kondo s
liquid to a magnetically long-range ordered state as w
This transition point is in the same range as the higher-o
series expansion4 for the 3D symmetric Kondo lattice mode
(t/J)c'0.50.

Moreover, the present mean-field theory can also be
plied to the magnetically long-range ordered phase in the
and 3D Kondo necklace models. If we assume that not o
do the local Kondo spin singlets (s bosons! condense, but
one of the local Kondo spin triplets (tk,x bosons! condenses
as well on the AF reciprocal vectort

k,x
5AN t̄dk,Q1hk,x ,

corresponding tofixing the orientation of the localized spin
along the x direction, it will lead to another mean-field ef
fective Hamiltonian

Hm f8 5Eg81v0(
k

tk,z
† tk,z1(

k
vk~ t̃ k,y

† t̃ k,y1h̃k,x
† h̃k,x!,

Eg85NF2
3

4
Js̄21m s̄22m1S J

4
1m2

1

2
Zts̄2D t̄ 2G

1(
k

~vk2Lk!, ~10!

where vk has the same form as in the Kondo spin liqu
case, andh̃k,x

† andh̃k,x are the transverse spin triplet excit

tion modes. When the order parametert̄ is nonzero, the
saddle-point equation fort̄ yields m5 1

2 Zts̄22J/4, which
makes the parallel spin triplet excitation spectrumgapless:
vk5 1

2 Zts̄2A112l(k…/Z. The ground state corresponds to
magnetically long-range ordering state with a maximum m
mentumq5Q, and the mean fieldt̄ represents the AF orde
parameter. A very appealing physical picture of forming A
long-range order in the Kondo necklace or the symme
Kondo lattice models has been suggested: whent/J is small,
the conduction electron spins are locked and the impu
spins are screened completely, and the ground state is a p
uct of the local Kondo spin singlet quantum disorder
phase.3 As t/J becomes larger and larger, the conducti
electrons~the spin degrees of freedom! have more possibility
to propagate to the nearest-neighbor sites, and the loca
magnetic impurity spin is onlypartially screened (s̄Þ0);
v.

.L
in
l.
er

p-
D
ly

-

c

y
od-

ed

then the remaining part of the magnetic impurities on diff
ent lattice sites starts to develop long-range correlationst̄
Þ0) mediated by the conduction electron spins.14 Such a
magnetically long-range ordered state might be related to
ground states of the U-based heavy fermion compou
(URu2Si2 and UPt3) with a very small magnitude of induce
staggered magnetic moments. In order to determine the
rameterss̄ and t̄ , we minimize the ground-state energy, d
rive the saddle-point equations, and finally obtain

s̄2511
J

Zt
2

1

2N (
k

A112l~k…ÕZ,

t̄ 2512
J

Zt
2

1

2N (
k

1

A112l~k…ÕZ
. ~11!

The AF order parameter is defined byms5 s̄• t̄ , leading to
the following expressions:

ms5AS 0.357122
J

4t D S 0.520951
J

4t D , for 2D,

ms5AS 0.442342
J

6t D S 0.512631
J

6t D , for 3D.

These results have also been displayed in Figs. 2 an
respectively. In Fig. 2, our results are also compared with
numerical results for the spin gap and staggered momen
the magnetic impurity spins in the recent quantum Mo
Carlo simulation on the 2D symmetric Kondo lattice mod
at zero temperature.6

In summary, we have presented a mean-field theory
the Kondo necklace model in 1D, 2D, and 3D and ha
obtained their correct ground states corresponding to the
spective Kondo lattice model. A long-standing controvers
issue has been thus resolved regarding the relationship
tween these two models. As far as the spin part of
ground-state properties is concerned, the Kondo neck
model can reproduce the correct phase diagrams of the s
metric Kondo lattice model at zero temperature.
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