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Extended-range computation of Wannier-like functions in amorphous semiconductors
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~Received 10 December 1999!

We have computed first-principles occupied Wannier-like functions within an unprecedented spatial range in
a realistic model of amorphous Si containing 4096 atoms. To avoid the computation of eigenstates we applied
theO(N) Fermi-operator expansion method. The functions decay exponentially in space in a fashion similar to
the best-localized occupied Wannier states in crystalline silicon. While their decay lengths do not depend on
the local distortions, the functions have an intricate nonspherical structure depending on the disorder in the
material.
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Since the 1930s it has been known that electron state
crystals can be expressed in either an extended~Bloch! form
or a localized~Wannier! form.1 The long-range decay of th
Wannier functions~WF’s! is qualitatively different for met-
als and insulators, and the exponential localization in
latter case is the basis of the fundamental theory of the in
lating state developed by Kohn and others2 and the modern
theory of polarization.3 Moreover, the nature of the localize
functions plays a key role in the newO(N) electronic-
structure computational schemes which scale only line
with the number of atoms in the system,4 and in efficient
methods for incorporation of electron correlation
insulators.5

The importance of~orthonormal! WF’s is based on two
principal properties. First, since they are unitary transform
tions of the canonical eigenstates of a given one-part
Hamiltonian, these functions span the same space as
eigenstates. Second, the freedom in the choice of this tr
formation allows one to select those WF’s which are to
maximum extent localized. In particular, if one comput
localized WF’s which are created from all occupied eige
states, one gets functions which reflect the bonding pro
ties of a given system.

While the computation of WF’s in molecules~localized
molecular orbitals! has a long history in quantum chemist
~cf. Ref. 6!, there have only been few computations of su
functions in solid-state physics.5–9 When starting from Bloch
eigenstates, these computations adopted a certain choi
the Bloch phase factors.7 However, the requirement of max
mum localization of WF’s makes the unitary transformati
unique, provided a certain localization criterion has been
lected. Such maximally localized WF’s have recently be
computed by Marzari and Vanderbilt.6 The explicit compu-
tation of WF’s from eigenstates is only feasible, however,
systems which are not too large because the computatio
a complete band of eigenstates scales with the third powe
the system size. On the other hand, the investigation of
exact localization behavior of these functions requires th
computation over longer spatial distances. This localizat
behavior is still the topic of some debate, primarily for tw
reasons. First, there have been proofs for a number of sp
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systems that exponentially localized WF’s exist, if the
states are computed from energy bands which are sepa
from other bands by finite energy gaps.10,11This suggests the
existence of exponentially localized occupied WF’s in ins
lators. There has not yet been a general proof of this st
ment, however. Second, the dependence of the expone
decay length of the WF’s~or the related density matrix! on
the gap width is still under discussion.4,10–13This is caused
by the fact that the dependence of occupied WF’s on
energetic position of the unoccupied states can only be
indirect one mediated by the properties of the Hamiltoni
Moreover, in disordered systems the localized WF’s can
depend, in general, on either the global gap between
highest occupied and lowest unoccupied eigensta
~HOMO-LUMO gap! nor some sort of local gap formed b
any locally relevant localized~defect! eigenstates.14,15

In this paper, we present direct extended-range comp
tions of occupied WF’s in a realistic 4096-atom model
a-Si ~Ref. 16! using an approximate density function
method. We avoided the computation of eigenstates by
plying the linear-scaling Fermi-operator expansion~or pro-
jection! method9,17 with a subsequent approximate orthono
malization of the projected states. Our generalization of t
method to nonorthonormal basis states and theO(N) imple-
mentation of the orthonormalization have been described
detail in Ref. 9. The advantage of this scheme is that
effort of performing the projections scales linearly also w
the number of atoms in the localization regions, and th
allows us to use quite large regions. To further increase
accuracy of our method, these regions were dynamically
justed within the orthonormalization.

In Ref. 9, we had already presented preliminary results
WF’s in diamond and amorphous carbon cells contain
512 atoms and using a simple LDA-based tight-binding-l
Hamiltonian. The Hamiltonian of the present paper is t
fully first-principle local-orbital LDA Hamiltonian of Sankey
and Niklewski.18 The atomic orbitals in this Hamiltonian ar
strictly set to zero outside a certain cutoff range~5.0 bohr
radii for Si!. With this Hamiltonian, the Fermi energy of th
given system was computed using the dynamic projec
method described in Ref. 19. The number of Chebych
6885 ©2000 The American Physical Society
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FIG. 1. ~Color! Charge-density plots with isodensity contour lines for two truncated and orthonormalized Wannier-like functions
planes in a 4096-atoma-Si model. The upper two panels depict one WF in two different planes while the lower two panels show a
function in two planes. The colors have been mapped to the logarithms of the charge density stretching over about 20 orders of m
from its maximum value~red! through green to the minimum finite value~blue!. The deepest blue is assigned to zero charge density ou
the localization regions. The small white crosses indicate the positions of the atoms defining the plane.
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polynomials needed to get convergence in this computa
~130 for b580) was then used throughout the scheme.

Because of the complete fourfold coordination of the s
tem, we could start with bonding orbitals as initial functio
on

s-
s

which are bonding combinations of hybrid orbitals pointin
in bond directions.6,9,20 The localization regions used durin
the projections then contained all atoms within seven bo
steps from the originating bond.
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FIG. 2. ~Color! Mulliken’s atomic gross
populations vs distance from bond center for fo
WF’s in the 4096-atoma-Si model. Solid
~dashed! lines, maximum ~average! population
values in distance intervals of 0.5 Å; black line
population values for all WF’s. The WF’s ar
centered at bonds that are attached to atoms w
the specified standard deviations of the bo
angles. The WF’s at the atoms with deviations
24.1° and 27.9° are the functions plotted in Fig
1~c!, 1~d! and 1~a!, 1~b!, respectively. The dotted
line gives the maximum population values for a
WF’s before orthonormalization.



th
i
ic
o

h
on
ic
o

an

nd
°
th
as
og
its

e
y

th
ac
e

th
F
v
g
in
ut

t
e

io
lo
st

to
und

ore
, as
by

’s,
la-

e
est
the
e

ce
of
tion
ck
ues

to
er-
s is
all
er-
tion
of

ve to
als
ge
ss

or as
ilar
cter-

e

ke

g.
Th
ta

m
ns

n-

PRB 62 6887BRIEF REPORTS
As an example, Fig. 1 shows the charge densities wi
planes for two selected orthonormalized projected WF’s
thea-Si model. The planes are defined by three atoms wh
are indicated by small white crosses in the figures. Two
these atoms form the originating bond of the WF, while t
third atom is a neighboring atom of this bond. The functi
plotted in the top panels of Fig. 1 is located at a bond wh
is situated at one of the most distorted atoms in the wh
system. The three atoms in Fig. 1~a! form a bond angle of
83° only, while the bond angle in Fig. 1~b! amounts to 155°.
The bottom panels in Fig. 1 depict two planes through
other WF where the bond angles are 79°@Fig. 1~c!# and 130°
@Fig. 1~d!#, respectively. The standard deviations of all bo
angles at these atoms are 27.9° for the upper and 24.1
the lower panels. After the dynamic orthonormalization,
localization regions contained 476 atoms in the upper c
and 441 atoms in the lower case. The colors describe a l
rithmic charge density plot with densities reaching from
maximum value as shown in red ('10 electrons/Å3)
through green and blue~blue for zero density outside th
localization regions!. The minimum finite charge densit
plotted was about 10219 electrons/Å3. Additionally, the fig-
ure contains contour lines of equal charge density where
density logarithm crosses an integer value. The thick bl
lines which are composed of many contour lines repres
node lines at which the WF changes sign.

As can be seen in Fig. 1, the large local distortions at
selected atoms result in a sizable asymmetry of the W
already in the immediate vicinity of the central bond. Ne
ertheless, the functions are clearly localized and bondin
the originating bond, and are antibonding to the neighbor
atom to fulfil the orthogonality constraint. When going o
further in space, the functions become highly irregular due
the disordered nature of the system. The WF’s oscillate s
eral times until they reach the boundary of the localizat
regions. These boundaries are sharp in the logarithmic p
due to the cutoff in the atomic orbitals. As a further intere

FIG. 3. Local densities of states at the atoms selected in Fi
with the specified standard deviations of the bond angles.
dashed line in the upper panel represents the total density of s
in the 4096-atoma-Si model.
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ing feature, the resulting WF’s show a clear tendency
become nonspherical. This is a result we had already fo
earlier using a simpler Hamiltonian.9 The functions prefer to
spread out in certain bond directions while they decay m
quickly in other parts of their environment. In some cases
in Fig. 1~a!, the overall function may be better described
an ellipsoidal shape instead of a spherical one.

To better quantify the radial decay of our localized WF
Fig. 2 depicts the decay of Mulliken’s atomic gross popu
tions of the WF’s of Fig. 1~green and blue lines! along with
another two WF’s within distance intervals of 0.5 Å. Th
additional WF’s are attached at the atom with the larg
standard deviation (33.3°) of the bond angles found in
whole system~purple lines!, and between atoms with th
small deviations of 1.8° and 11.6°~red lines!. The solid lines
depict the maximum population values in the given distan
intervals which are an indication of the envelope functions
the WF’s. The dashed lines represent the average popula
for all atoms within these intervals. Furthermore, the bla
lines specify the maximum and average population val
for all orthonormalized WF’s in the same intervals.

First, the radial structure of the WF’s corresponding
certain neighbor shells is also visible in this figure. Nev
theless, the overall radial decay of the envelope function
approximately exponential. In particular, the decay of
WF’s plotted in Fig. 2 appears to be very similar. The av
age population values, on the other hand, show a satura
for larger distances from the bond centers. This flattening
the decay comes from the fact that the average values ha
approach the maximum values for farther distance interv
which contain only a few atoms. However, these avera
values indicate that also the WF’s at the majority of le
distorted atoms have essentially the same decay behavi
the WF’s shown in Fig. 2. The decays, therefore, are sim
despite the fact that the atoms in this system are chara
ized by very different local densities of states~LDOS! due to
different local distortions. In Fig. 3 we have plotted th
LDOS ~computed with the recursion method21! at four atoms
selected in Fig. 2. While the LDOS at the tetrahedral-li

2
e
tes

FIG. 4. Mulliken’s atomic gross populations vs distance fro
bond center for all projected WF’s without localization restrictio
in a 512-atoma-Si model. Thin ~thick! lines, before~after! or-
thonormalization; dashed~solid! lines, maximum~average! popula-
tion values within distance intervals of 0.5 Å. The figure also co
tains the population values at the exact atomic positions~thick dots!
and the interval averages~dotted line! for the orthonormalized
WF’s in a crystalline 512-atom Si cell.
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6888 PRB 62BRIEF REPORTS
atom with standard deviation of 1.8° possesses a quite l
gap, this gap is filled to different extents at the other th
atoms~corresponding to different local weights of the eige
states of the system!. Hence, the decay of the WF’s in a
amorphous system appears to be independent of the stru
of the gap within the related LDOS.

Figure 2~dotted line! also shows that the orthonormaliz
tion of the WF’s does not noticeably change the exponen
decay of these functions. This is confirmed by correspond
computations in a smaller 512-atoma-Si model where we
could compute WF’s without imposing LOC restriction
~Fig. 4!. However, it has been known for a long time22 that
nonorthogonal WF’s can be better localized. The orthon
malization in our case indeed moves some charge from
central region of the WF to the next neighbor shells. T
overall exponential decay, however, is not influenced by
orthonormalization. This result follows from the nature
the orthonormalization process as discussed by Kohn
Onffroy.14

Furthermore in Fig. 4, the thick dots depict the populat
values of the unrestricted and orthonormalized projec
states at the exact atomic positions in a crystalline 512-a
Si cell. Comparing the envelope as well as interval avera
for this and the amorphous cell, we see that the expone
decay of the WF’s in the crystalline and amorphous syste
appears to be similar although defects reduce the HOM
LUMO gap in thea-Si model.23 This also confirms our dis
s
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cussion above on the gap dependence of WF’s. In disord
systems, the decay of the WF’s may be related not
HOMO-LUMO gaps, but to the separation of the occupi
and unoccupiedextendedstates, i.e., the width of the mobil
ity gap. This mobility gap is expected to be quite similar
crystalline and amorphous Si.23

We remark that for this smaller model, the exactly det
minable relative error in the band-structure energy for o
WF’s computed with theO(N) functional of Mauri and
Ordejón24 was 831025 without and 631024 with localiza-
tion regions.

In summarizing, using the linear-scaling Fermi-opera
expansion method we have computed first-principle oc
pied WF’s with long tails in a huge model of an amorpho
tetrahedrally coordinated semiconductor (a-Si). These com-
putations allowed us to study the radial structure and de
of these functions for distances up to about seven bond s
from the central bond. The WF’s have a complicated no
structure and decay approximately exponentially. This ex
nential decay appears to be independent of the width of lo
energy gaps and is similar in crystalline and amorphous
cells.
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