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Exact solution for the critical state in thin superconductor strips
with field-dependent or anisotropic pinning
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An exact analytical solution is given for the critical state problem in long thin type-II superconductor strips
in a perpendicular magnetic field for the case when the critical current densityj c(B) depends on the local
inductionB according to a simple three-parameter model. This model describes both isotropic superconductors
with this j c(B) dependence, but also superconductors with anisotropic pinning with a dependencej c(u) where
u is the tilt angle of the flux lines away from the normal to the specimen plane.
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I. INTRODUCTION

The critical state model1 for the magnetic behavior of su
perconductors with flux-line pinning has proven very usef2

though it originally was applied to the simpl
~demagnetization-free! longitudinal geometry of long super
conductors in parallel magnetic field. It took over 30 yea
until an analytical solution of the critical state model w
obtained for the more realistictransversegeometry of thin
superconductors. The solutions were derived for thin dis3

and strips4 in a perpendicular magnetic field, extending
earlier work on superconductor strips with transport curre5

and finally for elliptic-shaped platelets.6 Recent detailed nu
merical work for strips7 and disks8 of finite thickness shows
how the transition from longitudinal to transverse geome
occurs with changing aspect ratio of the specimen.

So far, in the transverse geometry all analytical solutio
of the critical state model were restricted to the Bean mo
of constant critical current densityj c5const, but in many
experimentsj c5 j c(B) depends on the local magnetic indu
tion B. For example, the simple Kim model9 j c(B)
5 j c(0)/(11uBu/B0) was considered in many experiment
and theoretical papers, see, e.g., the reviews of Refs.
and 11 and the partly analytical calculations for thin strip12

and disks.13 While numerical computations easily allow us
consider anyj c(B) dependence,7,8,11,14 an exact analytica
solution of some model may give deeper insight since
yields explicit dependences of the resulting quantities on
input parameters.

In the highly anisotropic high-Tc superconductors the
flux-line pinning in general depends on the angleu between
the local direction of the magnetic inductionB and thec
axis, which in typical experiments is normal to the plane
the sample. For example, this type of anisotropy occurs w
one takes into account the intrinsic pinning exerted by
CuO planes or the pinning by extended defects.11 It has been
shown recently15–18 that for thin superconductors of an
shape~with thicknessd much smaller than the lateral exte
sionL but larger than the magnetic penetration depthl) any
such out-of-plane anisotropy of pinning is equivalent to
PRB 620163-1829/2000/62~10!/6812~8!/$15.00
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induction dependence of the critical sheet currentJc(B) ~the
sheet current is defined as the current density integrated
the film thickness!. Thus the description of the two
dimensional critical state, e.g., in an anisotropic strip, can
reduced to the analysis of a one-dimensional problem w
some Jc(B). In this case the characteristic scaleB0 over
which Jc(B) changes is of the order ofm0 j cd.

In this paper we present a simple model which allows
an analytical solution to the critical state in thin superco
ductor strips in perpendicular field with field-dependent cr
cal current densityj c(B) or, equivalently, with anisotropic
pinning described by aj c(u). Our three-parameter mode
j c(B) consists of two straight lines, an inclined line at sm
B and a horizontal line at largerB. This simple but rather
general model is equivalent to a piecewise constant ang
dependencej c(u)5 j c1 for 0<u,u0 and j c(u)5 j c2 for u0
<u,p/2 where j c1 , j c2, andu0 are the parameters of th
model. This angular dependence allows to model both
intrinsic pinning by the CuO planes and the pinning by c
lumnar defects in high-Tc superconductors. Its exact analyt
cal solution points out features which distinguish the critic
states in isotropic and anisotropic superconductors and i
lows us to estimate the type and parameters of anisotrop
flux-line pinning in real superconducting samples. We fi
below that the steepness of the flux front in the superc
ductor strongly depends on the anisotropy of pinning. In p
ticular, in the case corresponding to the intrinsic pinning
high-Tc superconductors, the front is a very sharp st
which should be taken into account in analyzing data of lo
magnetic measurements. We shall show that under ce
conditionstwo penetrating flux frontscan occur in an aniso
tropic superconductor.

As usual, we consider here the cases when the chara
istic magnetic field in the sample is sufficiently large su
that the difference between the magnetic inductionB and the
field H may be disregarded. This condition is satisfied wh
j cd is much larger than the lower critical fieldHc1 ~other-
wise, the so-called geometric barrier19 must be taken into
account!. We shall thus express all the following equatio
in terms of the magnetic fieldH, related to the current den
sity by the Maxwell equationj5¹3H.
6812 ©2000 The American Physical Society
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II. MODEL AND ITS SOLUTION

We consider an infinitely long strip of width 2w and
thicknessd, filling the space2w<x<w, 2d/2<z<d/2,
i.e., we place they axis of the coordinate system along th
central line of the strip and thez axis along the externa
magnetic fieldHa which is applied normal to the plane of th
strip. The increasing applied field induces a sheet curreJ
alongy, which is related to thez component of the magneti
field in the planez50 by the Biot-Savart law,

Hz~x!5Ha1
1

2pE2w

w J~ t !dt

t2x
. ~1!

Here and below all singular integrals are taken in the se
of the Cauchy principal value. The penetration of the m
netic flux into the superconducting strip is described by
following critical state equations: In the flux-free central r
gion uxu<b(Ha) one has

Hz50, ~2!

while in the regionb(Ha)<uxu<w, where the flux already
exists, one has

uJ~x!u5Jc@Hz~x!#. ~3!

The positionx5b(Ha) of the boundary separating the r
gions, is found by solving these equations. In Eq.~3! Jc(Hz)
is the critical value of the sheet current. At present an ex
solution of Eqs.~1!–~3! is known4,20,21 only for the Bean
critical state model whereJc5const. Below we shall obtain
the exact solution for the more general case whenJc(uHzu)
has the model form~see Fig. 1!:

Jc~Hz!5Jc12gHz for 0<Hz<Hz
0 ,

Jc~Hz!5Jc0 for Hz>Hz
0 . ~4!

Hereg5(Jc12Jc0)/Hz
0 ; the three parametersJc1 , Jc0, and

Hz
0 may have any positive value.
In the case of anisotropic pinning the critical current de

sity j c depends on the angleu between the local direction o
the magnetic induction and the normal to the strip plane~i.e.,
the c axis!. Since in the partly penetrated critical state t
flux lines are always curved, this anisotropy means thaj c
depends on the coordinatez across the thickness of the stri
Therefore the critical state problem becomes tw
dimensional~2D! in thin anisotropicsamples. However, a
was shown in Ref. 18, the smallness of the parameterd/w
enables one to split the 2D problem into two on
dimensional problems: The first one treats the critical s
across the thickness of the strip and can be solved in gen
form; its solution leads to a relation between the critic
sheet currentJc andHz (Hz is practically independent ofz).
The second problem treats the strip as infinitely thin and
described by Eqs.~1!–~3! with Jc(Hz) obtained from the
solution of the first problem. Ifj c does not depend explicitly
on the magnitude of the magnetic induction, the abo
mentioned relationship can be presented in the form18

j c~u!d5Jc~Hz!2Hz

dJz~Hz!

dHz
,
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tan~u!5
Jc~Hz!

2Hz
.

It is easy to verify that the function defined by Eqs.~4! yields
the following u dependence of the critical current dens
shown in Fig. 1:

j c~u!5Jc0 /d for 0<u<u0 ,

j c~u!5Jc1 /d for u0<u<p/2, ~5!

where tanu05Jc0/2Hz
0 . Thus in the case under study we ca

say that theHz dependence ofJc in Eq. ~4! is due to the
nonuniform distribution of j c across the thickness of th
sample, and the results obtained below correspond to
solution of the critical state problem withj c(u) given by
Eqs. ~5!. It should be also noted that thetwo-dimensional
solution of the critical state equations for the anisotropic s
of small but finite thickness can be found in analytical for
by using these results and Eqs.~5!, ~6!, and~9!–~11! of Ref.
18.

It is well known that in high-Tc superconductors the in
trinsic pinning by the CuO planes22 yields a peak inj c(u) at
u5p/2, whereas the columnar defects normal to the fi
produce a peak atu50. In both these cases we shall a
proximate the angular dependences ofj c by Eqs. ~5!: the
caseg.0 models the intrinsic pinning andg,0 pinning by
columnar defects, see Fig. 1. Although this model is a fa
rough approximation, it nevertheless takes into account
peaks inj c(u) and allows to understand some essential f
tures of the critical state in anisotropic superconductors
terms of analytic results.

Accounting for the symmetry of the sheet curren
J(2x)52J(x), we seek the solution of Eqs.~1!–~4! in the
form

FIG. 1. Visualization of the dependence of the critical sh
current on the perpendicular magnetic field@Jc(Hz), Eq. ~4!, upper
plot#, equivalent to an out-of-plane anisotropy@ j c(u), Eq. ~5!,
lower plot#. The model has three independent positive paramet
Jc0 , Jc1, andHz

0 , all of same dimension. In this plot we putJc0

51 and show two examples:Jc152 ~intrinsic pining, solid lines!
and Jc150.5 ~dashed lines!, with Hz

050.3 ~0.6! equivalent tou0

5arctan(Jc0/2Hz
0)'60 ~40! degrees.
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J~x!52
x

uxu @J0~x!1J1~x!#, ~6!

where

J0~x!5Jc0 , b2<x2<w2, ~7!

J0~x!5
2Jc0

p
arctanF ~w22b2!x2

w2~b22x2!G
1/2

, x2<b2, ~8!

while J1(x) is a new unknown function. The parameterb
defines the position of the flux front, i.e.,x5b is the point
whereHz goes to zero. This parameter depends onHa and
must be determined together withJ1(x). Both J0(x) and
J1(x) ~and the magnetic field below! are even functions
which depend only onx2. The functionJ0(x) has the form
of the exact solution4 to Eqs. ~1!–~3! in the case whenJc
5Jc0 and the external magnetic field is equal to

Hb5Hcs arccosh~w/b!,

whereHcs5Jc0 /p. Using Eqs.~1! and ~6!–~8!, the expres-
sion for the magnetic field can be rewritten as

Hz~x!5H0~x!2
1

2pE0

a2 J1~As!ds

s2x2 , ~9!

wherea is defined by the equalityHz(a)5Hz
0 , andH0(x) is

the sum ofHa and the field generated by the currentJ0(x),4

H0~x!5Ha2Hb , 0<x2<b2, ~10!

H0~x!5Ha2Hb1Hcs arctanhF ~x22b2!w2

x2~w22b2!G
1/2

,

b2<x2<w2. ~11!

In Eq. ~9! it was taken into account thatJ1(x) differs from
zero only in the region 0<x2<a2 whereHz(x),Hz

0 .
With the above formulas, the critical state equations ta

the following form: In the interval 0<x2<b2 one has

H0~x!5
1

2pE0

a2J1~As!ds

s2x2
, ~12!

and in the regionb2<x2<a2 we arrive at

H0~x!2Hz
052

J1~x!

g
1

1

2pE0

a2J1~As!ds

s2x2
. ~13!

In deriving Eq. ~13! we have expressedHz(x) for b2<x2

<a2 in terms ofJ1(x) using the equality

Hz~x!5Hz
02

J1~x!

g
~14!

that follows from formulas~3!, ~4!, ~6!, and ~7!. Equations.
~12!, and ~13! are linear singular integral equations wi
Cauchy-type kernel. The theory of such equations is w
elaborated,23 and hence we can finda, b, andJ1(x) for any
given Ha .

To do this, we introduce the following notations:
e

ll

a[
1

p
arctan

g

2
, b[

1

2
2a,

a1[a, a2[a11,

F6~ t ![~a22t2!a6ut22b2ub

and define the functionf (t) by the equalities

f ~ t !522H0~ t !, 0<t,b,

f ~ t !52 sinpa•@Hz
02H0~ t !#, b,t<a,

i.e., f (t) is discontinuous att5b. Then, the solution of Eqs
~12!, and~13! can be represented as follows: In the interv
0<x2<b2 one has

J1~x!5
2

p
uxuF6~x!E

0

a f ~ t !dt

~ t22x2!F6~ t !
, ~15!

while in the intervalb2<x2<a2 we arrive at

J1~x!5cospaF f ~x!1
g

p
uxuF6~x!E

0

a f ~ t !dt

~ t22x2!F6~ t !
G ,

~16!

and J1(x)50 for a2<x2<w2. Here the integrals are take
in the sense of the Cauchy principal value;F1 andF2 refer
to positive and negative values ofg, respectively. Ifg,0,
for the above solution to exist it is necessary that

E
0

a f ~ t !

F2~ t !
dt50, ~17!

and

E
0

a t2f ~ t !

F2~ t !
dt50. ~18!

These two equalities enable us to determineb and a when
g,0. If g.0, the necessary condition for the existence
the solution is

E
0

a f ~ t !

F1~ t !
dt50. ~19!

A second relation betweena and b in this case is obtained
from the analysis of the magnetic field near the pointx2

5a2. It turns out that

Hz~x!2Hz
0'C6

g

2ugu~
41g2!1/2~x22a2!a6 ~20!

if x2 tends toa2 from above, and

Hz~x!2Hz
0'C6~a22x2!a6 ~21!

if x2 approachesa2 from below. HereC6 are certain inte-
grals independent ofx; the subscripts1 and2 refer to the
cases of positive and negativeg, respectively. SinceHz(x)
>Hz

0 whenx2.a2, we find thatC1>0. On the other hand
one hasHz(x)<Hz

0 when x2,a2, and thusC6<0. Hence
one concludes thatC150. This is the second equality in th
case of positiveg, and it has the form



io

s.
th
w

he

is

am
-

t

at
ce

ver
c-
u-

-

re

ont

PRB 62 6815EXACT SOLUTION FOR THE CRITICAL STATE IN . . .
E
0

b f ~ t !dt

~a22t2!F1~ t !
2

f ~a!

2aa~a22b2!1/2

1E
b

aF f ~ t !

t~ t22b2!b
2

f ~a!

a~a22b2!bG tdt

~a22t2!11a
50. ~22!

Equations.~19! and ~22! determinea andb wheng.0.

III. ANALYSIS

Let us now analyze the obtained solution. For evaluat
of the integrals in Eqs.~9!, ~15!–~19!, and ~22! we use the
method given in the Appendix. Some profilesJ(x), Eq. ~6!,
andHz(x), Eq. ~9!, obtained in this way are shown in Fig
2 to 5. On examination of these results as well as of
subsequent formulas it is useful to keep in mind the follo
ing: The caseg.0 corresponds to the peak inj c(u) at u
5p/2; the relative height of the peak is specified by t
parameterJc1 /Jc0, while its width is determined byHz

0 ,
tan@(p/2)2u0#52Hz

0/Jc0. Thus the higher and narrower
the peak in j c(u), the larger is our parameterg5(Jc1

2Jc0)/Hz
0 . As opposed to this, a peak atu50 results ing

,0; the width of this peak decreases with increasing par
eterHz

0 , tanu05Jc0/2Hz
0 , and its relative height is propor

tional to Jc0 /Jc1.
It should be noted here that no restriction onC2 is ob-

tained wheng,0. In this situation the constantC2 is not
equal to zero but negative, and thus the derivative ofHz with
respect tox becomes infinite atx5a. In the same point a
sharp bend occurs inJ(x). In other words, we obtain tha
two flux fronts exist in the sample, atx5b and atx5a, see

FIG. 2. Some profiles of the sheet currentJ(x) and of the per-
pendicular magnetic fieldHz(x) in a superconductor thin strip with
width 2w for variousJc(Hz) dependences, Eq.~4!, equivalent to
various out-of-plane anisotropies, Eq.~5!, in an applied fieldHa

50.5. The unit for bothJ andH is Jc051. The anisotropy param
eters areHz

050.6 andJc150.25, 0.5, 0.75, 1, 1.5, 2.2, 4, and̀.
The isotropic~or Bean! caseJc151 is shown as bold lines. The
dotted lines indicate the fieldHz5Hz

0 and the positionx5a, where
J(a)5Jc0 andHz(a)5Hz

0 . In the limit Jc1→` the fieldHz(x) at
the flux frontx5b abruptly jumps to the valueHz

0 and stays con-
stant forb<x<a.
n

e
-

-

Figs. 2, 4, and 5. Of course, the singularities inHz and inJ at
x5a result from the sharp bend in our modelJc(Hz) at Hz

5Hz
0 , see Eqs.~4! and Fig. 1. However, one may expect th

in the caseg,0 our qualitative conclusion on the existen
of the second flux front in the sample remains valid ifJc(Hz)
is a smooth function but its behavior changes abruptly o
an interval smaller thanHcs . Such changes indeed may o
cur if the critical current density has sufficiently sharp ang
lar dependencej c(u).

We shall now describeHz(x) andJ(x) in the vicinity of
the pointx5b in which Hz50. According to Eq.~14!, at
this point uJ(b)u5Jc1. When x2<b2, it follows from the
exact solution that

uJ~x!u2Jc1'Cb
6~b22x2!b, ~23!

while if x2>b2, one has

uJ~x!u2Jc1'
g

~41g2!1/2
Cb

6~x22b2!b. ~24!

FIG. 3. Profiles of the sheet currentJ(x) ~top! and of the mag-
netic field Hz(x) in a thin strip with width 2w and anisotropic
pinning ~solid lines! in an increasing applied fieldHa50.15, 0.3,
0.5, 0.8, and 1.2 in units ofJc051. The anisotropy parameters a
Jc1 /Jc051.5 andHz

0/Jc050.5, thusg51. The dashed lines show
the profiles of an isotropic strip for the same values of the fr
positionb0(Ha), Eq. ~28!. Note the sharp peak ofJ(x) at x5b of
heightJ(b)5Jc1 and the steep front ofHz(x) at x5b for this type
of anisotropy. Atx5a, J(x) reaches the valueJc051 andHz(x)
goes through the valueHz(a)5Hz

0 marked by a dotted line.
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HereCb
1 andCb

2 are certain integrals which do not depe
on x and have negative values. Formulas~23! and~24! show
that in the caseg.0, uJ(x)u has a sharp peak atx5b,
whereas forg,0, J(x) is a monotonic function and its de
rivative with respect tox becomes infinite atx5b, see Figs.
2, 4, and 5. Taking into account the above formulas and
~14!, one obtains the distribution ofHz nearx5b,

Hz50 for x<b, ~25!

Hz52
Cb

6

~41g2!1/2
~x22b2!b for x>b. ~26!

When g50, we arrive at the well-known result4,20,21 Hz
0

}(x22b2)1/2. However, in the general case, taking into a
count the equalityb5 1

2 2(1/p)arctan(g/2), one may con-
clude that the greaterg is, the sharper is theHz profile, Fig.
2. Interestingly, the dependence (x2b)b sufficiently well de-
scribesHz(x) even if x is not too close tob, see Fig. 6.

Consider now the solution in the limit of small positiv
values ofg. If g→0, two cases are possible:Hz

0 remains a
constant, or it increases asg21 ~i.e.,Jc12Jc05const). In the
first case one hasa'g/2p, Ha2Hb}g, and the function
f (t) tends to zero. Thus, according to Eqs.~15! and ~16!,
J1→0, and the solution goes over to the well-know

FIG. 4. As Fig. 3, but for different type of anisotropy,Jc1 /Jc0

50.67 andHz
0/Jc050.5, thusg520.67. In this caseJ(x) is mono-

tonic and has an inflection point with vertical slope atx5b where
J(b)5Jc1 ~dotted line!. The penetrating front ofHz(x) is now less
steep than in the isotropic case, which is shown as dashed line
q.

-

result4,20,21for the Bean critical state model withJc5Jc0. In
the second caseJ0(x)1J1(x) also tends to the solution cor
responding to a constantJc but nowJc5Jc1.

In the limiting caseg→1`, this parameter drops ou
from Eqs.~15!, ~16!, ~19!, and~22!, andJ1(x) depends only
on Hz

0 , Jc0. In other words, ifJc1@Jc0 ,Hz
0 or Jc1.Jc0

@Hz
0 , the solution becomes practically independent ofJc1.

The distribution of the magnetic field in this case can
understood using Eq.~26!. It turns out thatCb

1'2gHz
0 for

g@1, and hence

Hz~x!'Hz
0~x22b2!b ~27!

with b→0. This means we have an abrupt step of heightHz
0

at x5b ~see Fig. 2!.
It should be emphasized that this limiting case,g→1`,

corresponds to intrinsic pinning in high-Tc superconductors
in which the ratio@ j c(p/2)/ j c(0)#5Jc1 /Jc0 can be suffi-
ciently large~see, e.g., Ref. 24!. Thus our solution of this
limit can be used for analyzing the critical state in the
superconductors. As has already been mentioned abov
characteristic feature of this case is the extreme steepne
the Hz(x) profile in the vicinity of the pointx5b. Besides
this, it follows from Eqs.~19! and ~22! that the position of
the flux front,b/w, is a function only ofHa /Hcs and of the
parameterHz

0/Hcs , see Fig. 7. In general this functioncan-
not be fitted by scaling the dependence found in the isotro
case,4

b0

w
5

1

cosh~Ha /Hcs!
, ~28!

using some effective value ofHcs . Rather, the shape o
b(Ha) essentially depends on the ratioHz

0/Hcs . Therefore

.

FIG. 5. Profiles ofJ(x) ~left! and Hz(x) ~right! in a thin strip
with anisotropic pinning of the typeJc150.5 for various values of
Hz

050.02,0.2,0.4, and 0.7 in a constant applied fieldHa50.5 ~in
units of Jc051). The dotted lines atx5b, x5a, J5Jc1, andHz

5Hz
0 shall help to identify the featuresJ(b)5Jc1 , J(a)5Jc0, and

Hz(a)5Hz
0 . Note that with decreasingHz

0 the penetrating flux front
at x5b becomes less pronounced and a new front appearsx
5a. In the limit Hz

0→0 only the front atx5a remains and the
profiles look like in the isotropic strip withb replaced bya.
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measuringb(Ha) in principle can give information not only
on Hcs5Jc0 /p but also onHz

0 , i.e., about the width of the
peak inj c(u), see Eq.~5!. In particular, whenHz

0!Jc0, Eqs.
~19! and ~22! lead to the following expression for the fron
position:

S b

wD 2

'
11k•~Hz

0/Hcs!
2 tanh2~Ha /Hcs!

cosh2~Ha /Hcs!
, ~29!

where the constantk is determined by the root of the equ
tion

p

4
~u221!5u2arctanu,

k5
16

p2

u2

~11u2!2 '0.394.

Note that the right-hand side of Eq.~29! cannot be reduced
to the dependence~28! in the whole interval of changes o
Ha whenHz

0 is different from zero. The exact values of th
front positionb(Ha) are shown in Fig. 7 for the limit of large
g@1, for Jc1511 andHz

050•••1.5 in units ofJc051.
In the third limiting case wheng→2`, one hasb→1,

Cb
2;2Hz

0 and the induction profile becomes

FIG. 6. Comparison of the shape of the profileHz(x) near the
flux front with the expression (x2b)b suggested by Eq.~26!.
Shown are examples withHa50.5 ~in units of Jc051) and two
different anisotropies:Hz

050.5, Jc151.5 ~thus g51, a50.148,
b50.352, b50.477, a50.711) andHz

050.5, Jc150.5 ~thus g
521, a520.148, b50.648, b50.213, a50.784). The exact
Hz(x) ~dotted lines! is well fitted over a large interval ofx by the
function c•(x2b)b ~solid lines! with c50.840 or c50.580 for
these two examples~with x andb in units of the strip half widthw).
The solid lines in the upper plot are straight lines fittingHz(x)1/b.
Hz~x!}~x22b2! ~30!

with a small prefactor of the order ofHz
0/ugu. Thus for2g

@1 the flux front atx5b practically disappears while, ac
cording to Eq.~20!, the second front nearx5a is well de-
veloped, see Fig. 5.

Finally, we consider in some detail the case of sm
negative values ofg whenHz

0@Hcs5Jc0 /p while the ratio
Jc0 /Jc1 is not close to unity. This case can give some idea
pinning by columnar defects, which produce a peak inj c(u)
at u50. Indeed, if one assumes that the characteristic w
of the peak,u0, is small (u0!1), then it follows from the
definitions of Hz

0 and g that Hz
0'Jc0/2u0 and ugu,2u0.

Since the solution withg50 andJc5Jc1 describes the criti-
cal state in the strip before the irradiation@we assume tha
the columnar defects do not changej c(u) at u.u0], the
difference between the solutions corresponding togÞ0 and
g50 provides information on pinning by columnar defec
In the considered case this difference is small, and it can
analyzed analytically. As a result of the analysis, we co
clude that after the irradiation the current andHz profiles
remain practically unchanged in most of the sample exc
for narrow regions near its edges whereHz becomes large. In
these regionsJ increases up toJc0. The increase of the cur
rent diminishes the penetration depth, and we obtain the
lowing relation between the positions of the flux fronts,b
andb1, obtained at the sameHa in the strip with and without
columnar defects, respectively:

arccosh
w

b1
2arccosh

w

b
5

ugu
p

g~h!, ~31!

FIG. 7. The positionb of the flux front, or penetration depth
w2b, of a superconductor thin strip with width 2w and various
Jc(Hz) dependences, Eq.~4!, plotted versus the applied magnet
field Ha in units of Jc051. The dotted lines are computed as d
scribed in Sec. III for anisotropy parametersJc1511 and Hz

0

50, 0.3, 0.5, 0.7, 1, and 1.5. The bold solid lines forHz
050 and 0.3

are from Eq.~29! and fit the exact data very well. The dashed li
b/w51/cosh@Ha /(2.1Hcs)#, obtained by stretching the isotropi
(Jc5const) expression, Eq.~28!, by a factor of 2.1, demonstrate
that such scaling of the isotropic result cannot fit the anisotro
result.
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whereh[pHa /Jc1 , w/b15cosh(h), and the functiong(h)
has the form

g~h!5E
0

h

ln~2 cosht !dt. ~32!

Sinceg is a nonlinear function ofh,

g~h!'
1

2
h210.411~12e21.8h!, ~33!

the exact dependenceb(Ha) cannot be described by Eq.~28!
with some effectiveHcs . The prefactor

ugu
p

'
2u0

p

j c~0!2 j c~p/2!

j c~0!

in Eq. ~31! is determined by the characteristics of pinning
the columnar defects, i.e., by the width and height of
peak in j c(u).

IV. CONCLUSIONS

An exact solution of the critical state equations for t
strip in perpendicular magnetic field is derived for
induction-dependent critical sheet currentJc(Hz) described
by Eqs.~4!. This simple model dependence may be used
simulate the intrinsic pinning by CuO planes (g.0) or pin-
ning by extended defects (g,0) in high-Tc superconduct-
ors. In the caseg.0, theHz profile in the vicinity of the flux
front is sharper than in the isotropic case, and the cur
density has a sharp peak there. In the limiting case,g@1,
which may describe the intrinsic pinning in high-Tc super-
conductors, the field profileHz(x) has a sharp rectangula
step. In the opposite situation,g,0, two flux frontscan oc-
cur in the superconductor; theHz profile nearx5b is less
steep than in the isotropic case, and the current density
monotonic function ofx. In both cases of positive and neg
tive g the profileHz(x) in a sufficiently large vicinity of the
flux front is well approximated by the expressionHz(x)
'(x2b)b with the exponentb50.52p21 arctan(g/2).

In high-Tc superconductors the penetration and distrib
tion of magnetic flux over the sample can be determined w
high spatial resolution using magneto-optical techniques25 or
microscopic Hall-sensor arrays.26 The data of Figs. 6, and 7
and Eq.~31! clearly show that the experimental investigati
of flux-density profiles near the flux front and of theHz
dependence of the penetration depth can give informa
not only on the strength but also on theanisotropyof flux-
line pinning in superconductors. Our analytical solutio
though derived for a simplified model, allows one to estim
the characteristic width and height of peaks in the out-
plane anisotropic pinning strengthj c(u).
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APPENDIX: NUMERICAL EVALUATION

The condition that two integrals have to vanish, e.g., E
~17! and ~18! of the form I 1(a,b)50 and I 2(a,b)50, we
e

o

nt

a

-
h

n

,
e
-

-

s.

satisfy by minimizing the functionU(a,b)5I 1
21I 2

2 with re-
spect toa and b. After this we calculate the sheet curre
J1(x) from Eqs.~15! and ~16! and the magnetic fieldHz(x)
from Eqs.~9! and ~14!.

The integrals~9!, ~15!–~19!, and~22! over the variablet
have integrands which possess one or several infinities a
points t50, t5x, t5b, and t5a where the denominator
vanish. We evaluate such integrals in the following way.

In the integrals containing a factor (t2x)21 we subtract
the singular part and integrate it analytically, e.g.,

E
0

a f ~ t !dt

t22x2 dt5E
0

a f ~ t !2 f ~x!

t22x2 dt2
f ~x!

2x
ln

a1x

a2x
.

~A1!

Then we divide the integration interval into pieces bound
by the remaining singularities, 0<t<b, b<t<a, anda<t
<1. In each interval we substitute the integration variable
an appropriate functiont5t(u) and integrate overu such
that the new integrand has no infinity and vanishes rapidl
the boundaries. This new integral may thus be evaluated
sum over an equidistant gridui with constant weights. For
example we write

E
0

t

g~ t !dt5E
0

1

g@ t~u!#t8~u! du'(
i 51

N

giwi ~A2!

with gi5g@ t(ui)#, ui5( i 21/2)/N, wi5t8(ui)/N, t8(u)
5dt/du, and i 51,2,3, . . .N. This integration method is
very accurate if the substitution is chosen such that
weightswi and the productsgiwi vanish rapidly at the inte-
gration boundaries, e.g.,wi;ui

p and wi;(12ui)
q with p

@1 and q@1. Simple choices of this substitution in th
example~A2! are

t~u!5~3u222u3!t, t8~u!56u~12u!t, ~A3!

or better,

t~u!5~10u3215u416u5!t, t8~u!530u2~12u!2t.
~A4!

Higher accuracy is achieved by the following substitutio
We chose equidistantui5( i 21/2)/N as above and then it
erate Eq~A3! m times starting withsi5ui andwi5t/N ac-
cording to

wª6~s2s2!w, sª3s222s3 ~m times!. ~A5!

Finally we write t(ui)5sit. The weightswi5t8(ui)/N of
this substitution vanish at the boundaries with exponentp
5q52(m21), which can be made arbitrarily large. For e
ample, usingm55 iterations one gets the exponentsp5q
524516.

An infinity g(t)}1/th in the original integral~A2! leads,
after this substitution, to a new integrand vanishing att50
asg@ t(u)#t8(u)}uq with q5p(12h)2h. Thus for the ex-
ampleh51/2 with p516 the new integrand nearu50 van-
ishes asu7.5 and the terms in the sum~A2! as (i 21/2)7.5, in
spite of the singular original integrand. For general expon
h, to reach high accuracy one should choosem so large that
the new exponent isq5(12h)2m212h>4, or approxi-
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matelym>3.521.5 ln(12h). To avoid spurious results du
to rounding errors, one has to add in all vanishing deno
nators a smalle'10215 by writing, e.g., (ut22b2u1e)b.

In the limit of a large negative slopeg→2` one hasb
→1 and the integrals~17! and ~18! containing a factor
ut22b2u2b are close to diverging. In this case the singu
.

.
s.
,

i-

r

part in these integrals should be integrated analytically, si
lar as shown in Eq.~A1!. The subtracted terms are conv
niently chosen such that the integral which has to be ta
analytically is simple, e.g.,* t•(b22t2)2bdt. Note that the
numeratorf (t) in Eqs.~15!–~19! and~22! is discontinuous at
t5b.
,
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