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Exact solution for the critical state in thin superconductor strips
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An exact analytical solution is given for the critical state problem in long thin type-Il superconductor strips
in a perpendicular magnetic field for the case when the critical current dgpéBy depends on the local
inductionB according to a simple three-parameter model. This model describes both isotropic superconductors
with this j.(B) dependence, but also superconductors with anisotropic pinning with a depengeh)oghere
0 is the tilt angle of the flux lines away from the normal to the specimen plane.

I. INTRODUCTION induction dependence of the critical sheet curkiiB) (the
sheet current is defined as the current density integrated over
The critical state mod&for the magnetic behavior of su- the film thickness Thus the description of the two-

perconductors with flux-line pinning has proven very useful dimensional critical state, e.g., in an anisqtropic strip, can _be
though it originally was applied to the simple reduced to the an.alysis of a one—dimen_spnal problem with
(demagnetization-frédongitudinal geometry of long super- SOMeJ¢(B). In this case the characteristic scag over
conductors in parallel magnetic field. It took over 30 yearsWhich J¢(B) changes is of the order gioj.d.
until an analytical solution of the critical state model was !N this paper we present a simple model which allows for

obtained for the more realistizansversegeometry of thin ~ a" analytical solution to the critical state in thin supercon-
superconductors. The solutions were derived for thin Jisksductor strips in perpendicular field with field-dependent criti-

and strip§ in a perpendicular magnetic field, extending anCal current density,(B) or, equivalently, with anisotropic

earlier work on superconductor strips with transport curfent, pinning described by 3.(0). Our three-parameter model

! o . _'J¢(B) consists of two straight lines, an inclined line at small
and.fmally for elllptl_c shapeq pIateIeisl_Rece_nt detailed nu B and a horizontal line at largeB. This simple but rather
merical work for strip§ and disk8 of finite thickness shows

h h ition f lonaitudinal general model is equivalent to a piecewise constant angular
ow the transition from longitudinal to transverse geometrydependenCQac(ﬁ)=jc1 for 0= 6<<6y andj(0) =], for 6
occurs with changing aspect ratio of the specimen.

) : . <6<w/2 wherej.1, jc, and , are the parameters of the
So far, in the transverse geometry all analytical solutiongysdel. This angular dependence allows to model both the

of the critical state model were restricted to the Bean modejtrinsic pinning by the CuO planes and the pinning by co-
of constant critical current density,=const, but in many  |ymnar defects in high, superconductors. Its exact analyti-
experimentg .= j¢(B) depends on the local magnetic induc- cal solution points out features which distinguish the critical
tion B. For example, the simple Kim modelj(B) states in isotropic and anisotropic superconductors and it al-
=j(0)/(1+|B|/By) was considered in many experimental lows us to estimate the type and parameters of anisotropy of
and theoretical papers, see, e.g., the reviews of Refs. 2,fux-line pinning in real superconducting samples. We find
and 11 and the partly analytical calculations for thin stfips below that the steepness of the flux front in the supercon-
and disks"® While numerical computations easily allow us to ductor strongly depends on the anisotropy of pinning. In par-
consider anyj.(B) dependencé®'*an exact analytical ticular, in the case corresponding to the intrinsic pinning in
solution of some model may give deeper insight since ithigh-T, superconductors, the front is a very sharp step,
yields explicit dependences of the resulting quantities on thevhich should be taken into account in analyzing data of local
input parameters. magnetic measurements. We shall show that under certain
In the highly anisotropic higf~. superconductors the conditionstwo penetrating flux frontsan occur in an aniso-
flux-line pinning in general depends on the anglbetween  tropic superconductor.
the local direction of the magnetic inductidh and thec As usual, we consider here the cases when the character-
axis, which in typical experiments is normal to the plane ofistic magnetic field in the sample is sufficiently large such
the sample. For example, this type of anisotropy occurs whethat the difference between the magnetic inducBoend the
one takes into account the intrinsic pinning exerted by thdield H may be disregarded. This condition is satisfied when
CuO planes or the pinning by extended deféttthas been  j.d is much larger than the lower critical field; (other-
shown recentlP~8 that for thin superconductors of any wise, the so-called geometric barfiémust be taken into
shape(with thicknessd much smaller than the lateral exten- account. We shall thus express all the following equations
sionL but larger than the magnetic penetration depttany  in terms of the magnetic fieltl, related to the current den-
such out-of-plane anisotropy of pinning is equivalent to ansity by the Maxwell equatiof=V X H.
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Il. MODEL AND ITS SOLUTION 2

We consider an infinitely long strip of widthv2 and c' z
thicknessd, filling the space—w=x=sw, —d/2<z=d/2, J
i.e., we place theg axis of the coordinate system along the L B ==
central line of the strip and the axis along the external ="
magnetic fieldH, which is applied normal to the plane of the
strip. The increasing applied field induces a sheet curdent 2 2
alongy, which is related to the component of the magnetic 0 03 06 1
field in the planez=0 by the Biot-Savart law, o

1 fw J(t)dt

HZ(X):Ha+ E

. 1
—w =X @ JcO

Here and below all singular integrals are taken in the sense ] Joq
of the Cauchy principal value. The penetration of the mag- 0.5 0 -T '9' """
netic flux into the superconducting strip is described by the 0 0
following critical state equations: In the flux-free central re- 0 40, 60 90

gion |x|<b(H,) one has

T
-

FIG. 1. Visualization of the dependence of the critical sheet

H.=0, 2 current on the perpendicular magnetic figld(H,), Eq. (4), upper
plot], equivalent to an out-of-plane anisotropy.(6), Eg. (5),
lower plof]. The model has three independent positive parameters,
Jeo, Je1, and HS, all of same dimension. In this plot we pdgg

_ =1 and show two examples,.;=2 (intrinsic pining, solid lines
[300[= [ HA00]. ®) and J.;=0.5 (dashed Iinegs W|ctlh H?=0.3 (0.65) eql?ivalent tod,
The positionx="b(H,) of the boundary separating the re- =arctanfy/2H2)~60 (40) degrees.
gions, is found by solving these equations. In B).J.(H,)
is the critical value of the sheet current. At present an exact J.(H,)

while in the regionb(H,)<|x|<w, where the flux already
exists, one has

solution of Egs.(1)—(3) is knowrf?%2! only for the Bean tan(0) = H,
critical state model wherd.= const. Below we shall obtain ) ) ) ) )
the exact solution for the more general case whgiH,|) It is easy to verify that the function defined by E¢$). yields
has the model forntsee Fig. 1 the following 6 dependence of the critical current density
shown in Fig. 1:
=J.,— <H,<H°
Jo(H2) =Je =M, for 0=H,=H., jo(0)=Jdg/d for 0=<6=<06,,
- 0
Je(Hz)=Jeo  for  H=H,. “) i(0)=d/d for Oy<6<ml2, 5)

H(grey=(JC1—JC0)/H2_; the three parametetk,, Jeo, and  yhere targy=Jx/2H2. Thus in the case under study we can
H; may have any positive value. say that theH, dependence od. in Eq. (4) is due to the
In the case of anisotropic pinning the critical current den-gnuniform distribution ofj. across the thickness of the

sity j . depends on the anglebetween the local direction of sample, and the results obtained below correspond to the
the magnetic induction and the normal to the strip plame,  sojution of the critical state problem with.(6) given by

the c_aX|s). Since in the partly penetrated critical state theggs, (5). It should be also noted that theo-dimensional
flux lines are always curved, this anisotropy means fhat solution of the critical state equations for the anisotropic strip
depends on the coordinatecross the thickness of the strip. of small but finite thickness can be found in analytical form

Therefqre the .critic.al state problem becomes two-py ysing these results and E@S), (6), and(9)—(11) of Ref.
dimensional(2D) in thin anisotropicsamples. However, as 1g.

was shown in Ref. 18, the smallness of the parameter It is well known that in highT, superconductors the in-

enables one to split the 2D problem into two one-trinsic pinning by the CuO plan&syields a peak irj (6) at
dimensional problems: The first one treats the critical statg)— 712, whereas the columnar defects normal to the film
across the thickness of the strip and can be solved in genere}oduce a peak a#=0. In both these cases we shall ap-
form; its solution leads to a relation between the Criticalproximate the angular dependencesjgfby Egs. (5): the
sheet currend. andH, (H, is practically independent @).  asey>0 models the intrinsic pinning ang<0 pinning by
The second problem treats the strip as infinitely thin and ig.ojymnar defects, see Fig. 1. Although this model is a fairly
described by Eqs(1)—(3) with J;(H;) obtained from the o,qh approximation, it nevertheless takes into account the
solution of the' first problem. If. doe§ n'ot depend explicitly peaks inj.(6) and allows to understand some essential fea-
on the magnitude of the magnetic induction, the aboveyyres of the critical state in anisotropic superconductors in
mentioned relationship can be presented in the ¥&rm terms of analytic results.
dJ,(H,) Accounting for the symmetry of the sheet current,
2z J(—x)=—J(x), we seek the solution of Eqél)—(4) in the
dH, ’ form

je(0)d=Jc(H,)—H,
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X
J(X)=— M[JO(X)+J1(X)]1 (6)
where
‘]O(X):‘]CO' b2$X2$W2, (7)
2‘](:0 (WZ_bZ)XZ 1/2 5 5
Jo(x)=— arctar%wz(bz_xz) . x*=<b%, (8

while J;(x) is a new unknown function. The parameter
defines the position of the flux front, i.ex=b is the point
whereH, goes to zero. This parameter dependstHynand
must be determined together with(x). Both Jy(x) and

J1(x) (and the magnetic field beloware even functions,

which depend only omx?. The functionJy(x) has the form
of the exact solutichto Egs.(1)—(3) in the case wherd,
=J;o and the external magnetic field is equal to

H,=H_sarccoslw/b),

whereH (=J.,/7. Using Egs.(1) and(6)—(8), the expres-
sion for the magnetic field can be rewritten as

H,(X)=Ho(x 9

>——f zalmds’

wherea is defined by the equalitil,(a) =H?, andH(x) is
the sum ofH, and the field generated by the currdp(x),*

Ho(x)=Ha—Hp, 0=x%<Db? (10)

(XZ_ b2)W2 1/2

Ho(X)=H,—Hp+ Hcsarctan+m} ,
b?<x?<w? (11)

In Eq. (9) it was taken into account thdt(x) differs from
zero only in the region &x?<a? WhereHZ(x)<H°
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1 ¢ y 1
a=;arc ani, ,8=§—a

a,=a, a_=a+l,

F.(t)=(a’—t
and define the functiof(t) by the equalities

2)at|t2_b2|ﬁ

f(t)=—2Ho(1),

Ho()],

i.e., f(t) is discontinuous at=b. Then, the solution of Egs.
(12), and(13) can be represented as follows: In the interval
0=<x?<b? one has

0<t<b,

f(t)=2sinma-[HY— b<t=<a,

300= 2INF >fam—)m (15
0= |

while in the intervalb?<x2<a? we arrive at

J;(X)=cosma

y a  f(t)dt
f(X)+;|X|F:(X) fo m ,
(16)

andJ;(x)=0 for a?<x?<w?. Here the integrals are taken
in the sense of the Cauchy principal vallre; andF _ refer

to positive and negative values ¢f respectively. Ify<0,
for the above solution to exist it is necessary that

[120 g w
oF_(D) '
and
Jath(t)dt—O 18
oF_(h (18

These two equalities enable us to determiinand a when

With the above formulas, the critical state equations takey<0. If >0, the necessary condition for the existence of

the following form: In the interval 8 x?<b? one has

a2J1(\/s)ds
e a2
mlo  s—x?
and in the regiorb?><x?<a?® we arrive at
Ji(x) 1 [a2di(ys)ds
_yo— B - [aINVEER
Ho(x)—H? n)y o

In deriving Eq.(13) we have expresseH,(x) for b?<x?
<a? in terms ofJ;(x) using the equality

J1(x)

H,(x)=H?— (14)

that follows from formulag3), (4), (6), and (7). Equations.

the solution is

fa o dt=0 (19
oF ()

A second relation betweea and b in this case is obtained
from the analysis of the magnetic field near the poift
=a?. It turns out that

Ha(x) — H2~ciﬁ(4+ PV —a?)e:  (20)
if x2 tends toa? from above, and
H () —H7~C..(a*~x?)** (2D)

if x> approaches® from below. HereC.. are certain inte-
grals independent of;, the subscriptst and — refer to the

(12, and (13) are linear singular integral equations with Cases of posmve and negatiye respectively. Sinced ,(x)
Cauchy-type kernel. The theory of such equations is welF>H; whenx?>a?, we find thatC+>0 On the other hand,

elaborated? and hence we can fing b, andJ;(x) for any
givenH,.
To do this, we introduce the following notations:

one hast(x)<H° whenx?<a?, and thusC.=<0. Hence
one concludes tha , =0. This is the second equality in the
case of positivey, and it has the form
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FIG. 2. Some profiles of the sheet currgifk) and of the per-
pendicular magnetic fielti ,(x) in a superconductor thin strip with

width 2w for variousJ.(H,) dependences, E¢4), equivalent to _)% i
various out-of-plane anisotropies, E@), in an applied fieldH, -~
=0.5. The unit for both) andH is Joo=1. The anisotropy param- "

eters areHS:0.6 andJ.;;=0.25, 0.5, 0.75, 1, 1.5, 2.2, 4, and
The isotropic(or Bean caseJ;;=1 is shown as bold lines. The 0.5k e e T ) <l A o 1]
dotted lines indicate the field ,= H(Z’ and the positiox=a, where
J(a)=Jc andH,(a)=H?. In the limit J;;— the fieldH,(x) at
the flux frontx=Db abruptly jumps to the valubl(z’ and stays con-
stant forb=x=a. % o1 02 03 04

0.3
05 06 07 08 09 1
x/w
J'b f(t)dt _ f(a) FIG. 3. Profiles of the sheet curredfx) (top) and of the mag-
0(a°—t)F (1) 2qa(a’—b?)? netic field H,(x) in a thin strip with width v and anisotropic
pinning (solid lineg in an increasing applied fieldl ,=0.15, 0.3,
a f(t) f(a) tdt 0.5, 0.8, and 1.2 in units af,,=1. The anisotropy parameters are
f (P—DD)P  a(al—bY)k|(a—to)ire =0. (220 3,/3,=1.5 andHY/J,,=0.5, thusy=1. The dashed lines show
the profiles of an isotropic strip for the same values of the front
positionbg(H,), Eq.(28). Note the sharp peak df(x) atx=b of
heightJ(b)=J.; and the steep front dfl ,(x) atx=b for this type
of anisotropy. Atx=a, J(x) reaches the valug.,=1 andH,(x)
llI. ANALYSIS goes through the valuid,(a)=H? marked by a dotted line.

b

Equations(19) and(22) determinea andb when y>0.

Let us now analyze the obtained solution. For evaluation_ ) o )

of the integrals in Eqs(9), (15—(19), and (22) we use the Figs. 2, 4, and 5. Of course, the singularitiesdipand inJ at
method given in the Appendix. Some profilé&), Eq.(6),  X=a result from the sharp bend in our modk(H,) atH,
andH,(x), Eq. (9), obtained in this way are shown in Figs. =H2, see Egs(4) and Fig. 1. However, one may expect that
2 to 5. On examination of these results as well as of then the casey<<O our qualitative conclusion on the existence
subsequent formulas it is useful to keep in mind the follow-of the second flux front in the sample remains valid fH,)

ing: The casey>0 corresponds to the peak jn(¢) at # is a smooth function but its behavior changes abruptly over
=m/2; the relative height of the peak is specified by thean interval smaller thai 5. Such changes indeed may oc-

parameterd;, /J.o, While its width is determined by-|g, cur if the critical current density has sufficiently sharp angu-
tar{ (m/2)— 6,]=2H2/Jco. Thus the higher and narrower is lar dependence,(6). . o
the peak inj.(6), the larger is our parametey=(J.; We shall now describél,(x) andJ(x) in the vicinity of

—Jeo)/HY. As opposed to this, a peak @t 0 results iny ~ the pointx=b in which Hz=0.2AC(2:or-d|ng to Eq.(14), at
<0; the width of this peak decreases with increasing paramiis point|J(b)|=Jc;. When x“<b?, it follows from the
eterH?, tandy=J.o/2H?, and its relative height is propor- €Xact solution that

tional t0 J¢p/Jd¢1.

It should be noted here that no restriction Gn is ob-
tained wheny<0. In this situation the consta@_ is not
equal to zero but negative, and thus the derivativel pWith
respect tox becomes infinite ak=a. In the same point a
sharp bend occurs id(x). In other words, we obtain that 13(X)| = Je1~
two flux fronts exist in the sample, at=b and atx=a, see

[3(X)| = Je1=Cp (b? = x)7, (23

while if x2=b?, one has

Y

WCE(XZ_bZ)B. (24)
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0.5
0.4

0.5
xX/w

FIG. 4. As Fig. 3, but for different type of anisotropd,; /J¢o
=0.67 and—|2/.]c0:0.5, thusy= —0.67. In this casd(x) is mono-
tonic and has an inflection point with vertical slopexatb where
J(b)=J.; (dotted ling. The penetrating front dfl ,(x) is now less
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FIG. 5. Profiles ofJ(x) (left) andH,(x) (right) in a thin strip
with anisotropic pinning of the typé.;=0.5 for various values of
H2=0.02,0.2,0.4, and 0.7 in a constant applied fielg=0.5 (in
units of J.o=1). The dotted lines at=b, x=a, J=J.,, andH,
= HS shall help to identify the featureXb)=J.,, J(a)=J¢, and
H,(a)=H?. Note that with decreasing? the penetrating flux front
at x=b becomes less pronounced and a new front appeaxs at
=a. In the limit H—0 only the front atx=a remains and the
profiles look like in the isotropic strip with replaced bya.

resulf-?%2Yfor the Bean critical state model with=J.. In
the second cas#y(x) +J4(x) also tends to the solution cor-
responding to a constadt but nowJ.=J.;.

In the limiting casey— +«, this parameter drops out
from Egs.(15), (16), (19), and(22), andJ(x) depends only
on HY, J.. In other words, ifJg;>Jc0,H or Jo>Jgo

0 . N .
steep than in the isotropic case, which is shown as dashed lines.>H; . the solution becomes practically independentaf

The distribution of the magnetic field in this case can be

HereC; andC; are certain integrals which do not depend understood using Ed26). It tumns out thaCy ~ — yH? for

on x and have negative values. Formu(@8) and(24) show
that in the casey>0, |J(x)| has a sharp peak at=Db,
whereas fory<<0, J(x) is a monotonic function and its de-
rivative with respect tx becomes infinite at=Db, see Figs.

2, 4, and 5. Taking into account the above formulas and E

(14), one obtains the distribution &1, nearx=b,

H,=0 for x=b, (25)
Ci
7= (4_+7,)kj2)1l/2(xz_ bZ)ﬁ for x=b. (26)

When y=0, we arrive at the well-known resti®? H?

v>1, and hence

H,(x)~H3(x*~b?)* 27)
with 8— 0. This means we have an abrupt step of hei@?\t
atx=Db (see Fig. 2

It should be emphasized that this limiting case; + o,
corresponds to intrinsic pinning in high: superconductors
in which the ratio[j.(7/2)/j.(0)]=Jc1/Js can be suffi-
ciently large(see, e.g., Ref. 24 Thus our solution of this
limit can be used for analyzing the critical state in these
superconductors. As has already been mentioned above, a
characteristic feature of this case is the extreme steepness of
the H,(x) profile in the vicinity of the poinx=b. Besides

«(x2—b?)2 However, in the general case, taking into ac-this, it follows from Eqgs.(19) and (22) that the position of

count the equality3= 3 — (1/7)arctan§/2), one may con-

clude that the greatey is, the sharper is thel, profile, Fig.

2. Interestingly, the dependence b)” sufficiently well de-
scribesH,(x) even ifx is not too close td, see Fig. 6.

Consider now the solution in the limit of small positive

values ofy. If y—0, two cases are possibleS remains a
constant, or it increases as? (i.e.,J;;— Joo= const). In the
first case one hag~ /2w, H,—Hpxy, and the function
f(t) tends to zero. Thus, according to E¢&5) and (16),

the flux front,b/w, is a function only ofH,/H.s and of the
parametengchs, see Fig. 7. In general this functiaan-

not b4e fitted by scaling the dependence found in the isotropic
case,

bo 1

W cosi{H,/H:o) ' (28

using some effective value dfl.;. Rather, the shape of

J;—0, and the solution goes over to the well-knownb(H,) essentially depends on the raﬁtﬁ/Hcs. Therefore
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H =05
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FIG. 6. Comparison of the shape of the profilg(x) near the
flux front with the expressionx—b)? suggested by Eq(26).
Shown are examples withl,=0.5 (in units of J;,o=1) and two
different anisotropiesH2=0.5, Je1=1.5 (thus y=1, «=0.148,
B=0.352, b=0.477, a=0.711) andH?=0.5, J;;=0.5 (thus y
=—1, a=-0.148, 3=0.648, bh=0.213, a=0.784). The exact
H,(x) (dotted lines is well fitted over a large interval of by the
function ¢- (x—b)# (solid lineg with ¢=0.840 orc=0.580 for
these two examplesvith x andb in units of the strip half widtiw).
The solid lines in the upper plot are straight lines fittidg(x) Y/%.

measuringd(H,) in principle can give information not only
on H s=Jo/ but also oan, i.e., about the width of the
peak inj(6), see Eq(5). In particular, wherH9<J., Egs.

(19) and (22) lead to the following expression for the front

position:
b
w

where the constark is determined by the root of the equa-
tion

2 14k-(HYH9? tantf(H,/Hco)
cost(H,/H¢e)

: (29

™ o2
Z(u —1)=u—arctaru,

o 16  u?
7 T

Note that the right-hand side of E(R9) cannot be reduced

to the dependenc&8) in the whole interval of changes of

~0.394.
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strip with Jc(Hz)

0.8f
J_/J

¢ =1

0

0.6f

b/w

0.4f

0.2

FIG. 7. The positiorb of the flux front, or penetration depth
w—h, of a superconductor thin strip with widthw2and various
J.(H,) dependences, Eg4), plotted versus the applied magnetic
field H, in units of J;,o=1. The dotted lines are computed as de-
scribed in Sec. Ill for anisotropy parameteds;=11 and H(Z)
=0,0.3,0.5,0.7, 1, and 1.5. The bold solid lines =0 and 0.3
are from Eq.(29) and fit the exact data very well. The dashed line
b/w=1/coshH,/(2.1H.J)], obtained by stretching the isotropic
(J.=const) expression, Eq28), by a factor of 2.1, demonstrates
that such scaling of the isotropic result cannot fit the anisotropic
result.

H.(x) = (x*~b?) (30)
with a small prefactor of the order ¢1%/|y|. Thus for—y
>1 the flux front atx=b practically disappears while, ac-
cording to Eq.(20), the second front neat=a is well de-
veloped, see Fig. 5.

Finally, we consider in some detail the case of small
negative values o¥ Whean>Hcs=Jcolw while the ratio
Jeo/Jc1 is not close to unity. This case can give some idea of
pinning by columnar defects, which produce a peak.(i¥)
at #=0. Indeed, if one assumes that the characteristic width
of the peak,d,, is small (9,<<1), then it follows from the
definitions of H and y that H9=~J.,/26, and |y|<26,.
Since the solution withy=0 andJ.=J.; describes the criti-
cal state in the strip before the irradiatibwe assume that
the columnar defects do not changgd) at 6> 6], the
difference between the solutions corresponding/ #0 and
v=0 provides information on pinning by columnar defects.
In the considered case this difference is small, and it can be
analyzed analytically. As a result of the analysis, we con-
clude that after the irradiation the current aHd profiles
remain practically unchanged in most of the sample except
for narrow regions near its edges whétgbecomes large. In
these regiond increases up td.,. The increase of the cur-
rent diminishes the penetration depth, and we obtain the fol-
lowing relation between the positions of the flux fronks,

H, whenH? is different from zero. The exact values of the andb;, obtained at the santg, in the strip with and without

front positionb(H,) are shown in Fig. 7 for the limit of large
y>1, forJ;;=11 andH2=0- - - 1.5 in units ofJ,o=1.

In the third limiting case whery— —o°, one hasB—1,
C, ~ —H? and the induction profile becomes

columnar defects, respectively:

|yl

w w
arccoer1 — arccost = g(h), (31
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whereh=mH,/J.;, w/b;=coshf), and the functiorg(h)  satisfy by minimizing the functiot(a,b)=15+13 with re-
has the form spect toa and b. After this we calculate the sheet current
" J1(x) from Egs.(15) and(16) and the magnetic fielei (x)
_ from Eqgs.(9) and (14).
a(h) fo In(2 cost)dt. 32 The integralg9), (15—(19), and(22) over the variabld
have integrands which possess one or several infinities at the
pointst=0, t=x, t=b, andt=a where the denominators
1 vanish. We evaluate such integrals in the following way.
g(h)~ §h2+ 0.4111—e 1), (33 In the integrals containing a factot£x) ! we subtract
the singular part and integrate it analytically, e.g.,

Sinceg is a nonlinear function oh,

the exact dependent€¢H,) cannot be described by E@®8)

with some effectiveH .. The prefactor af(tdt =~ raf(t)—f(x) f(x) | a+x
, _ fo t2—x2 _f t>—x? T ox Ma—x
m%% 1c(0) = jc(mr/2) (A1)
™ ™ 1c(0)

Then we divide the integration interval into pieces bounded
in Eq. (31) is determined by the characteristics of pinning by py the remaining singularities,6t<b, b<t<a, andast
the columnar defects, i.e., by the width and height of the<1 |n each interval we substitute the integration variable by
peak injc(6). an appropriate function=t(u) and integrate oven such
that the new integrand has no infinity and vanishes rapidly at
IV. CONCLUSIONS the boundaries. This new integral may thus be evaluated as a
sum over an equidistant grigi with constant weights. For

An exact solution of the critical state equations for theexample we write

strip in perpendicular magnetic field is derived for an
induction-dependent critical sheet curreltH,) described . 1 N
b_y Egs.(4). T_his_sir_nplt_e model dependence may be qsed to f g(t)dt=J glt(u)]t’ (u) dumz gw;, (A2
simulate the intrinsic pinning by CuO planeg>*0) or pin- 0 0 i=1
ning by extended defectsy&0) in high-T, superconduct- . .

L S with gi=g[t(u)], u=(>—1/2)/N, w;=t"(u;)/N, t’(u)

i > 1 I I I I

ors. In the case>0, theH, profile in the vicinity of the flux _dt/du, andi=1.2.3,.. N. This integration method is

front is sharper than in the isotropic case, and the current . IR
density has a sharp peak there. In the limiting casel, very accurate if the substitution is chosen such that the

which may describe the intrinsic pinning in high-super- weightsw; and the productg;w; vanish rapidly at the inte-

? . T R .
conductors, the field profiléi,(x) has a sharp rectangular 9ration boundaries, e.gw;~uP and w;~(1-u;)? with p
step. In the opposite situatioy<0, two flux frontscan oc- >1 andg>1. Simple choices of this substitution in the
cur in the superconductor; the, profile nearx=b is less €X@MPIE(A2) are

steep than in the isotropic case, and the current density is a a0 3 Vo
monotonic function ok. In both cases of positive and nega- tu)=Bu"-2u)7, t(u=6u(l-u)r, (A3
tive y the profileH,(x) in a sufficiently large vicinity of the o petter,

flux front is well approximated by the expressidi,(X)

~(x—b)”# with the exponenB=0.5— 7 arctan§/2). t(u)=(10u®—15u*+6u® 7, t'(u)=30u%(1—u)?r.

In high-T; superconductors the penetration and distribu- (A4)
tion of magnetic flux over the sample can be determined with i i i o
high spatial resolution using magneto-optical techniglies Higher accuracy is achleyed by the following substltut_lon.
microscopic Hall-sensor arraf§The data of Figs. 6, and 7 We chose equidistant;= (i —1/2)/N as above and then it-
and Eq.(31) clearly show that the experimental investigation €rate Eq(A3) m times starting withs; = u; andw; = 7/N ac-
of flux-density profiles near the flux front and of t¢,  cording to
dependence of the penetration depth can give information ) 5 3 )
not only on the strength but also on thaisotropyof flux- w:=6(s—s)w, s:=3s°—2s> (mtimes. (A5)
line pinning in superconductors. Our analytical solqun,FinaIIy we write t(u)=s 7. The weightsw;=t’(u;)/N of

though derived for a simplified model, allows one to estimate, . L ) ) .
the characteristic width and height of peaks in the out—of?tiI;jg?:tlgjtlevmi\éﬁn;m Egethrﬁa%(;ugggng”y Ilt:r;é( pgg?;ti_

plane anisotropic pinning strengfg(0). ample, usingm=5 iterations one gets the exponemts g
=24=16.

An infinity g(t)e<1/” in the original integralA2) leads,
G.P.M. acknowledges the hospitality of the Max-Planck-after this substitution, to a new integrand vanishing-a0

Institut fur Metallforschung, Stuttgart. asg[t(u)]t’(u)=u” with 9=p(1— 5)— 5. Thus for the ex-
ample »=1/2 with p=16 the new integrand near=0 van-

ishes as1”® and the terms in the suf2) as (—1/2)"5, in

spite of the singular original integrand. For general exponent
The condition that two integrals have to vanish, e.g., Eqsz, to reach high accuracy one should choosso large that

(17) and (18) of the form1,(a,b)=0 andl,(a,b)=0, we the new exponent ig¥=(1—2)2" 11— =4, or approxi-
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matelym=3.5—1.5In(1— 7). To avoid spurious results due partin these integrals should be integrated analytically, simi-
to rounding errors, one has to add in all vanishing denomilar as shown in Eq(Al). The subtracted terms are conve-
nators a smalke~10"'° by writing, e.g., (t>—b? + €)?. niently chosen such that the integral which has to be taken

In the limit of a large negative slopg— — one has3  analytically is simple, e.g.ft-(b?—t2)~Adt. Note that the
—1 and the integralg17) and (18) containing a factor numeratorf(t) in Egs.(15—(19) and(22) is discontinuous at
[t?—b?|~# are close to diverging. In this case the singulart=b.
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