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We study effective actions for order-parameter fluctuations at low temperature in lalyer@ee supercon-
ductors such as the cuprates. The order parameter lives on the bonds of a square lattice and has two amplitude
and two phase modes associated with it. The low-frequency spectral weights for amplitude and relative phase
fluctuations is determined and found to be subdominant to quasiparticle contributions. The Goldstone phase
mode and its coupling to density fluctuations in charged systems is treated in a gauge-invariant manner. The
Gaussian phase action is used to study botlttheis Josephson plasmon and the more conventional in-plane
plasmon in the cuprates. We go beyond the Gaussian theory by deriving a coarse-grained géantonel,
which incorporates important cutoff effects overlooked in previous studies. A variational analysis of this
effective model shows that in the cuprates, quantum effects of phase fluctuations are important in reducing the
zero-temperature superfluid stiffness, but thermal effects are small<dar, .

[. INTRODUCTION fective actions for al-wave SC within a functional integral
framework, which allows us to focus on the collectiweder
The high-temperature cuprate supercondudt®fs’s) dif- parameter degrees of freedom. We note that our effective

fer from conventional SC’s in several respectst-@ave gap actions are derived by looking at fluctuations around a BCS
with gapless quasiparticle excitations, a small superfluidnean-field solution. We believe that such an approach is
phase stiffness, a short coherence length and strong electrealid for the SC state of the highi; materials, at least for
interactions. It is, therefore, of interest to examine some off<T.. There is considerable experimental evidence for
these unconventional aspects and their interplay in simpleharply defined quasiparticle excitations about theave
models of highT systems. With this motivation, we study in SC state, and thus the ground-state and low-lying excitations
this paper, the low-temperature collective properties ofappear to be adiabatically connected to their BCS counter-
charged, layered-wave SC’s with a short coherence length parts. We thus expect that while strong correlations will

and small superfluid stiffness. modify the coefficientsof the phase action, they will not
The superfluid phase stiffnesB=ns/m*, is a funda- change its qualitative form.
mental property characterizing SC'syhich is directly re- Our main results can be summarized as follows:

lated to\, the experimentally measured magnetic penetration (1) We find that thed-wave SC state is characterized in
deptlf in the London limit. The low-temperature behavior of terms of an order parameter which lives on the bonds of a
D, contains information on the low-lying excitations in these square lattice. The bond order parameter leads to two ampli-
systems. Experimentallpy(T) is found to increase linearly tude and two phase modes in contrastteave SC’s. One of
with T in the highT, SC’s; implying a linearly decreasing the phase modes is identified as the ugGaildstong phase
Ds. This linear drop inD4 has been attributed to quasiparti- mode while the other, which we call the “bond phase,” is
cle excitations near the nodes of tHavave gap. Alterna- the relative phase between tkeandy bonds at a site. The
tively, it has been suggested that this effect could arise erlatter can be thought of as representing fluctuations from the
tirely from classical thermal phase fluctuatidAsand d-wave state towards an extends@vave state. The ampli-
quasiparticles can be ignoréd.lt is then clearly of interest tude and bond-phase fields have spin zero and couple to the
to identify the important low-energy excitations in these sys-particle-particle channel.
tems, from the point of view of understanding the penetra- (2) We study the spectral weight for fluctuations of the
tion depth data, as well as other thermodynamic propertieamplitude and bond-phase fields and find that theyrate
and response functions. gappedbut rather exhibit power laws down to zero energy.
From a theoretical perspective, the physics of a systerilowever, the low-energy spectral weight in these fluctua-
with a small superfluid stiffness and short coherence lengthions is very small compared to the quasiparticle contribu-
has been studied in detail in case of neusralave SC's>”  tion.
In this case, the fermionic excitations and fluctuations in the (3) We derive an effective Gaussian action for the usual
order-parameter amplitude are gapped, and phase fluctuphase variable in charged systems, since this couples directly
tions are the only important excitation at low temperature. Itto the electromagnetic potentials. The large in-plane plasma
is of interest to compare this with the behavior in modelsfrequency, which is relatively unaffected by superconductiv-
which support an anisotropic order parameter with low lyingity, and the low-energg-axis Josephson plasmon at zero and
fermionic excitations, such ascawave SC. finite temperatures are studied in a unified manner within the
We approach the problem by deriving and analyzing efsame formalism. We emphasize the relation between unusual
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aspects of the-axis optical conductivity and the Josephson ) g
plasmon. We also discuss the plasmon dispersion in layered pair™ T N 2 ed(K)eg(k")
systems. kk'.q

(4) We extend the above formalism to consider the effect X Chy o21C ks qr21C—k + a2 Ckr 4 21 (1)

of phase fluctuations beyond the Gaussian level on the su- B
perfluid stiffness in charged systems. The quantX wheregq(k) = (cosk,—cosk,). and we work on a 2D square

modef is usually used for such an analysis, motivated bylatnce with lattice spacing. () denotes the volume of the

studies of Josephson-junction arrays and granular SC’s. St.e”? .W'thN S|tfes. r:Ne Skea:fll n most gquatlon?, bgt
emphasize that there are important differences when consi r(_ata|n||t N some for tt e sake of clarity. Fourier transforming
ering low-temperature bulk SC’s, and derive a quaniXin O real space, we ge
phase action suitable for our problem, correctly taking into g g 1
. t
account appropriate momentum and frequency cutoffs, Hpair=— 1 > Br,r’Bf,f’:E > (Sr-S,/— annr,).
missed in earlier studies. (rr’) (rr’) @
(5) The low-temperature renormalization Df by phase
fluctuations is studied within a self-consistent harmonic apiThe prime onH,; is omitted in going from Eq(1) to Eq.
proximation. For parameter values relevant to the cuprate&) for reasons explained belojitere (r,r’) are nearest-
near optimal doping, quantum phase fluctuations are showneighbor sites, antB;r',,EC:,TC:,,L—C:LC,T,,T creates a sin-
to lead to a sizeable renormalization of the superfluid stiff-glet on the bond r(;r'), while S; and n, are the spin and
ness. However, thermal fluctuations are found to have n@umber operators. Clearly this is the interaction term of the
effect at low temperatures, unlike the results of earliert-J model withg=2J.
studies*® These studies focused on the effect of thermal There is a subtlety involved here; on transformi(®)
phase fluctuations, but Coulomb effects were considered tBack tok space we dmotrecover the original expressigm)
be unimportant, in contrast to the present work. we had started with. Instead we obtain, using from now on
(6) As part of our analysis, we also touch upon certaind=2J,
formal issues which may be of some general interest. Among 3
these are(a) how gauge invariance can be understood in a H pair= — N Z [a(K)@g(k’)+ @s(k)es(k)]
simple manner within the functional integral language); kk',q
the role of the linear time derivative terimdr6 in the phase
action; andc) the problems involved in deriving local phase
actions which respect2 periodicity starting from a fermi- where ¢4(k) = (cosk,+cosk,). The reason for two different
onic model. k-space interactions leading to the same real-space expres-
The paper is organized as follows. In Sec. Il, we presension is the following operator identity on a 2D square lattice:
the Hamiltonian for our model, and discuss the effective ac-

T T
X Ctq/21C-k+ g2, C—k + /2 Ck + 21 » 3

tion and mean-field theory in Sec. Ill. Sec. IV contains a K k') — oo(k K'

discussion of fluctuations of the amplitude and bond-phase k%q Lealk) ea(k™) = es(k)os(k)]

fields with some of the details discussed in Appendix A. In N + B

Sec. V, we turn to phase fluctuations and derive effective X Chtgr21C—k+ 21 Ok’ +/2/ i +q21 = 0. (4)

phase-only actions for neutral and charged systems. The liff .an pe shown that Eq€2) and (3) both lead to the same

ear time derivative term in the action which arises in thisself-consistent BCS gap equation. Thus we will use the in-
context is briefly discussed in Appendix B. We then deriveia 4ction in Eq.(3), and not Eq(1). From the form of Eq.

ge_luge-invariant density and current correlations, Ieavjng de(3)' it is clear thatH o, has attraction in both the-wave
tails of the algebra to Appendix C. In Sec. VI we d'SCUSSchanneI, with apy(k) order parameter, and in the extended

collective in-plane andc-axis plasmons. In Sec. VIl we swave (*) channel, with ap (k) order parameter.

present the derivation of a quantulY model appropriate We will now analvze the HamiltoniarH =K +H ...
for charged, layered SC'’s. We analyze this action and comg Y par

te th lizati f the oh {iff by longitudi ater, we will also add to it the Coulomb interaction appro-
pute the renormalization of thé phase Stliness by longitu gﬁ)riate to layered systemnisee Sec. V B
nal phase fluctuations in Sec. VIl and discuss experiment
implications. We conclude in Sec. IX with a discussion and

summary of our results. lll. MEAN-FIELD THEORY

The partition function at a temperatuileis written as
the standard coherent state path integral with the action
Il. THE HAMILTONIAN Jrdr=, cf a.c ,+H(c,ch]. We decoupled , with a
complex field A, .,(7) using the Hubbard-Stratonovich

We consider a system of fermions with kinetic enekyy transformation:

=3, ,&Ch ,Cr.» [Where &= e,— u with €, begin the two-
dimensional(2D) dispersion andu the chemical potential J
interacting via a separable potential which is attractive in the EX[{EB:J,(T)B”/(T)) = J D(AA™ yexd — L(r,r';7)],
d-wave channel. We will show that in coordinate space this )
interaction leads to the superexchange term ot thenodel.

Let us begin with where
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1 1 T T
E(r,r';7)=§|Ar’rr(7)|2—Z(Ar’r,(T)B”,(T)-i-H.C.). S= fo dr{ Lo+ L] 9

(6) .
. . with
We thus obtain the action

T L= CT e*il‘)(f,T)/Z 9.~ 1)C o eig(r,.r)/z
s=f d7| X cf ()0 +E)Ck (T + 2 L(rr'i7)]. 0 % ro(7) (97— p)Cr (1)
0 k,o ’ rr'
1
o . @) —5 2 tr=re] (e (1)
The fermion fields can then be integrated out to obtain the rr'.o
effective action expt S{{A,A*])=SD(c,che S. ) L0006 24 ] 10

The d-wave saddle point is given byA,, ;(7)=
—A+y(1)=A44, a (r,7)-independent real number, ob- wheret(r—r’) is the hopping matrix element between point
tained from 6Sy/5A4=0, which leads to the BCS gap | 4nqr’ so thate, =3, r,eik-(rfr’)t(r_r/) and
equation ’ -

1
2 t
k . (A== . X
% _ % s w;(E A— @ a2 Al 2 Al 1I(By 5 ()
k k
1 .

where E, = &2+ A2 and A =Aq04(k)/2. The same gap +H.c)+ 7 > |Aryr+§,(T)|(B:,r+9(7-)e"”(”)+H.c.).
equation can be obtained by starting from the momentum '

space potential in E¢3) and decoupling in thd-wave chan- (12)

nel. . . . .
Given H,;, of Eq. (3) one could equally well look for In the follqwmg sections we sha_II integrate out the ferm_|ons
possible extendedswave (s*) saddle points with and examine the resulting effective actions for the amplitude,

A=A 0 5(D)=A,. However, for our choice of ¢ ando fields.
dispersiol (which includes nearest- and next-nearest- _ _
neighbor hopping with opposite signsve have found by A. Amplitude fluctuations

numerical solution of the gap equation that tHevave Amplitude fluctuations can be considered by setting
saddle point is stable relative to ts& solution. The reason |A, 1+ a(D)|=Ad[1+ 5,(r,7)] in Eq. (11), where a=x,y.

for this can be seen as followg(k) is small over most of  The transformation from,,,A* to 7, ,6,4 has a Jacobian
the Fermi surface for the fillings of interest, whilgy(K)  4A%(1+ » (14 n.) at every point £ 7). leading to an ad-
vanishes only on the nodes. Thus the condensation enerQNtid( 7 (14 7y) yP G7), g

gained by thes* state is smaller than the¢wave state. Fur- onal term

ther, if we consider the large on-site repulsion between elec- T T

trons (which we have not done here, but is certainly an es- drﬁzsz dr> In(L+ 7,(r,7))

sential part of the fult-J mode) and demandc/ ¢/ )=0, 0 0 re

then we havex, A /2E,=0. This is automatically satisfied ur 1

for the d-wave state at any filling, but not for tre state. In wa dr>, 7.1, 7) =5 ni(r, )| (12

this work, we rely on the former “Fermi-surface effect” to 0 e

stabilize thed-wave state. in the action in Eq(9). For (g,») # (0,0), the linear term in

Eqg. (12) can be set to zero and only the quadratic term con-

IV. FLUCTUATIONS tributes. However, even this term is zeroTat O and can be

ignored at lowT.

From Eqg.(11) we see that the spin-zero amplitude fields
1, couple to singlet pairs. Their coupling to tlfefield can
be shown to be small at small momentum and frequency. In
particular, for static uniform distortions op and 5, the

To treat fluctuations in the order parameter we write
A, (D)=]A, (7)€ (D The phased, ,.;(1)=0 and
®, ()= at thed-wave saddle point. We now divide the
phase field into two parts; following Ref. 10, we set

Prrix(1)=0(r,7) and Py (1) =7+ $(r, 1) + 6(r, 7). energy has to be even undér— — ¢ and terms like¢ 7,

We next assume that thEﬁ‘ spatlal_varlatl(_)n ot 7) is cannot appear in the action on integrating out the fermions.
small on the scale of the Iattlce: spacing, which allows us Orhe mixing of ,, with the phased and electromagnetic po-
set i (1)~35[6(r,7)+ o(r+x,7)] and @, ()=  tentials can also be shown to be negligible at small since
+¢(r,7)+3[0(r,7)+6(r+y,7)]. While we lose the 7, couples to the particle-particle channel while thend
0(r,7)— 6(r,7)+ 24 invariance of the action with this ap- electromagnetic potentials couple to the particle-hole chan-
proximation, it is nevertheless useful in isolating that part ofnel. The mixing then involves integrals over products of or-
the phase field which couples to electromagnetic fields as weinary and anomalous Green'’s functions which vanish using
will see below. We can now transform to new fermion vari- particle-hole symmetry near the Fermi surface andktluke-
ables given byc/(7)—c/(r)e 1121112 A5 3 result of pendence of,. This lack of mixing of amplitude and phase
this “gauge transformation” the action of E¢) gets modi- modes is similar to the well-known weak-coupling result for
fied to swave superconductofs.
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Unlike the swave case, however, the amplitude excita- 1 (ur
tions have low-frequency spectral weight dawave SC’s 55[CT7C,9]=W dTKE Ch o(7)Ck—q,0(7)
which we now estimate. Setting the phase fields to saddle- 0 a7
point values and integrating out the fermions we obtain an 1 (ur
effective action for amplitude fluctuations. Transforming to X[10;=1(&— &k—q)]0g(7) — ﬁjo dr
new variablesps= ( 75+ 7y)/\2 and ny=(7,— 1,)/\/2, di-
agonalizes the action foy fields atq=0 and is a good

;
starting point to consider smail fluctuations. We obtain, to Xk qzq: . Ck,0(7)Ck=q=q',0(7) Oa(7) O (7)
Gaussian orderS[ ]=(1/2T)2q ni-sa7 M; H(diwy) 7, o

wherew,=2m7nT. We have made the approximation of ig- X(&ct k-g-a ~ €k—q~ k—q')- (13
noring the coupling betweens and »4, which can be shown

to be negligible at small momentum. Using 6( 7+ 1/T) = 6,(7), an assumption discussed in detalil

The low-energy density of states is given B¥{(w)  in Appendix B, and making a smaf-expansion, we arrive
=(1/N)ZqIm M;(q,w)/ 7 with |ay/,|ay| </ &,. The cutoffs 4

arise since the fluctuations must have an energy lower than
the condensation energy as discussed in more detail later, in

the context of phase fluctuations. From a numerical calcula- . 1 t _

tion of Ngg(w) we find that Ng(w)/Ngp(w) 65c’.c,01= 57 kEg Ci,oCk—g,00gl @n—1VikaUa]
~w?l(Aque/a) and Ng(w)/Ngy(w)~w*/(Adve/a) where -

qu(c.o)Ell(Fw/(Wv.FA.d) is the density of states per spin for B i 2 N

quasiparticle excitations. These results can also be under- STN o CkoCh-g-a'.0

stood from an approximate analysis of the form of ka.a’.o

M; 4(q,w) discussed in Appendix A. X mgﬁl(k)qaql’;eqeq, , (14

We see that botN(w) andN4(w) are much smaller than
Ngp(w) for @w<Ay4,and thus conclude that amplitude fluc- ) . .
tu?iecgor?s are uni(rjnportant for low temperatur% propertiesvhere k=(k,ivy) and g=(q,iwy) with vy=(2m+1)7T
which will be dominated by the quasiparticle contribution. anld 7a1)n=2n77T. We have used & =&k Vkala

+32mM,5(K)A.dpt - - - wherevy,=dé/dk, is the velocity
and m;é(k)z&zgk/akaaklg is the inverse mass tensor.
B. The “bond-phase” field ¢

We next study the fieldb. We note from Eq(11) that a A. Neutral systems
uniform ¢=m would lead to extended-wave (s*) order.
One can therefore think ap as representing fluctuations of
s* character about thd-wave saddle point. From Eq@l11)
we see¢ is a spin zero field which couples to pairs.

For reasons similar to those explained above for ampli-
tude fluctuations, the coupling @ to other fields is weak 1 1
and may be ignored at low momentum and frequency. We, = Syeyyal 6]=1 > g[—XowﬁJrAgﬁq“qﬁ] 6(q,i wp)
therefore, derive a Gaussian action trby setting 0= 7; q
=O,_ their sadqlle—point values, and integra_ting out the X 0(—q,—iwy). (15)
fermions. This leads to the action §¢]
=(UM) = oM 5 (dwn)|b(a, ) |%. Since theg field has
low-frequency spectral weight, we compute its density ofHere, xo=—(1/T){p(qQ,iw,)p(—0,—iw,)) is the mean-
states N¢(w):(1/N7T)2|q|<Tr/§O|m M¢(q,w+i0+). From field density-density correlation function given by

numerical calculations, as well as simpler approximations
discussed in Appendix A, we findN,(w)/Ngy()

For neutral systems we integrate out the fermions in Eq.
(14), using a cumulant expansibicontrolled by small spa-
tial and temporal gradients i, leading to

~w?/(Agug/a). We thus see thap fluctuations are much Yo(Mhiwy)= E > (1—f—f")(uv'+ou’) L’
less important than quasiparticles at low temperatures. Q% iop,—E—-E
u'v 2
|+ = > (f—f")(vv'—uu)
V. PHASE FLUCTUATIONS lon+E+E'| Q%
From action of Eq(10) we see that uniform shifts ifi do % uu’ n vv’ (16)
not cost any energy, and is the Goldstone mode of the iw,—E+E’" iw,+E—-E’

superconducting state.

We now obtain the action fod fluctuations coupled to PPN ) o
fermions, settingn,=¢=0 (their saddle-point valugsn  and Agﬂz(l/ﬂ)Ekmaﬁ(k)<nk>_(1/T)<Ja(wan)J'B(_qy
Eqg. (10) and(11). For slow spatial fluctuations, the deviation —iw,)), is the mean-field phase stiffness, with,)=[1
from the mean field action, obtained from E4O) with &  — &, /E,tanhE/2T)] and the paramagnetic current cor-
=0, is given by relator
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1 2 to the physical longitudinal correlation functions and modi-
$<Ja12>o=§ ; ViaVig(1—=f=f")(vu’ —uv’) fies the mean-field result. This is true even for charged sys-
tems as will be shown below.

!

uv u'v
X = + -
iw,—E-E’ iw,tE+E’

B. Charged systems

In charged systems we have to take into account the long-

2
+ a > ViaVig(f" =) (vv " +uu’) range Coulomb interaction with energy density
k
' , 1 1
Vv uu
- o Heowoms=5y; 2 Vapap—q. (22
x iw,2+tE-E' iw,—E+E'| (17) QoMY gN g A

E, u, andv refer to standard BCS notatioh=f(E) is the WherepqE(1/Q)EK,UCl+q,gck,cr is the electron density. In
Fermi function, E'=E,_, with E=E, and similarly for  anisotropic layered systen, is given byt©-32
other primed variables. Analytically continuingw,— o

+i#, and working atT=0'* we obtain in the limitq 2me?d, sinh(qyd,)
—0,0—0, the mean-field superfluid stiffness V= Qjeo | coshqyd.)—cogq,dg) |’ (23
C 1 Yc
AGA(T=0)= 1 > maé( 1— i) EDg(Tzo)gaﬂ whereq,q, denote in-plane and-axis components af, d.
Q% Ex denotes the mean interlayer spacing, anpdis the back-

(18 ground dielectric constant. We assungga<l always,
and the mean-field compressibility where the in-plane lattice spacirg=1. Forqd.,q,d.<1
this reduces to the ordinary 3D resit;=4me?/(e,q°).
AE We take our Hamiltonian to b€ + H i+ H couiomn. Since
Xo(T=0)=—¢g > 5=k (19 the short-range attraction dfl,; is important for small
kB center-of-mass momentum while the Coulomb effects are
We note that the effective actigf5) is appropriate for phase important for small momentum transfer, we believe the
distortions whose energy is smaller than the condensatioireakup of the actual interaction in this manner is physically
energy Eqon= 1D2(7/&,)2. If this energy(density is ex-  Sensible and does not lead to any “overcounting.”
ceeded thed-wave BCS saddle point would become un-  The Coulomb interaction can now be decoupled using a
stable. This leads to the following restrictions in E@5):  field Uq(7) as
lq|<gc=7/éq and w,< w With kw2/8=Egng. In the BCS
limit, Eon= Aﬁ/p,:k,: which tranglgtes ir_1t® Flc~ chAd: exp{ _ E Vopo()p—o(7)
We emphasize that the coefficients in the phase action are q>0

not the physical correlation functions. The gauge-invariant

correlation functions, obtained by including the effect of :f DU 7) U (7))exd — iu*u
Gaussian phase fluctuations, are given by RN o Vg 471
ASPALPgrq” .
ap_ pap, 10 10 i (U p_ gt Uspy) | (24)
A A Lo AE T 20 o TaPmaT e
and To integrate over independent modes, siM:Q,:L{;; , we
apB A @B only sum overg>0. The last term in Eq(24) can be recast
(Qiwn) = 9°9"A0"xo (21) @S2 U(r)p(r). Thus the density couples to the scalar field
TN Qe9PA SR — wixo U in the same way as it couples &6 in Eq. (14).

On integrating out the fermions we arrive at an effective

as shown in Appendix C. action for the phasé, and the scalar potentia,, given by

From Eqs.(20) and(21) we see thaGaussiamphase fluc-
tuations do not affect transverse correlation functions. In par- 1 0(q.iwy)
ticular, the superfluid stiffness is unrenormalized. However, _ = * (i ; -1 ’
longitudinal correlationsare affected in general. Whilé\ SLoU] 8T 2 L7 (@1 a7 (0 T on) JM Lf(q,iwn)
does not satisfy thésum rule,A does, which implies resto- (25)
ration of gauge invariance. Further, from E81) we can see _
that y has a pole fog—0 unlike xo, which leads to a col- With
lective mode which we will discuss in the next section. How-

ever, the static compressibility given byy(q— 0,0,=0) is — wixo+ AZPqg? 2iwnxo
unaffected at the Gaussian level. M 1= , (26
We clearly see that the gauge-invariagt«)-dependent —2iwnxs 4(—X0+V;1)

correlation functions are different from the mean-field corre-
lations which appear as coefficients of the phase action. Thiwhere x§ = xo(—0d,—iw,). Integrating out the field/ leads
is not surprising since the phase variable in fact contributeso the action
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1 2 RPA, A aBanf ] result c=vg/\/d in the weak-coupling limit in the con-
Seharged 01= g7 2 (—onxo " +A070%0%) 0(q,iwp) tinuum, whered is the spatial dimension and: is the Fermi
& n velocity. At finite temperatures, there are Landau singulari-
XO0(—q,—iwy), (27)  ties in DS and yo as seen from Eqg16) and (17), which

) ) prevents us from taking th@— 0,0—0 limit.
where the mean-field charged system density correlator
X6~ 2= xo/(1—Vqxo). This form of the phase action is in-
dependent of the order-parameter symmetry and has been
obtained earlier fos-wave SC’st? We note that this form In the action(27), we can selg" "~ — 1N in the limit
differs considerably from that assumed in Ref. 15, where th€l— 0. Analytically continuing to the real frequency, and set-
physical (g,w)-dependent longitudinal dielectric function ting ReM;l(q,wp)=O, we obtain
appears as a coefficient in the action. As emphasized earlier,
physical longitudinal correlations cannot appear as coeffi-
cients of the phase action.

The regime of validity for the above actiondss 7/ £, as
for neutral systempsee discussion below E(L9)]. The fre-  Wherew,, depends on the direction of propagati@n-plane
quency cutoff is given byxRPA(q) wZ|<Egengand thus de- OF c-axis) in anisotropic systems.
pends org. In particular, forq—0, the action remains valid ~_ We first consider the in-plane plasmon. For—0
even at frequencies larger than the dapand can be usedto (q in-plane and finite @ we can write A{;‘B: Oup
obtain theq— 0 plasma mode. (—iwo(w)/e?) where o=0'+i0” is the in-plane optical
The gauge-invariant correlations for the charged systenconductivity (including the effects of Gaussian phase fluc-
are obtained from the neutral system res(2 and(21) by  tuations. The background dielectric constant enters in this
replacingyo— x4 /', as discussed in Appendix C. definition of o since the conduction electrons are affected by
the electric field which has been screened by the background.
VI. PLASMONS We thus see that

B. Charged systems

; anB aB ~ 1 2,4
lim| q“q"ReAg™(q, wp(a) — - wp(a) | =0, (28
q—0 a

In the previous section we have found phase actions of the ) ) Tap(®p)  4mogp(wp)
form § 6]=(1/T)2q,, M, ' 6(d,@,)|? for neutral systems "L'”quq 2 PR
[see Eq(15] and for charged SC’ksee Eq(27)]. The dis- I
persion of the collective phase mode is defined byo(w) thus governs the location and damping of the plasma
ReMgl(q,w)zo. For neutral systems, we note that thismode through a self-consistent equation. This equation is
condition is identical to demanding a pole in physicalidentical to demanding a zero in the real part of the longitu-
density-density correlatioly given in Eq.(21). Phase and dinal dielectric constante), since e=e,+4mio/w in a
density fluctuations are thus coupled and share the pole g@auge-invariant theory
the collective mode. This is true even for charged systems, At this stage it is instructive to compate) the physical
where the plasma frequenay,,, corresponds to the pole of Plasma frequency, (b) the conductivity sum rule plasma
the physical density correlator and is given by frequencywy defined by’

lim, oRex *(q,w,)=0. ,

The phase action is valid for all frequencies such that * ,, & 1 _ €EpWp,
w?<EcondVq and thus is valid even for large frequencies for fo do o'(0)= 56 ; m-(lo{n(k))= 8
g— 0. If the plasmon is at finite frequency fgr— 0, Landau (30)
singularities do not occur at finite temperatures. One can thus . .
use this action to obtain the—0 plasma mode at zero and @1d (©) the superfluid plasma frequenay,s defined by

2 — 2 H
finite temperatures. Further, to have a sharp plasmon th@s(T)=47€°Dy(T)/€,, whereDy(T) is the T-dependent
damping must be relatively small: IM ;< w,,. superfluid stiffness related to(T), the penetration depth.

In this section, we first briefly consider neutral systems?Vith this deﬂmtzlon, the real part of can be represented as
followed by a discussion of charged systems. For charged (@.T)=[€,wp(T)/4]6(w)+ oreq(@,T) Whereo e is the
systems, we study the in-plane plasma mode and then cofegular part. Finally, we have the Kramers-Kig relation
siderc-axis plasmons for systems with a finiteaxis super- for o(w):
fluid stiffness. Our discussion of theaxis plasmon is to a
large extent independent of the details of argxis model.

We also make an estimate of th@xis plasma frequency for

Bi2212 obtained within this phase action and compare it with
experiment. We will now try to use these relations and the structure of
o' (w) to obtain direct information about the behavior of the
plasma mode, which is not directly seen in an optical con-
ductivity measurement.

For neutral systems we hawé;, *= §(A 570,05~ xowp). Conventionaklean3D swave SC’s aff =0 have a very
At T=0, continuing to real frequency, the collective mode |arge superfluid stiffness which can be inferred from penetra-
frequency obtained from above is given byq) =cq where  tion depth measurements, and little spectral weight at higher
the sound velocity:z\/DSUIK. This reduces to the standard energies. Ignoring interband transitions, we can then take

wp. (29

*x2

1 )
a”(w)ngfo dw'a'(w’)ﬁ. (31
w°—w

A. Neutral systems
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o' (w)~[ epw5(0)/4]8(w) which leads to w}=w,{0)  tunneling® both appear to lead to this behavior fopc(T).

from Eq. (30). It also implies ¢"(w)=e,w;4(0)/4mew  Presumably the main effect of disorder in the first model is to
through the Kramers-Krig relation(31). Using Eq.(29) we ~ Suppress single-particle tunneling leading to pair tunneling as
then getw,= w,4(0), a large plasma frequency. In the pres-the dominant process beloV ; it then appears that the two
ence of weak disorder and at finife w,s decreases and the models are similar in spirit. The dl_sorder .scale required to
spectral weight inr’ (w) redistributes, leading to finite(w) reproduce the experimental results in the first model appears

over energy Sca|es[:l ,A which are the quasipartic|e trans- to be Iarge, of the scale of the 0ne-partiC|e tunneling band-
port lifetime and SC gap, respectively. Sinegs> Tt_l Ato  Width. One reason for the large disorder scale could be that
L] . r

begin with, it is unaffected by this low-energy redistribution. _the c-axis dispersion in this calculation has been chosen to be

P 2
This is easy to see from E¢31) above foro”(w) where we ~ Independent ok, k, , while the actual (cok—cosky)” de-
can setw’~0 in the denominator for the region of interest, penderr]wce V‘(’jOUId alrr]eadly SUPPress ilngle-pﬁmﬁle tlunrcljelmg
; ; _ % near the nodes in the clean case. This might then lead to a
an(_d th_|s_along_\_N|th Eqs(30) and (29). leads _ton—_wp, smaller disorder scale required to suppress this tunneling
which is insensitive to the spectral weight redistribution. Fur‘process completely
ther, the smalb’ (w,) implies a sharp plasmon in this case. We finally proceed to compare theaxis plasma fre-

Thus for conventionas-wave SC's, we finally arrive ab, : . X .
~*=w,(T). The last relation is satisfied as an equalityquenc.y with _the_sﬂﬁness obtalned from penetration _depth
“p psy /¢ experiments in Bi2212. We consider only the in-pheseis
plasmon and ignore the “optical mode” corresponding to

only in a Galilean invariant system &t&=0.
out-of-phase fluctuations arising from the bilayer structure,

For the cuprate superconductors, the in-plandw,T
=0) has the following featuresi) a condensate contribution which is expected to be at a higher ene?éﬁ?This leads to

[ezng(T=0)]5(w) and (i) absorption by quasiparticles

which has low-frequency spectral weigfim a d-wave SG 5 5

with features around twice the maximum gap followed by 2 _Ame” ¢ (32)

other higher energy features. The condensate contribution Pe g Eb)\g,

along with the large low-energy spectral weight coming

from quasiparticles is expected to lead to the large plasmgherec is the velocity of light and\ is the low-temperature

frequency, as in the case of conventional SC's above. Ignors_axis penetration depth.. in Bi2212 has been measuféd

ing interband transitions in calculating] , we then arrive at {5 pe about 10Qum. Using this and setting,~ 10, we get

wp~w§>wps- wp~7 K. This is in reasonable agreement with,
The normal statein-plane plasma frequency has been~g_10 K extracted from experimefit®* given experimen-

measured to be large<(1 eV) in the cuprate¥} while the  tal errors, and uncertainties in the estimatesgf

spectral weight rearrangementdri in going from the nor-

mal state to the SC state is over smaller energy s¢alekse

high-energy normal state plasmon is thus expected to

smoothly go over into a high-energy SC state plasmon ex- In order to understand the plasmon dispersion and the

pected from our above discussion, similar to conventional/ariation of the plasma energy with direction of propagation,

SC’s. we consider a simplified model for the in-plane and out-of-

plane conductivity. Since, ,p~ w; and is large for the in-

C. Josephson plasmons along axis plane 2plasmon, we s_et the _in—plane cond_u_ctivity(w)
) L= (ebwp* 14)6(w), consistent with the conductivity sum rule,

To study thec-axis plasmon we assume a nonvanishinghich then reproduces the large in-plane plasma frequency.
c-axis stiffnessD, . We setq along thec axis in(29), lead-  We emphasize that this simplified form for the in-plane con-
ing to wp (=47 (wp o)/ €,. We knoww,s is small inthe  ductivity is valid only at large frequency, for studying the
high-T, systems as seen from the largexis penetration high-energy in-plane plasmon. It iot valid for considering
depths, andr/(w) is measured to be very small over a very low-energy in-plane physical observables, such as the super-
large energy rang®. This is partly due to the form of the fluid stiffness. Using this form for the real conductivity,
c-axis dispersion which is proportional to (dgs-cosk)%**  o,(w) = ey} */Amw. The c-axis conductivity is given by
so that nodal quasiparticles which lead to low energy spectray, = (ebwﬁs,c/4) 8(w) as discussed in the last section, which
weight in-plane have a much smaller contribution alongdthe |eads too”/(w)= fbwgs J4mw. This simplified model is tai-
axis. Thus aff =0, the only “free carriers” come from the |ored to capture the correct plasma frequency for propagation
condensate, andy, .= wys .. On using Egs(31) and(30),  along the in-plane and-axis directions. For an arbitrary di-
this leads tow, (T=0)=wps(T=0). With increasing rection of propagation, we expect to obtain a reasonable in-
temperature, the spectral weight irf gets transferred to terpolation.
very high energie4 The plasma frequency then continues to  For general, in the absence of detailed information on
be given byw, o(T) = wysc(T), which decreases with in- the o(q,w), we assume that the conductivity is independent
creasing T and vanishes aboveT, as seen in of g. This appears to be a reasonable assumption at high
experiment®?32% Thus thec-axis plasma oscillations are energy, and leads to the plasma frequency being given by
seen only belowl ;, justifying the use of the term “Joseph-

D. Plasmon dispersion

son plasmon.” Vv
A model which assumes disordered quasiparticle transport » =—31¢" (0.)0%+ 0" (0,)9?]. (33)
along thec axis® and a model which only permits pair o) ez[ an(@p) i+ ol wp)a,]
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FIG. 1. The plasmon dispersion in a layered sys(Bi2212), as
a function ofqy with q, = /d; (see text for details and parameters
used. The \/q—” dispersion in the 2D limit is plotted for comparison.
The dispersion appears nearly acoustic for smadue to thevery
small Josephson plasma frequency 10 K) but rapidly crosses
over to high energies~eV) with increasingy; . The inset shows
the behavior of the dispersidin meV) for g,—0.

The plasma frequency fdg|—O0 is a function of the angle
of propagationys, measured with respect to thd plane and
given by wj(#)=[w}cos(y)+whssSin(1)] and varies
smoothly from the low-energy Josephson plasmorcfaxis
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we show below, effects beyond the Gaussian approximation
could lead to large corrections in systems with a small co-
herence length and smdll?. To study such effects we de-
rive in this section a quantundY model and analyze quan-
tum and thermal phase fluctuations in the following section.
For clarity of presentation, we outline the derivation for a
d-dimensional isotropic system; the generalization to the an-
isotropic case is straightforward.

The quantumXY model describes the dynamics of the
phase variablegr(7) defined on a lattice with lattice spac-
ing &g, the coherence length. The simplest action periodic
under 6g(7)— Og(7) + 27 is given by

sxv[e]:QEw A(Q) w3 (Q,iwy)|?

1T

+8]
(34

where(R,R’) are neighboring sites. It is important to em-
phasize that, given the cdi(— 0+) form, there are no con-
straints on the spatial gradient of the phases defined on the
coarse-grained scale g§. This is in contrast to the Gaussian
action (27), derived on the scale of the microscopic lattice
spacinga, which could only describe slow spatial fluctua-
tions of the phase whose energy did not exceed the conden-
sation energy.

Our task now is to determine the coefficieAt&)) andB
of this effective action. Unlike in some other ca¥dsis not
possible to directly derive the quantuXy action from the

dr X [1—cosbr(7)— O (7))],

(RR")

propagation to the high-energy plasmon in-plane. In order tQnqerlying fermionic Hamiltonian, since the cumulant ex-
examine the plasmon dispersion in a particular case, we cofsansion we used to derive effective phase actions was con-

sider the limitq, =/d; and studyw, as a function of
(qj@). Normal state data for LSCQRef. 1§ shows
wp, (4. =0,g/—0)~1 eV; we assume a similar value for
Bi2212 with w, (g, =0, QHO)%(D* . Usingd./a~4 and

p
wpe= wpsc~ 1.0 meVP~*we plot the plasma frequency in

Fig. 1. This crosses over from a low-energy Josephson plas-

mon for g,— 0, corresponding t@-axis propagation, to a
nearly two dimensional plasmon dispersing\@ at larger
q- At smallqy, the dispersion is known to be acoustic for
wpsc=02 It appears to be acoustic in Bi2212 at smagl
(see Fig. 1 due the extremely small value @b, but

trolled by the smallness of spatiotemporal gradientg.iwe
therefore proceed as follows: we compare the act®h in

the limit of slow spatial variations on the scale of the coher-
ence length and match coefficients with those of the Gauss-
ian action:

1 " wﬁad ) )
S0=g7 2 vgy | (@ien)

1
T R VXC RS EN
0

ra

finally levels off leading to a finite Josephson plasmon gap

for g;—0 as shown in the inset in Fig. 1. The 2y dis-
persion is obtained mathematically in the limit of lardig’a

and is given bywp,ZD(q”)=(w§/\/§)\/q”dC and we plot this

(39

whereV(q) is the generalized-dimensional Coulomb inter-

action. For the @,iw,) of interest, we have seff""~

in Fig. 1 for comparison. It must be emphasized that plasmon- 1NV (q) andAy= DS(T). The double prime on the summa-
damping would be important in the real system and wouldion denotes momentum and frequency cutoffs

have nontrivial dependence on the angle of propagation. The 2

sharp plasmon we obtain in the above cases is an artifact of lgl<g.=ml&, and wﬁs(ZWncT)ZEDg(—) Vg,

our simplified model for the conductivity.

VII. QUANTUM XY MODEL

The superfluid stiffness obtained abO\DQ(T)z(ll
Q) [ =M H(1— & JE) — 23, V2(— a1 9E)] is unaffected

£o
(36)

which arise from demanding that the energy cost of the terms

in Eq. (35 to be less than the condensation enekgyq
= gog(mgo)z. Theq cutoff can also be viewed as a repre-
sentation of thej-dependent stiffness being roughly constant

by Gaussian phase fluctuations. Corrections to this result ae=D?) for q<q. and decreasing to zero for>q_.
unimportant in conventional superconductors which have a In arriving at Eq.(35), we have Fourier transformed the

large coherence length and a Iar@é(T=0). However, as

gradient term from thed,i w,)) to (r,r) variables. While the
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abover-local form of this term is true wheall Matsubara  whereV(Q)=V(Qa/&,) andV(Q) is the Coulomb interac-

frequencies are present, we now determine its regime of vaion for layered systems given in E3). While all |Q|

lidity given the frequency cutoff in Eq36). With the cutoff <= contribute in Eq.(39) above, the prime on the summa-

in Eqg. (36), the gradient term on Fourier transforming is tion denotes the Matsubara cutoff consistent with E).

given by The couplings in this action depend crucially émand we
shall examine the consequences of this below.

T ur
3 % Dgadquo drd7' 6(q,7)0(q,7 )K[T(7—7")].

S The quantunXY model action has both longitudinal fluc-
In terms of the dimensionless quantity= 7T the kernel is tuations and transversgzorteX) excitations. Near a finite
given by K(z)=sin(2n.+1)wzl/sin(7z) where n.=n.(q) temperature phase transition, the dynamics is unimportant
given by Eq.(36). The kernelK(z) is periodic inz, K(z  and we recover the classicaly model with the possibility of
+1)=K(2), and it is sharply peaked arourze-0 for large  a phase transition in the 3RY universality class. In this
n.. The width of the peak can be estimated from the firstsection, we examine low-temperature properties and the ef-
zero ofK(z) aszy=1/(2n.+1). Forn,= 10, z,<1 which is  fect of quantum dynamics. We ignore vortex-antivortex pair
true in the low-temperature regime that we shall be interestedxcitations since these have a core energy cost and would be
in. We thus approximat& (z) as a delta function in “time”  exponentially suppressed at low temperatures. We deal with

VIIl. RENORMALIZATION OF THE STIFFNESS

and work with a localr action in Eq.(35). the longitudinal fluctuations within a self-consistent har-
To determine the couplin@® in Eq. (34), we consider monic approximatiofiSCHA).
static 6 configurations and apply a small external twibt To examine the low-temperature in-plane properties, we

which will be distributed uniformly over the system. For the assumeDEzO in EqQ. (39 since it is very small in highly
Gaussian mode(35), with lattice spacinga=1 andN=L¢ anisotropic systems with a large, . The c-axis stiffness
sites, the phase twist per link i©(L), while for the theXY  would become important ik, <\(£,/dc), which implies
model (34), on the “coarse-grained” lattice with lattice D”le(go/dC)z, leading to thec-axis contribution being
spacingé, and (L/£&,)¢ sites, there is a larger phase gradientimportant in Eq.(39). For Bi2212, detailed calculations,
®/(L/&y). Since the total energy cost for this phase twist iswhich we omit here, show that it does not affect our in-plane
the same in the two cases, one obtad&" 2(®/L)2LY  results.
8=B (D &y/La)? (Lal&y)%2, which leads tdB= D23 %/4. The SCHA (Refs. 35,4 is carried out by replacing the
Similarly, for a 7-dependent phase fluctuation at a fre- above action by a trial harmonic theory with the renormal-
quency w,, (L/&)% phases contribute in the “coarse- ized stiffnessD; chosen to minimize the free energy of the
grained” XY model, as opposed ¢ in the Gaussian case. trial action. This leads td;=Dexp(~(5¢?)/2) where 56
We thus getA(Q)wﬁ(Lalgo)d=(wﬁadlqu)Ld on equating =(6 .= 6., and the expectation value is evaluated in
the first term in the two actions. This leads #Q) the renormalized harmonic theory. Explicitly, we get
= £5/8V,. Finally, noting that the momentur@=qé,/a

since the distances in the “coarse grained” lattice are in 50 —ZTJW d®Q De €0
units of &, this can also be written a&(Q)=¢¥/8V(Q), (86%)= ~m(2m)% 057, wigdd [V o+ Dydeeq’
whereV(Q)=V(Qa/&y)=V(q). (39

Having obtained A(Q) and B in the isotropic
d-dimensional case, we generalize to anisotropic systemy/neree(Q)=4-2cosQ—-2cosQ,. _
We work with a layered 3D system with lattice spaciag e have analyzed the above equations to extract informa-
—1 in-plane andl, along thec axis. The in-plane coherence tion about the importance of quantum and thermal phase
length&,>a and thec-axis coherence lengy =d. . Inthis ~ fluctuations. Our numerical results can be simply summa-
case, sincé, =d., we proceed exactly as above but coarsgized as follows:(56?)(T=0)~ (e e,&,)/[D(0)d.] is a
grain only the in-plane variables. Denoting the GaussianMeasure of quantum fluctuations, while thermal fluctuations
model stiffness byf in-plane andD? along thec axis, we ~ DeCOMe _important above a crossover scale.
arrive at the final action ~\[D|(0)d:1(e’ ep&o). These quantities are simply under-
stood as the zero-point spread and the energy-level spacing
1 w2g2d of an oscillator resp_ectively, in the renormalized_harmonic
0]=— ;’ n>0-e 8(Q,w,) 0(—Q, — w,) theory. The scald  is also the temperature at which(Q
8T dan Vo =)~1 [giving a broad kerneK(z)], with nonlocal effects
0 in 7 becoming important.
DLdC de E {1-cod 6(r,7) It is easy to see that phase fluctuation effects are negli-
4 Jo  ra=xy ’ gible in the BCS limit of large&,. With e?/e,a~Dd,
o ) ~Eg and é,~ve /A, one obtains the standard resHlt,.q
DldC(@) ur ~A?/Eg per unit cell, and(86)(T=0)~JA/Er<1 and
4 \d, Ty~ VEEAST,.
For the cuprates the short coherence length and dbjall
XE {1—cod 6(r,7)— o(r+2, I, (38) act together to increage?6?), but they pusi , in opposite
T directions. For optimal Bi2212 we us®/e,a~0.3 eV with

—0(r+a,7)]}+ dr
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would decrease slowly, with a large power law T°). Qua-
siparticles are thus crucial in obtaining the observed linear
temperature dependence.

We find that we have to choosigDﬁ(O)wlSO meV cor-
responding to a bareyo(0)~1500 A and a slopea,
~0.38meV/K to obtain the renormalized value$D,
~80 meV (implying \|~2000 A) anda~0.35 meV/K, in
agreement with experiment. Thus, quantum effects lead to a
50% decrease of ZL((O) and to little change in its linear
slope. The bare slopa® within a theory of noninteracting
W W RS S Bogolubov quasiparticles is given bkgln 2/7)(hveke/Ay).

0 5 10 15 =20 Using the measured angle-resolved photoemission spectros-
Temperature (K) copy (ARPES dispersior?, this leads toa®~0.8 meV/K
which is much larger than the “bare” value we have used

FIG. 2. The bare and renormalized\}/plotted as a function of ~above to obtain agreement with penetration depth experi-
temperature near optimal doping for Bi2212. We have chosen barments. This points to the inadequacy of the noninteracting
values such that the renormalized resultg(0)~2000 A and quasiparticle picture. The above discrepancy could be ac-
d\;/dT~10 A/K, are in agreement with experiment. counted for by considering quasiparticle interaction effects at

the mean-field level before considering the effect of phase
€,~10 andé,/a~10. Bi2212 has a bilayer stacking struc- fluctuations. These interaction effects become more impor-
ture with the planes within a bilayer being much closer thartant as one underdopes to approach the Mott insufatBr.
the distance between bilayers. Assuming the phase within the
bilayer to be fully correlated, we sdt to be the mean inter-
bilayer spacing and thud./a~4. Using)\H(O)~2000 A, we
then get the bilayer stiffnedd(0)d.~80 meV? These val- In this paper, we have focused on the excitations of a
ues lead toE.o,¢~6 K/unit cell which is somewhat larger Short coherence lengtt-wave superconductor. These are
than estimates for optimally doped Y-Ba-Cu-O from nodal fermions and the fluctuations of the amplitude and
specific-heat measuremenifaye are unaware of similar data Phase of the order parameter. Using an effective phase-only
for Bi2212. We find that the crossover scale ~350 K  action we have discussed collective plasma modes and renor-
>T, and a better estimate is théh~T,. Thus thermal Malization of superfluid stiffness by anharmonic longitudinal

fluctuations are unimportant at low temperatures. QuanturRhase fluctuations. We summarize below some of our main
fluctuations are important since we fidd6%)(T=0)~1 at ~ conclusions. _ o
optimal doping. ‘We hav_e fc_)und that the important excitations are the low-
To study the temperature dependencendfT) and the lying fermionic states near the nodes and quantum phase
bilayer stiffness Dy(T)d, 2 we set the bare stiffness fluctuations of the order parameter. Although ttevave
dCDﬁ’(T)zchﬁ’(O)—ZaOT, where the linear decrease arisesState supports in addition, two amplitude fields an_d_a bond-
purely from nodal quasiparticle excitations within phase fleld, these have been shown to have negligible spec-
single layer. This implies 1/“20(T)=1/)\ﬁo(0)—(47762/ tral weight at low energy and are unlmportant_for the low-
#2c2d)2a°T. We plot the results of a numerical calculation temperature thermodynamics. They could possibly be probed
5. . in experiments such as Raman spectroscopy measurements
of 1/A{(T) in Fig. 2. Phase fluctuations are seen to lead to

L %esigned to detect these fluctuations.
large quantum renormalization of \(0) and to a small Our discussion and derivation of the plasma modes em-

decrease in the slope of)\f/(T). The small renormalization phasizes a unified way of looking at the in-plane @rakis

of the slope of 1Xf(T) which we find® is true for a range plasmons, in a manner which is relatively independent of
of parameter values around our specific choice which hagetailed models of-axis propagation. The very different na-
been constrained by experiment. It is, however, not the casgre of the two plasma modes, with a smedaxis plasma
more generally, and the slope could be renormalized byrequency governed by the-axis stiffness and a large in-
quantum fluctuations for a different choice of parameter valplane plasma frequency not directly related to the in-plane
ues. This is to be contrasted with the effectti#ssicalther-  stiffness, can both be understood within our phase action. A
mal phase fluctuations which would lead to no change inmicroscopic derivation o-axis conductivity sum-rules and
\(0),Dy(0) and to arincreasein the slope of J)lﬁ relative  T-dependent spectral weight transfers would depend on spe-
to the bare value. cific models?®?®and we have not discussed these.

We note that in the absence of quasiparticles, the super- Our derivation and treatment of the effective phase-only
fluid stiffness in this model would have an exponentially action emphasizes the crucial role played by the coherence
small temperature dependence, arising from phase fluctugength in imposing momentum and frequency cutoffs in the
tions which are gapped. While it might appear that therephase fluctuations. This allows us to interpolate from the
could be low-temperature crossovers resulting from theBCS limit where phase fluctuations are unimportant to a re-
c-axis plasmon being at low energy-(L0 K for Bi2212, the  gime of strong quantum fluctuations in the short coherence
phase space for these low-lying fluctuations is extremelyength limit. We find that quantum and thermal fluctuations
small. Even in a purely 2D system, which suppdgapless  cannot both be present at low temperatures; The short coher-
low-energy plasmons dispersing dq_| the phase stiffness ence length increases quantum fluctuations while pushing up
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the temperature scale at which one crosses over to thermgl beyond a minimum threshold which correspondsktat
phase fluctuations. The strong longitudinal quantum fluctuathe node and— q near the nodésinceq is small due to the
tions of the phase predicted by our calculation would alsamomentum cutoff The threshold is given bywin(Q)
imply dynamical charge density fluctuations at low tempera-— \/W whereq; ,q, refer to components af par-

tures in the SC phase, which could possibly be probed iRyjie| and perpendicular to the Fermi surface, respectively, at
experiments. the node.

It has been pointed out that there is a discrepancy in the \ye find numerically that the spectral weight fge0 is

magnitude of the lineaf slope of the measured penetration nearly the same as far=0 beyond the absorption threshold.
depth and the value calculated using ARPES data assumingje therefore approximate

free quasiparticled’ However, phase-fluctuation effects had
not been taken into account before comparing data from the ~1\ [ d2q

two measurements. We find that even including the relevant Ni(w)~ _)J ImM;(q=0,0)
guantum phase fluctuations, a discrepancy is present which 7)) —meo(2m)?

points to strong quasiparticle interactions even at optimal

doping. A theory to account for these quasiparticle interac- X0 (0= onin(Q)), (AL)
tions is, however, lacking. One possibility is to invoke awhere®(x) is the unit step function which is 1 for>0 and
phenomenological superfluid Fermi-liquid theory descriptiong otherwise. Fog=0, the inverse propagator
for the quasiparticle® It turns out however, that such a

theory has a large number of free parameters and lacks pre- Ag Ag 55
dictive power although the experimental results may be eas- M;jzﬁ— >N 2 ¢§Yd(k)ﬁ, (A2)
ily rationalized. k Ex(wn+4E))

We have restricted our study in this paper to the low- _ _ _
temperature properties of the SC without addressing the isv_vhere. ¢s(k) C(.)Sk?<+C.OSkV anq hd d(k) COSKX cosky .
. o nalytically continuingiw,— w+i0" and working at low
sue of what happens at higher temperatures within the S fequency <A,) leads to
state and in the normal state. This leads naturally to the prob- q y d
lem of fermions interacting with a strongly fluctuating order 1
parameter, which is at present an important open problem.  — —Im Ms,d:CidN > S(Eyp— w/2)¢§'d(k) 2IE2,
Note added in proofWe have recently studied, in some ™ k
detail, the effect of ohmic dissipation on the phase (A3)

. 40 . . . .« . . .
fluctuations™ Such dissipation, arising from a finite Iow- \yhere 2¢_ = A (IN)S(@/Ey— ¢ £2/ES) We evaluate

frequency optical conductivity, is seen to reduce the magnifhe w-dependent momentum sum in EA3) analytically by

tude of quantum fluctuations and reduce our estimate for thSOnverting it to a Fermi-surface integral and compute the

thermal crossover scale. Nevertheless, we find that the CroS8s nstant numerically. Finally, doing the sum to obtain
over scale is still large, so that our conclusions about quasithe densiiydof states Iea{ds to '
particles dominating the low-temperature behavior of re-

sponse functions remains unchanged. Ng( o) o2(ke ) w2
S _ 2 7Ts ,

=Cq ’ (A4)
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where p4(Kg ) refers tog, evaluated at the gap node point
APPENDIX A on the Fermi surface ardy,(w)=krw/(mveAg) is the qua-
1siparticle DOS per spin which is linear . We numerically
estimatec, 4~ 10; the prefactors in the E¢A4) are then of
order unity.

In this Appendix, we present an approximate analysis o
the density of states for the amplitude fielgsy and the
bond-phase fieldp. This analysis gives us insight into the
nature of fermionic excitations which contribute to the low-
energy spectral weight for these fields and recovers the 2. The "bond-phase” field ¢
power law for the low energy DOS obtained in the numerics.  For the ¢ field, pair excitations similar to that for ampli-

tude excitations lead to low-energy spectral weight. This is
1. Amplitude fluctuations easy to understand since both fields couple to the particle-
particle channel with only different vertex factors. The be-
havior of ImM 4(q, ) is similar to that for amplitude fields
with a vanishing threshold fay=0 and a finite threshold for
g+ 0. Following similar approximations, we set

The low-energy density of states\;(w)=(1/N)Z,
—ImM;(q,w)/m i=s,d with the restriction |q,/,/qy|
<ml&,. The spectral weight Inv;(q,w) at T=0 arises
from summing over low-lying pair excitations atl mo-
menta k,k—q). This contributes to absorption at frequen- 1 (mieg o2
ciesw=E,+Ey_4. Forq=0, the spectral weight extends to Ny(w)=—= 0 q IM M 4(q=0,0) O (0 — ®min(Q))-
=0 coming from low lying pair excitations from momenta ) —migo(21)?

k arbitrarily close to the node. At finitg the absorption sets (A5)
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For T=0, using particle-hole symmetry near the Fermi sur-creases to zero. Sindd,| is a bosonic variable, the core

face we find the inverse propagator would trace a closed loop in “time” 1. In this case, all the
) 5 electrons which lie inside the loop undergo a phase change
M;1(q=00,)= ﬂ 1 (k) —8cod(k,) Ex of 27 each time the loop is traced while electrons outside the
¢ (4= 0n 16 N § Ey Y wﬁ+4Eﬁ ' loop return to their original phase angle. This leads to a

(A6) Berry phase factormpS(I") for the loopI™ with areaS(T").
The effect of this Berry phase factor on vortex dynamics was
pointed out by Ao and Thouled8,except they obtained a
1 w2 coefficient of p (the superfluid densilyinstead ofp (the
Ng(@)/Ngp(w) = 8—c§)<p§(kF,n)A—, (A7)  total electron densily Their result is special to a Galilean
m dUF invariant systems af=0, whereps=p. Our result has also
where 1¢¢E(Ad/|\|)zk¢§(k)/25k_ The prefactor here is been derived earlier by G_aitonde and Rama_krish‘ﬁ_an_.
again of order unity. In the paper, we consider only slow spatial variations of
the phase and work with just the periodic variaBlewhich
APPENDIX B we refer to ag). We note that the linear time derivative term
will not be important in the critical regime around the finite
In this appendix, we briefly consider the linear time de-temperature superconductor to normal-metal phase transition
rivative term in the phase action, which we have dropped irwhere dynamics is unimportant. It would, however, be im-
the paper. For notational simplicity, we consider a neutrabortant near quantum critical points Bt 0.%3
swave SC in 2D with lattice spacing=1. In carrying out
the Hubbard-Stratonovitch transformation as for theave APPENDIX C:
case, we introduce complex order parameter fields
A(7),A¥ () which are bosonic variables and satisfy the Physically relevaqt corrglation functions should be gauge
constraintA(0)=A,(1/T). Writing A, =|A,|e', this trans-  invariant. The functional integral method leads to a very
lates into|A,|(1/T)=|A,|(0), and 6,(1/T)= 6,(0)+27m,,  Simple and elegant way of demonstrating the role of phase
and the partition function involves an additional sum overfluctuations in restoring gauge invarian¢ehis is, of course,
m,. Working in small @ gradients and doing a cumulant Well known from early work of Anderson and othgfé:

expansion, one arrives at the following form of phase action TO this end we introduce external gauge potentials

fications in the actior{9). In the expressioii10) for £, we
.1 .1 replaceu by u+Aq(r,7) and56/2 by 56/2— A, (1) where
'P9+§K‘92+§DS(V‘9)2 - (B sp=[6(r,r)—6(r',7)]. Consider the gauge transformation

Ao(r,7)—Ay(r,7) +id,a(r,7) and A, (7)—A,/(7)

Doing the integrals as before, we finally get

1T
S(): j d 7'2
0 r

We now make the substitutioi(r,7)=0(r,7)+27Tm, 7 —[a(r’,7)—a(r,7)]. Invariance under this gauge transfor-
which implies® (r,1/T) =0 (r,0). Substituting this in the ac- mation implies that the phase field must transform as
tion, we get o(r,7)— 0(r,7)+2a(r,7) with |A|, ¢ and the fermion
fields unchanged. The correlation functiopsand A 3# cal-
S=2mip> m+ szKTE mr2+DS7T S (Vm,)? culated at Fhe mean—field level, settirﬂgE_O anq¢z_0 are
T 2 T 6T % not gauge invariant. From the above discussion, it is clear
1 . that this problem can be solved by allowing férfluctua-
+ —WDSTZ f dr #(VO)-(Vm,) (B2) tions and integrating over _thesmther than _freezmg’EO)_. _
2 r Jo We now proceed to do this at the Gaussian level, which is
entirely equivalent to the old RPA calculation.
1rur - ) Physical correlation functions are obtained by integrating
+ 8Jo Er: [®°+Dy(VO)7], (B3)  out the fermions and functional differentiation of the result-

ing Gaussian effective action with respect to the external
where the derivatives denote discrete derivatives on the lasourcesA, and A. We emphasize that these sources couple
tice. minimally to theoriginal fermion operators, before the trans-
Now, at very low temperature®)/T>1, we must set formationc’—c’e '??in Sec. IV. We then find the density-
Vm,=0 while at high temperaturessT>1, we must set density correlation allowing for Gaussian phase fluctuations
m,=0. In either case, the fiel@ decouples from the fielth, to be
and we get a Gaussian theory of phase fluctuations. The
former condition D/T>1) is equivalent to the condition _ a“qPAgPxo
that the spatial phase variation due to thermal effects is X(q"“’n):m' (CY)
small; in particular, vortex configurations are unimportant. 0 A
The latter condition £T>1) is just that the system starts This result obtains diagrammatically as follows. The fermi-
behaving classically; since the extension along the imaginargns couple to the external sourdg and to the phase field
time axis is 1T, there is essentially no dynamics ifTt0  and we have to integrate out boghand the fermions. How-
and « is finite. ever, § itself does not have a propagator unless the fermions
In the presence of vortices, the core would described by are integrated out. To simplify the diagrammatic calculation
region where the magnitude of the order parampief de-  we first introduce a fake term6(q)#(—q) in the action
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fected by the Gaussian phase fluctuations. However, the lon-
° gitudinal part of the current correlation function is affected,
and
@@w -
1/A T(Jx]xanzoychzoaqx_)())
1/ 1/ :f<lxjx>0(wn:01qj_:anx_’o)

+ A (0y,=04, =0,0,—0) (C9
1/A 1/

1
-1
=—§ m,, (K){ny), C5
FIG. 3. Low-order diagrams foy: The wavy lines indicaté\,, O % o (K) (M ©9

the external scalar potential. The dashed lines contribute thée

false 6 propagator. The heavy dots refer to vertex factorswgf ~ now satisfies thd-sum rule (which was violated at mean-

arising from the vertexpd,6. Finally, the bubble contributions field level). Thus gauge invariance is restored.

arising out of integrating out fermions are explicitly indicated. The derivation remains unchanged in charged systems,
with the only difference being that we have to make the

which leads to the baré propagator I; we will take the rep|acemen1;(0_>X§PAEXO/(l_quO) in all the equations

limit A—0 at the end. The diagrams in Fig. 3 result far  (in this Appendiy. This can be easily understood by com-

Summing the geometric series leads to paring Egs.(15) and (27) in the text. It is not hard to show
5 9 w2 A2 11 that _the_longiftudina_l condu_ctivitya(,_) defined through the
_ Xo@n| . [ Xo@n~ oM longitudinal dielectric function by
X=xot ——|1 X (C2
. . . 1 AzioL
Taking the limitA—0 then leads to the result in E€C1). e= =1+ (C6)
We note that the physical static compressibility is given 1+Vgx w

by x(q—0,0,=0)= x¢(q—0,0,=0), i.e., the mean-field , ) .
result is unaffected b)c/) phase fluctuations at the RPA level,in a gauge-invariant th(zaory, and the transverse conductivity
Similarly, denoting the physicalg(w) dependent stiff- defined byor(w)=iAe’/(epw) (with A being the trans-

ness byA, we get verse part ofA“/?) are equal in the limig—0. In.thcla text,
we omit subscripts and refer to both conductivities dy
ASHA P Y since we work atg—0. It is easy to see that+(w) and
AP=AGFP+ (C3  henceo(w) is unaffected by phase fluctuations within RPA.
[onxo— A6 0*q"]

However, it is only in a gauge-invariant theory, such as the
We see that the transverse phase stiffifemsinstance along RPA, that Eq.(C6) holds since it obtains from using the
the x direction given by A*(w,=0,q, —0,g,=0) is unaf-  current conservation equation.
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