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Effective actions and phase fluctuations ind-wave superconductors
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We study effective actions for order-parameter fluctuations at low temperature in layeredd-wave supercon-
ductors such as the cuprates. The order parameter lives on the bonds of a square lattice and has two amplitude
and two phase modes associated with it. The low-frequency spectral weights for amplitude and relative phase
fluctuations is determined and found to be subdominant to quasiparticle contributions. The Goldstone phase
mode and its coupling to density fluctuations in charged systems is treated in a gauge-invariant manner. The
Gaussian phase action is used to study both thec-axis Josephson plasmon and the more conventional in-plane
plasmon in the cuprates. We go beyond the Gaussian theory by deriving a coarse-grained quantumXY model,
which incorporates important cutoff effects overlooked in previous studies. A variational analysis of this
effective model shows that in the cuprates, quantum effects of phase fluctuations are important in reducing the
zero-temperature superfluid stiffness, but thermal effects are small forT!Tc .
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I. INTRODUCTION

The high-temperature cuprate superconductors~SC’s! dif-
fer from conventional SC’s in several respects: ad-wave gap
with gapless quasiparticle excitations, a small superfl
phase stiffness, a short coherence length and strong ele
interactions. It is, therefore, of interest to examine some
these unconventional aspects and their interplay in sim
models of highTc systems. With this motivation, we study i
this paper, the low-temperature collective properties
charged, layeredd-wave SC’s with a short coherence leng
and small superfluid stiffness.

The superfluid phase stiffness,Ds5ns /m* , is a funda-
mental property characterizing SC’s,1 which is directly re-
lated tol, the experimentally measured magnetic penetra
depth2 in the London limit. The low-temperature behavior
Ds contains information on the low-lying excitations in the
systems. Experimentally,l(T) is found to increase linearly
with T in the high-Tc SC’s,3 implying a linearly decreasing
Ds . This linear drop inDs has been attributed to quasipar
cle excitations near the nodes of thed-wave gap. Alterna-
tively, it has been suggested that this effect could arise
tirely from classical thermal phase fluctuations4,5 and
quasiparticles can be ignored.4,5 It is then clearly of interest
to identify the important low-energy excitations in these s
tems, from the point of view of understanding the penet
tion depth data, as well as other thermodynamic proper
and response functions.

From a theoretical perspective, the physics of a sys
with a small superfluid stiffness and short coherence len
has been studied in detail in case of neutrals-wave SC’s.6,7

In this case, the fermionic excitations and fluctuations in
order-parameter amplitude are gapped, and phase fluc
tions are the only important excitation at low temperature
is of interest to compare this with the behavior in mod
which support an anisotropic order parameter with low lyi
fermionic excitations, such as ad-wave SC.

We approach the problem by deriving and analyzing
PRB 620163-1829/2000/62~10!/6786~14!/$15.00
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fective actions for ad-wave SC within a functional integra
framework, which allows us to focus on the collective~order
parameter! degrees of freedom. We note that our effecti
actions are derived by looking at fluctuations around a B
mean-field solution. We believe that such an approach
valid for the SC state of the high-Tc materials, at least for
T!Tc . There is considerable experimental evidence
sharply defined quasiparticle excitations about thed-wave
SC state, and thus the ground-state and low-lying excitati
appear to be adiabatically connected to their BCS coun
parts. We thus expect that while strong correlations w
modify the coefficientsof the phase action, they will no
change its qualitative form.

Our main results can be summarized as follows:
~1! We find that thed-wave SC state is characterized

terms of an order parameter which lives on the bonds o
square lattice. The bond order parameter leads to two am
tude and two phase modes in contrast tos-wave SC’s. One of
the phase modes is identified as the usual~Goldstone! phase
mode while the other, which we call the ‘‘bond phase,’’
the relative phase between thex and y bonds at a site. The
latter can be thought of as representing fluctuations from
d-wave state towards an extendeds-wave state. The ampli-
tude and bond-phase fields have spin zero and couple to
particle-particle channel.

~2! We study the spectral weight for fluctuations of th
amplitude and bond-phase fields and find that they arenot
gappedbut rather exhibit power laws down to zero energ
However, the low-energy spectral weight in these fluctu
tions is very small compared to the quasiparticle contrib
tion.

~3! We derive an effective Gaussian action for the us
phase variable in charged systems, since this couples dire
to the electromagnetic potentials. The large in-plane plas
frequency, which is relatively unaffected by superconduct
ity, and the low-energyc-axis Josephson plasmon at zero a
finite temperatures are studied in a unified manner within
same formalism. We emphasize the relation between unu
6786 ©2000 The American Physical Society
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aspects of thec-axis optical conductivity and the Josephs
plasmon. We also discuss the plasmon dispersion in lay
systems.

~4! We extend the above formalism to consider the eff
of phase fluctuations beyond the Gaussian level on the
perfluid stiffness in charged systems. The quantumXY
model8 is usually used for such an analysis, motivated
studies of Josephson-junction arrays and granular SC’s.
emphasize that there are important differences when con
ering low-temperature bulk SC’s, and derive a quantumXY
phase action suitable for our problem, correctly taking in
account appropriate momentum and frequency cuto
missed in earlier studies.

~5! The low-temperature renormalization ofDs by phase
fluctuations is studied within a self-consistent harmonic
proximation. For parameter values relevant to the cupra
near optimal doping, quantum phase fluctuations are sh
to lead to a sizeable renormalization of the superfluid st
ness. However, thermal fluctuations are found to have
effect at low temperatures, unlike the results of ear
studies.4,5 These studies focused on the effect of therm
phase fluctuations, but Coulomb effects were considere
be unimportant, in contrast to the present work.

~6! As part of our analysis, we also touch upon certa
formal issues which may be of some general interest. Am
these are:~a! how gauge invariance can be understood in
simple manner within the functional integral language;~b!
the role of the linear time derivative termir]tu in the phase
action; and~c! the problems involved in deriving local phas
actions which respect 2p periodicity starting from a fermi-
onic model.

The paper is organized as follows. In Sec. II, we pres
the Hamiltonian for our model, and discuss the effective
tion and mean-field theory in Sec. III. Sec. IV contains
discussion of fluctuations of the amplitude and bond-ph
fields with some of the details discussed in Appendix A.
Sec. V, we turn to phase fluctuations and derive effec
phase-only actions for neutral and charged systems. The
ear time derivative term in the action which arises in t
context is briefly discussed in Appendix B. We then der
gauge-invariant density and current correlations, leaving
tails of the algebra to Appendix C. In Sec. VI we discu
collective in-plane andc-axis plasmons. In Sec. VII we
present the derivation of a quantumXY model appropriate
for charged, layered SC’s. We analyze this action and c
pute the renormalization of the phase stiffness by longitu
nal phase fluctuations in Sec. VIII and discuss experime
implications. We conclude in Sec. IX with a discussion a
summary of our results.

II. THE HAMILTONIAN

We consider a system of fermions with kinetic energyK
5(k,sjkck,s

† ck,s @wherejk5ek2m with ek begin the two-
dimensional~2D! dispersion andm the chemical potential#
interacting via a separable potential which is attractive in
d-wave channel. We will show that in coordinate space t
interaction leads to the superexchange term of thet-J model.

Let us begin with
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Hpair8 52
g

N (
k,k8,q

wd~k!wd~k8!

3ck1q/2↑
† c2k1q/2↓

† c2k81q/2↓ck81q/2↑ , ~1!

wherewd(k)5(coskx2cosky). and we work on a 2D squar
lattice with lattice spacinga. V denotes the volume of the
system withN sites. We seta51 in most equations, bu
retain it in some for the sake of clarity. Fourier transformi
to real space, we get

Hpair52
g

4 (
^r ,r8&

Br ,r8
† Br ,r85

g

2 (
^r ,r8&

S Sr•Sr82
1

4
nrnr8D .

~2!

@The prime onHpair is omitted in going from Eq.~1! to Eq.
~2! for reasons explained below.# Here ^r ,r 8& are nearest-
neighbor sites, andBr ,r8

† [cr ,↑
† cr8,↓

†
2cr ,↓

† cr8,↑
† creates a sin-

glet on the bond (r ,r 8), while Sr and nr are the spin and
number operators. Clearly this is the interaction term of
t-J model withg52J.

There is a subtlety involved here; on transforming~2!
back tok space we donot recover the original expression~1!
we had started with. Instead we obtain, using from now
g52J,

Hpair52
J

N (
k,k8,q

@wd~k!wd~k8!1ws~k!ws~k8!#

3ck1q/2↑
† c2k1q/2↓

† c2k81q/2↓ck81q/2↑ , ~3!

wherews(k)5(coskx1cosky). The reason for two differen
k-space interactions leading to the same real-space exp
sion is the following operator identity on a 2D square lattic

(
k,k8,q

@wd~k!wd~k8!2ws~k!ws~k8!#

3ck1q/2↑
† c2k1q/2↓

† c2k81q/2↓ck81q/2↑[0. ~4!

It can be shown that Eqs.~2! and ~3! both lead to the same
self-consistent BCS gap equation. Thus we will use the
teraction in Eq.~3!, and not Eq.~1!. From the form of Eq.
~3!, it is clear thatHpair has attraction in both thed-wave
channel, with awd(k) order parameter, and in the extend
s-wave (s* ) channel, with aws(k) order parameter.

We will now analyze the HamiltonianH5K1Hpair.
Later, we will also add to it the Coulomb interaction appr
priate to layered systems~see Sec. V B!.

III. MEAN-FIELD THEORY

The partition function at a temperatureT is written as
the standard coherent state path integral with the ac
*0

1/T dt@( r ,scr ,s
† ]tcr ,s1H(c,c†)#. We decoupleHpair with a

complex field D r ,r8(t) using the Hubbard-Stratonovic
transformation:

expS J

2
Br ,r8

†
~t!Br ,r8~t! D5E D~DD* !exp@2L~r ,r 8;t!#,

~5!

where
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L~r ,r 8;t!5
1

8J
uD r ,r8~t!u22

1

4
~D r ,r8~t!Br ,r8

†
~t!1H.c.!.

~6!

We thus obtain the action

S5E
0

1/T

dtF(k,s
ck,s

† ~t!~]t1jk!ck,s~t!1 (
^r ,r8&

L~r ,r 8;t!G .

~7!

The fermion fields can then be integrated out to obtain
effective action exp(2Seff@D,D* #)5*D(c,c†)e2S.

The d-wave saddle point is given byD r ,r1 x̂(t)5
2D r ,r1 ŷ(t)5Dd , a (r ,t)-independent real number, ob
tained from dSeff /dDd50, which leads to the BCS ga
equation

1

J
5

1

N (
k

wd
2~k!

2Ek
tanh~Ek/2T!, ~8!

where Ek5Ajk
21Dk

2 and Dk5Ddwd(k)/2. The same gap
equation can be obtained by starting from the momen
space potential in Eq.~3! and decoupling in thed-wave chan-
nel.

Given Hpair of Eq. ~3! one could equally well look for
possible extended s-wave (s* ) saddle points with
D r ,r1 x̂(t)5D r ,r1 ŷ(t)5Ds . However, for our choice of
dispersion9 ~which includes nearest- and next-neare
neighbor hopping with opposite signs! we have found by
numerical solution of the gap equation that thed-wave
saddle point is stable relative to thes* solution. The reason
for this can be seen as follows:ws(k) is small over most of
the Fermi surface for the fillings of interest, whilewd(k)
vanishes only on the nodes. Thus the condensation en
gained by thes* state is smaller than thed-wave state. Fur-
ther, if we consider the large on-site repulsion between e
trons ~which we have not done here, but is certainly an
sential part of the fullt-J model! and demand̂cr ,↑

† cr ,↓
† &50,

then we have(kDk/2Ek50. This is automatically satisfied
for thed-wave state at any filling, but not for thes* state. In
this work, we rely on the former ‘‘Fermi-surface effect’’ t
stabilize thed-wave state.

IV. FLUCTUATIONS

To treat fluctuations in the order parameter we wr
D r ,r8(t)5uD r ,r8(t)ueiFr ,r8(t). The phaseF r ,r1 x̂(t)50 and
F r ,r1 ŷ(t)5p at thed-wave saddle point. We now divide th
phase field into two parts; following Ref. 10, we s
F r ,r1 x̂(t)5u(r ,t) andF r ,r1 ŷ(t)5p1f(r ,t)1u(r ,t).

We next assume that the spatial variation ofu(r ,t) is
small on the scale of the lattice spacing, which allows us
set F r ,r1 x̂(t)' 1

2 @u(r ,t)1u(r1 x̂,t)# and F r ,r1 ŷ(t)'p

1f(r ,t)1 1
2 @u(r ,t)1u(r1 ŷ,t)#. While we lose the

u(r ,t)→u(r ,t)12p invariance of the action with this ap
proximation, it is nevertheless useful in isolating that part
the phase field which couples to electromagnetic fields as
will see below. We can now transform to new fermion va
ables given bycr

†(t)→cr
†(t)e2 iu(r ,t)/2.11,12 As a result of

this ‘‘gauge transformation’’ the action of Eq.~7! gets modi-
fied to
e

m

-

gy

c-
-

o

f
e

S5E
0

1/T

dt@L01L1# ~9!

with

L05(
r ,s

cr ,s
† ~t!e2 iu(r ,t)/2~]t2m!cr ,s~t!eiu(r ,t)/2

2
1

2 (
r ,r8,s

t~r2r 8!@cr ,s
† ~t!cr8,s~t!

3e2 i [u(r ,t)2u(r8,t)]/21H.c.# ~10!

wheret(r2r 8) is the hopping matrix element between poi
r and r 8, so thatek5( r2r8e

ik•(r2r8)t(r2r 8) and

L15
1

8J (
^r ,r8&

uD r ,r8~t!u22
1

4 (
r

uD r ,r1 x̂~t!u~Br ,r1 x̂
†

~t!

1H.c.!1
1

4 (
r

uD r ,r1 ŷ~t!u~Br ,r1 ŷ
†

~t!eif(r ,t)1H.c.!.

~11!

In the following sections we shall integrate out the fermio
and examine the resulting effective actions for the amplitu
f andu fields.

A. Amplitude fluctuations

Amplitude fluctuations can be considered by setti
uD r ,r1â(t)u5Dd@11ha(r ,t)# in Eq. ~11!, where a5x,y.
The transformation fromDa ,Da* to ha ,u,f has a Jacobian
4Dd

4(11hx)(11hy) at every point (r ,t), leading to an ad-
ditional term

E
0

1/T

dtL25TE
0

1/T

dt(
r ,a

ln„11ha~r ,t!…

'TE
0

1/T

dt(
r ,a

Fha~r ,t!2
1

2
ha

2~r ,t!G ~12!

in the action in Eq.~9!. For (q,v)Þ(0,0), the linear term in
Eq. ~12! can be set to zero and only the quadratic term c
tributes. However, even this term is zero atT50 and can be
ignored at lowT.

From Eq.~11! we see that the spin-zero amplitude fiel
ha couple to singlet pairs. Their coupling to thef field can
be shown to be small at small momentum and frequency
particular, for static uniform distortions off and ha the
energy has to be even underf→2f and terms likefha
cannot appear in the action on integrating out the fermio
The mixing ofha with the phaseu and electromagnetic po
tentials can also be shown to be negligible at smallq,v since
ha couples to the particle-particle channel while theu and
electromagnetic potentials couple to the particle-hole ch
nel. The mixing then involves integrals over products of o
dinary and anomalous Green’s functions which vanish us
particle-hole symmetry near the Fermi surface and thek de-
pendence ofDk . This lack of mixing of amplitude and phas
modes is similar to the well-known weak-coupling result f
s-wave superconductors.7
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Unlike the s-wave case, however, the amplitude exci
tions have low-frequency spectral weight ind-wave SC’s
which we now estimate. Setting the phase fields to sad
point values and integrating out the fermions we obtain
effective action for amplitude fluctuations. Transforming
new variableshs5(hx1hy)/A2 andhd5(hx2hy)/A2, di-
agonalizes the action forh fields at q50 and is a good
starting point to consider smallq fluctuations. We obtain, to
Gaussian order,S@h#5(1/2T)(q,n,i 5s,dh i* Mi

21(q,ivn)h i ,
wherevn52pnT. We have made the approximation of ig
noring the coupling betweenhs andhd , which can be shown
to be negligible at small momentum.

The low-energy density of states is given byNi(v)
5(1/N)(qIm Mi(q,v)/p with uqxu,uqyu,p/j0. The cutoffs
arise since the fluctuations must have an energy lower
the condensation energy as discussed in more detail late
the context of phase fluctuations. From a numerical calc
tion of Ns,d(v) we find that Ns(v)/Nqp(v)
;v2/(DdvF /a) and Nd(v)/Nqp(v);v4/(Dd

3vF /a) where
Nqp(v)[kFv/(pvFDd) is the density of states per spin fo
quasiparticle excitations. These results can also be un
stood from an approximate analysis of the form
Ms,d(q,v) discussed in Appendix A.

We see that bothNs(v) andNd(v) are much smaller than
Nqp(v) for v!Dd ,and thus conclude that amplitude flu
tuations are unimportant for low temperature propert
which will be dominated by the quasiparticle contribution

B. The ‘‘bond-phase’’ field f

We next study the fieldf. We note from Eq.~11! that a
uniform f5p would lead to extendeds-wave (s* ) order.
One can therefore think off as representing fluctuations o
s* character about thed-wave saddle point. From Eq.~11!
we seef is a spin zero field which couples to pairs.

For reasons similar to those explained above for am
tude fluctuations, the coupling off to other fields is weak
and may be ignored at low momentum and frequency. W
therefore, derive a Gaussian action forf by settingu5hd
50, their saddle-point values, and integrating out
fermions. This leads to the action S@f#
5(1/T)(n,qMf

21(q,vn)uf(q,vn)u2. Since thef field has
low-frequency spectral weight, we compute its density
states Nf(v)5(1/Np)( uqu,p/j0

Im Mf(q,v1 i01). From
numerical calculations, as well as simpler approximatio
discussed in Appendix A, we findNf(v)/Nqp(v)
;v2/(DdvF /a). We thus see thatf fluctuations are much
less important than quasiparticles at low temperatures.

V. PHASE FLUCTUATIONS

From action of Eq.~10! we see that uniform shifts inu do
not cost any energy, andu is the Goldstone mode of th
superconducting state.

We now obtain the action foru fluctuations coupled to
fermions, settingha5f50 ~their saddle-point values! in
Eq. ~10! and~11!. For slow spatial fluctuations, the deviatio
from the mean field action, obtained from Eq.~10! with u
50, is given by
-

e-
n

an
in

a-

er-
f

s

i-

e,

e

f

s

dS@c†,c,u#5
1

2NE0

1/T

dt (
k,q,s

ck,s
† ~t!ck2q,s~t!

3@ i ]t2 i ~jk2jk2q!#uq~t!2
1

8NE0

1/T

dt

3 (
k,q,q8,s

ck,s
† ~t!ck2q2q8,s~t!uq~t!uq8~t!

3~jk1jk2q2q82jk2q2jk2q8!. ~13!

Usinguq(t11/T)5uq(t), an assumption discussed in deta
in Appendix B, and making a small-q expansion, we arrive
at

dS@c†,c,u#5
1

2TN (
k,q,s

ck,s
† ck2q,suq@vn2 ivkaqa#

2
1

8TN (
k,q,q8,s

ck,s
† ck2q2q8,s

3mab
21~k!qaqb8uquq8 , ~14!

where k[(k,inm) and q[(q,ivn) with nm5(2m11)pT
and vn52npT. We have used jk2q5jk2vkaqa

1 1
2 mab

21(k)qaqb1••• wherevka[]jk /]ka is the velocity
andmab

21(k)[]2jk /]ka]kb is the inverse mass tensor.

A. Neutral systems

For neutral systems we integrate out the fermions in
~14!, using a cumulant expansion13 controlled by small spa-
tial and temporal gradients inu, leading to

Sneutral@u#5
1

T (
q,vn

1

8
@2x0vn

21L0
abqaqb#u~q,ivn!

3u~2q,2 ivn!. ~15!

Here, x0[2(1/T)^r(q,ivn)r(2q,2 ivn)& is the mean-
field density-density correlation function given by

x0~q,ivn!5
2

V (
k

~12 f 2 f 8!~uv81vu8!F uv8

ivn2E2E8

2
u8v

ivn1E1E8G1
2

V (
k

~ f 2 f 8!~vv82uu8!

3F uu8

ivn2E1E8
1

vv8

ivn1E2E8G ~16!

and L0
ab[(1/V)(kmab

21(k)^n̂k&2(1/T)^ j a(q,ivn) j b(2q,

2 ivn)&0 is the mean-field phase stiffness, with^n̂k&5@1
2jk /Ektanh(Ek/2T)# and the paramagnetic current co
relator
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1

T
^ j a j b* &05

2

V (
k

vkavkb~12 f 2 f 8!~vu82uv8!

3F uv8

ivn2E2E8
1

u8v
ivn1E1E8G

1
2

V (
k

vkavkb~ f 82 f !~vv81uu8!

3F vv8

ivn1E2E8
2

uu8

ivn2E1E8G . ~17!

E, u, andv refer to standard BCS notation,f 5 f (E) is the
Fermi function, E8[Ek2q with E[Ek and similarly for
other primed variables. Analytically continuingivn→v
1 ih, and working atT50,14 we obtain in the limit q
→0,v→0, the mean-field superfluid stiffness

L0
ab~T50!5

1

V (
k

mab
21S 12

jk

Ek
D[Ds

0~T50!dab

~18!

and the mean-field compressibility

x0~T50!52
1

V (
k

Dk
2

Ek
3

[2k. ~19!

We note that the effective action~15! is appropriate for phase
distortions whose energy is smaller than the condensa
energyEcond5

1
8 Ds

0(p/j0)2. If this energy ~density! is ex-
ceeded thed-wave BCS saddle point would become u
stable. This leads to the following restrictions in Eq.~15!:
uqu,qc[p/j0 andvn,vc with kvc

2/85Econd. In the BCS
limit,Econd.Dd

2/vFkF which translates intovFqc;vc;Dd .
We emphasize that the coefficients in the phase action

not the physical correlation functions. The gauge-invaria
correlation functions, obtained by including the effect
Gaussian phase fluctuations, are given by

Lab5L0
ab1

L0
amL0

nbqmqn

@vn
2x02L0

mnqmqn#
~20!

and

x~q,ivn!5
qaqbL0

abx0

qaqbL0
ab2vn

2x0
, ~21!

as shown in Appendix C.
From Eqs.~20! and~21! we see thatGaussianphase fluc-

tuations do not affect transverse correlation functions. In p
ticular, the superfluid stiffness is unrenormalized. Howev
longitudinal correlationsare affected in general. WhileL0
does not satisfy thef-sum rule,L does, which implies resto
ration of gauge invariance. Further, from Eq.~21! we can see
that x has a pole forq→0 unlike x0, which leads to a col-
lective mode which we will discuss in the next section. Ho
ever, the static compressibility given by2x(q→0,vn50) is
unaffected at the Gaussian level.

We clearly see that the gauge-invariant (q,v)-dependent
correlation functions are different from the mean-field cor
lations which appear as coefficients of the phase action. T
is not surprising since the phase variable in fact contribu
n

re
t
f

r-
r,

-

-
is
s

to the physical longitudinal correlation functions and mo
fies the mean-field result. This is true even for charged s
tems as will be shown below.

B. Charged systems

In charged systems we have to take into account the lo
range Coulomb interaction with energy density

1

V
Hcoulomb5

1

2N (
q

Vqrqr2q , ~22!

where rq[(1/V)(k,sck1q,s
† ck,s is the electron density. In

anisotropic layered systemsVq is given by16,32

Vq5
2pe2dc

qieb
F sinh~qidc!

cosh~qidc!2cos~q'dc!
G , ~23!

whereqi ,q' denote in-plane andc-axis components ofq, dc
denotes the mean interlayer spacing, andeb is the back-
ground dielectric constant. We assumeqia!1 always,
where the in-plane lattice spacinga51. For qidc ,q'dc!1
this reduces to the ordinary 3D result:Vq54pe2/(ebq2).

We take our Hamiltonian to beK1Hpair1Hcoulomb. Since
the short-range attraction ofHpair is important for small
center-of-mass momentum while the Coulomb effects
important for small momentum transfer, we believe t
breakup of the actual interaction in this manner is physica
sensible and does not lead to any ‘‘overcounting.’’

The Coulomb interaction can now be decoupled usin
field Uq(t) as

expF2 (
q.0

Vqrq~t!r2q~t!G
5E D„Uq~t!,Uq* ~t!…expF2 (

q.0

1

Vq
Uq* Uq

1 i (
q.0

~Uq* r2q1Uqrq!G . ~24!

To integrate over independent modes, sinceU2q5Uq* , we
only sum overq.0. The last term in Eq.~24! can be recast
as( r U(r )r(r ). Thus the densityr couples to the scalar field
U in the same way as it couples to]tu in Eq. ~14!.

On integrating out the fermions we arrive at an effecti
action for the phaseuq and the scalar potentialUq , given by

S@u,U#5
1

8T (
q,ivn

@u* ~q,ivn!U* ~q,ivn!#M 21Fu~q,ivn!

U~q,ivn!
G

~25!

with

M 215S 2vn
2x01L0

abqaqb 2ivnx0

22ivnx0* 4~2x01Vq
21!

D , ~26!

wherex0* 5x0(2q,2 ivn). Integrating out the fieldU leads
to the action
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Scharged@u#5
1

8T (
q,vn

~2vn
2x0

RPA1L0
abqaqb!u~q,ivn!

3u~2q,2 ivn!, ~27!

where the mean-field charged system density correl
x0

RPA5x0 /(12Vqx0). This form of the phase action is in
dependent of the order-parameter symmetry and has
obtained earlier fors-wave SC’s.12 We note that this form
differs considerably from that assumed in Ref. 15, where
physical (q,v)-dependent longitudinal dielectric functio
appears as a coefficient in the action. As emphasized ea
physical longitudinal correlations cannot appear as coe
cients of the phase action.

The regime of validity for the above action isq&p/j0 as
for neutral systems@see discussion below Eq.~19!#. The fre-
quency cutoff is given byux0

RPA(q)vn
2u&Econd and thus de-

pends onq. In particular, forq→0, the action remains valid
even at frequencies larger than the gapDd and can be used to
obtain theq→0 plasma mode.

The gauge-invariant correlations for the charged sys
are obtained from the neutral system results~20! and~21! by
replacingx0→x0

RPA, as discussed in Appendix C.

VI. PLASMONS

In the previous section we have found phase actions of
form S@u#5(1/T)(q,vn

M u
21uu(q,vn)u2 for neutral systems

@see Eq.~15!# and for charged SC’s@see Eq.~27!#. The dis-
persion of the collective phase mode is defined
ReM u

21(q,v)50. For neutral systems, we note that th
condition is identical to demanding a pole in physic
density-density correlationx given in Eq. ~21!. Phase and
density fluctuations are thus coupled and share the pol
the collective mode. This is true even for charged syste
where the plasma frequency,vp , corresponds to the pole o
the physical density correlator and is given
limq→0Rex21(q,vp)50.

The phase action is valid for all frequencies such t
v2&EcondVq and thus is valid even for large frequencies f
q→0. If the plasmon is at finite frequency forq→0, Landau
singularities do not occur at finite temperatures. One can
use this action to obtain theq→0 plasma mode at zero an
finite temperatures. Further, to have a sharp plasmon
damping must be relatively small: ImM u!vp .

In this section, we first briefly consider neutral syste
followed by a discussion of charged systems. For char
systems, we study the in-plane plasma mode and then
siderc-axis plasmons for systems with a finitec-axis super-
fluid stiffness. Our discussion of thec-axis plasmon is to a
large extent independent of the details of anyc-axis model.
We also make an estimate of thec-axis plasma frequency fo
Bi2212 obtained within this phase action and compare it w
experiment.

A. Neutral systems

For neutral systems we haveM u
215 1

8 (L0
abqaqb2x0vn

2).
At T50, continuing to real frequency, the collective mo
frequency obtained from above is given byv(q)5cq where
the sound velocityc[ADs

0/k. This reduces to the standar
or

en

e

er,
-

m

e
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result c5vF /Ad in the weak-coupling limit in the con-
tinuum, whered is the spatial dimension andvF is the Fermi
velocity. At finite temperatures, there are Landau singula
ties in Ds

0 and x0 as seen from Eqs.~16! and ~17!, which
prevents us from taking theq→0,v→0 limit.

B. Charged systems

In the action~27!, we can setx0
RPA→21/Vq in the limit

q→0. Analytically continuing to the real frequency, and se
ting ReM u

21(q,vp)50, we obtain

lim
q→0

FqaqbReL0
ab
„q,vp~ q̂!…2

1

Vq
vp

2~ q̂!G50, ~28!

wherevp depends on the direction of propagation~in-plane
or c-axis! in anisotropic systems.

We first consider the in-plane plasmon. Forq→0
(q̂ in-plane! and finite v we can write L0

ab5dab

„2 ivs(v)/e2
… where s[s81 is9 is the in-plane optical

conductivity ~including the effects of Gaussian phase flu
tuations!. The background dielectric constant enters in t
definition ofs since the conduction electrons are affected
the electric field which has been screened by the backgro
We thus see that

lim
q→0

Vqq
2
sab9 ~vp!

e2
5

4psab9 ~vp!

eb
5vp . ~29!

s(v) thus governs the location and damping of the plas
mode through a self-consistent equation. This equation
identical to demanding a zero in the real part of the longi
dinal dielectric constant (e), since e5eb14p is/v in a
gauge-invariant theory.

At this stage it is instructive to compare~a! the physical
plasma frequencyvp , ~b! the conductivity sum rule plasm
frequencyvp* defined by17

E
0

`

dv s8~v!5
e2p

2V (
k

m21~k!^n~k!&[
ebvpa* 2

8
,

~30!

and ~c! the superfluid plasma frequencyvps defined by
vps

2 (T)[4pe2Ds(T)/eb , whereDs(T) is the T-dependent
superfluid stiffness related tol(T), the penetration depth.2

With this definition, the real part ofs can be represented a
s8(v,T)5@ebvps

2 (T)/4#d(v)1s reg(v,T) wheres reg is the
regular part. Finally, we have the Kramers-Kro¨nig relation
for s(v):

s9~v!5
1

p
PE

0

`

dv8s8~v8!
2v

v22v82
. ~31!

We will now try to use these relations and the structure
s8(v) to obtain direct information about the behavior of th
plasma mode, which is not directly seen in an optical co
ductivity measurement.

Conventionalclean3D s-wave SC’s atT50 have a very
large superfluid stiffness which can be inferred from pene
tion depth measurements, and little spectral weight at hig
energies. Ignoring interband transitions, we can then t
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s8(v)'@ebvps
2 (0)/4#d(v) which leads to vp* 5vps(0)

from Eq. ~30!. It also implies s9(v)5ebvps
2 (0)/4pv

through the Kramers-Kro¨nig relation~31!. Using Eq.~29! we
then getvp5vps(0), a large plasma frequency. In the pre
ence of weak disorder and at finiteT, vps decreases and th
spectral weight ins8(v) redistributes, leading to finites(v)
over energy scalest tr

21 ,D which are the quasiparticle trans
port lifetime and SC gap, respectively. Sincevp@t tr

21 , D to
begin with, it is unaffected by this low-energy redistributio
This is easy to see from Eq.~31! above fors9(v) where we
can setv8'0 in the denominator for the region of interes
and this along with Eqs.~30! and ~29! leads tovp5vp* ,
which is insensitive to the spectral weight redistribution. F
ther, the smalls8(vp) implies a sharp plasmon in this cas
Thus for conventionals-wave SC’s, we finally arrive atvp

'vp* >vps(T). The last relation is satisfied as an equal
only in a Galilean invariant system atT50.

For the cuprate superconductors, the in-planes8(v,T
50) has the following features:~i! a condensate contributio
@e2pDs

0(T50)#d(v) and ~ii ! absorption by quasiparticle
which has low-frequency spectral weight~in a d-wave SC!
with features around twice the maximum gap followed
other higher energy features. The condensate contribu
along with the large low-energy spectral weight comin
from quasiparticles is expected to lead to the large plas
frequency, as in the case of conventional SC’s above. Ig
ing interband transitions in calculatingvp* , we then arrive at
vp'vp* .vps .

The normal state in-plane plasma frequency has be
measured to be large (;1 eV) in the cuprates,18 while the
spectral weight rearrangement ins8 in going from the nor-
mal state to the SC state is over smaller energy scales.19 The
high-energy normal state plasmon is thus expected
smoothly go over into a high-energy SC state plasmon
pected from our above discussion, similar to conventio
SC’s.

C. Josephson plasmons alongc axis

To study thec-axis plasmon we assume a nonvanish
c-axis stiffnessD' . We setq̂ along thec axis in ~29!, lead-
ing to vp,c54psc9(vp,c)/eb . We knowvps,c is small in the
high-Tc systems as seen from the largec-axis penetration
depths, andsc8(v) is measured to be very small over a ve
large energy range.20 This is partly due to the form of the
c-axis dispersion which is proportional to (coskx2cosky)

2,21

so that nodal quasiparticles which lead to low energy spec
weight in-plane have a much smaller contribution along thc
axis. Thus atT50, the only ‘‘free carriers’’ come from the
condensate, andvp,c* .vps,c . On using Eqs.~31! and ~30!,
this leads to vp,c(T50)5vps,c(T50). With increasing
temperature, the spectral weight insc9 gets transferred to
very high energies.22 The plasma frequency then continues
be given byvp,c(T)5vps,c(T), which decreases with in
creasing T and vanishes aboveTc as seen in
experiment.20,23,24 Thus the c-axis plasma oscillations ar
seen only belowTc , justifying the use of the term ‘‘Joseph
son plasmon.’’

A model which assumes disordered quasiparticle trans
along thec axis25 and a model which only permits pa
-

-

on

a
r-

to
x-
l

al

rt

tunneling26 both appear to lead to this behavior forvpc(T).
Presumably the main effect of disorder in the first model is
suppress single-particle tunneling leading to pair tunneling
the dominant process belowTc ; it then appears that the tw
models are similar in spirit. The disorder scale required
reproduce the experimental results in the first model app
to be large, of the scale of the one-particle tunneling ba
width. One reason for the large disorder scale could be
thec-axis dispersion in this calculation has been chosen to
independent ofkx ,ky , while the actual (coskx2cosky)

2 de-
pendence would already suppress single-particle tunne
near the nodes in the clean case. This might then lead
smaller disorder scale required to suppress this tunne
process completely.

We finally proceed to compare thec-axis plasma fre-
quency with the stiffness obtained from penetration de
experiments in Bi2212. We consider only the in-phasec-axis
plasmon and ignore the ‘‘optical mode’’ corresponding
out-of-phase fluctuations arising from the bilayer structu
which is expected to be at a higher energy.27,28 This leads to

vp,c
2 5

4pe2

eb
D'5

c2

eblc
2

, ~32!

wherec is the velocity of light andlc is the low-temperature
c-axis penetration depth.lc in Bi2212 has been measured29

to be about 100mm. Using this and settingeb'10, we get
vp,c'7 K. This is in reasonable agreement withvp,c
'8 –10 K extracted from experiment30–32 given experimen-
tal errors, and uncertainties in the estimate ofeb .

D. Plasmon dispersion

In order to understand the plasmon dispersion and
variation of the plasma energy with direction of propagatio
we consider a simplified model for the in-plane and out-
plane conductivity. Sincevp,ab'vp* and is large for the in-
plane plasmon, we set the in-plane conductivitys8(v)
5(ebvp

2* /4)d(v), consistent with the conductivity sum rule
which then reproduces the large in-plane plasma freque
We emphasize that this simplified form for the in-plane co
ductivity is valid only at large frequency, for studying th
high-energy in-plane plasmon. It isnot valid for considering
low-energy in-plane physical observables, such as the su
fluid stiffness. Using this form for the real conductivity
sab9 (v)5ebvp*

2/4pv. The c-axis conductivity is given by
sc85(ebvps,c

2 /4)d(v) as discussed in the last section, whi
leads tosc9(v)5ebvps,c

2 /4pv. This simplified model is tai-
lored to capture the correct plasma frequency for propaga
along the in-plane andc-axis directions. For an arbitrary di
rection of propagation, we expect to obtain a reasonable
terpolation.

For generalq, in the absence of detailed information o
the s(q,v), we assume that the conductivity is independe
of q. This appears to be a reasonable assumption at
energy, and leads to the plasma frequency being given b

vp~q!5
Vq

e2
@sab9 ~vp!qi

21sc9~vp!q
'

2#. ~33!
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The plasma frequency foruqu→0 is a function of the angle
of propagation,c, measured with respect to theab plane and
given by vp

2(c)5@vp*
2cos2(c)1vps,c

2 sin2(c)# and varies
smoothly from the low-energy Josephson plasmon forc-axis
propagation to the high-energy plasmon in-plane. In orde
examine the plasmon dispersion in a particular case, we
sider the limit q'5p/dc and studyvp as a function of
(qia). Normal state data for LSCO~Ref. 18! shows
vp,i(q'50,qi→0);1 eV; we assume a similar value fo
Bi2212 with vp,i(q'50,qi→0)'vp* . Using dc /a'4 and
vpc5vps,c;1.0 meV,30–32 we plot the plasma frequency i
Fig. 1. This crosses over from a low-energy Josephson p
mon for qi→0, corresponding toc-axis propagation, to a
nearly two dimensional plasmon dispersing asAqi at larger
qi . At small qi , the dispersion is known to be acoustic f
vps,c50.33 It appears to be acoustic in Bi2212 at smallqi
~see Fig. 1! due the extremely small value ofvps,c , but
finally levels off leading to a finite Josephson plasmon g
for qi→0 as shown in the inset in Fig. 1. The 2DAqi dis-
persion is obtained mathematically in the limit of largedc /a
and is given byvp,2D(qi)5(vp* /A2)Aqidc and we plot this
in Fig. 1 for comparison. It must be emphasized that plasm
damping would be important in the real system and wo
have nontrivial dependence on the angle of propagation.
sharp plasmon we obtain in the above cases is an artifa
our simplified model for the conductivity.

VII. QUANTUM XY MODEL

The superfluid stiffness obtained aboveDs
0(T)5(1/

V)@(kmxx
21(12jk /Ek)22(kvx

2(2] f /]Ek)# is unaffected
by Gaussian phase fluctuations. Corrections to this resul
unimportant in conventional superconductors which hav
large coherence length and a largeDs

0(T50). However, as

FIG. 1. The plasmon dispersion in a layered system~Bi2212!, as
a function ofqi with q'5p/dc ~see text for details and paramete
used!. TheAqi dispersion in the 2D limit is plotted for comparison
The dispersion appears nearly acoustic for smallqi due to thevery
small Josephson plasma frequency (;10 K) but rapidly crosses
over to high energies (;eV) with increasingqi . The inset shows
the behavior of the dispersion~in meV! for qi→0.
to
n-
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p

n
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he
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we show below, effects beyond the Gaussian approxima
could lead to large corrections in systems with a small
herence length and smallDs

0 . To study such effects we de
rive in this section a quantumXY model and analyze quan
tum and thermal phase fluctuations in the following secti
For clarity of presentation, we outline the derivation for
d-dimensional isotropic system; the generalization to the
isotropic case is straightforward.

The quantumXY model describes the dynamics of th
phase variablesuR(t) defined on a lattice with lattice spac
ing j0, the coherence length. The simplest action perio
underuR(t)→uR(t)12p is given by

SXY@u#5 (
Q,vn

A~Q!vn
2uu~Q,ivn!u2

1BE
0

1/T

dt (
^R,R8&

@12cos„uR~t!2uR8~t!…#,

~34!

where ^R,R8& are neighboring sites. It is important to em
phasize that, given the cos(uR2uR8) form, there are no con-
straints on the spatial gradient of the phases defined on
coarse-grained scale ofj0. This is in contrast to the Gaussia
action ~27!, derived on the scale of the microscopic latti
spacinga, which could only describe slow spatial fluctua
tions of the phase whose energy did not exceed the con
sation energy.

Our task now is to determine the coefficientsA(Q) andB
of this effective action. Unlike in some other cases34 it is not
possible to directly derive the quantumXY action from the
underlying fermionic Hamiltonian, since the cumulant e
pansion we used to derive effective phase actions was
trolled by the smallness of spatiotemporal gradients inu. We
therefore proceed as follows: we compare the action~34! in
the limit of slow spatial variations on the scale of the coh
ence length and match coefficients with those of the Gau
ian action:

S@u#5
1

8T (
q,vn

9
vn

2ad

V~q!
uu~q,ivn!u2

1
1

8E0

1/T

dt(
r ,a

Ds
0ad22@u r~t!2u r1a~t!#2,

~35!

whereV(q) is the generalizedd-dimensional Coulomb inter-
action. For the (q,ivn) of interest, we have setx0

RPA'
21/V(q) andL05Ds

0(T). The double prime on the summa
tion denotes momentum and frequency cutoffs

uqu,qc[p/j0 and vn
2<~2pncT!2[Ds

0S p

j0
D 2

Vq ,

~36!

which arise from demanding that the energy cost of the te
in Eq. ~35! to be less than the condensation energyEcond

5 1
8 Ds

0(p/j0)2. The q cutoff can also be viewed as a repr
sentation of theq-dependent stiffness being roughly consta
('Ds

0) for q,qc and decreasing to zero forq.qc .
In arriving at Eq.~35!, we have Fourier transformed th

gradient term from the (q,ivn) to (r ,t) variables. While the
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abovet-local form of this term is true whenall Matsubara
frequencies are present, we now determine its regime of
lidity given the frequency cutoff in Eq.~36!. With the cutoff
in Eq. ~36!, the gradient term on Fourier transforming
given by

T

8 (
q

Ds
0adq2E

0

1/T

dt dt8u~q,t!u~q,t8!K@T~t2t8!#.

~37!

In terms of the dimensionless quantityz5tT the kernel is
given by K(z)5sin@(2nc11)pz#/sin(pz) where nc[nc(q)
given by Eq.~36!. The kernelK(z) is periodic in z, K(z
11)5K(z), and it is sharply peaked aroundz50 for large
nc . The width of the peak can be estimated from the fi
zero ofK(z) asz051/(2nc11). Fornc*10, z0!1 which is
true in the low-temperature regime that we shall be interes
in. We thus approximateK(z) as a delta function in ‘‘time’’
and work with a local-t action in Eq.~35!.

To determine the couplingB in Eq. ~34!, we consider
static u configurations and apply a small external twistF
which will be distributed uniformly over the system. For th
Gaussian model~35!, with lattice spacinga51 andN5Ld

sites, the phase twist per link is (F/L), while for the theXY
model ~34!, on the ‘‘coarse-grained’’ lattice with lattice
spacingj0 and (L/j0)d sites, there is a larger phase gradie
F/(L/j0). Since the total energy cost for this phase twist
the same in the two cases, one obtainsDs

0ad22(F/L)2Ld/
85B (Fj0 /La)2 (La/j0)d/2, which leads toB5Ds

0j0
d22/4.

Similarly, for a t-dependent phase fluctuation at a fr
quency vn , (L/j0)d phases contribute in the ‘‘coarse
grained’’ XY model, as opposed toLd in the Gaussian case
We thus getA(Q)vn

2(La/j0)d5(vn
2ad/8Vq)L

d on equating
the first term in the two actions. This leads toA(Q)
5j0

d/8Vq . Finally, noting that the momentumQ5qj0 /a
since the distances in the ‘‘coarse grained’’ lattice are
units of j0, this can also be written asA(Q)5j0

d/8Ṽ(Q),

whereṼ(Q)5V(Qa/j0)5V(q).
Having obtained A(Q) and B in the isotropic

d-dimensional case, we generalize to anisotropic syste
We work with a layered 3D system with lattice spacinga
51 in-plane anddc along thec axis. The in-plane coherenc
lengthj0@a and thec-axis coherence lengthj'5dc . In this
case, sincej'5dc , we proceed exactly as above but coa
grain only the in-plane variables. Denoting the Gauss
model stiffness byD i

0 in-plane andD'
0 along thec axis, we

arrive at the final action

S@u#5
1

8T ( 8
Q,vn

vn
2j0

2dc

ṼQ

u~Q,vn!u~2Q,2vn!

1
D i

0dc

4 E
0

1/T

dt (
r ,a5x,y

$12cos@u~r ,t!

2u~r1a,t!#%1
D'

0 dc

4 S j0

dc
D 2E

0

1/T

dt

3(
r

$12cos@u~r ,t!2u~r1 ẑ,t!#%, ~38!
a-

t

d

t
s

n

s.

e
n

whereṼ(Q)5V(Qa/j0) andV(Q) is the Coulomb interac-
tion for layered systems given in Eq.~23!. While all uQu
<p contribute in Eq.~39! above, the prime on the summa
tion denotes the Matsubara cutoff consistent with Eq.~36!.
The couplings in this action depend crucially onj0 and we
shall examine the consequences of this below.

VIII. RENORMALIZATION OF THE STIFFNESS

The quantumXY model action has both longitudinal fluc
tuations and transverse~vortex! excitations. Near a finite
temperature phase transition, the dynamics is unimpor
and we recover the classicalXY model with the possibility of
a phase transition in the 3D-XY universality class. In this
section, we examine low-temperature properties and the
fect of quantum dynamics. We ignore vortex-antivortex p
excitations since these have a core energy cost and wou
exponentially suppressed at low temperatures. We deal
the longitudinal fluctuations within a self-consistent ha
monic approximation~SCHA!.

To examine the low-temperature in-plane properties,
assumeD'

0 50 in Eq. ~39! since it is very small in highly
anisotropic systems with a largel' . The c-axis stiffness
would become important ifl'&l i(j0 /dc), which implies
D i&D'(j0 /dc)

2, leading to thec-axis contribution being
important in Eq. ~39!. For Bi2212, detailed calculations
which we omit here, show that it does not affect our in-pla
results.

The SCHA ~Refs. 35,4! is carried out by replacing the
above action by a trial harmonic theory with the renorm
ized stiffnessD i chosen to minimize the free energy of th
trial action. This leads toD i5D i

0exp(2^du2&/2) wheredu
[(u r ,t2u r1a,t) and the expectation value is evaluated
the renormalized harmonic theory. Explicitly, we get

^du2&52TE
2p

p d3Q

~2p!3 (
n52nc

nc eQ

vn
2j0

2dc /ṼQ1D idceQ

,

~39!

wheree(Q)5422 cosQx22 cosQy .
We have analyzed the above equations to extract infor

tion about the importance of quantum and thermal ph
fluctuations. Our numerical results can be simply summ
rized as follows:̂ du2&(T50);A(e2/ebj0)/@D i(0)dc# is a
measure of quantum fluctuations, while thermal fluctuatio
become important above a crossover scaleT3

;A@D i(0)dc#(e
2/ebj0). These quantities are simply unde

stood as the zero-point spread and the energy-level spa
of an oscillator respectively, in the renormalized harmo
theory. The scaleT3 is also the temperature at whichnc(Q
5p);1 @giving a broad kernelK(z)#, with nonlocal effects
in t becoming important.

It is easy to see that phase fluctuation effects are ne
gible in the BCS limit of largej0. With e2/eba;D idc
;EF and j0;vF /D, one obtains the standard resultEcond

;D2/EF per unit cell, and^du2&(T50);AD/EF!1 and
T3;AEFD@Tc .

For the cuprates the short coherence length and smalD i
act together to increasêdu2&, but they pushT3 in opposite
directions. For optimal Bi2212 we usee2/eba'0.3 eV with
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eb'10 andj0 /a'10. Bi2212 has a bilayer stacking stru
ture with the planes within a bilayer being much closer th
the distance between bilayers. Assuming the phase within
bilayer to be fully correlated, we setdc to be the mean inter
bilayer spacing and thusdc /a'4. Usingl

i
(0)'2000 Å, we

then get the bilayer stiffnessD i(0)dc'80 meV.2 These val-
ues lead toEcond'6 K/unit cell which is somewhat large
than estimates for optimally doped Y-Ba-Cu-O fro
specific-heat measurements;36 we are unaware of similar dat
for Bi2212. We find that the crossover scaleT3'350 K
@Tc and a better estimate is thenTx;Tc . Thus thermal
fluctuations are unimportant at low temperatures. Quan
fluctuations are important since we find^du2&(T50);1 at
optimal doping.

To study the temperature dependence ofl i(T) and the
bilayer stiffness D i(T)dc ,2 we set the bare stiffnes
dcD i

0(T)5dcD i
0(0)22a0T, where the linear decrease aris

purely from nodal quasiparticle excitations within
single layer. This implies 1/l i ,0

2 (T)51/l i ,0
2 (0)2(4pe2/

\2c2dc)2a0T. We plot the results of a numerical calculatio
of 1/l i

2(T) in Fig. 2. Phase fluctuations are seen to lead t
large quantum renormalization of 1/l i

2(0) and to a small
decrease in the slope of 1/l i

2(T). The small renormalization
of the slope of 1/l i

2(T) which we find,38 is true for a range
of parameter values around our specific choice which
been constrained by experiment. It is, however, not the c
more generally, and the slope could be renormalized
quantum fluctuations for a different choice of parameter v
ues. This is to be contrasted with the effect ofclassicalther-
mal phase fluctuations which would lead to no change
l i(0),D i(0) and to anincreasein the slope of 1/l i

2 relative
to the bare value.

We note that in the absence of quasiparticles, the su
fluid stiffness in this model would have an exponentia
small temperature dependence, arising from phase fluc
tions which are gapped. While it might appear that th
could be low-temperature crossovers resulting from
c-axis plasmon being at low energy (;10 K for Bi2212!, the
phase space for these low-lying fluctuations is extrem
small. Even in a purely 2D system, which supports~gapless!
low-energy plasmons dispersing asAqi, the phase stiffness

FIG. 2. The bare and renormalized 1/l i
2 plotted as a function of

temperature near optimal doping for Bi2212. We have chosen
values such that the renormalized results,l i(0)'2000 Å and
dl i /dT'10 Å/K, are in agreement with experiment.
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would decrease slowly, with a large power law (;T5). Qua-
siparticles are thus crucial in obtaining the observed lin
temperature dependence.

We find that we have to choosedcD i
0(0)'150 meV cor-

responding to a barel i ,0(0)'1500 Å and a slopea0
'0.38 meV/K to obtain the renormalized valuesdcD i
'80 meV ~implying l i'2000 Å) anda'0.35 meV/K, in
agreement with experiment. Thus, quantum effects lead
50% decrease of 1/l i

2(0) and to little change in its linearT
slope. The bare slopea0 within a theory of noninteracting
Bogolubov quasiparticles is given by (kBln 2/p)(\vFkF /Dd).
Using the measured angle-resolved photoemission spec
copy ~ARPES! dispersion,9 this leads toa0'0.8 meV/K
which is much larger than the ‘‘bare’’ value we have us
above to obtain agreement with penetration depth exp
ments. This points to the inadequacy of the noninteract
quasiparticle picture. The above discrepancy could be
counted for by considering quasiparticle interaction effects
the mean-field level before considering the effect of ph
fluctuations. These interaction effects become more imp
tant as one underdopes to approach the Mott insulator.37,38

IX. CONCLUSIONS

In this paper, we have focused on the excitations o
short coherence lengthd-wave superconductor. These a
nodal fermions and the fluctuations of the amplitude a
phase of the order parameter. Using an effective phase-
action we have discussed collective plasma modes and re
malization of superfluid stiffness by anharmonic longitudin
phase fluctuations. We summarize below some of our m
conclusions.

We have found that the important excitations are the lo
lying fermionic states near the nodes and quantum ph
fluctuations of the order parameter. Although thed-wave
state supports in addition, two amplitude fields and a bo
phase field, these have been shown to have negligible s
tral weight at low energy and are unimportant for the lo
temperature thermodynamics. They could possibly be pro
in experiments such as Raman spectroscopy measurem
designed to detect these fluctuations.

Our discussion and derivation of the plasma modes e
phasizes a unified way of looking at the in-plane andc-axis
plasmons, in a manner which is relatively independent
detailed models ofc-axis propagation. The very different na
ture of the two plasma modes, with a smallc-axis plasma
frequency governed by thec-axis stiffness and a large in
plane plasma frequency not directly related to the in-pla
stiffness, can both be understood within our phase action
microscopic derivation ofc-axis conductivity sum-rules and
T-dependent spectral weight transfers would depend on
cific models,25,26 and we have not discussed these.

Our derivation and treatment of the effective phase-o
action emphasizes the crucial role played by the cohere
length in imposing momentum and frequency cutoffs in t
phase fluctuations. This allows us to interpolate from
BCS limit where phase fluctuations are unimportant to a
gime of strong quantum fluctuations in the short cohere
length limit. We find that quantum and thermal fluctuatio
cannot both be present at low temperatures; The short co
ence length increases quantum fluctuations while pushing

re
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the temperature scale at which one crosses over to the
phase fluctuations. The strong longitudinal quantum fluct
tions of the phase predicted by our calculation would a
imply dynamical charge density fluctuations at low tempe
tures in the SC phase, which could possibly be probed
experiments.

It has been pointed out that there is a discrepancy in
magnitude of the linearT slope of the measured penetratio
depth and the value calculated using ARPES data assum
free quasiparticles.37 However, phase-fluctuation effects ha
not been taken into account before comparing data from
two measurements. We find that even including the relev
quantum phase fluctuations, a discrepancy is present w
points to strong quasiparticle interactions even at optim
doping. A theory to account for these quasiparticle inter
tions is, however, lacking. One possibility is to invoke
phenomenological superfluid Fermi-liquid theory descript
for the quasiparticles.39,38 It turns out however, that such
theory has a large number of free parameters and lacks
dictive power although the experimental results may be e
ily rationalized.

We have restricted our study in this paper to the lo
temperature properties of the SC without addressing the
sue of what happens at higher temperatures within the
state and in the normal state. This leads naturally to the p
lem of fermions interacting with a strongly fluctuating ord
parameter, which is at present an important open proble

Note added in proof.We have recently studied, in som
detail, the effect of ohmic dissipation on the pha
fluctuations.40 Such dissipation, arising from a finite low
frequency optical conductivity, is seen to reduce the mag
tude of quantum fluctuations and reduce our estimate for
thermal crossover scale. Nevertheless, we find that the cr
over scale is still large, so that our conclusions about qu
particles dominating the low-temperature behavior of
sponse functions remains unchanged.
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APPENDIX A

In this Appendix, we present an approximate analysis
the density of states for the amplitude fieldshs,d and the
bond-phase fieldf. This analysis gives us insight into th
nature of fermionic excitations which contribute to the lo
energy spectral weight for these fields and recovers
power law for the low energy DOS obtained in the numeri

1. Amplitude fluctuations

The low-energy density of states,Ni(v)5(1/N)(q

2Im Mi(q,v)/p i 5s,d with the restriction uqxu,uqyu
,p/j0. The spectral weight ImMi(q,v) at T50 arises
from summing over low-lying pair excitations atall mo-
menta (k,k2q). This contributes to absorption at freque
ciesv5Ek1Ek2q . For q50, the spectral weight extends t
v50 coming from low lying pair excitations from momen
k arbitrarily close to the node. At finiteq the absorption sets
al
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e

ng

e
nt
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re-
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in beyond a minimum threshold which corresponds tok at
the node andk2q near the node~sinceq is small due to the
momentum cutoff!. The threshold is given byvmin(q)
5Aq1

2Dd
21q2

2vF
2 whereq1 ,q2 refer to components ofq par-

allel and perpendicular to the Fermi surface, respectively
the node.

We find numerically that the spectral weight forqÞ0 is
nearly the same as forq50 beyond the absorption threshol
We, therefore, approximate

Ni~v!'S 21

p D E
2p/j0

p/j0 d2q

~2p!2
Im Mi~q50,v!

3Q„v2vmin~q!…, ~A1!

whereQ(x) is the unit step function which is 1 forx.0 and
0 otherwise. Forq50, the inverse propagator

Ms,d
215

Dd
2

4J
2

Dd
2

2N (
k

ws,d
2 ~k!

jk
2

Ek~vn
214Ek

2!
, ~A2!

where ws(k)5coskx1cosky and wd(k)5coskx2cosky .
Analytically continuing ivn→v1 i01 and working at low
frequency (v!Dd) leads to

2
1

p
Im Ms,d5cs,d

2 1

N (
k

d~Ek2v/2!ws,d
2 ~k!jk

2/Ek
2 ,

~A3!

where 2/cs,d[Dd(1/N)(k(wd
2/Ek2ws,d

2 jk
2/Ek

3) We evaluate
thev-dependent momentum sum in Eq.~A3! analytically by
converting it to a Fermi-surface integral and compute
constantcs,d numerically. Finally, doing theq sum to obtain
the density of states leads to

Ns~v!

Nqp~v!
5cs

2
ws

2~kF,n!

16p

v2

DdvF
, ~A4!

Nd~v!

Nqp~v!
5cd

2 1

256p

v4

Dd
3vF

,

wherews(kF,n) refers tows evaluated at the gap node poi
on the Fermi surface andNqp(v)[kFv/(pvFDd) is the qua-
siparticle DOS per spin which is linear inv. We numerically
estimatecs,d;10; the prefactors in the Eq.~A4! are then of
order unity.

2. The ‘‘bond-phase’’ field f

For thef field, pair excitations similar to that for ampli
tude excitations lead to low-energy spectral weight. This
easy to understand since both fields couple to the parti
particle channel with only different vertex factors. The b
havior of ImMf(q,v) is similar to that for amplitude fields
with a vanishing threshold forq50 and a finite threshold for
qÞ0. Following similar approximations, we set

Nf~v!52
1

pE2p/j0

p/j0 d2q

~2p!2
Im Mf~q50,v!Q„v2vmin~q!….

~A5!
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For T50, using particle-hole symmetry near the Fermi s
face we find the inverse propagator

Mf
21~q50,vn!5

Dd
2

16

1

N (
k

Fwd
2~k!

Ek
28 cos2~ky!

Ek

vn
214Ek

2G .

~A6!
Doing the integrals as before, we finally get

Nf~v!/Nqp~v!5
1

8p
cf

2 ws
2~kF,n!

v2

DdvF
, ~A7!

where 1/cf[(Dd /N)(kws
2(k)/2Ek . The prefactor here is

again of order unity.

APPENDIX B

In this appendix, we briefly consider the linear time d
rivative term in the phase action, which we have dropped
the paper. For notational simplicity, we consider a neu
s-wave SC in 2D with lattice spacinga51. In carrying out
the Hubbard-Stratonovitch transformation as for thed-wave
case, we introduce complex order parameter fie
D r(t),D r* (t) which are bosonic variables and satisfy t
constraintD r(0)5D r(1/T). Writing D r5uD rueiur, this trans-
lates intouD ru(1/T)5uD ru(0), andu r(1/T)5u r(0)12pmr ,
and the partition function involves an additional sum ov
mr . Working in small u gradients and doing a cumulan
expansion, one arrives at the following form of phase act
for low momenta and frequencies:

Su5E
0

1/T

dt(
r

F iru̇1
1

8
ku̇21

1

8
Ds~¹u!2G . ~B1!

We now make the substitutionu(r ,t)5Q(r ,t)12pTmrt
which impliesQ(r ,1/T)5Q(r ,0). Substituting this in the ac
tion, we get

S52p ir(
r

mr1
1

2
p2kT(

r
mr

21
Dsp

6T (
r

~¹mr !
2

1
1

2
pDsT(

r
E

0

1/T

dt t~¹Q!•~¹mr ! ~B2!

1
1

8E0

1/T

(
r

@kQ̇21Ds~¹Q!2#, ~B3!

where the derivatives denote discrete derivatives on the
tice.

Now, at very low temperatures,Ds /T@1, we must set
¹mr50 while at high temperatures,kT@1, we must set
mr50. In either case, the fieldQ decouples from the fieldmr
and we get a Gaussian theory of phase fluctuations.
former condition (Ds /T@1) is equivalent to the condition
that the spatial phase variation due to thermal effects
small; in particular, vortex configurations are unimporta
The latter condition (kT@1) is just that the system star
behaving classically; since the extension along the imagin
time axis is 1/T, there is essentially no dynamics if 1/T→0
andk is finite.

In the presence of vortices, the core would described b
region where the magnitude of the order parameteruD ru de-
-

-
n
l

s

r

n

t-

he

is
.

ry

a

creases to zero. SinceuD ru is a bosonic variable, the cor
would trace a closed loop in ‘‘time’’ 1/T. In this case, all the
electrons which lie inside the loop undergo a phase cha
of 2p each time the loop is traced while electrons outside
loop return to their original phase angle. This leads to
Berry phase factoriprS(G) for the loopG with areaS(G).
The effect of this Berry phase factor on vortex dynamics w
pointed out by Ao and Thouless,42 except they obtained a
coefficient of rs ~the superfluid density! instead ofr ~the
total electron density!. Their result is special to a Galilea
invariant systems atT50, wherers5r. Our result has also
been derived earlier by Gaitonde and Ramakrishnan.41

In the paper, we consider only slow spatial variations
the phase and work with just the periodic variableQ which
we refer to asu. We note that the linear time derivative ter
will not be important in the critical regime around the fini
temperature superconductor to normal-metal phase trans
where dynamics is unimportant. It would, however, be i
portant near quantum critical points atT50.43

APPENDIX C:

Physically relevant correlation functions should be gau
invariant. The functional integral method leads to a ve
simple and elegant way of demonstrating the role of ph
fluctuations in restoring gauge invariance.~This is, of course,
well known from early work of Anderson and others.!44,45

To this end we introduce external gauge potenti
(A,A0) in the Hamiltonian. This leads to the following mod
fications in the action~9!. In the expression~10! for L0 we
replacem by m1A0(r ,t) anddu/2 by du/22Ar ,r8(t) where
du[@u(r ,t)2u(r 8,t)#. Consider the gauge transformatio
A0(r ,t)→A0(r ,t)1 i ]ta(r ,t) and Arr 8(t)→Arr 8(t)
2@a(r 8,t)2a(r ,t)#. Invariance under this gauge transfo
mation implies that the phase fieldu must transform as
u(r ,t)→u(r ,t)12a(r ,t) with uDu, f and the fermion
fields unchanged. The correlation functionsx0 andL0

ab cal-
culated at the mean-field level, settingu[0 andf[0 are
not gauge invariant. From the above discussion, it is cl
that this problem can be solved by allowing foru fluctua-
tions and integrating over these~rather than freezingu[0).
We now proceed to do this at the Gaussian level, which
entirely equivalent to the old RPA calculation.

Physical correlation functions are obtained by integrat
out the fermions and functional differentiation of the resu
ing Gaussian effective action with respect to the exter
sourcesA0 andA. We emphasize that these sources cou
minimally to theoriginal fermion operators, before the tran
formationc†→c†e2 iu/2 in Sec. IV. We then find the density
density correlation allowing for Gaussian phase fluctuatio
to be

x~q,ivn!5
qaqbL0

abx0

qaqbL0
ab2vn

2x0
. ~C1!

This result obtains diagrammatically as follows. The ferm
ons couple to the external sourceA0 and to the phase fieldu
and we have to integrate out bothu and the fermions. How-
ever,u itself does not have a propagator unless the fermi
are integrated out. To simplify the diagrammatic calculati
we first introduce a fake termlu(q)u(2q) in the action
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which leads to the bareu propagator 1/l; we will take the
limit l→0 at the end. The diagrams in Fig. 3 result forx.
Summing the geometric series leads to

x5x01
x0

2vn
2

l F12S x0vn
22L0q2

l D G21

. ~C2!

Taking the limitl→0 then leads to the result in Eq.~C1!.
We note that the physical static compressibility is giv

by x(q→0,vn50)5x0(q→0,vn50), i.e., the mean-field
result is unaffected by phase fluctuations at the RPA lev

Similarly, denoting the physical (q,v) dependent stiff-
ness byL, we get

Lab5L0
ab1

L0
amL0

nbqmqn

@vn
2x02L0

mnqmqn#
. ~C3!

We see that the transverse phase stiffness~for instance along
the x direction! given byLxx(vn50,q'→0,qx50) is unaf-

FIG. 3. Low-order diagrams forx: The wavy lines indicateA0,
the external scalar potential. The dashed lines contribute 1/l, the
false u propagator. The heavy dots refer to vertex factors ofvn

arising from the vertexir]tu. Finally, the bubble contributions
arising out of integrating out fermions are explicitly indicated.
n

f

g
e

is
.

fected by the Gaussian phase fluctuations. However, the
gitudinal part of the current correlation function is affecte
and

1

T
^ j x j x&~vn50,q'50,qx→0!

5
1

T
^ j x j x&0~vn50,q'50,qx→0!

1L0
xx~vn50,q'50,qx→0! ~C4!

5
1

V (
k

mxx
21~k!^nk&, ~C5!

now satisfies thef-sum rule~which was violated at mean
field level!. Thus gauge invariance is restored.

The derivation remains unchanged in charged syste
with the only difference being that we have to make t
replacementx0→x0

RPA[x0 /(12Vqx0) in all the equations
~in this Appendix!. This can be easily understood by com
paring Eqs.~15! and ~27! in the text. It is not hard to show
that the longitudinal conductivity (sL) defined through the
longitudinal dielectric function by

e[
1

11Vqx
511

4p isL

v
~C6!

in a gauge-invariant theory, and the transverse conducti
defined bysT(v)5 iLe2/(ebv) ~with L being the trans-
verse part ofLab) are equal in the limitq→0. In the text,
we omit subscripts and refer to both conductivities bys
since we work atq→0. It is easy to see thatsT(v) and
hences(v) is unaffected by phase fluctuations within RP
However, it is only in a gauge-invariant theory, such as
RPA, that Eq.~C6! holds since it obtains from using th
current conservation equation.
ys.
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