PHYSICAL REVIEW B VOLUME 62, NUMBER 10 1 SEPTEMBER 2000-I1

Competing orders and quantum criticality in doped antiferromagnets
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We use a humber of largg-limits to explore the competition between ground states of square lattice doped
antiferromagnets which break electromagnétid ), time-reversal, or square lattice space-group symmetries.
Among the states we find ar@, (s*+id)-, and @,2_,2+id,y)-wave superconductors, Wigner crystals,
Wigner crystals of hole pairs, orbital antiferromagnéds staggered-flux statgsand states with spin-Peierls
and bond-centered charge stripe order. In the vicinity of second-order quantum phase transitions between the
states, we go beyond the lartelimit by identifying the universal quantum field theories for the critical points,
and computing the finite temperature, quantum critical damping of fermion spectral functions. We identify
candidate critical points for the recently observed quantum critical behavior in photoemission experiments on
Bi,Sr,Ca CyOg., 5 by Vallaet al.[Science285 2110(1999]. These involve onset of a charge-density wave,
or of broken time-reversal symmetry with>_,>+id,, or s* +id pairing, in ad-wave superconductor. It is not
required(although it is allowegithat the stable state in the doped cuprates be anything other thdmniiee
superconductor—the other states need only be stable nearby in parameter space. At finite temperatures, fluc-
tuations associated with these nearby states lead to the observed fermion damping in the vicinity of the nodal
points in the Brillouin zone. The cases with broken time-reversal symmetry are appealing because the order
parameter is not required to satisfy any special commensurability conditions. The observed absence of inelastic
damping of quasiparticles with momenta,k), (k,7) (with 0<k< =) also appears very naturally for the case
of fluctuations tod,2_,2+id,, order.

[. INTRODUCTION limitation of our approach. A brief discussion of mainly the
largeN results has appeared in an earlier pdper.
. _ A global perspective on our approach is provided by the
A minimal approach to the physics of the cuprate superschematic phase diagram in Fig(ske also the discussion by
conductors is to assume that all relevant ground states can b&anef on related phasgs This sketches the qualitative
completely characterized by the manner in which they brealyolution of the physics as a function of the hole dopihg
the global symmetries of the underlying Hamiltonian. Re-andN, the size of the symmetry group of spin rotatiohs:
lated ideas have been discussed by others in Refs. 1-3; forge will primarily consider models in which this symmetry
review by one of us see Ref. 4, and for early work we shallgroup is generalized fro8U(2) to Sp(2N) (specific details
extend in this paper see Ref. 5. The global symmetriegiare appear in Sec. )|
S: the electromagnetit/ (1) symmetry, which is broken by Let us first discuss the physics &t 0 as a function ofN.
the appearance of superconducting ordier;M: the SU(2) For smallN, including the physical casé&N=1, we know
spin rotation invariance symmetry, which is broken by mag-that the ground state has magneticeNerder, and so breaks
netically ordered states like the dlestate(iii) C: the space- M symmetry. This symmetry is restored by a continuous
group of the square lattice, which we will consider brokenquantum phase transition at the poitAbove X, it is be-
when an observable invariant undsrand M, like site or  lieved that one enters a paramagnetic phase which generi-
bond-charge density, is not invariant under space grouf@lly has “Peierls” order*”*!in such a state all sites are
transformations; andv) 7: time-reversal symmetry. equivalent, but the charge and energy densities on the

Even in this limited approach, a surprisingly rich numberPonds? have the modulation indicated schematically by the

of phases and phase transitions are possible. While at Ic)(:/(i@‘kf:attern in Fig. 1. It is evident that such a state breaks only a

enough temperatures, every phase is amenable to a conv symmetry. So theWt andC symmetries vanish at the com-

tional quasiparticlelike description, anomalous behavior cafon pointX, a phenomenon not generically expected in a

. Co o . Landau-theory-like approach suitable for high dimensions,
appear in the vicinity of second-order quantum critical pomtsbut possible in the present low-dimensional system with
between the phases.

i . . strong quantum fluctuatiorS. Further above the poink,
This paper will study the competition between phasesyner phases like the “orbital antiferromagnét™® (to be

which break one or more of, C, and 7 symmetries, and  gescribed shortlyare also possible in certain models and we
describe the universal theories of the associated quantuf; also discuss these.

critical points. We will do this in the context of a number of  The primary purpose of this paper is to study the physics
largeN computations which, by construction, only producefor 5>0. Ideally, we should do this along the pah in Fig.
ground states in which\{ symmetry is preserved. Transi- 1, which meets thé=0 line belowX. Instead, we will offer
tions at whichM symmetry is broken are quite important for a controlled, quantitative theory along the pakh which
certain aspects of the physics of the cuprg@s we shall meets thes=0 line aboveX. The implicit assumption under-
discuss later in this sectigrand the absence of explicit com- lying such a strategy is that the quantum critical pofnis
putations for where such transitions may occur is the primaryclose” to the regime of physically relevant parameters.
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FIG. 2. Finite temperatureT() phase diagram in the vicinity of
X C broken d-wave a second-order quantum phase transition frothveave supercon-
ductor as a function of some parameter in the Hamiltorggn
(which is possibly, but not necessarily, the hole concentrafipn

broken Superconductivity is present at temperatures belqw and the

SR E ] - superfluid density is nonzero on both sidessgf. The stateX is
// / / / / / / /\ / i characterized by some other order paraméteaddition to super-

0 . o conductivity which vanishes above a temperaturg. We will
Doping 3 consider a number of possibilities for the statein this paper,

. . . iy
FIG. 1. Schematic phase diagram of doped antiferromagnets".“.:IUdIng broken” symmetry in a ¢ +'d? wave or a the—y2

. . . +id,,)-wave superconductor, or in an orbital antiferromagnet, and
See Sec. | for further general discussion and Sec. Il for specific Y

quantitative phase diagrams along the litg The vertical axis states with brokel@ symmetry with charge-density wave order. Of

represents the siZ§ of the symmetry group of spin rotations particular interest will be transitions for which the scaling form
Although this parameter is not experimentally variable, we proposéli(')lr: _Ifilgqules I[Xstwen(;)ig?lljg;'?ns'gzglﬁlesﬂ:; tsrlfaﬁ:arétllw dccrglr?t?r:iz-
that a similar phase diagram would be obtained as a function of th 5 20Dl eglieln abova.. provided the t.he,rmal len thgassociated with
ratio of the secondJ’) to first (J) neighbor exchange interactions. pply cP o 9 )

There is evidencéRefs. 5,7—11that the Peierls order shown above proximity to the guantum phase tran_smorsatsOC remains _smaller

X at 6=0 is also found in)’ —J antiferromagnets. The magnetic than the phase coherence length. It is the proposal of this paper that

M symmetry is broken in the hatched region, widlsymmetry is the high-temperature superconductor studied in the experiments of

broken in the shaded region; there are numerous additional phas'?eef' 40 is in the vicinity ofsy;. Indeed, this system could have

transitions at which the detailed nature of the or C symmetry So>Sc, SO that the uItlmr_:lte ground state is an qrdlndfwave
breaking changes—these are not shown. &0, M symmetry is superconducto_r—the fermion spectrum then exhibits consequences
broken only below the critical poinX, while C symmetry is broken of fluctuations into stat& at T>"Tg.
only aboveX. Over a significant parameter regime, and for not too
small 6, the C symmetry breaking appears in the stripe patterns] e expect a transition to a state with symmetry broken
shown, with accompanying anisotropicl supgrconductivity whichyhich is not contained in our computations here. The mag-
breakss. For some other parameter regimies in Fig. 13, theC  hqic order appears in a background of charge stripe order
symmetry breaking is realized by orbital antiferromagn@icstag- 4t s present on both sides of the transition, and the spin
gered fluy order: suctC symmetry breaking cannot survive all the polarization is therefore expected to be incommensurate and
way down to the poiniX. The superconductivity is puré-wave collinear.? It is important to contrast this magnetic order
only in the largeé region whereC and M are not broken. The f h C. te “spiral” states that -
smaller § region of the superconductor which preserfeand M rom the Incommensuraze spiral states that were consi
can also exhibit@2_,2+idyy)- or (s* +id)-wave superconductiv- ered some time ag%f_*.such states have coplanar spins gnd do
ity. not require co-existing c_harge order. In contrast, the incom-
mensurate, collinear spin states must coexist with charge
stripe order’® and there is evidence that the spin incommen-
Then we can expect that the phases withsymmetry pre-  suration observed experimentally is indeed of this @&’
served along the patA; are related to the phases witht Stripe charge order has been discussed first in the context of
symmetry preserved accessed by increagimipng the path  mean-field theories for the Hubbard mod&i?2a brief com-
As. parison of these results with the present theory will be given
This paper describes the intricate interplay betwéges, in Sec. Il A 3.
and 7 symmetry breaking along\;: the body of the paper The order parameter for the collinear spin ordering, dis-
contains a large number of phase diagrams as a functién of cussed above, is an ordina®(3) vector?*?%?%dentical to
and a dimensionless measure of the strength of the longhat for the transition at the poi¢ at §=0. To understand
range Coulomb interactions, and all of these lie aléng the transition at which\ symmetry is restored at>0, we
Over a significant regime of parameters, we find thaym-  need to explore the possibility of the magnetic order-
metry is broken at smaller values 6f for very small values parameter coupling to gapless fermion excitations. In all our
of &, theC-broken phase is an insulating Wigner crystal-like charge stripe states, we find a strong pairing tendency be-
state, but for larger &6 we obtain a state with tween the holes, and as a consequence, the fermion excita-
co-existing"*%tripe charge ordéf~??and superconductivity, tion spectrum is either fully gapped, or has gapless excita-
as sketched in Fig. 1. Moving to smaller valueshbin Fig.  tions only at special points in the Brillouin zone. Assuming



PRB 62 COMPETING ORDERS AND QUANTUM CRITICALITY IN . . . 6723

that momentum conservation prohibits the coupling betweefiguration with an additional longitudinal charge modulation
the magnetic order parameter and the gapless fermion excilong each hole-rich stripe.
tations (if presen}, we arrive at the conclusion that the spin  (vi) Orbital antiferromagnet:This is also known as the
disordering transition ab>0 is in precisely the same uni- “staggered flux” state*~'® There are staggered, circulating
versality class as that & Figure 1 contains a line, emerging currents around each square lattice plaquette, and the state
from the pointX, along which a transition to\{ symmetry ~ breaks7 symmetry. The unit cell has two sites and o
restoration takes place. The gist of our arguments above gymmetry is also broken, but a combination of translation by
that the universality class of the transition all along this lineone site and time-reversal remains unbroken. At half filling,
is likely to be identical to that aX. The implications for such this state has gapless fermionic excitations at nodal points
a scenario for experimenfespecially NMR(Ref. 30] has along the diagonals of the Brillouin zone, like tlewvave
been reviewed recently in Ref. 4. A related scenario, anguperconductor. The state with co-existing orbital antiferro-
quantitative comparisons with experiments, has been prgnagnetism and-wave superconductivity has brokeérsym-
vided recently by Moret al3! metry (the unit cell has two sitesand is distinct from the
Returning to the physics alondy,, we briefly catalog the (s* +id)-wave or @2 y2+id,y)-wave superconductor.
properties of the states found. Further details appear in Sec. The competition betweed, M, andS breaking leading
I, but the reader is urged to glance at the phase diagrams @ phases with co-existing ordefras in (i) and (iii) abovg
Figs. 3—11 at this stage. It is also worth noting explicitly herehas been discussed by Zaaheon phenomenological
that all of these phase diagrams were obtained in the Idrge grounds. However, he focuses mainly on the bosonic order
limit, and the precise numerical values of the parameters tarameters, while fermionic excitations will play an impor-
the phase boundaries are not expected to be accurate f@nt role in our considerations.
SU(2): nevertheless, the general topology of the phase dia- Phases related to those(n, (iii), (iv), and(v), and asso-
grams, and the trends in stability between the various phasegiated phase diagrams, appear in the work of Kivelson, Frad-
are expected to be realistic. kin, and Emeny® These authors use liquid-crystal-like pic-
(i) Superconductors witld symmetry.These appear for tures, in which quasiindependent one-dimensional Luttinger
large 8, and for a large region of parameters the Cooper pair§quids are allowed to fluctuate transversely, and obtain
are in ad-wave state. We also find &1 +id)-wave staté#>  qualitative phase diagrams. In contrast, our work is intrinsi-
and a f,2_2+idy,)-wave staté334 both of which breakr  cally two-dimensional, and the quantum fluctuations are tied

symmetry, but preservé symmetry; the latter state has a More strongly to the underlying lattice sites; further we shall

nonvanishing spin Hall conductante. obtain quantitative results for phase diagrams, albeit in a
(i) Spin-Peierls An insulating spin-Peierls state &=0  largeN limit. _ _
was discussed above: it breaks odlysymmetry. We also It is interesting that none of the states above is an ordinary

obtained for a range ofs>0 a superconducting state with Fermi liquid: such a state appears to be always unstable to
precisely the same pattern@Bymmetry breaking; naturally, Some ordering induced by breaking one or moré€,of, M,
Sis also broken in such a state. The signature of both statéd 7 Symmetries. In this respect our results are similar to
in neutron scattering would be the same: all sites are equivd€cent results of Honerkangg al”" and Ledermanet al,
lent, but there is a modulation in the energy and charge de,h_oweygr, t'hey find renormahzatlon—group instabilities of the
sities on the bonds with a period of 2 lattice spacings. Fermi liquid to states somewhat different from those dis-
(i) Stripes.The striped states are similar to the superconussed above. _ _ _
ducting spin-Peierls states above, but all sites are no longer W& conclude our discussion of mean-field theory by not-
equivalent. The states haveox 1 unit cell and the holes are N9 that a separate study 6fsymmetry breaking in doped
concentrated on a strip of widtly both p andq were always antlfe?gomagnets h_as been carried out recently by S_tOJkOV|C
found to be even. The widtly regions form strong one- et_al.: they exz_immed the _competlt_lon bgtween stripe and
dimensional superconductor&uther-Emery liquids and W|gner_—crystal-llke phases in a semiclassical theory of hole
coupling between these hole-rich regions leads to anisotropidynamics.
superconductivity. The hole pairing also always prefers
stripes in abond-centereaonfiguration®®® the ground state
possesses a reflection symmetry about the centers of certain
columns on bonds, but not about any column of sites. We have already discussed above the nature of/ithe
Distinguishing bond and site centeriA??is an important ~ ordering transition in Fig. 1, and its possible relationship to
issue to be resolved by future experiments. NMR experiment$:*® Here we shall explore the nature of
(iv) Wigner crystal.An insulating state for5>0 is the the quantum phase transitions between the phases found
familiar Wigner crystal of holes, which breaks orysym-  alongA; (which do not involve order parameters associated
metry. This state appears when the strength of the Coulomiith M symmetry, and their possible relationship to quan-
interactions is large enough. tum critical scaling observed in a recent photoemission
(v) Pair crystal: An alternative insulating state can appearexperiment?
at small 5>0 and weaker Coulomb interactions. The ex- Many of the transitions in our phase diagrams are first
change interactions induce pairing of holes, and the resultingrder. These do not have interesting fluctuation spectra, and
composites then form a Wigner crystal to minimize the Cou-we will not consider them further. We will consider second-
lomb repulsion. The underlying square lattice can induceorder transitions a6>0, in which the ground state is super-
strong distortions on the usual triangular structure of theconducting on both sides of the transitioisee Fig. 2 One
Wigner crystal, so that the state can look like a striped conef these states is &wave superconductor, while the other is

Quantum phase transitions
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denoted as superconducting stfta Fig. 2; we will discuss transition is closely related to models for the onset of anti-
different candidates for stat¥ below. Such second-order ferromagnetism in a-wave superconductor considered re-
transitions fall into two classes depending on the behavior otently by Balentst al** We note that others have also dis-
the fermion spectra in the vicinity of the nodal points of thecussed quantum phase transitions involving stripe or charge-
d-wave superconductor. These points ar& &t-K,*=K) density wave order in the cuprate superconductors in recent
with K=0.391 (at optimal doping and throughout the re- yearst**however, in contrast to us, these works have either
mainder of this paper, unless noted otherwise, we will bdgnored interplay with the dynamic properties of the
implicitly referring to the fermionic Bogoliubov quasiparti- fermions; or focused on transitions in a Fermi-liquid ground
cles in the vicinity of these pointfWe will discuss the prop-  State’* not ad-wave superconductor.
erties of the gapped fermionic quasipartides neam-Io' The hallmark of the class A transition is that in Ts>0
(7,0) at the end of Sec.]IThe two classes aréA) There is  “‘quantum-critical” regiort® (see Fig. 2 the fermion
efficient scattering and damping of the nodal fermionic qua-Green’s function near one of the nodal points of theave
siparticles, and as a result the fermionic spectral functiorfuperconductor obeys
obeys “naive” quantum critical scalin§see Eq.(1.1) be-
low], of the type observed experimentafffand(B) the gap- Ay
less, Bogoliubov, fermionic quasiparticles can be neglected Grk,w)= Ta-niz
in the scaling limit of the critical theory, and so their damp-
ing appears only upon considering corrections to scaling, antierez is the dynamic critical exponenz€ 1 for the specific
vanishes with superlinear powers of temperat(feas T  models solved in this paperk measures the distance from
—0. one of the nodal points of th&#wave superconductoy is a

The simplest of the transitions in class A are those thameasuring frequency; is a velocity (for z=1), A is an
involve time-reversal symmetry breaking in tdevave su-  overall amplitude,»; is a universal anomalous dimension,
perconductor: transitions fromciwave superconductor to a and®; is a universal scaling function of its two arguments.
state X which is either a ¢* +id)-wave’®® or a (d,_,2 We emphasize that unless the system happens to be precisely
+idxy)-wav€’3'34superconductor_ It is important to note that at the quantum-critical point, which is generically not ex-
both these transitions occur for only afimite attractive cou-  pected to be the case, the scaling foil) will eventually
pling in thes* or d,, pairing channels. This is to be con- failasT—0. Indeed, if we define a lower crossover tempera-
trasted to pairing instabilities of a Fermi liquid, which would ture T, so that Eq.(1.1) holds for T>T,., thenTq.~|so
occur at infinitesimal attraction in either channel. However,—Soc|*” wheres, is some coupling constant in the Hamil-
when the parent state isdj2_2-wave superconductor, the tonian, theT=0 quantum critical point is &= So., andv
vanishing density of states at the Fermi level removes thés the usual correlation length critical exponent. Fbr
usual BCS log divergence in the Cooper pair propagator, ane- Toc, normal Bogoliubov quasiparticle behavior emerges,
a finite attraction is required for further pairing in te& or  and this is indeed observ®d>~*°to be the case experimen-
dy, channels. This finite coupling instability is directly re- tally at very lowT. We emphasize further that it is not even
sponsible for a nontrivial quantum critical point, with strong necessary that the poisg=sy. be in an experimentally ac-
thermal and quantum fluctuations leading to class A behaweessible parameter regime. So if we are considering the
ior, whose effects we shall describe and exploit in this paperd-wave to @d,2_,2+id,)-wave transitionfor definitenesk
Much of the more recent discussi¢see Ref. 41 and refer- then itis not requiredalthough it is permissib)ethat the true
ences thereinof (dy2_,2+id,y)-wave superconductivity has ground state of a cuprate compound be a
focused on the case where this order is induced by externétl,>_,2+id,,)-wave superconductor over some doping re-
perturbations like an applied magnetic field, and is motivatedyime. It is only necessary that d_,2+id,,)-wave super-
partly by the experiments of Ref. 42. In contrast, in our pa-conductor be close enough to the physical regime, so that
per, we are interested in the spontaneous appearance of sutynamic fluctuations tod,2_,2+id,,)-wave order are ap-
order, and this is necessarily associated with a sharp trangbarent in the quantum critical regime. Postulating the exis-
tion and7 symmetry breaking. There is a divergent suscepience of a @2_,2+id,y)-wave ground state somewhere in
tibility associated with this symmetry breaking, and this will parameter space is then a powerful theoretical tool for ob-
lead to a low energy amplitude fluctuation mode distincttaining a controlled description of this intermediate tempera-
from that discussed in Ref. 41. ture regime. When this paper was almost complete, interest-

Another transition involving breaking of time-reversal ing experimental evidence for broke® symmetry near
symmetry is that between éwave superconductor and a defects was reportedf;these results support the hypothesis
stateX in which d-wave superconductivity and orbital anti- that the bulk energy of a superconductor with brokesym-
ferromagnetism co-exist. Unlike the above, this transitionmetry is not very much higher than that of d&wave
will be shown to be in class B. superconductot! and that a quantum phase transition be-

A slightly more complicated transition in class A is one in tween these states may indeed be near the experimentally
which X involves the onset of symmetry breaking in a accessible parameter space.
d-wave superconductor: such a transition is the boundary of One of the purposes of this paper is to develop a method
the C-broken region in Fig. 1. However, a special conditionfor computing the universal functio®; in Eq. (1.1) for the
is required for such a transition to be in class A: the chargevarious transitions in class A noted above. We will find that
ordering wave vector should precisely equal the wave vectotwo different methods are necessary, depending on the
between two nodal points in tltkwave superconductor; oth- frequency/wave-vector regime being accessed. bér
erwise the transition is in class B. The theory for such a>kgT or hw>kgT, a straightforward resummation of a

hw vk

T
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renormalized perturbative expansion suffices. However, folhe universal theories of the second-order quantum phase

vk<kgT andfzw<kgT, an entirely different approach has to transitions appear in Sec. Ill. A summary of our results and a

be developed. Now there is strong damping induced by scatliscussion of experimental issues is in Sec. V. A calculation

tering between thermally induced excitations, and we comef the fermion damping in a naive renormalized perturbation

pute it in a self-consistent theory of excitations scattering vidgheory, and its failure in the low-frequency reginfaw

a renormalized, temperature-dependEmhatrix. <kgT is discussed in the Appendix. Readers not interested
It is important to keep in mind that the class A transitionsin specific details of our results can glance at Figs. 3—11 and

being considered here have long-range superconducting omove ahead to Sec. IV.

der on both sides of the quantum critical point. The order

parameter associated with the transition involves either Il. Sp(2N) t-J MODEL IN THE LARGE- N LIMIT

7T symmetry breaking, and has no direct relationshipSto . o o

symmetry. The main role of the superconducting order is to FOr @ microscopic investigation of the ground states of

define the bare spectrum of the fermion excitations whictfloped antiferromagnets we start from the ustalmodel

then interact with the critical order-parameter fluctuations. Inftts On the sites of a square lattice, which is complemented

the experiment&? scaling related to Eq(1.1) is also ob- by a Coulomb¥, interaction between the electron®;

served above the superconducting transition temperdture =Hut+Hy,

(which is quite distinct fronT ;. and could be either above or

below it); indeed there is no signature @t in the photo- Hu=2 _tijc)‘UCjUJr H.c+Jj;

emission spectrunwhile below T there is a crossover to i>]

conventional quasiparticle behaviolOur quantum critical

theory entirely neglects the fluctuations of the superconduct- o= E v

ing order itself, but this does not limit its applicability to VT & ijMin -

below T.; rather, we only need to impose the more limited

constraint that the phase coherence length of the supercomhe electron operators” exclude double occupancies which

ducting order parameter is larger than the inelastic scatteringxpresses the(infinite) electronic on-site repulsionn;

length of the class A transition witfi or 7 symmetry break- =c! ¢, is the charge density at siie We are primarily

ing. This constraint is automatically satisfied beldw, and  concerned with the case where the fermion hopgipgnd

can easily be satisfied over a wide range of temperaturegxchangelJ;; act only wheni,j are nearest neighbors, in

aboveT, . Indeed, the latter length, by E(1.1), decreases as Wwhich casetj; =t andJ;;=J; however, we will occasionally

~1/TY?, and so the constraint becomes less stringent as refer to cases with second neighbor hoppirg) (or ex-

increases. change {'). For the off-site Coulomb repulsiov;; we as-
Finally, we discuss the important issue of the gapped quasume weak or no screening since the zero-temperature

siparticles well away from the nodal points of tdewave  ground states will be either insulating or superconducting; in

superconductor. The fermionic quasiparticles with momentdoth cases the density of states at the Fermi-level vanishes.

(m,K), (k,7) (with 0=<k=) have a nonzero excitation en- Therefore we will use a R decay of the interactiony;;

ergy which is a minimum ne4t*°k~0.18r at optimal dop- =V/|R;—R;|, and the strength of the repulsion is parame-

ing. Experiment®~*’ clearly indicate that these quasiparti- ter ized byV. The Vj; are included to counteract the phase

cles are sharply defined at all temperatures bélowand do  separation tendency of thiel model®>>°3~*%and play a key

not show any sign of “quantum critical” dampingve thank  role in our analysis.

M. Norman and M. Randeria for emphasizing this t9. 80 We shall be interested in describing the ground stat¥ of

the order-parameter fluctuations discussed above, which ags a function of its couplings and the average doping con-

responsible for the quantum critical damping near the nodatentration 5. We generalize the spin symmetfy?® from

points (+=K,*K), clearly cannot couple efficiently to the SU(2) to Sp(2N) and examine the limit of large degeneracy

guasiparticles on the lines between, ¢r) and (7,0), (07). N. In the largeN approach the ground state of the system can

For the case of a transiton fromd-wave to be found in a saddle-point approximatigwhich becomes

(dy2_y2+id,y)-wave superconductivitydiscussed in Sec. exact forN=c). LargeN expansions have been applied to a

I A) this is, in fact, very naturally the case: tig, order  large number of antiferromagnetic spin systems as well as to

parameter~sink, sink, vanishes when eithek,=m or k, models with doping. The motivation for using the symplectic

= 1. For the transition frond wave to §* +id) wave(also  Sp(2N) generalization instead of the more comnf®(N)

discussed in Sec. lll A the s* order parameter-(cosk,  Vvariant is that it does not rely on a two-sublattice structure of

+cosk,), and this vanishes at the points,0), (0,7); how- the underlying antiferromagnet and is therefore more appro-

ever, there will be some residual coupling as one movegriate for systems where frustration may play a rofur-

away from these points tor(,k), (k,7) with k=0.187. Fi-  thermore, thesp(2N) approach includes naturally pairing of

nally, for the transitions in class A involving the onset(®f spins which leads to superconducting ground states when the

symmetry breakingdto be discussed in Sec. ll)Bmomen-  system is doped.Note that bothSp(2N) and SU(2N) re-

tum conservation makes the coupling of the order parametetuce to the usuabU(2) symmetry group foN=1.] Apart

to fermions near £,0), (04r) very ineffective: the order from studies oft-J models like Eqg.(2.1), Hubbard models

parameter scatters the fermions to a region of the Brillouirwith Sp(2N) symmetry have also been studréd®

zone where the quasiparticles have an even higher energy. The behavior of the system in the larijelimit depends
The outline of the remainder of this paper is as follows. Inon the representation &p(2N) used for the spin operators.

Sec. Il we present the results of the lafgestudy alongA;. In the context ofSU(N) approaches to the two-dimensional

ﬂinj
S S

(2.9
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(2D) Heisenberg model especially totally symmetric 1
(bosoni¢ and totally antisymmetrig¢fermionic) representa-
tions have been applied, see, e.g., Refs. 14, 16, 59, and 60.
For the present problem of thte] model it turns out that a 1
simple largeN limit (leading to a saddle point in the free- jaﬁ:ja,;: -1 . (2.5
energy functionalexists only for a fermionic representation
of the spin degrees of freedom. As discussed in the introduc-
tion, in this case the ground state of the undogiddisen-
berg model does not break spin rotation symmety. In-
stead, translation and rotation symmetrieare broken and \we remind the reader that given in Eq.(2.4) reduces to
the state has been shown to be a paramagnetic spin—Peiep_la. (2.1) for the “physical” case ofN=1.
sLate Wg‘iCh can also be consgc?;red ﬁsbcmd—centered In the limit N=2 at zero temperature the bosdnscon-
charge-density wave. Recent wotkhas shown strong evi- N\ _ 2 -
dence for this order in th&ustrated SW2) quantum anti- dense,(b)=VNb, so bf is the hole density andN(1
ferromagnet on a square lattiéwith J’'>0).

Let us now describe the details of the lafgeapproach.
In the following we consider spins transforming under the
antisymmetric product ofn fundamentals ofSp(2N), the
largeN limit is taken withm/N constant. The spins are rep-
resented by fermiong®, a=1 ... 2N, which transform un-
der the fundamental dp(2N). The holes are described by
spinless bosonk, c®=fh. The local constraint of theJ
model acquires the form

—b?)=(n;) the charge density at site The exclusion of
double occupancies in thié=1 case is now represented by
the on-site constrainn;)<N sinceb?>0. The long-range
nature of Coulomb interaction requires the introduction of a
background charge of magnitudeon each lattice site for the
total system to be charge neutral. The interaction is decou-
pled by the introduction of the link fieldQ;; with the saddle-
point values

1
NQ;;= (jaﬁf;raf;rg> :m<jaﬁcracrﬂ>' (2.6
f1 f2+blbj=m. (2.2

la’ 1

The Qj;; represent the complex bond pairing amplitudes. We
note thatQ;; = Q;; , and the phases of th@;; are only fixed
Here we will only discuss states being half filled at zeroup to a global gauge transformation;— f;e'®, which leads
doping, m=N. The average hole concentratiéhis deter- to QinQije‘z'G. However, the plaquette operatdf,

mined by which can be defined alHo=0Q;,Q54Q34Q}; for the sites
1...4 at thecorners of a unit square, is a gauge-invariant
object.
i E fiT fT=N(1-6) 2.3 At the saddle point the Hamiltonian takes the form
Ng 5 @ ' '
Hy= 2, [— t; bibflff+H.cl+ X N(f],fr+Nb?—N)
where N¢ denotes the(infinite) number of lattice sites. =] !
Within the Sp(2N) generalization of the system, the spin
operatorsS, become fermion bilinears times the traceless +,uNE (bi2—5),
I

generators o5p(2N), the Hamiltonian(2.1) takes the form

J..
Hy=> | - %(j“ﬁf?af}rﬁQﬁ +H.c.—N|Q;|?)

ti; >
M=, [—ﬁb-f-* f*bl+H.c. +Z Ni(FlLf+bibi—=N) -

= ilia'j

— 2 2
i3 (blbi—No), Hy .Z, N V;; (b= 8)(b?— 8), 2.7
I
which is bilinear in the fermions and can be solved by a
Bogoliubov transformation. The saddle-point solution is
found by minimizing the total free energy with respectio
fy } and Q;; at fixed average fermion occupation and hole den-
sity. The saddle-point equations have been solved numeri-
cally with unit cell sizes up to 32 sites. The Coulomb repul-
Vi sion term in the larg® limit is purely “classical,” i.e., it
Hv=2 ﬁb?bibfbj, (2.4  does not involve the fermions. Using the lattice Fourier
= transformsV, and n, of interaction and charge distribution
respectively, the Coulomb contribution to the energy can be
where we have split{,;=H,+H, for convenience. The re-written as
Lagrange multipliers\; enforce the local occupation con-
stra_unt, anm_flxes the average hole density*# denotes the Hy= NSNE V. 2.9
antisymmetricSp(2N) tensor: K

Hy=>,

i>]

J.:
— N (TPt (Tof ]
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The interactionV,=V=g.,e*?/|R| behaves as-k ! for 3 - - -
smallk= k|, but becomes negative around the center of the Wigner crystal
Brillouin zone. (Note that there is no on-site contribution 2.5
from V, V;;=0, since the occupation constraint is already =
taken care of by the local chemical potential)
The numerical determination of the minimum-energy con- -
figuration in the largeN limit consists of two nested loops:
(i) Starting from an initial guess fd®;;, b;, A; the fermi-
onic Hamiltonian is diagonalized using a discrete momentum
grid (32 is sufficient for unit cells up to eight sitesThe
expectation valueéf/ f1,) provide new values for the;; ,
new b; are obtained fronb?=1—(f f*)/N, and the aver-
age chemical is adjustetby a simple bisection stepto
match the doping level. This is repeated until convergence i< 0
reached(ii) The optimum charge distribution within the unit
cell of N, sites is found by minimizing the total enerfgb-
tained in loop (i)] with respect to the differences in the ki 3. Ground-state phase diagram7fat N=c, t/J=1.25.
chemical potential; =\;—\ ;. This is a minimum search in Except for thed-wave superconductor all states ha¥broken. The
a (N.—1)-dimensional space and can be performed by stari‘stripe” states have coexisting charge-density wave order and su-
dard methods. To account for the possible existence of morgerconductivity; the crystal states are insulating. The thick lines
than one saddle point the initial link field valu@j are denote phase transitions being first order in the |&igémit.
chosen randomly, and several sets of initial conditions ardVithin the charge-ordered phases there are numerous additional

used to identify the saddle point corresponding todiubal ~ transitions at which the detailed nature of theymmetry breaking
minimum energy. changes—these are not shown. The left and right boundaries of the

stripe phase definép(V) and dgyipd V), see text.

sionV
[ &)

=
w

d-wave

Coulomb repul

e
[

8Stripe -:

n 1 n 2 n n 1 n 2 n 2 1 n n
0.1 0.2 0.3 04
Doping &

A. Ground states atN= oo ) o . .
now is that the kinetic energy disfavors crystal-like states

The results of our largét calculation can be summarized \here the holes are essentially localized. Instead, the holes
as follows: First, aty=0 alongA, we find the fully dimer-  form “stripes” where hopping in one dimension is still pos-
ized, msule.ltmg.spm-.Pelerl(so_r 2X1 bond charge-density sjple. Furthermore, the tendencies to fermion pairing on one
wave s_olut|_orf’ in which |Qj;| is nonzero only on the bonds hand and to dimerization on the other hand are still present.
shown in Fig. 1. At nonzero doping the “bare” largeN t-  Consistent with this picture, our numerical search always
J model shows phase separation for a large range of paranyie|ded lowest energy states withands broken, in a region
eterst/J; see Ref. 5. This tendency to phase separdiito Spc< 8< Ssyipe and for small values of the Coulomb repul-

a hole-rich region and a fully dimerized half filled regiaat  sjonV. These states consist bbnd-centered charge-density
V=0 is an important ingredient of our study. With the in- \yaves®® (stripeg which co-exist with superconductivity.
clusion of Hy the phase separation becomes “frustrated,” asthe effect of the kinetic energy becomes less pronounced
emphasized in Refs. 52-54, and the competition of the enyhen the doping is further decreased. Eventually, for ex-
ergy scaleg, J, andV ]eads to various kinds of charge or- tremely small dopings< Sp(t,J,V), and nonzero repulsion
dering phenomena. Different ground-state phases may be r¢-the lowest energy state is an insulating crystal of Cooper
alized depending on the strength on the Coulomb interactiomyairs which breaks symmetry. Such a state arises from the
The det_ails of these solutions will be described in the nextombination of charge ordering and pairing tendencies. De-
subsections. . _ _pending upon the parameter valueg’, J, andV also a

Figure 3 shows a representative phase diagram containinggped spin-Peierls state may be realized at small and/or in-
a cut along thev—46 plane of the parameter space for fixed termediate doping. For strong Coulomb repulsion between
t/J=1.25. Phase diagrams for other parameter values af@e chargeglargeV region in Fig. 3 one expects that hop-
shown in Figs. 6 and 7. The inclusion of additional modelping as well as pairingmediated by the magnetic interac-
parameters as a biquadratic exchange interaction can lead ign) will become unimportant. Then the situation resembles
further ground'state phaseS, these will be described in Se§.|ow_density electron gdgvhere the potentia' energy domi-
II'B. _ . . . ~ nates over the kinetic energyand the ground state becomes

Let us start the discussion of Fig. 3 with large doping.a wigner crystal built of single charges. We continue with a

Here no phase-separation tendency is present, the groungore detailed description of the characteristics of the mean-
state charge distribution is homogeneous. The magnetic ife|d ground states.

teraction together with th@nfinite) on-site repulsion leads to
pairing in thed,2_,2 channel. Moving to smaller doping, the
system encounters a phase separation instabili=, i.e.,
the holes are expelled because the magnetic interaction fa- At doping levels smaller than a criticabpqt,J) the
vors a fully dimerized half filled configuration. The Coulomb “bare” t-J model in the largeN limit shows phase
repulsion counteracts(frustrate$ this phase separation separation as explained above[Note that &pgt,J)
tendency? leading to microscopic charge ordering below a = Ostripdt,J,V=0).] In contrast, for6> dpsand smallV the
certain hole concentrationj< dgyipe. The important point ground states have uniform site charge distributions. These

1. Homogeneous superconductor
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states include a doped spin-Peierls statx {2unit cell, see S s o e
below at relatively smalls, and states with a single site per 09 ]
unit cell which are homogeneous superconductors. They cai 08 Vit=0.5 1
be characterized by two link field valugg, and Q. In 07 ]
particular, one finds al-wave superconductor witl@Q,= 0.6 ]
—Q, at intermediate (~20-50%, and an extended 0.5% ]

s*-wave superconductor witQ,=Q, for larger &. The ex-
citation spectrum of thed-wave superconductor has four
nodes whereas th& -wave phase is fully gapped.

Note that fort/J<0.3 the critical doping levebps is, in
fact, zero, sdH,; does not show phase separati@md no
stripes forV>0) at very smallt/J. Also, in the regime of
small t/J the d-wave superconductor is replaced by a state
with s*+id,2_,2 symmetry, i.e., the link fields obe®, 07 ]
=Q,e'? with a continuously varying phase Here the qua- 0.6 1
siparticle spectrum is again fully gapped, furthermore time-  os5% 7

03 1
02 — 7
N et
oo 1
08 Vit=1.0 7

Charge ordering wavevector K
[=

reversal symmetry is broken. The described results for the 04 00 = =] [0 =] .
homogeneous states are identical to the ones obtained in Re 03 ]
5. Similar states are also found for large values|toft| 02 1
where the tendency to phase separation is suppressed; s o1 - .
Sec. II B. ol
0 0.05 0.1 015 02 0.25
Doping 8

2. Spin-Peierls state

The spin-Peierls state which breakss found as ground FIG. 4. The charge-ordering wave vecto(in reciprocal-lattice
state of the undoped system in the lafgdimit. For =0 jts  UNit9 as a function ofé at N=c» for t/J=1.25(Fig. 3, and two

energy per it IS gven s/ (NN.)=—J1a. Only one of (SRt SEengn o e Couomy fepuomtt 02 an 1. For
the four link fields of the X 1 unit cell is nonzero, i.e., the P 9. P, P

L . Peierls state hak=1/2 at6=0. TheK=1 value at large5 hasC
square lattice is completely covered by dimers.

Th ding d d is the | symmetry restored, and is a putevave superconductor. For very
_'he corresponding dopé statells t e _owgst-energy Stale,al 8, the ground state is a Wigner crystal of Cooper pairs with
W'th_ a homogeneou_esltejcharge dl_strlb_utlon in the small incommensurate charge order. The unit cells for the largest plateaus
doping regime. The link fields inx directionQ;,,Q,, have are also shown.

different magnitudes reflecting the dimerization, whereas
Q1y=Qyy . The fields cannot be made real simultaneously iy 0 i,04 | this case the link fields between the stripe sites
any gauge, so the doped state breaks time-reversal invariang

Tand is full d H it trict ttention t fid the boundary sites of the insulating region vanish. How-
and s 1ully gapped. However, It we restrict our attention 10 o, o g5 5 parameter region close to the transition to a doped
states which preservé then there exists a region of small

T " spin-Peierls statésee Fig. 6 there occur “partially” formed
dimerization, [Q,—Qz,| <|Qu,l, near the transition to a stripes as ground states. These states have the same kind of

d-wave state where the_ spectrum h"?‘s_four gapless po'_ntﬁharge density modulation as described above, but the hole
Note that this state which has coexisting superconductlngiensi,[y in the hole-poor region is not zero, so the system is

and spin-Peierls order can be considered asxd zoond = 5, anisotropic 2D superconductor everNat «. In general,

charge density wave with the hole densities being equal Othe hole densityp, per unit length of each stripe is not of

all sites. Related states have been studied in Othe&der unity as found in earlier theories but significantly

a_lpp_roacheg?'“ but they find spin-Peierls order in a Fermi smaller. The values af andp, are determined primarily by

liquid, not a superconductor. t, J, V; they depend only weakly oé. For intermediate val-

ues ofV whereq=2 we found values op,~1/2, here the

stripe can be viewed as a ladder with roughly 1/4 hole per
The saddle-point solutions at small dopingpc<d  site. In general, smaller values Wfyield larger values of;

< Jswipe: @nd not too largéy, break lattice translation sym- the limit V—0 leads tog— < which reflects the tendency to

metry C and can be described as bond-centered chargghase separation in the “bare=J model.

3. States with stripe charge order

density waves. These states have>al unit cell, as shown The main effect of varying the total hole density is a
in Fig. 1. We always foung to be an even integer, reflecting change op and therefore of the stripe distance. We note that
the dimerization tendency of th&=0 solution. the stripes do not survive in the limi— 0:%* for §< Spc the

The holes prefer to segregate in one-dimensional stripedround state changes to an insulating Wigner crystal of Coo-
structures, i.e., within eaghx 1 unit cell, the holes are con- per pairs. However, for smaV/, Jpc is very small, dpc
centrated on &x 1 region. The link field in the hole-rich  ~exp(—1V). For dpc< 6< dsyipe, We find an approximate
region can be made real and have different signs amdy  proportionality p~ 1/5, which also implies thap, is nearly
direction reminiscent ofd-wave pairing correlation in the independent ob. The evolution of the ordering wave vector
stripes. Most of the stripe phases are “fully” formed stripes, K= 1/p with § is shown in Figs. 4, 6, 7, there are plateaus for
i.e., the regions between the stripes with a widthpefq  each even integer numbpr Our largeN theory only found
have a hole density of zero and are insulating and fullystripe” states in whichK was quantized at the rational pla-
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teaus in Fig. 4. The reason f@;,q being even and for the 2.5 ' T ' - 1
plateaus is easily identified as the strong dimerization ten- ]
dency of the system. The columnar arrangement of the spin
Peierls singlets immediately leads to the “staircaselike” <
curve shown in Figs. 4, 6, 7. However, for smalldrwe %
2
s3]

2

expect that irrational, incommensurate, valueXo#ill ap-
pear, and interpolate smoothly between the plateau regions

For most values of, J, andV there is a large plateau at 0.5
p=4 around dopingé=1/8, and, for some parameter re-
gimes, this is the last state befofeis restored at large; 0 : : 0
indeedp=4 is the smallest value gf for which our mean-
field theory has solutions withp; not spatially uniform.
Experimentall_)ff2’63a pinning of the charge order atawave  gig. 5. Fermionic mean-field excitation spectrum in fully
vectorK =1/4 is observed, and we consider it significant thatsyiped phases/J=1.25. The spectrum is independentigf, the
this value emerges naturally from our theory. momentum perpendicular to the stripes. Left=2 phase withp,

It is worth pointing out that the hole densipy per unit  =0.8. Right:q=4 phase withp,=0.6. In the second case the band-
length of stripe is not exactly pinned at one value whichwidth is much smaller due to the smaller doping level in the stripes
means that the stripes amet incompressible. The hole den- (p,/q). The flat bands at energy/2 correspond to excitations of
sity varies continuously within each plateau but jumps disHocalized dimers in the undoped regions.
continuously as the transition is made from one plateau to
the next. an increase in the gap and so on. If the stripe wifthanges

There are strong pairing correlations between the holes iat a plateau transition then the number of dispersing bands
each g-width region. Strictly speaking, foN=% each will also change, see Fig. 5.
g-width stripe above is a one-dimensional superconductor, At this point we briefly discuss earlier mean-field
while the intervening §— p)-width regions are insulating. calculationd’~22 which predicted an inhomgeneous charge
However, fluctuation corrections will couple with supercon-distribution in the ground state of the Hubbard and related
ducting regions, yielding an effective theory discussed inmodels. These computations were based on the observation
Sec. VIl of Ref. 64 with their dimensionless paramelter that largeS mean-field theories of doped antiferromagnets
~N. This implies that Josephson pair tunneling between th¢S denotes the size of the spishow charge-density wave
one-dimensional superconductors is a relevant perturbatioinstabilities—the same applies to the lafgetheory dis-
at sufficiently largeN, leading to a two-dimensional aniso- cussed here. An important difference, however, is the char-
tropic superconducting ground state, and should allow goodcter of the stripes. The early mean-field calculations for the
metallic conduction above the superconducting transitiorHubbard modéP~22 predict insulating, site-centered stripes
temperature. These characteristics are consistent witith a hole density of unity within the hole-rich regions; the
observation® on La,_x-yNd,Sr,Cu O,. experimentally found stripe states in the cuprates are, how-

The quasiparticle spectrum in the striped phases is alwaysver, either metallic or superconducting. In contrast to these
fully gapped because of the presence of superconductivityearly mean-field results, the present lalgecomputations
Except for the partially striped phases where the fermioryield superconducting, bond-centered stripes, and it would
spectrum shows a weak dependence on the momekfum be useful for future experiments to detect this distinction
perpendicular to the stripsthe spectrum of the stripe between bond and site centering. Let us discuss this differ-
phases ik, independent. The fermion spectrum in the par-ence more precisely for the cape=4. For the site-centered
tially striped phases were displayed in Ref. 6, and in Fig. Sstripe, the hole density per unit length in each column of
we show the quasiparticle bands for the fully striped casessites takes valuep,, p,, p3, p, before repeating periodi-
The spectrum consists of two contributions: The excitationsally (wherep,_5 are some three distinct densitipthis is
of the fully dimerized undoped regions correspond to removihe configuration usually assumed in most experimental pa-
ing one fermion from a localized dimer, the energy cost ispers. In contrast, for the bond centered state, these densities
J/2 and of course momentum independent. The stripes abke the valuegq, p1, p2, p2, and this also appears to be
width g give rise toq one-dimensional dispersing bands compatible with existing observations. The bond centering is
where the gap is determined by the pairing amplitude oimportant in the present computation for enhancing pairing
orderJ, and the total bandwidth is given bytg /q wherep, correlations, which are responsible for superconducting/
is the linear hole density per unit stripe as above. The stripenetallic transport in the direction parallel to the stripes.
excitations therefore lie in the gap of the spin-Peierls state; Possible differences in the spin dynamics between bond-
their properties are entirely determined ppyandq (and the and site-centered striped phases have been discussed by
model parametersandJ). Upon increasing the doping level Tworzydlo et al? They argued that the magnetic domains
6 within one of the plateaus in Fig. 4 the superconductingoetween the stripes can be described by spin ladders with
gap decreases slightly since the link fieldsdecrease, and either an even or odd number of legs; these two cases lead to
the position of the dispersion minimum changes correspondvery different spin-fluctuation spectra.
ing to the Fermi momentum. The transitions between the We note that a very recent NQR experinf8nndicates a
plateaus arise from level crossings, i.e., there is no criticatharge distribution which has some features consistent with
dynamics associated with them. At the transition from onehe bond-centered state: they find only two inequivalent sites
plateau to the nexip, decreases discontinuously, leading to associated with the stripes, and a density in the hole-rich
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region which is considerably smaller than 0.5. gas. The lowest Coulomb energy is again reached for the
case where the charges form a triangular lattice with a
4. Wigner crystals of Cooper pairs Wigner lattice constant- /6, however, the hole positions

have to coincide with the sites of the underlying square lat-
tice. Therefore the states at large Coulomb repul&omill

have structures incommensurate with the square lattice, i.e.,
a (infinitely) large unit cell with holes sitting on a fraction

largeN limit, the Cooper pair crystals consist of pairs of 1/5 of the sites bi=1). These sites form an approximate

adjacent sites with nonzero hole density and a nonzero bonttﬁ""mgu""lr Wigner lattice, all other sites are half fillet(

amplitudeQ between them: the remaining sites of the square_0) @nd form dimerized bondg¢The calculation shows that

lattice form singlet bonds as in the fully dimerized, undoped finite values ol/J the competition of exchange and Cou-

spin-Peierls state. The occurrence of such pair crystal statd@MP €nergies ail=cc leads to hole densities on the sites of

is intimately related to the dimerization tendency of the sysihe Wigner lattice being smaller than unity;<1, and to a

tem: In a pair crystal the repulsion energy is much smalledistortion of the ideal dimer pattern in the link fiel@snear

than a stripe state, and the hole-rich sites still form dimergach hole site. This again is an artifact of the condensation of

leading to a nonzero contribution frofd,;. (At N=co the the slave bosons in the largedimit.) _

hole density on the sites of each pair is not exactly unity, The kinetic energy in the Wigner crystal state vanishes.

b2<1, this is an artifact of the largh-limit. For physical "€ €xchange energy per site is given by/4x (1—4) at

values ofN the physical system will certainly have two elec- 10W 8 since (1-4) is the number of sites remaining for

trons per paib. singlet f_ormatlon. It is important tol/r;ote th_at the Coulomb
To minimize the repulsion energy, the hole pairs want to€Nergy is negative, i.e(Hy)~—y 6°<0 with y~V. So

form a triangular Wigner latticwith a lattice constant We can estimate the energy per site for smallto be

~+/6). However, in the present problem the hole positionsEWC/(NNs):_J/4(1_ )=y &%

have to be on the underlying square lattice. This leads to

incommensurate structures where the pairs form an approxi- B. Influence of additional model parameters

mate triangular lattice. The energy per site in this state at

small 5 is given byEpc/(NNs) =~ J/4=a & wherea con- to stripe formation at low doping is a very robust feature of

tains contributions from, J, andV. the t-J-V model atN=<. In the following we discuss the

We note here that there are also crystal-like insulatinq . : ;
X . ; ; . nfluence of the inclusion of further processes into the
saddle-point solutions with clusters of sites with NONZEero, . —onian

hole density. These “charge islands” can be considered as

an integer number of Cooper pairs bound together—the de-

scribed pair crystals are the smallest possible islands. Larger

islands occur at small doping, they replace the pair crystal We start with an additional next-nearest-neighbor hopping

phases shown in the phase diagrams at small hogpvge  t’ which is supposed to be important in certain cuprate su-

have not systematically examined all possible “island” perconductors. The largg-calculations show that the results

phases because large islands require large unit cells in trere nearly independent df as long as it is smalljt’/t|

numerical calculation. However, by estimating the ground-<0.3. Larger values of’ of either sign suppress the ten-

state energy of the “island” phases we have checked thatlency to phase separation in the “bare” modelithout

stripe phases are always favored in the experimentally interr,,). This in turn means that the stripe instability is weak-

esting doping regime, 8% 6<20%. ened; the stripe region in the phase diagram shrinks, it is
Summarizing these findings, the frustration of completeshifted to lower doping and lower values gf This is con-

phase separation by leads to two possible scenarios of sistent with, e.g., the findings of White and Scalapifio.

charge clusters with “smaller” siz€i) stripes which are d

objects, i.e., the charges are confined in one diredtiarne 2. Biquadratic exchange

}hat finite T may m.elt the strlpe_order_ Ie{;wmg behind finite We have also considered the addition of a biquadratic

ength parts of stripes; strong impurity influence may aIsoS in exchanae

break up stripes into segmehtand(ii) islands which can be P 9

considered as bound states of Cooper pairs—here the charges

are confined in both directions. The calculations show that KJ )

for physical values ot/J and not too small doping the H4:m GED (S-S) 2.9

stripe scenaridi) is favored due to the larger kinetic energy ’

of the holes in the stripes.

For very small doping the “stripe” states become un-
stable with respect to furthét breaking. This leads to two-
dimensional insulating states with restored, which can be
characterized as Wigner crystals of Cooper péirt the

The calculations presented so far show that the tendency

1. Longer-range hopping

to the Hamiltonian(2.4) for generalN. The strength of the
biquadratic interaction is given byJ. For the physical case
N=1 the biquadratic exchange term simply reducesSto
For largeV the Coulomb repulsion dominates oveandJ -§;+const, but for largeN it contains exchange processes
which leads to the appearance of Wigner crystal states—heisvolving eight fermions® For the total coupling of two
the crystal consists afingle chargesThe holes minimize (isolated spins to be antiferromagnetic there is an upper
the Coulomb energy by forming a crystal-like structure—thislimit for « which is given byx<2 for anyN.%® In the large-
is similar to the charge ordering in a low-density electronN limit the decoupling can be done in two steps, it turns out

5. Wigner crystals of single charges
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that no new link fields are necessary. At the saddle point the 3r - - - -
additional term takes the form I ]
25F .
He= S |Qij| 227 °BF ] 1,Q% +H.c.— 3N|Qy[?). = Lk Wigner crystal ]
8 i I : £ 2fpair ;
(2.10 g erysta
As discussed in Ref. 16 such a biquadratic exchange terné !
weakens the tendency to dimerization. In fact, in $1d(N) k=)
saddle-point approach it can be used to stabilize a staggereé r Stripes Spin-Peierls s* +id]
flux phase; it is expected to find a similar effect on the hole- i 1
poor regions of the stripe stat®s. 0.5 ]
In the undoped system, we find that thie=cc ground ]
state changes from spin-Peiefé& xk=0) to a box phase for o, Locieienis Locniasens S rararara : ;
0<x<1.13, and then to a “fluxlike” phase fox>1.45. A AL S 0z 03 04 0.5
(Some intermediate phase occurs for k13<1.45) All 5 [ ]
phases al>0 can be described within @22 unit cell. The g o5} Vit=0.2
box phase has nonzero link field® around isolated & | ]
plaquettes of four sites each, all other link fields varifsm g o6k ]
the fluxlike phase alQ are equal in magnitude, their phases %" _— ]
can be made real by a gauge transformation, and the expe.g o4 .
tation value of the plaquette operafflr, is real and nega- & | o==| [eo=] [ooco=] ]
tive. However, unlike in th&U(N) case there is no direction & o2t 1
associated with th& link fields. A direct interpretation in 5 Dl -
terms of a flux is therefore not possible. The described mean 0 o S UEE— S — S E—
0 0.1 0.2 0.3 0.4 0.5

field solutions are identical with the results of Marston and .
Affleck for the SU(N) Heisenberg modéf In fact, by ap- Doping
plying a generalized p_article—hol_e transformation it can be FIG. 6. Same as in Figs. 3 and 4, but f63=0.5. Upper panel:
shown t_hat the mean-field equations for the undoped SYste8round-state phases @t as function of doping and Coulomb re-
are equivalent for bot!s U(2N) and Sp(2N) cases. pulsion. Thick and thin lines denote first-order and second-order

Turning to finite doping, we find that all homogeneous yansitions, respectively. Lower panel: Charge-ordering wave vec-
phases are unstable with respect to phase separatidh attor, K (in reciprocal-lattice units for V/t=0.2. For 28%< s
=0 and low doping. The inclusion of leads to stripe states <42% the ground state is the doped spin-Peierls state bregking
similar to the ones described in Sec. Il A 3 for all values ofands; it has a uniform site-charge distribution and & 2 unit cell.
k. The hole concentratiop, in the stripes is again deter-
mined by the microscopic parameters, and is found to be
between 0.2 and 0.5 for reasonable values dfandV. The
stripes are one-dimensional superconductors, for most of the To explore further possible symmetries of the supercon-
parameter values the bond amplitud@swithin the stripes ducting order parametefwhich is represented by the link
can be made real and reflevave pairing correlationgat ~ fields Q in the mean-field theojywe consider an additional
larger V and intermediates there is a small region with next-nearest-neighbor exchange>0. Note that the inclu-
(s* +id)-like pairing in the stripes The Q fields in the in- ~ sion of such a frustrating next-nearest-neighbor exchange be-
sulating regions between the stripes reflect the structure dfveen pairs of sites on the same sublattice is straightforward
the undoped ground state: At small nonzermne finds a  Within the presenS p(2N) mean-field theory since the same
boxlike structure whereag>1.45 gives rise to a more ho- representation cbp(2N) is employed for spins on both sub-
mogeneous distribution of th@ which can be understood as lattices[in contrast to the bosoni€U(N) approach The
fluxlike arrangement with distortions at the boundariesnéw interaction is decoupled similar to the nearest-neighbor
(stripes. Interestingly, in the latter case there can occur noninteraction as described at the beginning of Sec. II; this leads
zero link fieldsQ between the stripes and the undoped regiorfo diagonal link fieldQ;; . The model with hopping termis
(leading to longer-ranged spin correlatipnisut these disap- andt’, exchange processdsandJ’ as well as biquadratic
pear for larger hole concentration in the stripes. exchange strengthgJ and xJ’ shows a number of new

At larger doping the stripes are disfavored, the groundground-state phases at the mean-field level, among them su-
state becomes a homogeneous superconductor with eithperconductors with mixed order parameters, spin-Peierls and
d-wave ors* +id symmetry. Compared to the cage=0, fluxlike phases as well as charge-ordered states.
the tendency to phase separation is slightly weakened by the As an example, we show the phase diagram tiar
introduction of the biquadratic exchange, the region of stripe=1.0,J'/J=0.4, andx=1.5 in Fig. 9. The undoped system
ground states shrinks. A sample phase diagram is shown imas a large ground-state degeneracy, small doping produces
Fig. 8. Note that the transition fromwave tos* +id sym-  stripe states due to the phase separation instability in the
metry with decreasing doping is accompanied with the openabsence of Couplomb repulsidh The stripes disappear at
ing of a gap in the fermionic spectru@and with spontaneous larger doping, leading to a superconductor with a homoge-
7T breaking. neous charge distribution. First we find d,{ ,2+id,,)-

3. Next-nearest-neighbor exchange
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FIG. 7. Same as in Figs. 3 and 4, but f6d=2.5. Upper panel:
Ground-state phases &t as function of doping and Coulomb re-
pulsion. Lower panel: Charge-ordering wave vectdt, (in

reciprocal-lattice unigsfor V/t=1.0.

wave superconductor; further increasidgleads to a pure
dy2_2 state. The d,2 2+id,y)-wave state has a fully
gapped spectrum and breaks time-reversal symmetry. It i
characterized by fou@ link fields which obeyQ,=-Q,,
Q1,=—Q;_1,andQj;=i€Q,. Here,e is a real value mea-
suring the mixing of bothd-wave order parameters. At the
transition line between thed(>_,.+id,,) state and the pure

d,2_,2-wave state the vanishes continuously.
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FIG. 8. Ground-state phase diagram for 8g(2N) t-J model
with biquadratic exchange term as function of doping and Coulomb

repulsion,t/J=0.75, k=1.5.
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FIG. 9. Ground-state phase diagram for Bpg(2N) t-J-J'-V
model with biquadratic exchange term as function of doping and
Coulomb repulsiont/J=1.0,J'/J=0.4,t'=0, k=1.5.d+id de-
notes the 7-breaking superconductor withd_,2+id,,)-wave
symmetry.

4. Alternative interaction decoupling

There has been recent intef8$P in possible ground
states which spontaneously break time-reversal symnietry
and show circulating currerifs® (doped “flux” phases.
Such states can be characterized as orbital magnets; if the
current direction around each unit cell alternates in sign be-
tween adjacent cells one obtains an orbital antiferromagnet.
To explore possible realizations of such states within our
saddle-point approach we extend the Hamiltonian by an in-
teraction term which provides decoupling in the particle-hole
channel in the larg® Ilimit. It has the form

—Ji)/(2N) (f1,f;)(f]5f 5) which also reduces t&-S,
const forN=1. The interaction is decoupled by link fields
x which take the values

Nxij =Nx§ = (fl.f1a) (2.11)

at the saddle point. In contrast to tQdfields these new fields
xij specify a direction for the linki{). For the undoped case
the phases of thg are gauge dependent, but the plaquette
operatorIl, = x12x23x34x41 IS @gain a gauge-invariant ob-
ject. In the doped system, the fielgsare directly connected
with the current transported through one linkj;
=2NIm yj;, so their phases are meaningful.

At the saddle point the Hamiltonian containing the inter-

actionJ takes the form

_ 3
Hy=2 | = 5 (Flfjaxi HHe=Nlx[)| (212

i>]

which is formally a contribution to the fermion hopping. We
also include a corresponding biquadratic interaction which
can be decoupled in the particle-hole channel leading to

—_—
Hi=%5 <Z> i | 228 £+ H.C— 3N xij|2).
1]
(2.13
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FIG. 10. Ground-state phase diagram for th& model with FIG. 11. Ground-state phase diagram for th& model with
interactionsH; and H;, t/J=1, x=1/2 J=1J), «=0 (no biqua- interactionsH; and H; which are both supplemented by a biqua-
dratic exchange There aretwo spin-Peierls phases shown: At dratic exchangex=1.5. The remaining parameters ard=1.25,
larger doping the dimerization is small leading to gapless spectrurg=0.6 (J=1.5J). OAF denotes theZ-breaking orbital antiferro-
with four nodes. Upon decreasirfgthe dimerization increases, and magnet with staggered circulating currents around each plaquette.
when it exceeds some critical value, the spectrum becomes gappegt 5=0 we have the staggered flux state.
the gap opens when the nodal points collide in pairs at points on the
. . . S
linesk,= = /2 in the extended Brillouin zone. in the “pure” SE(2N) case which is alwayd breaking.

. . . ) Sf:imilarly, the doped box state for=1/2 also preserves.
The mean-field equations show that a magnetic interaction of ¢ gne further example, we describe the ground states at

the type(2.12) is equivalent to the decoupling done within a y _ g 6 The undoped system without biquadratic exchange
SU(2N) largeN approach to the antiferromagnet. The sum(,.— ) again shows a large degeneracy. Values &f«0

of both terms};+H;, contains both possible factorizations <1.4 lead to a boxlike phase. Far>1.4 we find the stag-
(particle-particle and particle-holef the four-fermion inter- gered flux phase as ground state, hereyalare equal in
action term. It is therefore equivalent to an unrestrictedmagnitude and the plaguette operathrs have the negative
Hartree-Fock treatment of the original Heisenberg Hamil-real expectation values. The particle-particle link fields
tonian forN=1 written in terms of auxiliary fermions, pro- vanish for anyx.

vided thatJ;;=J;;. In the following, we will discuss the At finite doping, there is again no phase-separation ten-
largeN limit and treatJ and J as independent parameters, 4€Ncy atx=0.6. Forx=0 the ground-state phases are spin-

. . — . . Peierls at smallé and d-wave at largers, whereas small
concentrating on the.reglon wheﬁ&.‘]. VafY'”g the rlatlo nonzerok produces boxlike ground states. Interesting phases
x=J/(J+J) can be viewed as continuous interpolation be-gccur for k> 1.4 as shown in the phase diagram in Fig. 11:
tween theSp(2N) (x=0) andSU(2N) (x=1) approaches The staggered flux phase evolves to an orbital antiferromag-
to the antiferromagnet. net with a two-site unit cell and circulating currer{tiven

For x=1/2 (J=J) and dopings=0, we find a large by Imy) in each plaquette with alternating direction between
ground-state degeneracy which has also been reported earli®djacent plaquettes. This state is unstable to pafrinige Q
in unrestricted Hartree-Fock treatment of the Heisenbergields acquire nonzero, real values leading t@-breaking
antiferromagnet® The degeneracy can be lifted by the intro- state with coexisting orbital antiferromagnetism ahdave
duction of a biquadratic exchange>0 which leads to box- superconductivity? We note that this coexistence occurs
like phases having a2 unit cell. These states have non- here at the mean-field level, this can be contrasted to other

zero values of both th® and y link fields. mean-field theori€d where the flux andl-wave instabilities
Turning to finite doping, we find no phase separation in-occur in different orders in a i/ expansion.
stability at x=1/2 independent ok—at zero or smallV For larger doping, the currents vanish, and the ground

states with a homogeneous site charge distribution alwaystate becomes a pumkwave superconductor. All the de-
have lower energy than inhomogeneous states; there are saribed states have a gapless excitation spectrum—note here
stripe states ak=1/2. The ground state at low doping is that the flux phase can be interpreted ad,a > density
either a spin-Peierls statat x=0) or boxlike (x>0), for  wave, implying nodes of the order parameter in the diagonal
larger doping it becomes a pudewvave superconductor. The directions in momentum space.

phase diagram fox =0 is shown in Fig. 10. The spin-Peierls At very large values o¥ the dominating repulsion gives
state shows dimerization in both tigeand they fields with  rise to Wigner crystal states as described above. However,
a pattern as described in Sec. Il A 2. It is interesting to notehere are no pair crystal phases for the case$.5 and 0.6

that the doped spin-Peierls state does not break time-reversahich is related to the absence of phase-separation tenden-
symmetry7, so theQ fields can be made real by a gauge cies at these parameter values.

transformation(in contrast to the spin-Peierls state occurring Finally we note that the casg=1, i.e., the “pure”
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SU(N) interaction decoupling, leads to phase separation i8—11. As we discussed in Sec. |, for the purposes of under-
the absence of Coulomb repulsigt?® and the inclusion 0¥  standing the photoemission experiments of Ref. 40, we are

is expected to produce “striped” ground stafés. particularly interested in transitions in class A. Of these, the
N simplest involve7 symmetry breaking alone, and we will
C. Phase transitions atN = consider these in the first subsection below. Transitions in-

We briefly discuss the nature of the transitions betweervolving breaking oiC symmetry alone are considered next in
the various ground-state phases at the mean-field lével ( Sec. Il B. This is followed by a discussion of the onset of
=), The transition from al-wave superconductor, with  staggered flux order in &wave superconductdthis transi-
unbroken, to the fully formeg X 1 stripes discussed above, tion breaks7 andC symmetriegin Sec. Ill C.
can either be first order, or via intermediate states with par-
tial stripe order. In the latter case, there is first a continuous
transition to a doped spin-Peierls state withsymmetry
breaking atp=2. To our knowledge @=2 charge-ordered A continuous transition betweendawave superconductor
superconducting state has not been experimentally detecteaihd a §* +id)-wave superconductor appears in the mean-
but a search for one should be worthwhile. Then there is dield phase diagram in Fig. 8, and fluctuations in its vicinity
second second-order transition =4 state with partial will be described below. A very closely related theory ap-
stripe order, before the fully formep=4, q=2 state with  plies to the transition betweendawave superconductor and
intervening insulating stripes appears. In any case, the excy (dy2—y2+id,y)-wave superconductor shown in Fig. 9. In-
tation spectrum in the stripe states is fully gapped. The trandeed, to the order we are computing things, the results for the
sitions between the different stripe phases whemhanges scaling functions of the two transitions are identical.
its value are in general first order since they arise from level \we note that a transition betweehand (d,z_ 24idy,)
crossings. pairing was also considered recently by D.-H. (feasing a

At very small hole densities the Cooper pair crystal statesather different framework. Lee concluded that the transition
are favored over striped states, then the ground-state natujigss in the universality class of the Ising model in a trans-
changes from one-dimensional to two-dimensiofidreak-  verse field; this is equivalent to assuming that the critical
ing. Again, this transition is either first order or second ordertheory is described b$, in Eqg. (3.3 below, and places the
depending on the values bfJ, andV, in the latter case it can  transition in class B. In fact, as we show below, it is also
be visualized as additional breaking in the longitudinal necessary to include fermionic excitations: the complete
stripe direction. Finally, the transition to a Wigner crystal theory is in Eq.(3.7) below, and the transition is in a new
phase of single charges at lar§eis always a first-order ynjversality class which belongs in class A. In a separate
transition because the inherent tendency to fermion pairing ifecent work, Balatskt al** considered a “clapping” col-
broken in the Wigner crystal. lective mode in a d,2_2+idy,) superconductor: this is an

By adding a biquadratic exchange term to the Hamil-“angular” fluctuation mode expected in a state with well-
tonian we found &7-breaking superconductor wits" +id  formedd,, pairing induced by an external magnetic field; in
symmetry and a gapped spectrum. As displayed in the phas®ntrast we are interested heresjpontaneouuctuations to
diagram of Fig. 8, it shows a second-order transition to &d,2_,2+id,,) order, which will be dominated by “ampli-
pure d-wave state with increasing dOpIng Slmllal‘ly, the in- tude" ﬂuctuations represented by our f|awbe|ow
troduction of a second-nearest-neighbor exchadgecan We begin by establishing notation, and reviewing the fa-
lead to a7Z-breaking @y2-y2+id,y)-wave superconductor miliar physics of the low-energy fermionic quasiparticles in
which also has a second-order transition to a pi#eave 3 d-wave superconductor. For the most part, we will follow
state with increasing; see Fig. 9. the notation of Balent®t al*® The low-energy excitations

The SU(2N)-like interaction terni; (Sec. Il B 49 which  appear at four points in the Brillouin zone:K{K),
has to be decoupled in the particle-hole channel leads t6—K,K), (—K,—K), and K,—K). We denote the compo-
other possible transition scenarios. As shown in Fig. 10, anents of the electron annihilation operatoy, in their vicin-
‘J-conserving spin-Peierls phase is possible. Then two transity by fq,, foa, f3a, f4a, respectively, whera=1,| is the
tions are found upon decreasing doping: First there is &lectron spin component. Now introduce the four-component
second-order transition from thitwave state to dweakly ~ Nambu spinors¥,=(f1,,eapf5y) and Wo=(foa,8a0f 0p)
dimerized spin-Peierls state where the dimerization sets inwheree,,, is an antisymmetric tensor with, | =1. The ac-
The four nodes of the-wave phase are preserved, but shifttion for the fermionic excitations in thd-wave supercon-

A. d wave to (s*+id) wave or (dy2_y2+id,,) wave

gradually in momentum space. At smali®@and a “critical”  ductor is then

dimerization there is another second-order transition where

the spectrum becomes gapped. Turning toxke).6 phase d

diagram of Fig. 11, we note that the transition between the S, = dTZ VI (—iwn+vpk?+ vaky ™)V

OAF+d-wave coexistence phase and the pdtwave state (2m)" on

is second order. Both order parameters hdye ;> symme- 4K

try leading to gapless spectra. Tiesymmetry is broken in +f TS Wl —iw+veko+ v ko)W

the low doping phase with orbital currents. (2)¢ % 2Tt veky ™ uakm) V.
I1l. CONTINUOUS QUANTUM PHASE TRANSITIONS 3.1

In Sec. Il C we noted a number of continuous quantumHere 7¢ are Pauli matrices which act in the fermionic
phase transitions in the mean-field phase diagrams of Figparticle-hole spacek, , measure the wave vector from the
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nodal points and have been rotated by 45° from the axes of Our renormalization-group analysis is closely related to
the square lattice, ang-, v, are velocities. that discussed by Zinn-JustifWe will mainly restrict our
Let us now consider the transition to the*(+id)-wave  study to the case in which all the velocitiesSg , are equal
superconductor. This involves onlyZy symmetry breaking to each other. By a suitable choice of the scale of time we
of the 7symmetry, and so the order parameter is a real scalaran then set=vg=v,=1 at the outset. Deviations from
field ¢. In the presence of a nonzero, space-time-exactly equal velocities will be considered in Sec. Il A1
independentp, the superconducting gap function takes thebelow, and in future work. With exactly equal velocities, the

form action is actually Lorentz invariant and so we must have the
. dynamic exponeng=1; this value ofz will be implicitly
(CkiC-k))=Ao(cosky—cosky) +i p(cosk,+ cosky). assumed in the remainder of this paper. We introduce nota-

tion to make the Lorentz invariance explicit. We mdg

The superconducting order parameter also has a single overs (*+ )W¥,/2, and define¥, ,= —i TV\PIZ, and intro-
all complex phase, but because the superfluid stiffness iguce Lorentz indexu=r,x,y. Then Sy+Sy+Syy can be
finite, its fluctuations can be neglected in the critical theory.written in the compact Lorentz-invariant form
On general symmetry grounds, we can write down the fol-
lowing effective action forg fluctuations o l.= = 1 5
SS*+id:J dtx |\P1(9M’)/M\I’1+|‘l’2('7l#’y’u‘1’2+§((9,u¢)
E& 2+C—2V 2,20 42, 20 4a).
5(09:0)°+ 5 (V)2 +5 2+ S 0|
(3.3

here c is a velocity, sy is the parameter which tunes the whereD=d+ 1, andy*=(— 7,7, 7). We note that there is

system across the transition, ang measures the quartic 50 a corresponding actiof , ,.iq which [using Eq.
self-interaction of the order parameter. Normally, in the ab- Xy X

sence of strict particle-hole symmetry, a term with a first-(3'6)] .d|ffers only in having a relative plus sign between the
order time derivative can potentially appearSp; however, ~couplings of¥,W, andW,¥; t0 . .
¢ is a real field, and the only possible relevant teebd, ¢ We now proceed with the re_normallzatlon-group angly5|s
=(1/2)3,¢?, is a total derivative and integrates to zero. ~ Of Sex+ia OF Sy, 2+ia,, We will present the results using
The final piece of the action is the coupling betwegn the field-theoretic method as it leads to a more streamlined
and the fermionic excitations. This can be easily deducedliscussion of finite temperature properties. To this end, we
from Eq. (3.2), and the standard pairing interaction betweenintroduce the wave-function renormalizations
A(K) and the electrons. In the vicinity of the nodal points,

SQSZJ ddX dT s u o o
0 ,,, Uo ,, .
+E¢ +2_4¢ —iNgp(V W=V, ¥, |, (3.7

this coupling reduces to the very simple expresSipwe are 6=Z5"¢r,
assuming here tha€# /2, as is the case experimentdify, u
so that (cog,+cosk,) does not vanish at the nodal poihts W1 ,=Z{%W ) 5 (3.8

and the coupling constant renormalizations
sw,zf di% dr N (W IPW, +WIAW,)]. (3.9
€l2
M Zy

The remainder of this subsection will consider the properties Ao Sé’z —Z 212 A,
f£p

of the theorySy + S, + So, . Before we embark on this case,

we note the generalization to the case of a transition to -

dy2_,2+id,, order: in this cas€3.2) is replaced by o:g_ _: u, 3.9
D £y

(CkiC—_k ) =Ap(cosk,—cosky) +i ¢ sink, sink, ;
(3.5  where u is a renormalization momentum scale aSg
— D/2
in the vicinity of the nodal points, instead of E(.4), we =2[T(D/2)(4m) ]: L
obtairs® One-loop calculations of the renormalization constants us-
ing minimal subtraction of poles ia=4—D=3—d yield

équ:f di% dr N (V1YW —WIdW,)]. (3.6 _— A2
p=Ll——,
The only change is the relative minus sign between the two ¢
terms, which arises from the changing sign of the factor A2
sinksink, in Eq. (3.5 between the nodal points; it is this Zi=1— —,
change which is responsible for the nonzero spin Hall con- 2e
ductance of thed,2_,2+id,, state®® The properties of the )
theory Sy, + S¢+§W¢ are very closely related to that &, Z,=1+—,
€

+S4+ Sy, indeed, at the one-loop order we compute

things here, there is no difference between the theories, and 4

our results can be applied equally to the transition to either 7 14 3u 48 (3.10
s*+id or dy2_2+id,, order. u 2¢ ue ’ ’
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From these we obtain the beta functiom®te that we are o[~ Sr )
using the field-theorists’ definition of the beta functidrand Sff d°X 90| Iubdvd——5(9,9)
these are opposite in sign to those normally used by
condensed-matter physicists — [d,y'+d,y* 6
. 1 o v v
+.ggw>qfl(T- e |y
B(N) 6)\+7>\3 Ay’ +a, 8
=—3 SN, C (), w?Y vY _ Cuv
2 2 +|gw\lf2(—2 ) apyp)\lfz}
3 2 4 (314
plu)=—eu+t 2! FBUAT— A8 (319 It is crucial that the tensors above are traceless: this ensures,

at linear order, that such perturbations do not mix with terms

These equations have the infrared stable fixed point already in the Lorentz-invariant action, and with redundant
operators which can be removed by a rescaling of the fields
which are being integrated over.

)\*225, It is a simple matter to compute the one-loop
7 renormalization-group flow equations to the terms in Eg.
(3.14. We find
.16 - -

U =757 (3.12 B(9pr) 4 -2 -2 Guv

Bt | =x? —u3 13 0| g

le[ch controls the physics in Fhe vicinity of the quantum B(g?) —13 0 13/ \g®

critical point. In particular, the fields acquire the anomalous my my (3.15

dimensions
Clearly, we need the eigenvalues and eigenvectors of the
To=4\*2, matrix of coefficients in Eq(3.15. First, note that there is an
eigenvector, (1,1,1), with zero eigenvalue. This is expected,
and its presence is an important check on our calculation—it
n=\*?12 (3.13  corresponds to the perturbation of simply changatigve-
locities by the same amount: such a redundant perturbation
which will play an important role in the spectral functions to can be absorbed by a rescaling of spacetime coordinates, and
be discussed below. does not modify any of the physics.
In the first subsection below, we will consider the conse- The other eigenvalues and eigenvectors correspond to
quences of unequal velocities. The next subsection will dephysical differences in the velocities. The eigenvector (0,1,
scribe theT >0 quantum critical spectral response functions— 1) has eigenvalue 1/3 and corresponds to the perturbation

of the fixed point(3.13). in which vg andv, are made unequal. So such a perturba-
tion is irrelevant in the infrared, with scaling dimension
1. Unequal velocities —\*2/3=—¢€/21. The final eigenvector<12,1,1), induces

The full treatment of the problem with unequal velocities & difference b_etween the_ ve_Iocmes of the f_ermlons .and
bosons, and this perturbation is more strongly irrelevant: the

is considerably more complicated than the s'mplescaling dimension is- 13\ * 2/3— — 13¢/21.

renormalization-group analysis above, and is deferred to fu- : . . .
ture work. It is entirely possible that there are other non- ii?iwet f|1avet ﬁ:ta?ll'Shtedblth?t f/hel,- Lict)regi;fz-lrn\;larlantHﬁ)\(/(va_d
Lorentz-invariant fixed points describing the critical theory: paint1s at least finearly stable to velocily differences. Ho
however, apart from differences in the details of the scalin ver,_the scaling dimension of.the leading irrelevant operator
functions, the qualitative properties of such fixed pointsdS quite srt’nall 66{[21.)’ tﬂnd t.r,:.'s f%mﬁ Igad to very slowly
should be quite similar to the Lorentz-invariant case ex- ecaying transients in the critical behavior.

plored in more detail in Sec. Il A 2.

We will restrict our attention here to perturbations which
break Lorentz invariance in a linear stability analysis of the The problem of computing >0, quantum critical, spec-
Lorentz-invariant fixed point. Such an analysis was also cartral functions in 2-1 dimensions is one of considerable com-
ried out in Ref. 43, but the authors do not appear to havelexity. Even though the nonlinear couplings at the fixed
performed the proper decomposition of the perturbations intgoint, Eq.(3.3), are small for smalle, the low-frequency
the appropriate eigenoperators, as is required to obtain thesponse at >0 cannot be computed in a ba¢eexpansion.
correct scaling dimensions. This is because the limits—0 andw— 0 do not commute,

It is important to classify the perturbations in terms of and there are spurious low-frequency singularities in the bare
irreducible representations of the Lorentz symmetry of thee expansion: this is discussed further in the Appendix. For
fixed point. For the velocity differences, these are the symihe case of a scalar field alone, this problenTof0 dynam-
metric, traceless, second-rank Lorentz tensors. So we colies was addressed in Refs. 75 and 13 by a two-step procedure
sider the following perturbation to the actioBy+S, involving a mapping to a quasi-classical problem. Here we
+Syy: shall use the insight gained from these previous, controlled

2. T>0 spectral functions



PRB 62 COMPETING ORDERS AND QUANTUM CRITICALITY IN . .. 6737

studies to motivate a simple self-consistent one-loop theorglready present in the free propagator, and which are consis-
for computing the low-frequency relaxation rates. In contrastent with the requirement that all spectral functions are
to the previous studie’S,we are aided here by the fact that smooth atw=0 for T>0. It is precisely these low frequency
damping appears already at the one-loop levebdn, ;4 or  powers which acquire a singular form in the barexpan-
dezfyzﬂdxy, and this simplifies the solution of the self- sion, and so we are forced to use the self-consistent approach

consistent equations_ to be described below. Comparing Halg) with Eq. (11)
We shall be interested in the following retarded respons&ve see that consistency demands fhaf be universal num-
functions in the “quantum critical*® regime: bers times temperature. The purpose of the remainder of this
subsection is to determine the universal numBdéréT and
Gi(Kiwn)=Z; { W (k0,) ¥k o)), I'y/T. Before turning to this, let us also quote the form of

Eq. (3.19 in imaginary frequencies:
Gp(K,iwn)=Z, (p(k,wn) d(—k —wp).  (3.16

After analytic continuation to real frequenci€ satisfies Gi(Kjiwy)= ﬁ) Miwn+iT's sgn ) + ke + kyTX1
the scaling form in Eq(1.1), and an analogous result @, T K2+ (|wp| +T5)?
with f—b.

For >T or k>T, the response functions in E¢3.16 w| " 1
equal theirT=0 results, and these can be computed in the Gb(k,iwn)z(—) P TEE— (3.20
bare e expansion. A familiar computation in the one-loop T k?+ (Jwq| +T)

renormalized theory gives us _ ) ) )
The damping represented by , arises from interactions

o+ kT + Ky between the thermally excited bosons and fermions. The
2 e "t typical excitation will have energy of ordeéf, and as the
[k*~(0+i0)7] damping is dominated by the lowest energy excitations, the
typical interaction vertex will have external frequencies at
1 (3.17 orderT or lower. Motivated by this, we develop a perturba-
[k2—(w+i0)2]t" /2’ ' tion theory for the interactions not in terms of the bare ver-
tices, but in terms of the full interaction vertices between the
whereC; ,, are constants given by excitations. At the one-loop level, the damping terms arise
B %2 from the\, interactions alone: however, rather than expand-
Ce=1-A"%4+ ..., ing in powers of\ g, we will express the self-energy in pow-
ers of the full three-point irreducible verteXx; between one
boson ) and two Fermi @1 ,, ¥, ) fields. A convenient
Clearly, Eq.(3.17 obeys the scaling fornil.1). choice is to use the zero-momentum vertex between a Bose
Next we consider the more difficult case whergk are of ~ field at zero frequency, and Fermi fields at the minimum
orderT or smaller. Here we shall proceed by using an ansatMatsubara frequency of,,= wT. Bare perturbation theory
for the low-frequency form of the Green’s functions: this for this vertex gives
ansatz is motivated by the results of the corresponding low-
frequency regime in a number of other mod&ls® espe- d% 1
cially the exactly solvable Ising chain in a transverse ftéld. Agzxo—ng il T 72 7
In these studies, it was found that, provided the number of (2m)% on (K°+ wp)[K*+ (ent @p)°]
order parameter components was not large, the low- (321

frequency spectral functions had a simple relaxational formy, o a , is a fermionic frequency. General scaling argu-

that of degree_s of freedom ina simp_le dissipative medium. In,ants from renormalization thedRy’” show that at the fixed
the present situation, we have a single scalar order paramyio: the exact result for the vertex obeys

eter, and can expect that a similar situation should apply. W
therefore make the ansatz

Gi(k,w)=Crpu™ "

Gp(k,w)=Cpu~

Co=1—2\*2+ ... . (3.18

nf+ npl2

Te/2
- (“ Ca, (3.22

=—|£
Z:Z4?

T+l 4 Kyt +ky T T

k2—(w+iT;)2

Gf<k,w>=($)

where C3 is a universalnumber. Evaluating the frequency

B sums and the momentum integrals in E3}21), and express-

Gk w):(ﬁ) 7o 1 (3.19 ing everything in terms of renormalized couplings at the
b ™ T K= (w+ilp)? ' fixed point, and collecting low-order terms & we find that

) . _ Eqg.(3.22 is indeed obeyed, with the universal number
wherel's ,, are damping frequencies we need to determine.

The functional form forG, in Eq. (3.19 was found to be a
remarkably good fit to the low-frequency portion of the Cy=

. . . 1/2
known exact result for the spectral function of an Ising chain d+ 1
in a transverse fielt® "® A further rationale behind Eq3.19
is that we have only included terms in the self-energy of the To proceed with the damping calculation, we write down
fields which are lower powers of the frequency than thosehe structure of the self-consistent one-loop equations in

(AN*+0.37436R*3+- . ). (3.23
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terms of the Green’s functions of the bare fields; from Eqg.by the dimensionless universé@l;. We solved Eq.(3.27)
(3.16 these areGP=27;G; and GE=27,G,. We define the numerically in d=2. The results arel';/T=0.581 and
self-energies by I',/T=0.170.

By-1_ _i _<B

(Gf) "=—lontkr +k =Xy, B. C symmetry breaking in a d-wave superconductor

(GP) t=wi+k?>+s,—3P. (3.24) A number of transitions involving symmetry breaking

_ " _ in a d-wave superconductor were noted in Sec. Il. These
The self-consistent, one-loop expression for the selfinvolve the onset of either stripe or spin-Peierls order, and
energies, expressed in terms/of, are such transitions appear in Figs. 3, 7, and 10. In all cases, the

" order parameter can be identified with scaldxs, ®, rep-

B 2 y resenting the amplitude of charge-density waves with wave
Ef(k""n)_MJ( W)de T Gf(p €n)T vectors Q,0) and (0Q). If Q is commensurate with the

underlying lattice, thend, , are real; otherwiseb, , are
xGb(k—p,wn—en), complex, with their phases representing the freedom of the
charge-density wave to slide with respect to the underlying
d% lattice. On general symmetry grounds, we can write down an

SB(k,wn) = —2A§Trf 2 )dTZ YG3(p,ey) effective action ford, ,, similar to Eq.(3.3):
a €n
XG?(k-l— P,wn+ €. (3.29 SCDZJ d% dr |[77(I)X|2+|(9Tq)y|2+|vq)x|2+|vq)y|2

We will now express this in terms of renormalized quanti-
ties. First we note by comparing E.24 with Egs.(3.19

and (3.20 that we only need the imaginary part of the self-
energies at small real frequencies; in particular, the damping
coefficients can be expressed as

Uo
+SO(|q)x|2+ |(I)y|2)+ 7(|q)x|4+ |(I)y|4)

+UO|(I)X|2|(Dy|2 (3.28

Ff:

M -
T Zlim Im38(0,0),

w—0

where, for now,®, , can be either real or complex. First-
order time derivative terms, likéb} d.®,, are forbidden
w7 Im38(0,0) here by spatial inversion symmetry under whibh— @3
r,= <?) Zplim 5 (3.26 and such a term changes sign after integration by parts.
0—0 w To complete the theory, we have to consider the coupling
of @, to the gapless Fermi excitations at wave vectors
(£K,x=K). Conservation of momentum implies that there is
in fact no long-wavelength coupling betwedn, , and V', ,
(which is linear in®, ) unlessQ=2K. The mean-field
Studies of Sec. Il always obtaing@d+ 2K, and this is ex-
pected to be the generic behavior. However, we cannot rule
out the possibility that there is a mode-locking phenomenon
1 which preferentially condenses a charge-density wave at
wave vectorQ=2K over a finite range of parameters.
—(Q+i1“b)2> ForQ# 2K, Sy is the complete critical theory of the tran-

We now insert Eqs(3.20), (3.22), and(3.25 into Eq.(3.26.

To our satisfaction, we find that all factors of the renormal-.
ization factorsZ,, ¢ and the scalg: precisely cancel out, and
the remaining expressions involve only universal quantities,
Performing the frequency summation in E§.25 and in-
serting in Eq.(3.26) we obtain

<, % o
(21)¢ smr’(Q/T)
_ sition: the fermions are not part of the critical theory and so
<1 Q+il' the transition is in class B. The simplest allowed couplings
k2—(Q+iT)2 between the fermions and the critical degrees of freedom are
terms likew,/ d d7|®,|>¥ 1% ;. Simple power counting

do -1 shows thatvg has scaling dimension ii+-d, wherew is the

r,= 2c2f f correlation length exponent of the transition described by Eq.
(2m)¢ COSH (Q/2T) (3.289. We expect that this/ is greater than that of the
2 +1=three-dimensionalXY model, which is~2/3, and

<! im Q+ily hencewy is irrelevant ind=2. By counting scaling dimen-
k?—(Q+il)? sions (or by an explicit perturbative computatiopme can
) deduce that the self-energy of the nodal fermions obeys
o 1 Im 3 P~waT2d71-2/ "and so the damping rate vanishes with
N m m 327 4 superlinear power of asT—0, as expected for a class B
transition.
A simple dimensional analysis of E(.27) shows thafl can In the remainder of this section, we consider the class A
be completely scaled out of both equations for @llThe transition withQ=2K, and both incommensuratexperi-
strength of the damping is determined by the dimensionlessentally, and in our mean-field theorl is incommensu-
ratiosI';/T andT', /T, and these are completely determinedrate), so that®, , are complex. Now a coupling between
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®, , and ¥, , is possible. Writing down all possible terms magnet(OAF) (or staggered fluxandd-wave superconduct-

consistent with symmetries we obtiin

Sva= | @ A o) (DL By 0V y)

- ()\O_ go)(q)x\l,;TX\I’1+ q)ysab\PZaTZ‘Plb) + HC]
(3.29

The renormalization-group analysis 8§ + S¢+ Sy paral-

ing order!”® such a transition appears in Fig. 11 &t
~0.12. We will show that this transition is in class(id the
notation of Sec. | A

As has been emphasized by Nayakhe OAF is charac-
terized by ad-wave order parameter in the particle-hole
channel:

(3.33

<CE+G,aCk,a> =i¢(cosk,— COSky),

lels that carried out in Sec. Il A, and so we will be brief. The whereG=(,7) and ¢ is a real order parameter. As in the

theory can be shown to be Lorentz invariant orvp=v,
and {,=0, and so also has=1. For this Lorentz-invariant

above subsections, the key issue is the coupling of this order
parameter to the fermionic quasiparticles of thevave su-

case, the renormalization constants, replacing those in Egerconductor. As the order parameter carries momerg@yum

(3.10 are

5u2+p2—2)\*4
Z,=1+ —
Ue
202+ 4up — A\?
+—

Ve

Z,=1

v

(3.30

[the couplingv has been defined from, following the re-
lationship betweem andug in Eq. (3.9)], the beta functions,
replacing those in Eq3.11) are

€
BN)=— E)\+7\3,

B(u)=—eu+5u?+v2+4un?—2)\%

B(v)=—ev+2v%+4uv+4v\2—4\4,  (3.3)

and the anomalous dimensions modifying those in(Bd.3
are

nb: 2)\* 2,

n=AN*2, (3.32

no coupling, linear ing is possible unless the nodal points
are at =K, *K) with K= /2.

For K#w/2 the simplest allowed coupling is
Wofdx dr ¢>¥IW,+ ... . As we saw in Sec. Ill B, such
a coupling is irrelevant and places the transition in class B.
The damping rate obeys [BP~w3T2471-2"~T183 where
r,~0.63 is the correlation length exponent of the Ising
model ind+ 1=3 [described by the field theorg, in Eq.
(3.3

For completeness, let us also consider the special case
whereK = 7/2. Then, from Eq(3.33 we can compuf¥ the
following coupling betweerp and¥ ,:

(,‘bSab[i\I}laTX&y\Plb"‘i\IIZaTX&X‘PZb‘i‘ HC] (334)

Note that this coupling has one more derivative than those in
Egs.(3.6) and(3.29); this is a consequence of the vanishing
of the factor (co%,—cosk,) in Eq. (3.33 at the nodal points.
Therefore, Eq(3.34) is irrelevant by simple power counting.

A coupling such as Eq(3.34 will not lead to a fermion
spectral function obeying Eql.1); instead the imaginary
part of the fermionic self-energy vanishes as3fi~T2* 7,
where,>0 is anomalous dimension of the order parameter
(¢) of the Ising model inD =3 space-time dimensions. So
even forK = 7/2, this transition remains in class B.

IV. DISCUSSION

This paper has presented a comprehensive mean-field
study of realistic models of the cuprate superconductors. A
representative sample of our results appears in Figs. 3—11,
and the properties of the phases therein were summarized in
Sec. |I. These mean-field results unify many other earlier
studied*78:32.16,70.525.6036.7113nq expose the relationships

The computation of th&>0 spectral functions proceeds as between them.

before, but with the following changeg) In Egs.(3.21) and
(3.23, the\® terms have the opposite sidfii) in Eq.(3.25,
the integrand in the expression fEr? has a prefactorﬂé,
while that forEf,s has a prefactOFAg; (i) In Eq. (3.27),
the integrand in the expression fbr has a prefactor('zg,
while that forT"y, has a prefacto€3. The numerical values of
the damping coefficients are noWw;/T=1.35 andT',/T
=0.395.

C. OAF order in a d-wave superconductor

We discuss here the transition betweend-wave super-

A second focus of the paper has been on the second-order
quantum phase transitions in Figs. 3—11. We paid particular
attention to theT>0 fermionic quasiparticle spectra in the
vicinity of the nodal points in the Brillouin zone, with the
purpose of understanding the observed quantum criticality in
recent photoemission experimefiiswe divided the transi-
tions into two classes, A and &lescribed in Sec. | A with
only those in class A leading to universal damping withl
scaling near the nodal points. Particularly appealing ex-
amples of class A transitions, for which class A behavior was
generic and did not require any special parameter values,
were those involving time-reversal\ symmetry breaking in

conductor and the phase with coexisting orbital antiferro-a d-wave superconductor: the most important of these are the
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transitions from d-wave to §*+id)-wave or (2,2
+idy,)-wave superconductivity, which appeared in our
mean-field phase diagrams. The transition td,2(2
+id,,) order had the additional satisfying feature of very
naturally leading to the absence of quantum critical damping
of quasiparticles at momentar(k), (k,7) (with Osk=m),

as is found in experimerft5*’ below the superconducting
critical temperature. However, the transition involving onset g =
of “staggered-flux” (or orbital antiferromagnetorder in a \\‘\\‘ NN :\:\:\?S\ff‘;
d-wave superconductor, which broke bdfrand C symme- R
tries, wasnot of class A. We note that fermion dampingina 2

model involvingZ symmetry breaking has also been exam-

ined recently by Varm&® although he refers to quantum
criticality associated with a transition in a Fermi liquid and
not a superconductor. We also examined the onset o
“charge stripe order” ¢ symmetry breakingin the d-wave i kiT

superconductor: such transitions belonged to class A if the

charge ordering wave vector was precisely equal to the sepa- FIG. 12. Low-frequency photoemission intensity near a nodal
ration between two nodal points of tlewave supercon- point, ImG(k,) n(»), given by Egs.(4.1) and (4.2. Here,
ductor. This is a fine-tuning condition, which is also not!'+/T=0.58, which is the result for thé-wave to §* +id)-wave or
supported by experiments, and makes @hareaking transi- (dy2—y2+idy,)-wave transition discussed in Sec. lll A, ang{w)

— -1 i ;
tion a less attractive scenario for explaining fermion damp—_[eXp(“’/T)H] denotes the Fermi function.

Im G (k,0)

N

TR
N

Ing. nents of Egs(3.17) and (3.19; we express these results in
So the most viable candidate for the stéti Fig. 2 is the the form as(3.17 (3.19; P

(dy2_y2+id,y)-wave superconductor. For this case, the

damping mechanisms appear to divide the fermion excita- w\ 7 1
tions into two distinct components. The fermions along the Gf(k,w)=(?) —_—. (4.1
(1,0), (0,1) axes are strongly paired in the >-wave state K—w—2¢

but are decoupled from the critical order parameter fluctua- = _ .
tions (dy,) to the stateX: consequently there is negligible NOt© thatZ is strictly not a self-energfand thus the tilde

damping of these fermions beldT.. On the other hand, the &S SOmMe pf the self-energy corrections have alread.y been
fermions along the (1 1) axes couple strongly to th, absorbed into the prefactor of an anomalous power of

order parameter and undergo quantum critical damping a@q'(4'1)' We have also set the velocity in thi,1) direction
described by Eq(1.1). The situation changes dramatically © UNity- N

once we go abov@.. Now phase fluctuations and the pro-  For smallw,k, our result forX; in Eq. (3.19 is
liferation of hc/2e vortice$® will strongly scatter the fermi- -

ons which couple efficiently to the predominaht_ . order 3:=il't; |o| and|k|<T, (4.2
parameter: these are the fermions along X,{@1) direc-
tions, while the vortices are largely invisible to the fermions
along the (1+1) directions. Moreover, the antiferromag-
netic spin fluctuations, which were responsible for fermion
pairing along the (1)3(0,1) axes belowl., will scatter
these same fermior®n the “hot spots’) aboveT; again,
these fluctuations are invisible to the £11) direction fer-
mions because the antiferromagnetic wave vector does n%i
connect the nodal points. Indeed, as we indicated in Sec. | A,
the predominant damping of the (11) direction fermions ~ |w2—K2|
above T, continues to arise from the quantum critiah), zf:—[(k—w){m(—) —11
fluctuations to the stat¥: this mechanism applies as long as 2 T?

the quantum critical scattering length of these fermions re-

mains shorter than the superconducting phase coherence +i7r|w—k|0(|a)|—|k|)]; lo| or k[>T, (4.3

whereI';/T is a universal number. For thé¢wave to &*
+id)-wave or @,2_,2+id,,)-wave transition we estimated
I';/T=0.58 in Sec. Ill A 2, while for the onset of a certain
type of C ordering in ad-wave superconductor we obtained
I';/T=1.35 in Sec. lll B. We plot the resultd.1) and (4.2

in Fig. 12.

For largew ork, our result is in Eq(3.17). For smallz;,

s can be written as

length.

With an eye towards comparisons with photoemission ) ) _ . )
experiment€%#34°we review our results for the nodal fer- where 6~|s the unit step function. Note that the imaginary
mionic spectral functions of the class A transitions. As inpart of X vanishes forlw|<|k|, and, in the present form,
Ref. 40 we will follow the evolution of the spectral function this will lead to an infinite spectral density at the threshold
along a line from the zone center going through the nodajw|=|k|. However, this is repaired by considering correc-
points, e.g., from0,0) along the(1,1) direction through the tions to Eq.(4.3). Within the scaling limit of the universal
nodal point at K,K). At the wavevector, K +k,K+k), our  theories being considered here, we evaluate the expression
results for Eq.(1.1) are contained in the diagonal compo- (3.25 in the Appendix; atT>0, but with |wl|,|k|>T, we
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Im G, (k)
Im G, (k,0)

o/T

FIG. 14. Sample spectral function fé&/T=10—this is a cut
FIG. 13. High-frequency photoemission intensity near a nodathrough the spectrum of Fig. 13. The asymmetry of the line shape is
point, ImG;(k,w) n{(w), given by Egs.(4.3 and (4.4), with a  clearly visible(and it is not simply due to the Fermi function oc-
small impurity contributiorUizmp=o.1. curring as prefactor of the photoemission intensity

velvy is  significantly  different  from  unity.
= - Experimentally’® it is clear thatvg#v,, but this is still
T-dependent corrections R4Y~T%w and Im3{M compatible with a Lorentz-invariant fixed point: we found in
~T3 »?. These are still very small contributions, and so weSec. Ill A 1 that the leading irrelevant operator which breaks
can expect that the system will be exceptionally sensitive ta.orentz symmetry had a scaling dimension of very small
nonuniversal corrections to scaling right at the threshold freabsolute value €/21~0.048), and so the system can reside
quency. We believe that the most important of these willin a transient region with #v , over a very wide tempera-
come from elastic scattering off impurities; for a weak im- ture range. This issue will be addressed further in future
purity scattering potential);y,,, we have the additional con- work.
tribution Note added(i) Recent THz conductivity measurements
- on Bi,Sr,Ca CyOg. ; by Corsonet al® have obtained a
Eimp”'uimp|“’|' (4.4 guasiparticle relaxation rate linearly proportional To at

We have added Eq4.4), with a very small prefactor, to Eq. temperatures well below, . Combined with the photoemis-
(4.3 and plotted the result in Fig. 13; the contribution of Eq. Sion experiments) these results provide strong support for
(4.4) can be neglected almost everywhere except right negfuantum critical damping of the nodal quasiparticles in the
the threshold. It is interesting to note that our res¢ite) ~ d-wave superconductor, as is expected near a class A quan-
and (4.3 bear a superficial similarity to the “marginal tum critical point between two superconducting states. Cor-
Fermi-liquid” fitting functions®! More specifically,i) in the ~ SOnet al.observe the quantum critical damping above 20 K,
latter approach, the prefactor of the powefTah Eq. (4.1) is which suggests that t_he energy per coherenf:e volume of the
absentfii) the small|w|/T behavior of the self-energy in Eq. S€cond superconducting stasay, the (l,>_,2+1id,,) super-

(4.2) is similar to that of the marginal Fermi liquidiii) for conductot is higher than that of the-wave superconductor

. . by less than 20 K(ii) A recent work® has given a unified
large |w|/T, the k dependence in Eq4.3) [as in IME~|w e ssion of the quantum phase transitions considered here,

—k|6(|w|—1k|)] is replaced simply by It ~|w|. A sig- and those involvingM symmetry breaking considered in
nificant consequence of this last difference is that our l&rge Ref. 29.
spectral densities have more asymmetric line shdpesn
before being multiplied by the Fermi function, as is neces- ACKNOWLEDGMENTS
sary for photoemission experimentian those found in the ..
: TP ; i S We thank L. Balents, A. Castro Neto, D. Khomskii, J.

marginal Fermi-liquid functions; this is illustrated in Fig. 14. . ) ’ ’ ’

g lIquId TUNCH 1S 1S T n -9 Kirtley, S. Kivelson, J. B. Marston, C. Nayak, C. M. Varma,

It would be interesting for experiments to test for thee- . .
: 'd P and especially P. Johnson, M. Norman, M. Randeria, and J.
pendence predicted in E¢.3). : ) .
Zaanen for useful discussions. This research was supported

Finally, we reiterate an important feature of our analysis
of quantum criticality: we have only found Lorentz-invariant Y Y-S- NSF Grant No. DMR 96-23181 and by the DFG
VO 794/1-D.

fixed points at which all excitations have equal and isotropi
velocities. Section 1l A1 showed that, for theewave to
(s* +id)-wave or (dy2_,2+id,y)-wave transition, such a
fixed point was at least linearly stable to perturbations which,

e.g., sevg#v, . However, this does not rule out the possi-  This appendix will compute th&>0 scaling function for
bility that there may be other non-Lorentz-invariant fixedthe fermion spectral weight in Eq1.1) for the case of a
points of the renormalization-group equations in whichquantum critical point between ad-wave and a

obtain in addition to the leading term in E@..3), subleading

APPENDIX: PERTURBATION THEORY FOR FERMION
DAMPING
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(s* +id)-wave or @d,2_,2+idyy)-wave superconductor. We frequency regimeéiw<kgT. These singularities were cured
will use a simple renormalized perturbative expansion at thdy the self-consistent analysis described in Sec. Il A 2.
fixed point found in Sec. Ill A. We will show that such a  From the expressio(8.25, we obtain to leading order in
procedure leads to spurious singularities in the low-\? ande

n ¢ *2 1
(—) Gy MK, wp) = (—iwn+k,7*+k, ™) l—T(EHn(,u/T) +

)\*ZJ d’p s —i€q+ Pyt py T
2m? q (p?+eA[(k—p)2+(w,—€)?]

Evaluating the frequency summation, and performing the momentum integration over the terms not involving any thermal
Bose or Fermi factors, we obtain

T Sa+1

L

2In

wﬁ-i— k2>
eT?

(ﬁ)_mef1(k,wn)=—§$1>(k,wn)+(—iwn+ Ky T2+ kyTX)[ ] (A1)

T
where we have used E¢3.13, and i%” is a thermal contribution which vanishes @s-0. To leading order ire, the

expression foé%l) can be evaluated id= 3, and we obtain fok along thex direction[recall that below Eq(3.1) we rotated
the axes by 45° from the axes of the square lajtice

d3p 1

SO, @)= — 1672 f——
Hken ") (2m)? 2plp=K

» ( [n(|p—k])+f(p)I[px™(P—|p—k|) —iw,p] N [n(|p—k])—f(p)I[px7*(p+|p—k|) —iw,p] A2

(p—p—k)?+wj (p+Ip—K)?*+ 0}
wherep=|p|, k=|k|, n(k) is the Bose function, anél(k) is the Fermi function. The expression in E&2) is reliable for
|w|,k>T: evaluating the integrals in this regime we obtain the estimates quoted belo@.Bq.On the contrary, fofw|,k

<T, the above expressions are pathological; we obtain, e.g5,{10,0) ~T28(w). This should be contrasted with the
smooth behavior as a function efassumed in Eq3.19. The latter is the correct result on physical groufftisnd estimation
of the damping constants requires a self-consistent approach like that followed in Sec. Il A 2.
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