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Competing orders and quantum criticality in doped antiferromagnets
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We use a number of large-N limits to explore the competition between ground states of square lattice doped
antiferromagnets which break electromagneticU(1), time-reversal, or square lattice space-group symmetries.
Among the states we find ared-, (s* 1 id)-, and (dx22y21 idxy)-wave superconductors, Wigner crystals,
Wigner crystals of hole pairs, orbital antiferromagnets~or staggered-flux states!, and states with spin-Peierls
and bond-centered charge stripe order. In the vicinity of second-order quantum phase transitions between the
states, we go beyond the large-N limit by identifying the universal quantum field theories for the critical points,
and computing the finite temperature, quantum critical damping of fermion spectral functions. We identify
candidate critical points for the recently observed quantum critical behavior in photoemission experiments on
Bi2Sr2Ca Cu2O81d by Valla et al. @Science285, 2110~1999!#. These involve onset of a charge-density wave,
or of broken time-reversal symmetry withdx22y21 idxy or s* 1 id pairing, in ad-wave superconductor. It is not
required~although it is allowed! that the stable state in the doped cuprates be anything other than thed-wave
superconductor—the other states need only be stable nearby in parameter space. At finite temperatures, fluc-
tuations associated with these nearby states lead to the observed fermion damping in the vicinity of the nodal
points in the Brillouin zone. The cases with broken time-reversal symmetry are appealing because the order
parameter is not required to satisfy any special commensurability conditions. The observed absence of inelastic
damping of quasiparticles with momenta (p,k), (k,p) ~with 0<k<p) also appears very naturally for the case
of fluctuations todx22y21 idxy order.
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I. INTRODUCTION

A minimal approach to the physics of the cuprate sup
conductors is to assume that all relevant ground states ca
completely characterized by the manner in which they br
the global symmetries of the underlying Hamiltonian. R
lated ideas have been discussed by others in Refs. 1–3;
review by one of us see Ref. 4, and for early work we sh
extend in this paper see Ref. 5. The global symmetries ar~i!
S: the electromagneticU(1) symmetry, which is broken by
the appearance of superconducting order;~ii ! M: theSU(2)
spin rotation invariance symmetry, which is broken by ma
netically ordered states like the Ne´el state;~iii ! C: the space-
group of the square lattice, which we will consider brok
when an observable invariant underS and M, like site or
bond-charge density, is not invariant under space gr
transformations; and~iv! T: time-reversal symmetry.

Even in this limited approach, a surprisingly rich numb
of phases and phase transitions are possible. While at
enough temperatures, every phase is amenable to a con
tional quasiparticlelike description, anomalous behavior
appear in the vicinity of second-order quantum critical poi
between the phases.

This paper will study the competition between phas
which break one or more ofS, C, and T symmetries, and
describe the universal theories of the associated quan
critical points. We will do this in the context of a number
large-N computations which, by construction, only produ
ground states in whichM symmetry is preserved. Trans
tions at whichM symmetry is broken are quite important fo
certain aspects of the physics of the cuprates~as we shall
discuss later in this section!, and the absence of explicit com
putations for where such transitions may occur is the prim
PRB 620163-1829/2000/62~10!/6721~24!/$15.00
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limitation of our approach. A brief discussion of mainly th
large-N results has appeared in an earlier paper.6

A global perspective on our approach is provided by
schematic phase diagram in Fig. 1~see also the discussion b
Zaanen1 on related phases!. This sketches the qualitativ
evolution of the physics as a function of the hole dopingd,
andN, the size of the symmetry group of spin rotationsM:
we will primarily consider models in which this symmetr
group is generalized fromSU(2) to Sp(2N) ~specific details
appear in Sec. II!.

Let us first discuss the physics atd50 as a function ofN.
For small N, including the physical case,N51, we know
that the ground state has magnetic Ne´el order, and so break
M symmetry. This symmetry is restored by a continuo
quantum phase transition at the pointX. Above X, it is be-
lieved that one enters a paramagnetic phase which ge
cally has ‘‘Peierls’’ order:5,7–11 in such a state all sites ar
equivalent, but the charge and energy densities on
bonds12 have the modulation indicated schematically by t
pattern in Fig. 1. It is evident that such a state breaks on
C symmetry. So theM andC symmetries vanish at the com
mon point X, a phenomenon not generically expected in
Landau-theory-like approach suitable for high dimensio
but possible in the present low-dimensional system w
strong quantum fluctuations.13 Further above the pointX,
other phases like the ‘‘orbital antiferromagnet’’14–18 ~to be
described shortly! are also possible in certain models and w
will also discuss these.

The primary purpose of this paper is to study the phys
for d.0. Ideally, we should do this along the pathA2 in Fig.
1, which meets thed50 line belowX. Instead, we will offer
a controlled, quantitative theory along the pathA1 which
meets thed50 line aboveX. The implicit assumption under
lying such a strategy is that the quantum critical pointX is
‘‘close’’ to the regime of physically relevant parameter
6721 ©2000 The American Physical Society
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Then we can expect that the phases withM symmetry pre-
served along the pathA1 are related to the phases withM
symmetry preserved accessed by increasingd along the path
A2.

This paper describes the intricate interplay betweenC, S,
and T symmetry breaking alongA1: the body of the pape
contains a large number of phase diagrams as a functiond
and a dimensionless measure of the strength of the lo
range Coulomb interactions, and all of these lie alongA1.
Over a significant regime of parameters, we find thatC sym-
metry is broken at smaller values ofd; for very small values
of d, theC-broken phase is an insulating Wigner crystal-li
state, but for larger d we obtain a state with
co-existing1,19stripecharge order20–22and superconductivity
as sketched in Fig. 1. Moving to smaller values ofN in Fig.

FIG. 1. Schematic phase diagram of doped antiferromagn
See Sec. I for further general discussion and Sec. II for spe
quantitative phase diagrams along the lineA1. The vertical axis
represents the sizeN of the symmetry group of spin rotations,M.
Although this parameter is not experimentally variable, we prop
that a similar phase diagram would be obtained as a function o
ratio of the second (J8) to first (J) neighbor exchange interaction
There is evidence~Refs. 5,7–11! that the Peierls order shown abov
X at d50 is also found inJ82J antiferromagnets. The magnet
M symmetry is broken in the hatched region, whileC symmetry is
broken in the shaded region; there are numerous additional p
transitions at which the detailed nature of theM or C symmetry
breaking changes—these are not shown. Ford50, M symmetry is
broken only below the critical pointX, while C symmetry is broken
only aboveX. Over a significant parameter regime, and for not t
small d, the C symmetry breaking appears in the stripe patte
shown, with accompanying anisotropic superconductivity wh
breaksS. For some other parameter regimes~as in Fig. 11!, the C
symmetry breaking is realized by orbital antiferromagnetic~or stag-
gered flux! order: suchC symmetry breaking cannot survive all th
way down to the pointX. The superconductivity is pured-wave
only in the larged region whereC and M are not broken. The
smallerd region of the superconductor which preservesC andM
can also exhibit (dx22y21 idxy)- or (s* 1 id)-wave superconductiv-
ity.
f
g-

1, we expect a transition to a state withM symmetry broken
which is not contained in our computations here. The m
netic order appears in a background of charge stripe o
that is present on both sides of the transition, and the s
polarization is therefore expected to be incommensurate
collinear.2 It is important to contrast this magnetic ord
from the incommensurate ‘‘spiral’’ states that were cons
ered some time ago:23 such states have coplanar spins and
not require co-existing charge order. In contrast, the inco
mensurate, collinear spin states must coexist with cha
stripe order,24 and there is evidence that the spin incomme
suration observed experimentally is indeed of this type.25–27

Stripe charge order has been discussed first in the conte
mean-field theories for the Hubbard model,20–22a brief com-
parison of these results with the present theory will be giv
in Sec. II A 3.

The order parameter for the collinear spin ordering, d
cussed above, is an ordinaryO(3) vector,24,28,29identical to
that for the transition at the pointX at d50. To understand
the transition at whichM symmetry is restored atd.0, we
need to explore the possibility of the magnetic ord
parameter coupling to gapless fermion excitations. In all
charge stripe states, we find a strong pairing tendency
tween the holes, and as a consequence, the fermion ex
tion spectrum is either fully gapped, or has gapless exc
tions only at special points in the Brillouin zone. Assumin

ts.
c

e
e

se

s

FIG. 2. Finite temperature (T) phase diagram in the vicinity o
a second-order quantum phase transition from ad-wave supercon-
ductor as a function of some parameter in the Hamiltonians0

~which is possibly, but not necessarily, the hole concentrationd).
Superconductivity is present at temperatures belowTc , and the
superfluid density is nonzero on both sides ofs0c . The stateX is
characterized by some other order parameter~in addition to super-
conductivity! which vanishes above a temperatureTX . We will
consider a number of possibilities for the stateX in this paper,
including brokenT symmetry in a (s* 1 id)-wave or a (dx22y2

1 idxy)-wave superconductor, or in an orbital antiferromagnet, a
states with brokenC symmetry with charge-density wave order. O
particular interest will be transitions for which the scaling for
~1.1! applies to the nodal quasiparticles in the quantum critical
gion T.Tqc . As we discuss in Sec. I , this scaling could contin
to apply even aboveTc provided the thermal length associated wi
proximity to the quantum phase transition ats5s0c remains smaller
than the phase coherence length. It is the proposal of this paper
the high-temperature superconductor studied in the experimen
Ref. 40 is in the vicinity ofs0c . Indeed, this system could hav
s0.s0c , so that the ultimate ground state is an ordinaryd-wave
superconductor—the fermion spectrum then exhibits conseque
of fluctuations into stateX at T.Tqc .
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that momentum conservation prohibits the coupling betw
the magnetic order parameter and the gapless fermion e
tations~if present!, we arrive at the conclusion that the sp
disordering transition atd.0 is in precisely the same un
versality class as that atX. Figure 1 contains a line, emergin
from the pointX, along which a transition toM symmetry
restoration takes place. The gist of our arguments abov
that the universality class of the transition all along this li
is likely to be identical to that atX. The implications for such
a scenario for experiments@especially NMR~Ref. 30!# has
been reviewed recently in Ref. 4. A related scenario, a
quantitative comparisons with experiments, has been
vided recently by Morret al.31

Returning to the physics alongA1, we briefly catalog the
properties of the states found. Further details appear in
II, but the reader is urged to glance at the phase diagram
Figs. 3–11 at this stage. It is also worth noting explicitly he
that all of these phase diagrams were obtained in the largN
limit, and the precise numerical values of the parameter
the phase boundaries are not expected to be accurat
SU(2): nevertheless, the general topology of the phase
grams, and the trends in stability between the various pha
are expected to be realistic.

~i! Superconductors withC symmetry.These appear fo
larged, and for a large region of parameters the Cooper p
are in ad-wave state. We also find a (s* 1 id)-wave state32,5

and a (dx22y21 idxy)-wave state,33,34 both of which breakT
symmetry, but preserveC symmetry; the latter state has
nonvanishing spin Hall conductance.35

~ii ! Spin-Peierls.An insulating spin-Peierls state atd50
was discussed above: it breaks onlyC symmetry. We also
obtained5 for a range ofd.0 a superconducting state wit
precisely the same pattern ofC symmetry breaking; naturally
S is also broken in such a state. The signature of both st
in neutron scattering would be the same: all sites are equ
lent, but there is a modulation in the energy and charge d
sities on the bonds with a period of 2 lattice spacings.

~iii ! Stripes.The striped states are similar to the superc
ducting spin-Peierls states above, but all sites are no lon
equivalent. The states have ap31 unit cell and the holes ar
concentrated on a strip of widthq; bothp andq were always
found to be even. The widthq regions form strong one
dimensional superconductors~Luther-Emery liquids!, and
coupling between these hole-rich regions leads to anisotr
superconductivity. The hole pairing also always pref
stripes in abond-centeredconfiguration:36,6 the ground state
possesses a reflection symmetry about the centers of ce
columns on bonds, but not about any column of sit
Distinguishing2 bond and site centering20–22 is an important
issue to be resolved by future experiments.

~iv! Wigner crystal.An insulating state ford.0 is the
familiar Wigner crystal of holes, which breaks onlyC sym-
metry. This state appears when the strength of the Coulo
interactions is large enough.

~v! Pair crystal: An alternative insulating state can appe
at small d.0 and weaker Coulomb interactions. The e
change interactions induce pairing of holes, and the resul
composites then form a Wigner crystal to minimize the Co
lomb repulsion. The underlying square lattice can indu
strong distortions on the usual triangular structure of
Wigner crystal, so that the state can look like a striped c
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figuration with an additional longitudinal charge modulatio
along each hole-rich stripe.

~vi! Orbital antiferromagnet:This is also known as the
‘‘staggered flux’’ state.14–18 There are staggered, circulatin
currents around each square lattice plaquette, and the
breaksT symmetry. The unit cell has two sites and soC
symmetry is also broken, but a combination of translation
one site and time-reversal remains unbroken. At half fillin
this state has gapless fermionic excitations at nodal po
along the diagonals of the Brillouin zone, like thed-wave
superconductor. The state with co-existing orbital antifer
magnetism andd-wave superconductivity has brokenC sym-
metry ~the unit cell has two sites! and is distinct from the
(s* 1 id)-wave or (dx22y21 idxy)-wave superconductor.

The competition betweenC, M, andS breaking leading
to phases with co-existing orders@as in ~ii ! and ~iii ! above#
has been discussed by Zaanen1 on phenomenologica
grounds. However, he focuses mainly on the bosonic or
parameters, while fermionic excitations will play an impo
tant role in our considerations.

Phases related to those in~i!, ~iii !, ~iv!, and~v!, and asso-
ciated phase diagrams, appear in the work of Kivelson, Fr
kin, and Emery.19 These authors use liquid-crystal-like pic
tures, in which quasiindependent one-dimensional Luttin
liquids are allowed to fluctuate transversely, and obt
qualitative phase diagrams. In contrast, our work is intrin
cally two-dimensional, and the quantum fluctuations are t
more strongly to the underlying lattice sites; further we sh
obtain quantitative results for phase diagrams, albeit in
largeN limit.

It is interesting that none of the states above is an ordin
Fermi liquid: such a state appears to be always unstabl
some ordering induced by breaking one or more ofC, S, M,
or T symmetries. In this respect our results are similar
recent results of Honerkampet al.37 and Ledermannet al.;38

however, they find renormalization-group instabilities of t
Fermi liquid to states somewhat different from those d
cussed above.

We conclude our discussion of mean-field theory by n
ing that a separate study ofC symmetry breaking in doped
antiferromagnets has been carried out recently by Stojko´
et al.:39 they examined the competition between stripe a
Wigner-crystal-like phases in a semiclassical theory of h
dynamics.

Quantum phase transitions

We have already discussed above the nature of theM
ordering transition in Fig. 1, and its possible relationship
NMR experiments.4,30 Here we shall explore the nature o
the quantum phase transitions between the phases fo
alongA1 ~which do not involve order parameters associa
with M symmetry!, and their possible relationship to qua
tum critical scaling observed in a recent photoemiss
experiment.40

Many of the transitions in our phase diagrams are fi
order. These do not have interesting fluctuation spectra,
we will not consider them further. We will consider secon
order transitions atd.0, in which the ground state is supe
conducting on both sides of the transitions~see Fig. 2!. One
of these states is ad-wave superconductor, while the other
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denoted as superconducting stateX in Fig. 2; we will discuss
different candidates for stateX below. Such second-orde
transitions fall into two classes depending on the behavio
the fermion spectra in the vicinity of the nodal points of t
d-wave superconductor. These points are at40 (6K,6K)
with K50.391p ~at optimal doping!, and throughout the re
mainder of this paper, unless noted otherwise, we will
implicitly referring to the fermionic Bogoliubov quasipart
cles in the vicinity of these points.@We will discuss the prop-
erties of the gapped fermionic quasiparticles near (0,p),
(p,0) at the end of Sec. I.# The two classes are:~A! There is
efficient scattering and damping of the nodal fermionic q
siparticles, and as a result the fermionic spectral funct
obeys ‘‘naive’’ quantum critical scaling@see Eq.~1.1! be-
low#, of the type observed experimentally;40 and~B! the gap-
less, Bogoliubov, fermionic quasiparticles can be neglec
in the scaling limit of the critical theory, and so their dam
ing appears only upon considering corrections to scaling,
vanishes with superlinear powers of temperature~T! as T
→0.

The simplest of the transitions in class A are those t
involve time-reversal symmetry breaking in thed-wave su-
perconductor: transitions from ad-wave superconductor to
state X which is either a (s* 1 id)-wave32,5 or a (dx22y2

1 idxy)-wave33,34superconductor. It is important to note th
both these transitions occur for only at afinite attractive cou-
pling in the s* or dxy pairing channels. This is to be con
trasted to pairing instabilities of a Fermi liquid, which wou
occur at infinitesimal attraction in either channel. Howev
when the parent state is adx22y2-wave superconductor, th
vanishing density of states at the Fermi level removes
usual BCS log divergence in the Cooper pair propagator,
a finite attraction is required for further pairing in thes* or
dxy channels. This finite coupling instability is directly re
sponsible for a nontrivial quantum critical point, with stron
thermal and quantum fluctuations leading to class A beh
ior, whose effects we shall describe and exploit in this pap
Much of the more recent discussion~see Ref. 41 and refer
ences therein! of (dx22y21 idxy)-wave superconductivity ha
focused on the case where this order is induced by exte
perturbations like an applied magnetic field, and is motiva
partly by the experiments of Ref. 42. In contrast, in our p
per, we are interested in the spontaneous appearance of
order, and this is necessarily associated with a sharp tra
tion andT symmetry breaking. There is a divergent susc
tibility associated with this symmetry breaking, and this w
lead to a low energy amplitude fluctuation mode distin
from that discussed in Ref. 41.

Another transition involving breaking of time-revers
symmetry is that between ad-wave superconductor and
stateX in which d-wave superconductivity and orbital ant
ferromagnetism co-exist. Unlike the above, this transit
will be shown to be in class B.

A slightly more complicated transition in class A is one
which X involves the onset ofC symmetry breaking in a
d-wave superconductor: such a transition is the boundar
the C-broken region in Fig. 1. However, a special conditi
is required for such a transition to be in class A: the char
ordering wave vector should precisely equal the wave ve
between two nodal points in thed-wave superconductor; oth
erwise the transition is in class B. The theory for such
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transition is closely related to models for the onset of an
ferromagnetism in ad-wave superconductor considered r
cently by Balentset al.43 We note that others have also di
cussed quantum phase transitions involving stripe or cha
density wave order in the cuprate superconductors in re
years;1,44 however, in contrast to us, these works have eit
ignored interplay with the dynamic properties of th
fermions,1 or focused on transitions in a Fermi-liquid groun
state,44 not ad-wave superconductor.

The hallmark of the class A transition is that in itsT.0
‘‘quantum-critical’’ region13 ~see Fig. 2!, the fermion
Green’s function near one of the nodal points of thed-wave
superconductor obeys

Gf~k,v!5
A f

T(12h f )/z
F fS \v

kBT
,

vk

~kBT!1/zD ; ~1.1!

herez is the dynamic critical exponent (z51 for the specific
models solved in this paper!, k measures the distance from
one of the nodal points of thed-wave superconductor,v is a
measuring frequency,v is a velocity ~for z51), A is an
overall amplitude,h f is a universal anomalous dimensio
andF f is a universal scaling function of its two argumen
We emphasize that unless the system happens to be prec
at the quantum-critical point, which is generically not e
pected to be the case, the scaling form~1.1! will eventually
fail asT→0. Indeed, if we define a lower crossover tempe
ture Tqc so that Eq.~1.1! holds for T.Tqc , then Tqc;us0
2s0cuzn wheres0 is some coupling constant in the Hami
tonian, theT50 quantum critical point is ats05s0c , andn
is the usual correlation length critical exponent. ForT
,Tqc , normal Bogoliubov quasiparticle behavior emerg
and this is indeed observed40,45–49to be the case experimen
tally at very lowT. We emphasize further that it is not eve
necessary that the points05s0c be in an experimentally ac
cessible parameter regime. So if we are considering
d-wave to (dx22y21 idxy)-wave transition~for definiteness!,
then it is not required~although it is permissible! that the true
ground state of a cuprate compound be
(dx22y21 idxy)-wave superconductor over some doping
gime. It is only necessary that a (dx22y21 idxy)-wave super-
conductor be close enough to the physical regime, so
dynamic fluctuations to (dx22y21 idxy)-wave order are ap-
parent in the quantum critical regime. Postulating the ex
tence of a (dx22y21 idxy)-wave ground state somewhere
parameter space is then a powerful theoretical tool for
taining a controlled description of this intermediate tempe
ture regime. When this paper was almost complete, inter
ing experimental evidence for brokenT symmetry near
defects was reported;50 these results support the hypothes
that the bulk energy of a superconductor with brokenT sym-
metry is not very much higher than that of ad-wave
superconductor,51 and that a quantum phase transition b
tween these states may indeed be near the experimen
accessible parameter space.

One of the purposes of this paper is to develop a met
for computing the universal functionF f in Eq. ~1.1! for the
various transitions in class A noted above. We will find th
two different methods are necessary, depending on
frequency/wave-vector regime being accessed. Forvk
@kBT or \v@kBT, a straightforward resummation of
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renormalized perturbative expansion suffices. However,
vk,kBT and\v,kBT, an entirely different approach has
be developed. Now there is strong damping induced by s
tering between thermally induced excitations, and we co
pute it in a self-consistent theory of excitations scattering
a renormalized, temperature-dependentT matrix.

It is important to keep in mind that the class A transitio
being considered here have long-range superconducting
der on both sides of the quantum critical point. The ord
parameter associated with the transition involves eitherC or
T symmetry breaking, and has no direct relationship toS
symmetry. The main role of the superconducting order is
define the bare spectrum of the fermion excitations wh
then interact with the critical order-parameter fluctuations
the experiments,40 scaling related to Eq.~1.1! is also ob-
served above the superconducting transition temperaturTc
~which is quite distinct fromTqc and could be either above o
below it!; indeed there is no signature ofTc in the photo-
emission spectrum~while belowTqc there is a crossover to
conventional quasiparticle behavior!. Our quantum critical
theory entirely neglects the fluctuations of the supercond
ing order itself, but this does not limit its applicability t
below Tc ; rather, we only need to impose the more limit
constraint that the phase coherence length of the super
ducting order parameter is larger than the inelastic scatte
length of the class A transition withC or T symmetry break-
ing. This constraint is automatically satisfied belowTc , and
can easily be satisfied over a wide range of temperat
aboveTc . Indeed, the latter length, by Eq.~1.1!, decreases a
;1/T1/z, and so the constraint becomes less stringent aT
increases.

Finally, we discuss the important issue of the gapped q
siparticles well away from the nodal points of thed-wave
superconductor. The fermionic quasiparticles with mome
(p,k), (k,p) ~with 0<k<p) have a nonzero excitation en
ergy which is a minimum near48,49k'0.18p at optimal dop-
ing. Experiments45–47 clearly indicate that these quasipar
cles are sharply defined at all temperatures belowTc , and do
not show any sign of ‘‘quantum critical’’ damping~we thank
M. Norman and M. Randeria for emphasizing this to us!. So
the order-parameter fluctuations discussed above, which
responsible for the quantum critical damping near the no
points (6K,6K), clearly cannot couple efficiently to th
quasiparticles on the lines between (p,p) and (p,0), (0,p).
For the case of a transition fromd-wave to
(dx22y21 idxy)-wave superconductivity~discussed in Sec
III A ! this is, in fact, very naturally the case: thedxy order
parameter;sinkx sinky vanishes when eitherkx5p or ky
5p. For the transition fromd wave to (s* 1 id) wave~also
discussed in Sec. III A!, the s* order parameter;(coskx
1cosky), and this vanishes at the points (p,0), (0,p); how-
ever, there will be some residual coupling as one mo
away from these points to (p,k), (k,p) with k'0.18p. Fi-
nally, for the transitions in class A involving the onset ofC
symmetry breaking~to be discussed in Sec. III B!, momen-
tum conservation makes the coupling of the order param
to fermions near (p,0), (0,p) very ineffective: the order
parameter scatters the fermions to a region of the Brillo
zone where the quasiparticles have an even higher ener

The outline of the remainder of this paper is as follows.
Sec. II we present the results of the large-N study alongA1.
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The universal theories of the second-order quantum ph
transitions appear in Sec. III. A summary of our results an
discussion of experimental issues is in Sec. IV. A calculat
of the fermion damping in a naive renormalized perturbat
theory, and its failure in the low-frequency regime\v
,kBT is discussed in the Appendix. Readers not interes
in specific details of our results can glance at Figs. 3–11
move ahead to Sec. IV.

II. Sp„2N… t-J MODEL IN THE LARGE- N LIMIT

For a microscopic investigation of the ground states
doped antiferromagnets we start from the usualt-J model
HtJ on the sitesi of a square lattice, which is complemente
by a CoulombHV interaction between the electrons,H
5HtJ1HV ,

HtJ5(
i . j

F2t i j cis
† cj s1H.c.1Ji j S Si•Sj2

ninj

4 D G ,
HV5(

i . j
Vi j ninj . ~2.1!

The electron operatorsc† exclude double occupancies whic
expresses the~infinite! electronic on-site repulsion.ni

5cis
† cis is the charge density at sitei. We are primarily

concerned with the case where the fermion hoppingt i j and
exchangeJi j act only wheni , j are nearest neighbors, i
which caset i j 5t andJi j 5J; however, we will occasionally
refer to cases with second neighbor hopping (t8) or ex-
change (J8). For the off-site Coulomb repulsionVi j we as-
sume weak or no screening since the zero-tempera
ground states will be either insulating or superconducting
both cases the density of states at the Fermi-level vanis
Therefore we will use a 1/R decay of the interaction,Vi j
5V/uRi2Rj u, and the strength of the repulsion is param
ter ized byV. The Vi j are included to counteract the pha
separation tendency of thet-J model,52,5,53–55and play a key
role in our analysis.

We shall be interested in describing the ground state oH
as a function of its couplings and the average doping c
centrationd. We generalize the spin symmetry5,9,56 from
SU(2) to Sp(2N) and examine the limit of large degenera
N. In the large-N approach the ground state of the system c
be found in a saddle-point approximation~which becomes
exact forN5`). Large-N expansions have been applied to
large number of antiferromagnetic spin systems as well a
models with doping. The motivation for using the symplec
Sp(2N) generalization instead of the more commonSU(N)
variant is that it does not rely on a two-sublattice structure
the underlying antiferromagnet and is therefore more app
priate for systems where frustration may play a role.9 Fur-
thermore, theSp(2N) approach includes naturally pairing o
spins which leads to superconducting ground states when
system is doped.@Note that bothSp(2N) and SU(2N) re-
duce to the usualSU(2) symmetry group forN51.# Apart
from studies oft-J models like Eq.~2.1!, Hubbard models
with Sp(2N) symmetry have also been studied.57,58

The behavior of the system in the large-N limit depends
on the representation ofSp(2N) used for the spin operators
In the context ofSU(N) approaches to the two-dimension



ric

-
n
u

ei

-

he

-

y

ro

.
in
s

-

y

f a

ou-

e

nt

a
is

n-
eri-

ul-

ier
n
be

6726 PRB 62MATTHIAS VOJTA, YING ZHANG, AND SUBIR SACHDEV
~2D! Heisenberg model especially totally symmet
~bosonic! and totally antisymmetric~fermionic! representa-
tions have been applied, see, e.g., Refs. 14, 16, 59, and
For the present problem of thet-J model it turns out that a
simple large-N limit ~leading to a saddle point in the free
energy functional! exists only for a fermionic representatio
of the spin degrees of freedom. As discussed in the introd
tion, in this case the ground state of the undoped~Heisen-
berg! model does not break spin rotation symmetryM. In-
stead, translation and rotation symmetriesC are broken and
the state has been shown to be a paramagnetic spin-P
state which can also be considered as abond-centered
charge-density wave. Recent work10 has shown strong evi
dence for this order in thefrustrated SU(2) quantum anti-
ferromagnet on a square lattice~with J8.0).

Let us now describe the details of the large-N approach.
In the following we consider spins transforming under t
antisymmetric product ofm fundamentals ofSp(2N), the
large-N limit is taken withm/N constant. The spins are rep
resented by fermionsf a, a51 . . . 2N, which transform un-
der the fundamental ofSp(2N). The holes are described b
spinless bosonsb, ci

a5 f i
abi

† . The local constraint of thet-J
model acquires the form

f ia
† f i

a1bi
†bi5m. ~2.2!

Here we will only discuss states being half filled at ze
doping, m5N. The average hole concentrationd is deter-
mined by

1

Ns
(

i
f ia

† f i
a5N~12d!, ~2.3!

where Ns denotes the~infinite! number of lattice sites
Within the Sp(2N) generalization of the system, the sp
operatorsSi become fermion bilinears times the tracele
generators ofSp(2N), the Hamiltonian~2.1! takes the form

Ht5(
i . j

F2
t i j

N
bi f ia

† f j
abj

†1H.c.G1(
i

l i~ f ia
† f i

a1bi
†bi2N!

1m(
i

~bi
†bi2Nd!,

HJ5(
i . j

F2
Ji j

2N
~J ab f ia

† f j b
† !~Jgd f j

d f i
g!G

HV5(
i . j

Vi j

N
bi

†bibj
†bj , ~2.4!

where we have splitHtJ5Ht1HJ for convenience. The
Lagrange multipliersl i enforce the local occupation con
straint, andm fixes the average hole density.J ab denotes the
antisymmetricSp(2N) tensor:
60.

c-

erls

s

J ab5Jab5S 1

21

1

21

�

�

D . ~2.5!

We remind the reader thatH given in Eq.~2.4! reduces to
Eq. ~2.1! for the ‘‘physical’’ case ofN51.

In the limit N5` at zero temperature the bosonsbi con-
dense,^bi&5ANbi , so bi

2 is the hole density andN(1
2bi

2)5^ni& the charge density at sitei. The exclusion of
double occupancies in theN51 case is now represented b
the on-site constraint̂ni&<N sincebi

2.0. The long-range
nature of Coulomb interaction requires the introduction o
background charge of magnituded on each lattice site for the
total system to be charge neutral. The interaction is dec
pled by the introduction of the link fieldsQi j with the saddle-
point values

NQi j 5^J ab f ia
† f j b

† &5
1

bibj
^J abcia

† cj b
† &. ~2.6!

The Qi j represent the complex bond pairing amplitudes. W
note thatQi j 5Qji , and the phases of theQi j are only fixed
up to a global gauge transformation,f i→ f ie

iQ, which leads
to Qi j →Qi j e

22iQ. However, the plaquette operatorPQ ,
which can be defined asPQ5Q12Q23* Q34Q41* for the sites
1 . . . 4 at thecorners of a unit square, is a gauge-invaria
object.

At the saddle point the Hamiltonian takes the form

Ht5(
i . j

@2 t i j bibj f ia
† f j

a1H.c.#1(
i

l i~ f ia
† f i

a1Nbi
22N!

1mN(
i

~bi
22d!,

HJ5(
i . j

F2
Ji j

2
~J ab f ia

† f j b
† Qi j* 1H.c.2NuQi j u2!G

HV5(
i . j

N Vi j ~bi
22d!~bj

22d!, ~2.7!

which is bilinear in the fermions and can be solved by
Bogoliubov transformation. The saddle-point solution
found by minimizing the total free energy with respect tobi
and Qi j at fixed average fermion occupation and hole de
sity. The saddle-point equations have been solved num
cally with unit cell sizes up to 32 sites. The Coulomb rep
sion term in the large-N limit is purely ‘‘classical,’’ i.e., it
does not involve the fermions. Using the lattice Four
transformsVk and nk of interaction and charge distributio
respectively, the Coulomb contribution to the energy can
re-written as

HV5NsN(
k

Vknkn2k . ~2.8!
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The interactionVk5V(RÞ0eikR/uRu behaves as;k21 for
small k5uku, but becomes negative around the center of
Brillouin zone. ~Note that there is no on-site contributio
from V, Vii 50, since the occupation constraint is alrea
taken care of by the local chemical potentiall i .)

The numerical determination of the minimum-energy co
figuration in the large-N limit consists of two nested loops
~i! Starting from an initial guess forQi j , bi , l i the fermi-
onic Hamiltonian is diagonalized using a discrete moment
grid (322 is sufficient for unit cells up to eight sites!. The
expectation valueŝf ia

† f j b
† & provide new values for theQi j ,

new bi are obtained frombi
2512^ f ia

† f i
a&/N, and the aver-

age chemical is adjusted~by a simple bisection step! to
match the doping level. This is repeated until convergenc
reached.~ii ! The optimum charge distribution within the un
cell of Nc sites is found by minimizing the total energy@ob-
tained in loop ~i!# with respect to the differences in th
chemical potentialsl̃ i5l i2l1. This is a minimum search in
a (Nc21)-dimensional space and can be performed by s
dard methods. To account for the possible existence of m
than one saddle point the initial link field valuesQi j are
chosen randomly, and several sets of initial conditions
used to identify the saddle point corresponding to theglobal
minimum energy.

A. Ground states atNÄ`

The results of our large-N calculation can be summarize
as follows: First, atd50 alongA1 we find the fully dimer-
ized, insulating spin-Peierls~or 231 bond charge-density
wave! solution59 in which uQi j u is nonzero only on the bond
shown in Fig. 1. At nonzero dopingd the ‘‘bare’’ large-N t-
J model shows phase separation for a large range of pa
eterst/J; see Ref. 5. This tendency to phase separation~into
a hole-rich region and a fully dimerized half filled region! at
V50 is an important ingredient of our study. With the i
clusion ofHV the phase separation becomes ‘‘frustrated,’’
emphasized in Refs. 52–54, and the competition of the
ergy scalest, J, andV leads to various kinds of charge o
dering phenomena. Different ground-state phases may b
alized depending on the strength on the Coulomb interact
The details of these solutions will be described in the n
subsections.

Figure 3 shows a representative phase diagram contai
a cut along theV–d plane of the parameter space for fixe
t/J51.25. Phase diagrams for other parameter values
shown in Figs. 6 and 7. The inclusion of additional mod
parameters as a biquadratic exchange interaction can le
further ground-state phases, these will be described in
II B.

Let us start the discussion of Fig. 3 with large dopin
Here no phase-separation tendency is present, the gro
state charge distribution is homogeneous. The magnetic
teraction together with the~infinite! on-site repulsion leads to
pairing in thedx22y2 channel. Moving to smaller doping, th
system encounters a phase separation instability atV50, i.e.,
the holes are expelled because the magnetic interaction
vors a fully dimerized half filled configuration. The Coulom
repulsion counteracts~frustrates! this phase separatio
tendency52 leading to microscopic charge ordering below
certain hole concentration,d,dStripe. The important point
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now is that the kinetic energy disfavors crystal-like sta
where the holes are essentially localized. Instead, the h
form ‘‘stripes’’ where hopping in one dimension is still pos
sible. Furthermore, the tendencies to fermion pairing on
hand and to dimerization on the other hand are still pres
Consistent with this picture, our numerical search alwa
yielded lowest energy states withC andS broken, in a region
dPC,d,dStripe and for small values of the Coulomb repu
sionV. These states consist ofbond-centered charge-densit
waves36,6 ~stripes! which co-exist with superconductivity
The effect of the kinetic energy becomes less pronoun
when the doping is further decreased. Eventually, for
tremely small doping,d,dPC(t,J,V), and nonzero repulsion
V the lowest energy state is an insulating crystal of Coo
pairs which breaksC symmetry. Such a state arises from t
combination of charge ordering and pairing tendencies.
pending upon the parameter valuest, t8, J, and V also a
doped spin-Peierls state may be realized at small and/o
termediate doping. For strong Coulomb repulsion betwe
the charges~largeV region in Fig. 3! one expects that hop
ping as well as pairing~mediated by the magnetic interac
tion! will become unimportant. Then the situation resemb
a low-density electron gas~where the potential energy dom
nates over the kinetic energy!, and the ground state become
a Wigner crystal built of single charges. We continue with
more detailed description of the characteristics of the me
field ground states.

1. Homogeneous superconductor

At doping levels smaller than a criticaldPS(t,J) the
‘‘bare’’ t-J model in the large-N limit shows phase
separation5 as explained above.@Note that dPS(t,J)
5dStripe(t,J,V50).# In contrast, ford.dPS and smallV the
ground states have uniform site charge distributions. Th

FIG. 3. Ground-state phase diagram ofH at N5`, t/J51.25.
Except for thed-wave superconductor all states haveC broken. The
‘‘stripe’’ states have coexisting charge-density wave order and
perconductivity; the crystal states are insulating. The thick lin
denote phase transitions being first order in the large-N limit.
Within the charge-ordered phases there are numerous addit
transitions at which the detailed nature of theC symmetry breaking
changes—these are not shown. The left and right boundaries o
stripe phase definedPC(V) anddStripe(V), see text.
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states include a doped spin-Peierls state (231 unit cell, see
below! at relatively smalld, and states with a single site pe
unit cell which are homogeneous superconductors. They
be characterized by two link field valuesQx and Qy . In
particular, one finds ad-wave superconductor withQx5
2Qy at intermediated (;20–50%!, and an extended
s* -wave superconductor withQx5Qy for largerd. The ex-
citation spectrum of thed-wave superconductor has fou
nodes whereas thes* -wave phase is fully gapped.

Note that fort/J,0.3 the critical doping leveldPS is, in
fact, zero, soHtJ does not show phase separation~and no
stripes forV.0) at very smallt/J. Also, in the regime of
small t/J the d-wave superconductor is replaced by a st
with s* 1 idx22y2 symmetry, i.e., the link fields obeyQy
5Qxe

iu with a continuously varying phaseu. Here the qua-
siparticle spectrum is again fully gapped, furthermore tim
reversal symmetryT is broken. The described results for th
homogeneous states are identical to the ones obtained in
5. Similar states are also found for large values ofut8/tu
where the tendency to phase separation is suppressed
Sec. II B.

2. Spin-Peierls state

The spin-Peierls state which breaksC is found as ground
state of the undoped system in the large-N limit. For d50 its
energy per site is given byESP/(NNs)52J/4. Only one of
the four link fields of the 231 unit cell is nonzero, i.e., the
square lattice is completely covered by dimers.

The corresponding doped state is the lowest-energy s
with a homogeneoussite-charge distribution in the sma
doping regime.5 The link fields inx directionQ1x ,Q2x have
different magnitudes reflecting the dimerization, where
Q1y5Q2y . The fields cannot be made real simultaneously
any gauge, so the doped state breaks time-reversal invari
T and is fully gapped. However, if we restrict our attention
states which preserveT, then there exists a region of sma
dimerization, uQ1x2Q2xu!uQ1xu, near the transition to a
d-wave state where the spectrum has four gapless po
Note that this state which has coexisting superconduc
and spin-Peierls order can be considered as a 231 bond
charge density wave with the hole densities being equa
all sites. Related states have been studied in o
approaches,60,11 but they find spin-Peierls order in a Ferm
liquid, not a superconductor.

3. States with stripe charge order

The saddle-point solutions at small doping,dPC,d
,dStripe, and not too largeV, break lattice translation sym
metry C and can be described as bond-centered cha
density waves. These states have ap31 unit cell, as shown
in Fig. 1. We always foundp to be an even integer, reflectin
the dimerization tendency of thed50 solution.

The holes prefer to segregate in one-dimensional stri
structures, i.e., within eachp31 unit cell, the holes are con
centrated on aq31 region. The link fieldsQ in the hole-rich
region can be made real and have different signs inx andy
direction reminiscent ofd-wave pairing correlation in the
stripes. Most of the stripe phases are ‘‘fully’’ formed stripe
i.e., the regions between the stripes with a width ofp2q
have a hole density of zero and are insulating and fu
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dimerized. In this case the link fields between the stripe s
and the boundary sites of the insulating region vanish. Ho
ever, for a parameter region close to the transition to a do
spin-Peierls state~see Fig. 6! there occur ‘‘partially’’ formed
stripes as ground states. These states have the same ki
charge density modulation as described above, but the
density in the hole-poor region is not zero, so the system
an anisotropic 2D superconductor even atN5`. In general,
the hole densityr l per unit length of each stripe is not o
order unity as found in earlier theories but significan
smaller. The values ofq andr l are determined primarily by
t, J, V; they depend only weakly ond. For intermediate val-
ues ofV whereq52 we found values ofr l;1/2, here the
stripe can be viewed as a ladder with roughly 1/4 hole
site. In general, smaller values ofV yield larger values ofq;
the limit V→0 leads toq→` which reflects the tendency t
phase separation in the ‘‘bare’’t-J model.

The main effect of varying the total hole density is
change ofp and therefore of the stripe distance. We note t
the stripes do not survive in the limitd→0:61 for d,dPC the
ground state changes to an insulating Wigner crystal of C
per pairs. However, for smallV, dPC is very small, dPC
;exp(21/V). For dPC!d!dStripe, we find an approximate
proportionalityp;1/d, which also implies thatr l is nearly
independent ofd. The evolution of the ordering wave vecto
K51/p with d is shown in Figs. 4, 6, 7, there are plateaus
each even integer numberp. Our large-N theory only found
‘‘stripe’’ states in whichK was quantized at the rational pla

FIG. 4. The charge-ordering wave vectorK ~in reciprocal-lattice
units! as a function ofd at N5` for t/J51.25 ~Fig. 3!, and two
different strengths of the Coulomb repulsionV/t50.5 and 1.0. For
the stripe states as illustrated in Fig. 1 we haveK51/p, the spin-
Peierls state hasK51/2 atd50. TheK51 value at larged hasC
symmetry restored, and is a pured-wave superconductor. For ver
small d, the ground state is a Wigner crystal of Cooper pairs w
incommensurate charge order. The unit cells for the largest plat
are also shown.
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teaus in Fig. 4. The reason forp,q being even and for the
plateaus is easily identified as the strong dimerization t
dency of the system. The columnar arrangement of the s
Peierls singlets immediately leads to the ‘‘staircaselik
curve shown in Figs. 4, 6, 7. However, for smallerN we
expect that irrational, incommensurate, values ofK will ap-
pear, and interpolate smoothly between the plateau regio

For most values oft, J, andV there is a large plateau a
p54 around dopingd51/8, and, for some parameter r
gimes, this is the last state beforeC is restored at larged;
indeedp54 is the smallest value ofp for which our mean-
field theory has solutions withbi not spatially uniform.
Experimentally,62,63 a pinning of the charge order at a wav
vectorK51/4 is observed, and we consider it significant th
this value emerges naturally from our theory.

It is worth pointing out that the hole densityr l per unit
length of stripe is not exactly pinned at one value wh
means that the stripes arenot incompressible. The hole den
sity varies continuously within each plateau but jumps d
continuously as the transition is made from one plateau
the next.

There are strong pairing correlations between the hole
each q-width region. Strictly speaking, forN5` each
q-width stripe above is a one-dimensional superconduc
while the intervening (q2p)-width regions are insulating
However, fluctuation corrections will couple with superco
ducting regions, yielding an effective theory discussed
Sec. VII of Ref. 64 with their dimensionless parameterK
;N. This implies that Josephson pair tunneling between
one-dimensional superconductors is a relevant perturba
at sufficiently largeN, leading to a two-dimensional aniso
tropic superconducting ground state, and should allow g
metallic conduction above the superconducting transit
temperature. These characteristics are consistent
observations65 on La22x2yNdySrxCu O4.

The quasiparticle spectrum in the striped phases is alw
fully gapped because of the presence of superconducti
Except for the partially striped phases where the ferm
spectrum shows a weak dependence on the momentumkx
perpendicular to the stripes,6 the spectrum of the stripe
phases iskx independent. The fermion spectrum in the p
tially striped phases were displayed in Ref. 6, and in Fig
we show the quasiparticle bands for the fully striped cas
The spectrum consists of two contributions: The excitatio
of the fully dimerized undoped regions correspond to rem
ing one fermion from a localized dimer, the energy cost
J/2 and of course momentum independent. The stripes
width q give rise to q one-dimensional dispersing band
where the gap is determined by the pairing amplitude
orderJ, and the total bandwidth is given by 4tr l /q wherer l
is the linear hole density per unit stripe as above. The st
excitations therefore lie in the gap of the spin-Peierls st
their properties are entirely determined byr l andq ~and the
model parameterst andJ). Upon increasing the doping leve
d within one of the plateaus in Fig. 4 the superconduct
gap decreases slightly since the link fieldsQ decrease, and
the position of the dispersion minimum changes correspo
ing to the Fermi momentum. The transitions between
plateaus arise from level crossings, i.e., there is no crit
dynamics associated with them. At the transition from o
plateau to the next,r l decreases discontinuously, leading
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an increase in the gap and so on. If the stripe widthq changes
at a plateau transition then the number of dispersing ba
will also change, see Fig. 5.

At this point we briefly discuss earlier mean-fie
calculations20–22 which predicted an inhomgeneous char
distribution in the ground state of the Hubbard and rela
models. These computations were based on the observ
that large-S mean-field theories of doped antiferromagne
(S denotes the size of the spin! show charge-density wav
instabilities—the same applies to the large-N theory dis-
cussed here. An important difference, however, is the ch
acter of the stripes. The early mean-field calculations for
Hubbard model20–22 predict insulating, site-centered stripe
with a hole density of unity within the hole-rich regions; th
experimentally found stripe states in the cuprates are, h
ever, either metallic or superconducting. In contrast to th
early mean-field results, the present large-N computations
yield superconducting, bond-centered stripes, and it wo
be useful for future experiments to detect this distincti
between bond and site centering. Let us discuss this dif
ence more precisely for the casep54. For the site-centered
stripe, the hole density per unit length in each column
sites takes valuesr1 , r2 , r3 , r2 before repeating periodi
cally ~wherer123 are some three distinct densities!; this is
the configuration usually assumed in most experimental
pers. In contrast, for the bond centered state, these dens
take the valuesr1 , r1 , r2 , r2, and this also appears to b
compatible with existing observations. The bond centering
important in the present computation for enhancing pair
correlations, which are responsible for superconducti
metallic transport in the direction parallel to the stripes.

Possible differences in the spin dynamics between bo
and site-centered striped phases have been discusse
Tworzydlo et al.2 They argued that the magnetic domai
between the stripes can be described by spin ladders
either an even or odd number of legs; these two cases lea
very different spin-fluctuation spectra.

We note that a very recent NQR experiment66 indicates a
charge distribution which has some features consistent w
the bond-centered state: they find only two inequivalent s
associated with the stripes, and a density in the hole-

FIG. 5. Fermionic mean-field excitation spectrum in ful
striped phases,t/J51.25. The spectrum is independent ofkx , the
momentum perpendicular to the stripes. Left:q52 phase withr l

50.8. Right:q54 phase withr l50.6. In the second case the ban
width is much smaller due to the smaller doping level in the strip
(r l /q). The flat bands at energyJ/2 correspond to excitations o
localized dimers in the undoped regions.
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region which is considerably smaller than 0.5.

4. Wigner crystals of Cooper pairs

For very small doping the ‘‘stripe’’ states become u
stable with respect to furtherC breaking. This leads to two
dimensional insulating states withS restored, which can be
characterized as Wigner crystals of Cooper pairs.52 In the
large-N limit, the Cooper pair crystals consist of pairs
adjacent sites with nonzero hole density and a nonzero b
amplitudeQ between them; the remaining sites of the squ
lattice form singlet bonds as in the fully dimerized, undop
spin-Peierls state. The occurrence of such pair crystal st
is intimately related to the dimerization tendency of the s
tem: In a pair crystal the repulsion energy is much sma
than a stripe state, and the hole-rich sites still form dim
leading to a nonzero contribution fromHtJ . ~At N5` the
hole density on the sites of each pair is not exactly un
bi

2,1, this is an artifact of the large-N limit. For physical
values ofN the physical system will certainly have two ele
trons per pair.!

To minimize the repulsion energy, the hole pairs want
form a triangular Wigner lattice~with a lattice constant
;Ad). However, in the present problem the hole positio
have to be on the underlying square lattice. This leads
incommensurate structures where the pairs form an appr
mate triangular lattice. The energy per site in this state
small d is given byEPC/(NNs)52J/42a d wherea con-
tains contributions fromt, J, andV.

We note here that there are also crystal-like insulat
saddle-point solutions with clusters of sites with nonze
hole density. These ‘‘charge islands’’ can be considered
an integer number of Cooper pairs bound together—the
scribed pair crystals are the smallest possible islands. La
islands occur at small doping, they replace the pair cry
phases shown in the phase diagrams at small hoppingt. We
have not systematically examined all possible ‘‘islan
phases because large islands require large unit cells in
numerical calculation. However, by estimating the groun
state energy of the ‘‘island’’ phases we have checked
stripe phases are always favored in the experimentally in
esting doping regime, 8%,d,20%.

Summarizing these findings, the frustration of compl
phase separation byV leads to two possible scenarios
charge clusters with ‘‘smaller’’ size:~i! stripes which are 1d
objects, i.e., the charges are confined in one direction~note
that finite T may melt the stripe order leaving behind fini
length parts of stripes; strong impurity influence may a
break up stripes into segments!, and~ii ! islands which can be
considered as bound states of Cooper pairs—here the ch
are confined in both directions. The calculations show t
for physical values oft/J and not too small dopingd the
stripe scenario~i! is favored due to the larger kinetic energ
of the holes in the stripes.

5. Wigner crystals of single charges

For largeV the Coulomb repulsion dominates overt andJ
which leads to the appearance of Wigner crystal states—
the crystal consists ofsingle charges. The holes minimize
the Coulomb energy by forming a crystal-like structure—t
is similar to the charge ordering in a low-density electr
nd
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gas. The lowest Coulomb energy is again reached for
case where the charges form a triangular lattice with
Wigner lattice constant;Ad, however, the hole position
have to coincide with the sites of the underlying square
tice. Therefore the states at large Coulomb repulsionV will
have structures incommensurate with the square lattice,
a ~infinitely! large unit cell with holes sitting on a fractio
1/d of the sites (bi

251). These sites form an approxima
triangular Wigner lattice, all other sites are half filled (bi

2

50) and form dimerized bonds.~The calculation shows tha
at finite values ofV/J the competition of exchange and Co
lomb energies atN5` leads to hole densities on the sites
the Wigner lattice being smaller than unity,bi

2,1, and to a
distortion of the ideal dimer pattern in the link fieldsQ near
each hole site. This again is an artifact of the condensatio
the slave bosons in the large-N limit.!

The kinetic energy in the Wigner crystal state vanish
The exchange energy per site is given by2J/43(12d) at
low d since (12d) is the number of sites remaining fo
singlet formation. It is important to note that the Coulom
energy is negative, i.e.,̂HV&;2g d1/2,0 with g;V. So
we can estimate the energy per site for smalld to be
EWC/(NNs)52J/4(12d)2g d3/2.

B. Influence of additional model parameters

The calculations presented so far show that the tende
to stripe formation at low doping is a very robust feature
the t-J-V model atN5`. In the following we discuss the
influence of the inclusion of further processes into t
Hamiltonian.

1. Longer-range hopping

We start with an additional next-nearest-neighbor hopp
t8 which is supposed to be important in certain cuprate
perconductors. The large-N calculations show that the resul
are nearly independent oft8 as long as it is small,ut8/tu
,0.3. Larger values oft8 of either sign suppress the ten
dency to phase separation in the ‘‘bare’’ model~without
HV). This in turn means that the stripe instability is wea
ened; the stripe region in the phase diagram shrinks, i
shifted to lower doping and lower values ofV. This is con-
sistent with, e.g., the findings of White and Scalapino.36

2. Biquadratic exchange

We have also considered the addition of a biquadra
spin exchange

H45
kJ

4N3 (
^ i , j &

~Si•Sj !
2 ~2.9!

to the Hamiltonian~2.4! for generalN. The strength of the
biquadratic interaction is given bykJ. For the physical case
N51 the biquadratic exchange term simply reduces toSi
•Sj1const, but for largerN it contains exchange process
involving eight fermions.16 For the total coupling of two
~isolated! spins to be antiferromagnetic there is an upp
limit for k which is given byk,2 for anyN.16 In the large-
N limit the decoupling can be done in two steps, it turns o
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that no new link fields are necessary. At the saddle point
additional term takes the form

H45
kJ

8 (
^ i , j &

uQi j u2~2J ab f ia
† f j b

† Qi j* 1H.c.23NuQi j u2!.

~2.10!

As discussed in Ref. 16 such a biquadratic exchange t
weakens the tendency to dimerization. In fact, in theSU(N)
saddle-point approach it can be used to stabilize a stagg
flux phase; it is expected to find a similar effect on the ho
poor regions of the stripe states.67

In the undoped system, we find that theN5` ground
state changes from spin-Peierls~at k50) to a box phase for
0,k,1.13, and then to a ‘‘fluxlike’’ phase fork.1.45.
~Some intermediate phase occurs for 1.13,k,1.45.! All
phases atJ.0 can be described within a 232 unit cell. The
box phase has nonzero link fieldsQ around isolated
plaquettes of four sites each, all other link fields vanish.16 In
the fluxlike phase allQ are equal in magnitude, their phas
can be made real by a gauge transformation, and the ex
tation value of the plaquette operatorPQ is real and nega-
tive. However, unlike in theSU(N) case there is no directio
associated with theQ link fields. A direct interpretation in
terms of a flux is therefore not possible. The described me
field solutions are identical with the results of Marston a
Affleck for the SU(N) Heisenberg model.16 In fact, by ap-
plying a generalized particle-hole transformation it can
shown that the mean-field equations for the undoped sys
are equivalent for bothSU(2N) andSp(2N) cases.

Turning to finite doping, we find that all homogeneo
phases are unstable with respect to phase separationV
50 and low doping. The inclusion ofV leads to stripe state
similar to the ones described in Sec. II A 3 for all values
k. The hole concentrationr l in the stripes is again deter
mined by the microscopic parameters, and is found to
between 0.2 and 0.5 for reasonable values oft, J, andV. The
stripes are one-dimensional superconductors, for most o
parameter values the bond amplitudesQ within the stripes
can be made real and reflectd-wave pairing correlations@at
larger V and intermediated there is a small region with
(s* 1 id)-like pairing in the stripes#. The Q fields in the in-
sulating regions between the stripes reflect the structur
the undoped ground state: At small nonzerok one finds a
boxlike structure whereask.1.45 gives rise to a more ho
mogeneous distribution of theQ which can be understood a
fluxlike arrangement with distortions at the boundar
~stripes!. Interestingly, in the latter case there can occur n
zero link fieldsQ between the stripes and the undoped reg
~leading to longer-ranged spin correlations!, but these disap-
pear for larger hole concentration in the stripes.

At larger doping the stripes are disfavored, the grou
state becomes a homogeneous superconductor with e
d-wave or s* 1 id symmetry. Compared to the casek50,
the tendency to phase separation is slightly weakened by
introduction of the biquadratic exchange, the region of str
ground states shrinks. A sample phase diagram is show
Fig. 8. Note that the transition fromd-wave tos* 1 id sym-
metry with decreasing doping is accompanied with the op
ing of a gap in the fermionic spectrum~and with spontaneou
T breaking!.
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3. Next-nearest-neighbor exchange

To explore further possible symmetries of the superc
ducting order parameter~which is represented by the lin
fields Q in the mean-field theory! we consider an additiona
next-nearest-neighbor exchangeJ8.0. Note that the inclu-
sion of such a frustrating next-nearest-neighbor exchange
tween pairs of sites on the same sublattice is straightforw
within the presentSp(2N) mean-field theory since the sam
representation ofSp(2N) is employed for spins on both sub
lattices @in contrast to the bosonicSU(N) approach#. The
new interaction is decoupled similar to the nearest-neigh
interaction as described at the beginning of Sec. II; this le
to diagonal link fieldsQi j8 . The model with hopping termst
and t8, exchange processesJ and J8 as well as biquadratic
exchange strengthskJ and kJ8 shows a number of new
ground-state phases at the mean-field level, among them
perconductors with mixed order parameters, spin-Peierls
fluxlike phases as well as charge-ordered states.

As an example, we show the phase diagram fort/J
51.0, J8/J50.4, andk51.5 in Fig. 9. The undoped system
has a large ground-state degeneracy, small doping prod
stripe states due to the phase separation instability in
absence of Couplomb repulsionV. The stripes disappear a
larger doping, leading to a superconductor with a homo
neous charge distribution. First we find a (dx22y21 idxy)-

FIG. 6. Same as in Figs. 3 and 4, but fort/J50.5. Upper panel:
Ground-state phases ofH as function of doping and Coulomb re
pulsion. Thick and thin lines denote first-order and second-or
transitions, respectively. Lower panel: Charge-ordering wave v
tor, K ~in reciprocal-lattice units! for V/t50.2. For 28%,d
,42% the ground state is the doped spin-Peierls state breakiC
andS; it has a uniform site-charge distribution and a 231 unit cell.
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wave superconductor; further increasingd leads to a pure
dx22y2 state. The (dx22y21 idxy)-wave state has a fully
gapped spectrum and breaks time-reversal symmetry.
characterized by fourQ link fields which obeyQx52Qy ,
Q118 52Q1,218 , andQ118 5 i eQx . Here,e is a real value mea
suring the mixing of bothd-wave order parameters. At th
transition line between the (dx22y21 idxy) state and the pure
dx22y2-wave state thee vanishes continuously.

FIG. 7. Same as in Figs. 3 and 4, but fort/J52.5. Upper panel:
Ground-state phases ofH as function of doping and Coulomb re
pulsion. Lower panel: Charge-ordering wave vector,K ~in
reciprocal-lattice units! for V/t51.0.

FIG. 8. Ground-state phase diagram for theSp(2N) t-J model
with biquadratic exchange term as function of doping and Coulo
repulsion,t/J50.75, k51.5.
is

4. Alternative interaction decoupling

There has been recent interest68,69 in possible ground
states which spontaneously break time-reversal symmetT
and show circulating currents14–18 ~doped ‘‘flux’’ phases!.
Such states can be characterized as orbital magnets; i
current direction around each unit cell alternates in sign
tween adjacent cells one obtains an orbital antiferromag
To explore possible realizations of such states within
saddle-point approach we extend the Hamiltonian by an
teraction term which provides decoupling in the particle-h
channel in the large-N limit. It has the form
(2 J̄i j )/(2N) ( f ia

† f j a)( f j b
† f ib) which also reduces toSi•Sj

1const forN51. The interaction is decoupled by link field
x which take the values

Nx i j 5Nx j i* 5^ f ia
† f j a& ~2.11!

at the saddle point. In contrast to theQ fields these new fields
x i j specify a direction for the link (i j ). For the undoped cas
the phases of thex are gauge dependent, but the plaque
operatorPx5x12x23x34x41 is again a gauge-invariant ob
ject. In the doped system, the fieldsx are directly connected
with the current transported through one link,j i j
52N Im x i j , so their phases are meaningful.

At the saddle point the Hamiltonian containing the inte
action J̄ takes the form

H̄J5(
i . j

F2
J̄i j

2
~ f ia

† f j ax i j* 1H.c.2Nux i j u2!G ~2.12!

which is formally a contribution to the fermion hopping. W
also include a corresponding biquadratic interaction wh
can be decoupled in the particle-hole channel leading to

H̄45
k J̄

8 (
^ i , j &

ux i j u2~2 f ia
† f j ax i j* 1H.c.23Nux i j u2!.

~2.13!
b

FIG. 9. Ground-state phase diagram for theSp(2N) t-J-J8-V
model with biquadratic exchange term as function of doping a
Coulomb repulsion;t/J51.0, J8/J50.4, t850, k51.5. d1 id de-
notes theT-breaking superconductor with (dx22y21 idxy)-wave
symmetry.
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The mean-field equations show that a magnetic interactio
the type~2.12! is equivalent to the decoupling done within
SU(2N) large-N approach to the antiferromagnet. The su

of both terms,HJ1H̄J , contains both possible factorization
~particle-particle and particle-hole! of the four-fermion inter-
action term. It is therefore equivalent to an unrestric
Hartree-Fock treatment of the original Heisenberg Ham
tonian forN51 written in terms of auxiliary fermions, pro
vided that Ji j 5 J̄i j . In the following, we will discuss the
large-N limit and treatJ and J̄ as independent parameter
concentrating on the region whereJ; J̄. Varying the ratio
x[ J̄/( J̄1J) can be viewed as continuous interpolation b
tween theSp(2N) (x50) andSU(2N) (x51) approaches
to the antiferromagnet.

For x51/2 (J5 J̄) and dopingd50, we find a large
ground-state degeneracy which has also been reported e
in unrestricted Hartree-Fock treatment of the Heisenb
antiferromagnet.70 The degeneracy can be lifted by the intr
duction of a biquadratic exchangek.0 which leads to box-
like phases having a 232 unit cell. These states have no
zero values of both theQ andx link fields.

Turning to finite doping, we find no phase separation
stability at x51/2 independent ofk—at zero or smallV
states with a homogeneous site charge distribution alw
have lower energy than inhomogeneous states; there ar
stripe states atx51/2. The ground state at low doping
either a spin-Peierls state~at k50) or boxlike (k.0), for
larger doping it becomes a pured-wave superconductor. Th
phase diagram fork50 is shown in Fig. 10. The spin-Peier
state shows dimerization in both theQ and thex fields with
a pattern as described in Sec. II A 2. It is interesting to n
that the doped spin-Peierls state does not break time-rev
symmetryT, so theQ fields can be made real by a gau
transformation~in contrast to the spin-Peierls state occurri

FIG. 10. Ground-state phase diagram for thet-J model with

interactionsHJ and H̄J , t/J51, x51/2 J̄5J), k50 ~no biqua-
dratic exchange!. There aretwo spin-Peierls phases shown: A
larger doping the dimerization is small leading to gapless spect
with four nodes. Upon decreasingd the dimerization increases, an
when it exceeds some critical value, the spectrum becomes gap
the gap opens when the nodal points collide in pairs at points on
lines ky56p/2 in the extended Brillouin zone.
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in the ‘‘pure’’ Sp(2N) case which is alwaysT breaking!.
Similarly, the doped box state forx51/2 also preservesT.

As one further example, we describe the ground state
x50.6. The undoped system without biquadratic excha
(k50) again shows a large degeneracy. Values of 0,k
,1.4 lead to a boxlike phase. Fork.1.4 we find the stag-
gered flux phase as ground state, here allx are equal in
magnitude and the plaquette operatorsPx have the negative
real expectation values. The particle-particle link fieldsQ
vanish for anyk.

At finite doping, there is again no phase-separation t
dency atx50.6. Fork50 the ground-state phases are sp
Peierls at smalld and d-wave at largerd, whereas small
nonzerok produces boxlike ground states. Interesting pha
occur fork.1.4 as shown in the phase diagram in Fig. 1
The staggered flux phase evolves to an orbital antiferrom
net with a two-site unit cell and circulating currents~given
by Imx) in each plaquette with alternating direction betwe
adjacent plaquettes. This state is unstable to pairing:17 the Q
fields acquire nonzero, real values leading to aT-breaking
state with coexisting orbital antiferromagnetism andd-wave
superconductivity.69 We note that this coexistence occu
here at the mean-field level, this can be contrasted to o
mean-field theories71 where the flux andd-wave instabilities
occur in different orders in a 1/N expansion.

For larger doping, the currents vanish, and the grou
state becomes a pured-wave superconductor. All the de
scribed states have a gapless excitation spectrum—note
that the flux phase can be interpreted as adx22y2 density
wave, implying nodes of the order parameter in the diago
directions in momentum space.

At very large values ofV the dominating repulsion give
rise to Wigner crystal states as described above. Howe
there are no pair crystal phases for the casesx50.5 and 0.6
which is related to the absence of phase-separation ten
cies at these parameter values.

Finally we note that the casex51, i.e., the ‘‘pure’’

m

ed:
he

FIG. 11. Ground-state phase diagram for thet-J model with

interactionsHJ and H̄J which are both supplemented by a biqu
dratic exchange,k51.5. The remaining parameters aret/J51.25,

x50.6 (J̄51.5J). OAF denotes theT-breaking orbital antiferro-
magnet with staggered circulating currents around each plaqu
At d50 we have the staggered flux state.
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SU(N) interaction decoupling, leads to phase separation
the absence of Coulomb repulsionV,60 and the inclusion ofV
is expected to produce ‘‘striped’’ ground states.72

C. Phase transitions atNÄ`

We briefly discuss the nature of the transitions betwe
the various ground-state phases at the mean-field leveN
5`). The transition from ad-wave superconductor, withC
unbroken, to the fully formedp31 stripes discussed abov
can either be first order, or via intermediate states with p
tial stripe order. In the latter case, there is first a continu
transition to a doped spin-Peierls state withC symmetry
breaking atp52. To our knowledge ap52 charge-ordered
superconducting state has not been experimentally dete
but a search for one should be worthwhile. Then there
second second-order transition top54 state with partial
stripe order, before the fully formedp54, q52 state with
intervening insulating stripes appears. In any case, the e
tation spectrum in the stripe states is fully gapped. The tr
sitions between the different stripe phases wherep changes
its value are in general first order since they arise from le
crossings.

At very small hole densities the Cooper pair crystal sta
are favored over striped states, then the ground-state na
changes from one-dimensional to two-dimensionalC break-
ing. Again, this transition is either first order or second ord
depending on the values oft, J, andV, in the latter case it can
be visualized as additionalC breaking in the longitudina
stripe direction. Finally, the transition to a Wigner crys
phase of single charges at largeV is always a first-order
transition because the inherent tendency to fermion pairin
broken in the Wigner crystal.

By adding a biquadratic exchange term to the Ham
tonian we found aT-breaking superconductor withs* 1 id
symmetry and a gapped spectrum. As displayed in the ph
diagram of Fig. 8, it shows a second-order transition to
pured-wave state with increasing doping. Similarly, the i
troduction of a second-nearest-neighbor exchangeJ8 can
lead to aT-breaking (dx22y21 idxy)-wave superconducto
which also has a second-order transition to a pured-wave
state with increasingd; see Fig. 9.

TheSU(2N)-like interaction termH̄J ~Sec. II B 4! which
has to be decoupled in the particle-hole channel lead
other possible transition scenarios. As shown in Fig. 10
T-conserving spin-Peierls phase is possible. Then two tra
tions are found upon decreasing doping: First there i
second-order transition from thed-wave state to a~weakly
dimerized! spin-Peierls state where the dimerization sets
The four nodes of thed-wave phase are preserved, but sh
gradually in momentum space. At smallerd and a ‘‘critical’’
dimerization there is another second-order transition wh
the spectrum becomes gapped. Turning to thex50.6 phase
diagram of Fig. 11, we note that the transition between
OAF1d-wave coexistence phase and the pured-wave state
is second order. Both order parameters havedx22y2 symme-
try leading to gapless spectra. TheT symmetry is broken in
the low doping phase with orbital currents.

III. CONTINUOUS QUANTUM PHASE TRANSITIONS

In Sec. II C we noted a number of continuous quant
phase transitions in the mean-field phase diagrams of F
in
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3–11. As we discussed in Sec. I , for the purposes of und
standing the photoemission experiments of Ref. 40, we
particularly interested in transitions in class A. Of these,
simplest involveT symmetry breaking alone, and we wi
consider these in the first subsection below. Transitions
volving breaking ofC symmetry alone are considered next
Sec. III B. This is followed by a discussion of the onset
staggered flux order in ad-wave superconductor~this transi-
tion breaksT andC symmetries! in Sec. III C.

A. d wave to „s*¿ id… wave or „dx2Ày2¿ idxy… wave

A continuous transition between ad-wave superconducto
and a (s* 1 id)-wave superconductor appears in the me
field phase diagram in Fig. 8, and fluctuations in its vicin
will be described below. A very closely related theory a
plies to the transition between ad-wave superconductor an
a (dx22y21 idxy)-wave superconductor shown in Fig. 9. In
deed, to the order we are computing things, the results for
scaling functions of the two transitions are identical.

We note that a transition betweend and (dx22y21 idxy)
pairing was also considered recently by D.-H. Lee73 using a
rather different framework. Lee concluded that the transit
was in the universality class of the Ising model in a tran
verse field; this is equivalent to assuming that the criti
theory is described bySf in Eq. ~3.3! below, and places the
transition in class B. In fact, as we show below, it is al
necessary to include fermionic excitations: the compl
theory is in Eq.~3.7! below, and the transition is in a new
universality class which belongs in class A. In a separ
recent work, Balatskyet al.41 considered a ‘‘clapping’’ col-
lective mode in a (dx22y21 idxy) superconductor: this is an
‘‘angular’’ fluctuation mode expected in a state with we
formeddxy pairing induced by an external magnetic field;
contrast we are interested here inspontaneousfluctuations to
(dx22y21 idxy) order, which will be dominated by ‘‘ampli-
tude’’ fluctuations represented by our fieldf below.

We begin by establishing notation, and reviewing the
miliar physics of the low-energy fermionic quasiparticles
a d-wave superconductor. For the most part, we will follo
the notation of Balentset al.43 The low-energy excitations
appear at four points in the Brillouin zone: (K,K),
(2K,K), (2K,2K), and (K,2K). We denote the compo
nents of the electron annihilation operator,ca , in their vicin-
ity by f 1a , f 2a , f 3a , f 4a , respectively, wherea5↑,↓ is the
electron spin component. Now introduce the four-compon
Nambu spinorsC15( f 1a ,«abf 3b

† ) and C25( f 2a ,«abf 4b
† )

where«ab is an antisymmetric tensor with«↑↓51. The ac-
tion for the fermionic excitations in thed-wave supercon-
ductor is then

SC5E ddk

~2p!d
T(

vn

C1
†~2 ivn1vFkxt

z1vDkyt
x!C1

1E ddk

~2p!d
T(

vn

C2
†~2 ivn1vFkyt

z1vDkxt
x!C2 .

~3.1!

Here ta are Pauli matrices which act in the fermion
particle-hole space,kx,y measure the wave vector from th
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nodal points and have been rotated by 45° from the axe
the square lattice, andvF , vD are velocities.

Let us now consider the transition to the (s* 1 id)-wave
superconductor. This involves only aZ2 symmetry breaking
of theT symmetry, and so the order parameter is a real sc
field f. In the presence of a nonzero, space-tim
independentf, the superconducting gap function takes t
form

^ck↑c2k↓&5D0~coskx2cosky!1 if~coskx1cosky!.
~3.2!

The superconducting order parameter also has a single o
all complex phase, but because the superfluid stiffnes
finite, its fluctuations can be neglected in the critical theo
On general symmetry grounds, we can write down the
lowing effective action forf fluctuations

Sf5E ddx dtS 1

2
~]tf!21

c2

2
~¹f!21

s0

2
f21

u0

24
f4D ;

~3.3!

here c is a velocity, s0 is the parameter which tunes th
system across the transition, andu0 measures the quarti
self-interaction of the order parameter. Normally, in the a
sence of strict particle-hole symmetry, a term with a fir
order time derivative can potentially appear inSf ; however,
f is a real field, and the only possible relevant term,f]tf
5(1/2)]tf

2, is a total derivative and integrates to zero.
The final piece of the action is the coupling betweenf

and the fermionic excitations. This can be easily dedu
from Eq. ~3.2!, and the standard pairing interaction betwe
D(k) and the electrons. In the vicinity of the nodal poin
this coupling reduces to the very simple expression35 @we are
assuming here thatKÞp/2, as is the case experimentally,40

so that (coskx1cosky) does not vanish at the nodal points#

SCf5E ddx dt@l0f~C1
†tyC11C2

†tyC2!#. ~3.4!

The remainder of this subsection will consider the proper
of the theorySC1Sf1SFf . Before we embark on this cas
we note the generalization to the case of a transition
dx22y21 idxy order: in this case~3.2! is replaced by

^ck↑c2k↓&5D0~coskx2cosky!1 if sinkx sinky ;
~3.5!

in the vicinity of the nodal points, instead of Eq.~3.4!, we
obtain35

S̃Cf5E ddx dt@l0f~C1
†tyC12C2

†tyC2!#. ~3.6!

The only change is the relative minus sign between the
terms, which arises from the changing sign of the fac
sinkxsinky in Eq. ~3.5! between the nodal points; it is thi
change which is responsible for the nonzero spin Hall c
ductance of thedx22y21 idxy state.35 The properties of the
theory SC1Sf1S̃Cf are very closely related to that ofSC

1Sf1SCf ; indeed, at the one-loop order we compu
things here, there is no difference between the theories,
our results can be applied equally to the transition to eit
s* 1 id or dx22y21 idxy order.
of
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Our renormalization-group analysis is closely related
that discussed by Zinn-Justin.74 We will mainly restrict our
study to the case in which all the velocities inSC,f are equal
to each other. By a suitable choice of the scale of time
can then setc5vF5vD51 at the outset. Deviations from
exactly equal velocities will be considered in Sec. III A
below, and in future work. With exactly equal velocities, th
action is actually Lorentz invariant and so we must have
dynamic exponentz51; this value ofz will be implicitly
assumed in the remainder of this paper. We introduce n
tion to make the Lorentz invariance explicit. We mapC2

→(tx1tz)C2 /A2, and defineC̄1,252 i tyC1,2
† , and intro-

duce Lorentz indexm5t,x,y. Then SC1Sf1SCf can be
written in the compact Lorentz-invariant form

Ss* 1 id5E dDxS i C̄1]mgmC11 i C̄2]mgmC21
1

2
~]mf!2

1
s0

2
f21

u0

24
f42 il0f~C̄1C12C̄2C2! D , ~3.7!

whereD5d11, andgm5(2ty,tx,tz). We note that there is
also a corresponding actionSdx22y21 idxy

which @using Eq.
~3.6!# differs only in having a relative plus sign between t

couplings ofC̄1C1 andC̄2C2 to f.
We now proceed with the renormalization-group analy

of Ss* 1 id or Sdx22y21 idxy
. We will present the results usin

the field-theoretic method as it leads to a more streamli
discussion of finite temperature properties. To this end,
introduce the wave-function renormalizations

f5Zb
1/2fR ,

C1,25Zf
1/2C1,2R ~3.8!

and the coupling constant renormalizations

l05
me/2

SD
1/2

Zl

ZfZb
1/2

l,

u05
me

SD

Zu

Zb
2

u, ~3.9!

where m is a renormalization momentum scale andSD
52/@G(D/2)(4p)D/2#.

One-loop calculations of the renormalization constants
ing minimal subtraction of poles ine542D532d yield

Zb512
4l2

e
,

Zf512
l2

2e
,

Zl511
l2

e
,

Zu511
3u

2e
2

48l4

ue
. ~3.10!
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From these we obtain the beta functions~note that we are
using the field-theorists’ definition of the beta function,74 and
these are opposite in sign to those normally used
condensed-matter physicists!

b~l!52
e

2
l1

7

2
l3,

b~u!52eu1
3

2
u218ul2248l4. ~3.11!

These equations have the infrared stable fixed point

l* 25
e

7
,

u* 5
16e

21
~3.12!

which controls the physics in the vicinity of the quantu
critical point. In particular, the fields acquire the anomalo
dimensions

hb54l* 2,

h f5l* 2/2 ~3.13!

which will play an important role in the spectral functions
be discussed below.

In the first subsection below, we will consider the cons
quences of unequal velocities. The next subsection will
scribe theT.0 quantum critical spectral response functio
of the fixed point~3.13!.

1. Unequal velocities

The full treatment of the problem with unequal velociti
is considerably more complicated than the sim
renormalization-group analysis above, and is deferred to
ture work. It is entirely possible that there are other no
Lorentz-invariant fixed points describing the critical theo
however, apart from differences in the details of the scal
functions, the qualitative properties of such fixed poin
should be quite similar to the Lorentz-invariant case
plored in more detail in Sec. III A 2.

We will restrict our attention here to perturbations whi
break Lorentz invariance in a linear stability analysis of t
Lorentz-invariant fixed point. Such an analysis was also c
ried out in Ref. 43, but the authors do not appear to h
performed the proper decomposition of the perturbations
the appropriate eigenoperators, as is required to obtain
correct scaling dimensions.

It is important to classify the perturbations in terms
irreducible representations of the Lorentz symmetry of
fixed point. For the velocity differences, these are the sy
metric, traceless, second-rank Lorentz tensors. So we
sider the following perturbation to the actionSC1Sf
1SCf :
y

s

-
-

u-
-
:
g
s
-

r-
e
to
he

e
-
n-

Sa5E dDxF g̃mnS ]mf]nf2
dmn

D
~]rf!2D

1 igmn
(1)C̄1S ]mgn1]ngm

2
2

dmn

D
]rgrDC1

1 igmn
(2)C̄2S ]mgn1]ngm

2
2

dmn

D
]rgrDC2G .

~3.14!

It is crucial that the tensors above are traceless: this ensu
at linear order, that such perturbations do not mix with ter
already in the Lorentz-invariant action, and with redunda
operators which can be removed by a rescaling of the fie
which are being integrated over.

It is a simple matter to compute the one-loo
renormalization-group flow equations to the terms in E
~3.14!. We find

S b~ g̃mn!

b~gmn
(1)!

b~gmn
(2)!

D 5l2S 4 22 22

21/3 1/3 0

21/3 0 1/3
D S g̃mn

gmn
(1)

gmn
(2)
D .

~3.15!

Clearly, we need the eigenvalues and eigenvectors of
matrix of coefficients in Eq.~3.15!. First, note that there is an
eigenvector, (1,1,1), with zero eigenvalue. This is expec
and its presence is an important check on our calculation
corresponds to the perturbation of simply changingall ve-
locities by the same amount: such a redundant perturba
can be absorbed by a rescaling of spacetime coordinates
does not modify any of the physics.

The other eigenvalues and eigenvectors correspond
physical differences in the velocities. The eigenvector (0
21) has eigenvalue 1/3 and corresponds to the perturba
in which vF andvD are made unequal. So such a perturb
tion is irrelevant in the infrared, with scaling dimensio
2l* 2/352e/21. The final eigenvector, (212,1,1), induces
a difference between the velocities of the fermions a
bosons, and this perturbation is more strongly irrelevant:
scaling dimension is213l* 2/35213e/21.

So we have established that the Lorentz-invariant fix
point is at least linearly stable to velocity differences. Ho
ever, the scaling dimension of the leading irrelevant opera
is quite small (2e/21), and this could lead to very slowl
decaying transients in the critical behavior.

2. TÌ0 spectral functions

The problem of computingT.0, quantum critical, spec
tral functions in 211 dimensions is one of considerable com
plexity. Even though the nonlinear couplings at the fix
point, Eq. ~3.3!, are small for smalle, the low-frequency
response atT.0 cannot be computed in a baree expansion.
This is because the limitse→0 andv→0 do not commute,
and there are spurious low-frequency singularities in the b
e expansion: this is discussed further in the Appendix. F
the case of a scalar field alone, this problem ofT.0 dynam-
ics was addressed in Refs. 75 and 13 by a two-step proce
involving a mapping to a quasi-classical problem. Here
shall use the insight gained from these previous, contro
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studies to motivate a simple self-consistent one-loop the
for computing the low-frequency relaxation rates. In contr
to the previous studies,75 we are aided here by the fact th
damping appears already at the one-loop level inSs* 1 id or
Sdx22y21 idxy

, and this simplifies the solution of the sel
consistent equations.

We shall be interested in the following retarded respo
functions in the ‘‘quantum critical’’13 regime:

Gf~k,ivn!5Zf
21^C1~k,vn!C1

†~k,vn!&,

Gb~k,ivn!5Zb
21^f~k,vn!f~2k,2vn!&. ~3.16!

After analytic continuation to real frequenciesGf satisfies
the scaling form in Eq.~1.1!, and an analogous result forGb
with f→b.

For v@T or k@T, the response functions in Eq.~3.16!
equal theirT50 results, and these can be computed in
bare e expansion. A familiar computation in the one-loo
renormalized theory gives us

Gf~k,v!5Cfm
2h f

v1kxt
z1kyt

x

@k22~v1 i0!2#12h f /2
,

Gb~k,v!5Cbm2hb
1

@k22~v1 i0!2#12hb/2
, ~3.17!

whereCf ,b are constants given by

Cf512l* 2/41 . . . ,

Cb5122l* 21 . . . . ~3.18!

Clearly, Eq.~3.17! obeys the scaling form~1.1!.
Next we consider the more difficult case wherev,k are of

orderT or smaller. Here we shall proceed by using an ans
for the low-frequency form of the Green’s functions: th
ansatz is motivated by the results of the corresponding l
frequency regime in a number of other models,75,13 espe-
cially the exactly solvable Ising chain in a transverse field13

In these studies, it was found that, provided the numbe
order parameter components was not large, the l
frequency spectral functions had a simple relaxational fo
that of degrees of freedom in a simple dissipative medium
the present situation, we have a single scalar order par
eter, and can expect that a similar situation should apply.
therefore make the ansatz

Gf~k,v!5S m

T D 2h f v1 iG f1kxt
z1kyt

x

k22~v1 iG f !
2

,

Gb~k,v!5S m

T D 2hb 1

k22~v1 iGb!2
, ~3.19!

whereG f ,b are damping frequencies we need to determi
The functional form forGb in Eq. ~3.19! was found to be a
remarkably good fit to the low-frequency portion of th
known exact result for the spectral function of an Ising ch
in a transverse field.13,76A further rationale behind Eq.~3.19!
is that we have only included terms in the self-energy of
fields which are lower powers of the frequency than tho
ry
t

e

e

tz

-

f
-
,

n
m-
e

.

n

e
e

already present in the free propagator, and which are con
tent with the requirement that all spectral functions a
smooth atv50 for T.0. It is precisely these low frequenc
powers which acquire a singular form in the baree expan-
sion, and so we are forced to use the self-consistent appr
to be described below. Comparing Eq.~3.19! with Eq. ~1.1!
we see that consistency demands thatG f ,b be universal num-
bers times temperature. The purpose of the remainder of
subsection is to determine the universal numbersG f /T and
Gb /T. Before turning to this, let us also quote the form
Eq. ~3.19! in imaginary frequencies:

Gf~k,ivn!5S m

T D 2h f ivn1 iG f sgn~vn!1kxt
z1kyt

x

k21~ uvnu1G f !
2

,

Gb~k,ivn!5S m

T D 2hb 1

k21~ uvnu1Gb!2
. ~3.20!

The damping represented byG f ,b arises from interactions
between the thermally excited bosons and fermions. T
typical excitation will have energy of orderT, and as the
damping is dominated by the lowest energy excitations,
typical interaction vertex will have external frequencies
orderT or lower. Motivated by this, we develop a perturb
tion theory for the interactions not in terms of the bare v
tices, but in terms of the full interaction vertices between
excitations. At the one-loop level, the damping terms ar
from thel0 interactions alone: however, rather than expan
ing in powers ofl0, we will express the self-energy in pow
ers of the full three-point irreducible vertex,L3 between one
boson (f) and two Fermi (C1,2

† , C1,2) fields. A convenient
choice is to use the zero-momentum vertex between a B
field at zero frequency, and Fermi fields at the minimu
Matsubara frequency ofen5pT. Bare perturbation theory
for this vertex gives

L35l02l0
3E ddk

~2p!d
T(

vn

1

~k21vn
2!@k21~en1vn!2#

,

~3.21!

where vn is a fermionic frequency. General scaling arg
ments from renormalization theory75,77show that at the fixed
point the exact result for the vertex obeys

L35
Te/2

ZfZb
1/2S m

T D h f1hb/2

C3 , ~3.22!

whereC3 is a universalnumber. Evaluating the frequenc
sums and the momentum integrals in Eq.~3.21!, and express-
ing everything in terms of renormalized couplings at t
fixed point, and collecting low-order terms ine, we find that
Eq. ~3.22! is indeed obeyed, with the universal number

C35
1

Sd11
1/2 ~l* 10.374 367l* 31••• !. ~3.23!

To proceed with the damping calculation, we write dow
the structure of the self-consistent one-loop equations
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terms of the Green’s functions of the bare fields; from E
~3.16! these areGf

B5ZfGf and Gb
B5ZbGb . We define the

self-energies by

~Gf
B!2152 ivn1kxt

z1kyt
x2S f

B ,

~Gb
B!215vn

21k21s02Sb
B . ~3.24!

The self-consistent, one-loop expression for the s
energies, expressed in terms ofL3, are

S f
B~k,vn!5L3

2E ddp

~2p!d
T(

en

tyGf
B~p,en!ty

3Gb
B~k2p,vn2en!,

Sb
B~k,vn!522L3

2TrE ddp

~2p!d
T(

en

tyGf
B~p,en!ty

3Gf
B~k1p,vn1en!. ~3.25!

We will now express this in terms of renormalized quan
ties. First we note by comparing Eq.~3.24! with Eqs.~3.19!
and ~3.20! that we only need the imaginary part of the se
energies at small real frequencies; in particular, the damp
coefficients can be expressed as

G f5S m

T D 2h f

Zf lim
v→0

Im S f
B~0,v!,

Gb5S m

T D 2hb

Zb lim
v→0

Im Sb
B~0,v!

2v
. ~3.26!

We now insert Eqs.~3.20!, ~3.22!, and~3.25! into Eq.~3.26!.
To our satisfaction, we find that all factors of the renorm
ization factorsZb, f and the scalem precisely cancel out, and
the remaining expressions involve only universal quantit
Performing the frequency summation in Eq.~3.25! and in-
serting in Eq.~3.26! we obtain

G f5C3
2E

0

`dV

p E ddk

~2p!d

Te

sinh~V/T!
ImS 1

k22~V1 iGb!2D
3ImS V1 iG f

k22~V1 iG f !
2D ,

Gb52C3
2E

0

`dV

p E ddk

~2p!d

Te21

cosh2~V/2T!

3H F ImS V1 iG f

k22~V1 iG f !
2D G 2

2k2F ImS 1

k22~V1 iG f !
2D G 2J . ~3.27!

A simple dimensional analysis of Eq.~3.27! shows thatT can
be completely scaled out of both equations for alld. The
strength of the damping is determined by the dimension
ratiosG f /T andGb /T, and these are completely determin
.

f-

-

g

-

s.

ss

by the dimensionless universalC3. We solved Eq.~3.27!
numerically in d52. The results areG f /T50.581 and
Gb /T50.170.

B. C symmetry breaking in a d-wave superconductor

A number of transitions involvingC symmetry breaking
in a d-wave superconductor were noted in Sec. II. The
involve the onset of either stripe or spin-Peierls order, a
such transitions appear in Figs. 3, 7, and 10. In all cases
order parameter can be identified with scalarsFx , Fy rep-
resenting the amplitude of charge-density waves with w
vectors (Q,0) and (0,Q). If Q is commensurate with the
underlying lattice, thenFx,y are real; otherwiseFx,y are
complex, with their phases representing the freedom of
charge-density wave to slide with respect to the underly
lattice. On general symmetry grounds, we can write down
effective action forFx,y , similar to Eq.~3.3!:

SF5E ddx dtF u]tFxu21u]tFyu21u¹Fxu21u¹Fyu2

1s0~ uFxu21uFyu2!1
u0

2
~ uFxu41uFyu4!

1v0uFxu2uFyu2G , ~3.28!

where, for now,Fx,y can be either real or complex. Firs
order time derivative terms, likeFx* ]tFx , are forbidden
here by spatial inversion symmetry under whichFx→Fx* ,
and such a term changes sign after integration by parts.

To complete the theory, we have to consider the coupl
of Fx,y to the gapless Fermi excitations at wave vect
(6K,6K). Conservation of momentum implies that there
in fact no long-wavelength coupling betweenFx,y andC1,2
~which is linear in Fx,y) unlessQ52K. The mean-field
studies of Sec. II always obtainedQÞ2K, and this is ex-
pected to be the generic behavior. However, we cannot
out the possibility that there is a mode-locking phenomen
which preferentially condenses a charge-density wave
wave vectorQ52K over a finite range of parameters.

For QÞ2K, SF is the complete critical theory of the tran
sition: the fermions are not part of the critical theory and
the transition is in class B. The simplest allowed couplin
between the fermions and the critical degrees of freedom
terms likew0*ddx dtuFxu2C1

†tzC1. Simple power counting
shows thatw0 has scaling dimension 1/n2d, wheren is the
correlation length exponent of the transition described by
~3.28!. We expect that thisn is greater than that of thed
115three-dimensionalXY model, which is '2/3, and
hencew0 is irrelevant ind52. By counting scaling dimen-
sions ~or by an explicit perturbative computation! we can
deduce that the self-energy of the nodal fermions ob
Im S f

B;w0
2T2d1122/n, and so the damping rate vanishes w

a superlinear power ofT asT→0, as expected for a class
transition.

In the remainder of this section, we consider the class
transition with Q52K, and both incommensurate~experi-
mentally, and in our mean-field theory,K is incommensu-
rate!, so thatFx,y are complex. Now a coupling betwee
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Fx,y and C1,2 is possible. Writing down all possible term
consistent with symmetries we obtain6

SCF5E ddx dt@~l01z0!~FxC2
†tzC11Fy«abC2atxC1b!

2~l02z0!~FxC2
†txC11Fy«abC2atzC1b!1H.c.#.

~3.29!

The renormalization-group analysis ofSC1SF1SCF paral-
lels that carried out in Sec. III A, and so we will be brief. Th
theory can be shown to be Lorentz invariant forc5vF5vD

andz050, and so also hasz51. For this Lorentz-invariant
case, the renormalization constants, replacing those in
~3.10! are

Zb512
2l2

e
,

Zf512
l2

e
,

Zl512
l2

e
,

Zu511
5u21v222l4

ue
,

Zv511
2v214uv24l4

ve
~3.30!

@the couplingv has been defined fromv0 following the re-
lationship betweenu andu0 in Eq. ~3.9!#, the beta functions
replacing those in Eq.~3.11! are

b~l!52
e

2
l1l3,

b~u!52eu15u21v214ul222l4,

b~v !52ev12v214uv14vl224l4, ~3.31!

and the anomalous dimensions modifying those in Eq.~3.13!
are

hb52l* 2,

h f5l* 2. ~3.32!

The computation of theT.0 spectral functions proceeds a
before, but with the following changes:~i! In Eqs.~3.21! and
~3.23!, thel3 terms have the opposite sign;~ii ! in Eq. ~3.25!,
the integrand in the expression forS f

B has a prefactor 2L3
2 ,

while that for Sb
B has a prefactor2L3

2 ; ~iii ! In Eq. ~3.27!,
the integrand in the expression forG f has a prefactor 2C3

2,
while that forGb has a prefactorC3

2. The numerical values o
the damping coefficients are nowG f /T51.35 andGb /T
50.395.

C. OAF order in a d-wave superconductor

We discuss here the transition between ad-wave super-
conductor and the phase with coexisting orbital antifer
q.

-

magnet~OAF! ~or staggered flux! andd-wave superconduct
ing order:17,69 such a transition appears in Fig. 11 atd
'0.12. We will show that this transition is in class B~in the
notation of Sec. I A!.

As has been emphasized by Nayak,69 the OAF is charac-
terized by ad-wave order parameter in the particle-ho
channel:

^ck1G,a
† ck,a&5 if~coskx2cosky!, ~3.33!

whereG5(p,p) andf is a real order parameter. As in th
above subsections, the key issue is the coupling of this o
parameter to the fermionic quasiparticles of thed-wave su-
perconductor. As the order parameter carries momentumG,
no coupling, linear inf is possible unless the nodal poin
are at (6K,6K) with K5p/2.

For KÞp/2 the simplest allowed coupling i
w0*ddx dt f2C1

†tzC11 . . . . As we saw in Sec. III B, such
a coupling is irrelevant and places the transition in class
The damping rate obeys ImS f

B;w0
2T2d1122/n I'T1.83, where

n I'0.63 is the correlation length exponent of the Isi
model in d1153 @described by the field theorySf in Eq.
~3.3!#.

For completeness, let us also consider the special c
whereK5p/2. Then, from Eq.~3.33! we can compute69 the
following coupling betweenf andC1,2:

f«ab@ iC1atx]yC1b1 iC2atx]xC2b1H.c.#. ~3.34!

Note that this coupling has one more derivative than thos
Eqs.~3.6! and~3.29!; this is a consequence of the vanishin
of the factor (coskx2cosky) in Eq. ~3.33! at the nodal points.
Therefore, Eq.~3.34! is irrelevant by simple power counting
A coupling such as Eq.~3.34! will not lead to a fermion
spectral function obeying Eq.~1.1!; instead the imaginary
part of the fermionic self-energy vanishes as ImS f

B;T21h I,
whereh I.0 is anomalous dimension of the order parame
(f) of the Ising model inD53 space-time dimensions. S
even forK5p/2, this transition remains in class B.

IV. DISCUSSION

This paper has presented a comprehensive mean-
study of realistic models of the cuprate superconductors
representative sample of our results appears in Figs. 3
and the properties of the phases therein were summarize
Sec. I. These mean-field results unify many other ear
studies14,78,32,16,70,52,5,60,36,71,11and expose the relationship
between them.

A second focus of the paper has been on the second-o
quantum phase transitions in Figs. 3–11. We paid partic
attention to theT.0 fermionic quasiparticle spectra in th
vicinity of the nodal points in the Brillouin zone, with th
purpose of understanding the observed quantum criticalit
recent photoemission experiments.40 We divided the transi-
tions into two classes, A and B~described in Sec. I A!, with
only those in class A leading to universal damping withv/T
scaling near the nodal points. Particularly appealing
amples of class A transitions, for which class A behavior w
generic and did not require any special parameter valu
were those involving time-reversal (T) symmetry breaking in
a d-wave superconductor: the most important of these are
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transitions from d-wave to (s* 1 id)-wave or (dx22y2

1 idxy)-wave superconductivity, which appeared in o
mean-field phase diagrams. The transition to (dx22y2

1 idxy) order had the additional satisfying feature of ve
naturally leading to the absence of quantum critical damp
of quasiparticles at momenta (p,k), (k,p) ~with 0<k<p),
as is found in experiments45–47 below the superconductin
critical temperature. However, the transition involving on
of ‘‘staggered-flux’’ ~or orbital antiferromagnet! order in a
d-wave superconductor, which broke bothT andC symme-
tries, wasnot of class A. We note that fermion damping in
model involvingT symmetry breaking has also been exa
ined recently by Varma,79 although he refers to quantum
criticality associated with a transition in a Fermi liquid an
not a superconductor. We also examined the onset
‘‘charge stripe order’’ (C symmetry breaking! in the d-wave
superconductor: such transitions belonged to class A if
charge ordering wave vector was precisely equal to the s
ration between two nodal points of thed-wave supercon-
ductor. This is a fine-tuning condition, which is also n
supported by experiments, and makes theC breaking transi-
tion a less attractive scenario for explaining fermion dam
ing.

So the most viable candidate for the stateX in Fig. 2 is the
(dx22y21 idxy)-wave superconductor. For this case, t
damping mechanisms appear to divide the fermion exc
tions into two distinct components. The fermions along
(1,0), (0,1) axes are strongly paired in thedx22y2-wave state
but are decoupled from the critical order parameter fluct
tions (dxy) to the stateX: consequently there is negligibl
damping of these fermions belowTc . On the other hand, the
fermions along the (1,61) axes couple strongly to thedxy
order parameter and undergo quantum critical damping
described by Eq.~1.1!. The situation changes dramatical
once we go aboveTc . Now phase fluctuations and the pr
liferation of hc/2e vortices80 will strongly scatter the fermi-
ons which couple efficiently to the predominantdx22y2 order
parameter: these are the fermions along (1,0),(0,1) direc-
tions, while the vortices are largely invisible to the fermio
along the (1,61) directions. Moreover, the antiferromag
netic spin fluctuations, which were responsible for fermi
pairing along the (1,0),(0,1) axes belowTc , will scatter
these same fermions~on the ‘‘hot spots’’! aboveTc ; again,
these fluctuations are invisible to the (1,61) direction fer-
mions because the antiferromagnetic wave vector does
connect the nodal points. Indeed, as we indicated in Sec.
the predominant damping of the (1,61) direction fermions
aboveTc continues to arise from the quantum criticaldxy
fluctuations to the stateX: this mechanism applies as long
the quantum critical scattering length of these fermions
mains shorter than the superconducting phase coher
length.

With an eye towards comparisons with photoemiss
experiments,40,48,49we review our results for the nodal fe
mionic spectral functions of the class A transitions. As
Ref. 40 we will follow the evolution of the spectral functio
along a line from the zone center going through the no
points, e.g., from~0,0! along the~1,1! direction through the
nodal point at (K,K). At the wavevector, (K1k,K1k), our
results for Eq.~1.1! are contained in the diagonal comp
r
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nents of Eqs.~3.17! and ~3.19!; we express these results
the form

Gf~k,v!5S m

T D 2h f 1

k2v2S̃ f

. ~4.1!

Note thatS̃ f is strictly not a self-energy~and thus the tilde!,
as some of the self-energy corrections have already b
absorbed into the prefactor of an anomalous power ofT in
Eq. ~4.1!. We have also set the velocity in the~1,1! direction
to unity.

For smallv,k, our result forS̃ f in Eq. ~3.19! is

S̃ f5 iG f ; uvu and uku,T, ~4.2!

whereG f /T is a universal number. For thed-wave to (s*
1 id)-wave or (dx22y21 idxy)-wave transition we estimate
G f /T50.58 in Sec. III A 2, while for the onset of a certai
type of C ordering in ad-wave superconductor we obtaine
G f /T51.35 in Sec. III B. We plot the results~4.1! and~4.2!
in Fig. 12.

For largev or k, our result is in Eq.~3.17!. For smallh f ,
this can be written as

S̃ f5
h f

2 H ~k2v!F lnS uv22k2u

T2 D 21G
1 ipuv2kuu~ uvu2uku!J ; uvu or uku@T, ~4.3!

where u is the unit step function. Note that the imagina

part of S̃ f vanishes foruvu<uku, and, in the present form
this will lead to an infinite spectral density at the thresho
uvu5uku. However, this is repaired by considering corre
tions to Eq.~4.3!. Within the scaling limit of the universa
theories being considered here, we evaluate the expres
~3.25! in the Appendix; atT.0, but with uvu,uku@T, we

FIG. 12. Low-frequency photoemission intensity near a no
point, ImGf(k,v) nf(v), given by Eqs.~4.1! and ~4.2!. Here,
G f /T50.58, which is the result for thed-wave to (s* 1 id)-wave or
(dx22y21 idxy)-wave transition discussed in Sec. III A, andnf(v)
5@exp(v/T)11#21 denotes the Fermi function.
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obtain in addition to the leading term in Eq.~4.3!, subleading

T-dependent corrections ReS̃ f
(1);T2/v and ImS̃ f

(1)

;T3/v2. These are still very small contributions, and so
can expect that the system will be exceptionally sensitive
nonuniversal corrections to scaling right at the threshold
quency. We believe that the most important of these w
come from elastic scattering off impurities; for a weak im
purity scattering potential,U imp , we have the additional con
tribution

S imp; iU imp
2 uvu. ~4.4!

We have added Eq.~4.4!, with a very small prefactor, to Eq
~4.3! and plotted the result in Fig. 13; the contribution of E
~4.4! can be neglected almost everywhere except right n
the threshold. It is interesting to note that our results~4.2!
and ~4.3! bear a superficial similarity to the ‘‘margina
Fermi-liquid’’ fitting functions.81 More specifically,~i! in the
latter approach, the prefactor of the power ofT in Eq. ~4.1! is
absent;~ii ! the smalluvu/T behavior of the self-energy in Eq
~4.2! is similar to that of the marginal Fermi liquid;~iii ! for

large uvu/T, the k dependence in Eq.~4.3! @as in ImS̃;uv
2kuu(uvu2uku)] is replaced simply by ImS̃;uvu. A sig-
nificant consequence of this last difference is that our largk
spectral densities have more asymmetric line shapes~even
before being multiplied by the Fermi function, as is nec
sary for photoemission experiments! than those found in the
marginal Fermi-liquid functions; this is illustrated in Fig. 1
It would be interesting for experiments to test for thek de-
pendence predicted in Eq.~4.3!.

Finally, we reiterate an important feature of our analy
of quantum criticality: we have only found Lorentz-invaria
fixed points at which all excitations have equal and isotro
velocities. Section III A 1 showed that, for thed-wave to
(s* 1 id)-wave or (dx22y21 idxy)-wave transition, such a
fixed point was at least linearly stable to perturbations whi
e.g., setvFÞvD . However, this does not rule out the pos
bility that there may be other non-Lorentz-invariant fix
points of the renormalization-group equations in whi

FIG. 13. High-frequency photoemission intensity near a no
point, ImGf(k,v) nf(v), given by Eqs.~4.3! and ~4.4!, with a
small impurity contributionU imp

2 50.1.
o
-

ll

.
ar

-

s

c

,

vF /vD is significantly different from unity.
Experimentally,48 it is clear thatvFÞvD , but this is still
compatible with a Lorentz-invariant fixed point: we found
Sec. III A 1 that the leading irrelevant operator which brea
Lorentz symmetry had a scaling dimension of very sm
absolute value (e/21'0.048), and so the system can resi
in a transient region withvFÞvD over a very wide tempera
ture range. This issue will be addressed further in fut
work.

Note added.~i! Recent THz conductivity measuremen
on Bi2Sr2Ca Cu2O81d by Corsonet al.82 have obtained a
quasiparticle relaxation rate linearly proportional toT, at
temperatures well belowTc . Combined with the photoemis
sion experiments,40 these results provide strong support f
quantum critical damping of the nodal quasiparticles in
d-wave superconductor, as is expected near a class A q
tum critical point between two superconducting states. C
sonet al. observe the quantum critical damping above 20
which suggests that the energy per coherence volume o
second superconducting state@say, the (dx22y21 idxy) super-
conductor# is higher than that of thed-wave superconducto
by less than 20 K.~ii ! A recent work83 has given a unified
discussion of the quantum phase transitions considered h
and those involvingM symmetry breaking considered i
Ref. 29.
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APPENDIX: PERTURBATION THEORY FOR FERMION
DAMPING

This appendix will compute theT.0 scaling function for
the fermion spectral weight in Eq.~1.1! for the case of a
quantum critical point between ad-wave and a

l
FIG. 14. Sample spectral function fork/T510—this is a cut

through the spectrum of Fig. 13. The asymmetry of the line shap
clearly visible~and it is not simply due to the Fermi function oc
curring as prefactor of the photoemission intensity!.
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(s* 1 id)-wave or (dx22y21 idxy)-wave superconductor. W
will use a simple renormalized perturbative expansion at
fixed point found in Sec. III A. We will show that such
procedure leads to spurious singularities in the lo
en

atl

ng

b
nd

th
ni
e

-

frequency regime\v,kBT. These singularities were cure
by the self-consistent analysis described in Sec. III A 2.

From the expression~3.25!, we obtain to leading order in
l2 ande
thermal

e

S m

T D 2h f

Gf
21~k,vn!5~2 ivn1kxt

z1kyt
x!F12

l* 2

2 S 1

e
1 ln~m/T! D G1

l* 2

Sd11
E ddp

~2p!d
T(

en

2 i en1pxt
z1pyt

x

~p21en
2!@~k2p!21~vn2en!2#

.

Evaluating the frequency summation, and performing the momentum integration over the terms not involving any
Bose or Fermi factors, we obtain

S m

T D 2h f

Gf
21~k,vn!52S̃ f

(1)~k,vn!1~2 ivn1kxt
z1kyt

x!H 12
h f

2 F lnS vn
21k2

eT2 D G J , ~A1!

where we have used Eq.~3.13!, and S̃ f
(1) is a thermal contribution which vanishes asT→0. To leading order ine, the

expression forS̃ f
(1) can be evaluated ind53, and we obtain fork along thex direction@recall that below Eq.~3.1! we rotated

the axes by 45° from the axes of the square lattice#:

S̃ f
(1)~k,vn!5216p2h fE d3p

~2p!3

1

2pup2ku

3S @n~ up2ku!1 f ~p!#@pxt
z~p2up2ku!2 ivnp#

~p2up2ku!21vn
2

1
@n~ up2ku!2 f ~p!#@pxt

z~p1up2ku!2 ivnp#

~p1up2ku!21vn
2 D , ~A2!

wherep5upu, k5uku, n(k) is the Bose function, andf (k) is the Fermi function. The expression in Eq.~A2! is reliable for
uvu,k@T: evaluating the integrals in this regime we obtain the estimates quoted below Eq.~4.3!. On the contrary, foruvu,k
!T, the above expressions are pathological; we obtain, e.g., ImS̃ f

(1)(0,v);T2d(v). This should be contrasted with th
smooth behavior as a function ofv assumed in Eq.~3.19!. The latter is the correct result on physical grounds,84 and estimation
of the damping constants requires a self-consistent approach like that followed in Sec. III A 2.
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