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Transport properties and structures of vortex matter in layered superconductors

M. F. Laguna, D. Domı´nguez, and C. A. Balseiro
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, 8400 San Carlos de Bariloche,

Rı́o Negro, Argentina
~Received 11 April 2000!

In this paper we analyze the structure, phase transitions, and some transport properties of the vortex system
when the external magnetic field lies parallel to the planes in layered superconductors. We show that experi-
mental results for resistivity are qualitatively consistent with numerical simulations that describe the melting of
a commensurate rotated lattice. However, for some magnetic fields, the structure factor indicates the occur-
rence of smectic peaks at an intermediate temperature regime.
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I. INTRODUCTION

The discovery of high-Tc superconductivity renewed th
interest for the thermodynamic, structural, and dynam
properties of vortex matter. Due to the large temperatu
available for the vortex system and an important numbe
relevant parameters, such as anisotropy, disorder, and
magnitude and direction of the external magnetic field,
physics of these systems is very rich. First- and second-o
phase transitions between a low-temperature solid phase
a high-temperature liquid phase have been predicted and
served experimentally. The low-temperature phase can
either a crystalline or a glassy phase depending on
amount and nature of the disorder present in the sample1,2

All the cuprate high-Tc materials have in common a crys
talline structure based on the existence of CuO planes.
makes all of them anisotropic materials with a layered str
ture. In the usual convention, thec-axis points in the direc-
tion perpendicular to the planes and thea andb axis are the
in-plane crystalline axis.

Concerning the study of the vortex properties in the
materials, most of the work was devoted to the study of
configuration in which the external field points along thec
axis, particularly in the case of experimental work. There
however, an increasing interest in the properties of the s
tem for fields parallel to the planes.3–9 Theoretically, in
many cases, the system is simulated as a highly anisotr
but homogeneous system.10 The planes, however, act as
strong potential for the vortices that tend to localize th
between planes where superconductivity is weak.23

In a clean system and at low temperatures, for the exte
field parallel to the ab planes, the vortices form a
anisotropy-distorted Abrikosov lattice. If the lattice is com
mensurate with the periodic potential due to the planes,
ground state of the system is a commensurate structure
the one schematically shown in Fig. 1~a!. In this particular
case, the vortex densityd in the direction perpendicular to
the planes is modulated with a period given by the latt
parameter of the vortex lattice. For this type of structure,
most salient theoretical prediction is the existence, at an
termediate temperature interval, of a smectic phase.6,7 In this
picture the transition between the crystalline state and
high-temperature liquid state takes place in two steps. In
intermediate regime the system develops long-~or
quasilong-! range order in the direction perpendicular to t
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planes, i.e., the liquid develops some density oscillatio
along this direction as a precursor of the frozen state. T
phase is known as the smectic phase. The existence o
smectic phase is unconfirmed and there are many rele
questions concerning its nature and stability. One of them
what happens if the field does not produce a commensu
structure like the one shown in Fig. 1. One possibility is th
the lattice locally retains its structure and orientation a
generates discommensuration to accommodate to the
odic potential generated by the planes. If the mismatch is
too large the discommensurations are far apart and the ph
cal properties of the system are not very affected. In this c
it could be possible to detect the existence of the sme
phase without tuning the external field to its commensur
value. The other alternative is that as the field is changed,
vortex lattice rotates and distorts—due to the anisotro
properties of the system—to form a new structure that
commensurate with the periodic potential like the one sho
in Fig. 1~b!. In this paper we will show that at low fields, a
the field changes, between two consecutive commensu
structures of the type of Fig. 1~a!, there are a number o
commensurate phases of the type illustrated in Fig. 1~b!.

For the particular case of the rotated structure shown
Fig. 1, the vortex densityd of the lattice is the same betwee
any two consecutive planes. In this case, as the tempera

FIG. 1. Commensurate structures at low temperatures. In~a! the
magnetic field applied in they direction generates a nonrotate
vortex lattice for which the vortex densityd is modulated in the
direction perpendicular to theab planes. In~b! the vortex lattice is
rotated an angleu, andd is the same for all the planes.
6692 ©2000 The American Physical Society
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increases, the lattice could melt going directly from the so
to the liquid state. If this is the case, it would be very difficu
to observe the smectic phase for an arbitrary chosen exte
field.

The transport properties of the vortex system for the c
figuration of interest were recently measured11 and the data
were compared with the theory of the smectic phase. Exp
ments and theory are only partially consistent.

In the rest of the paper we discuss, in terms of the Lond
theory with a periodic potential, the stability of the differe
commensurate phases. We also present some nume
simulations for the resistivity in layered structures and a
lyze the corresponding low-temperature vortex configu
tions. We will show that the experimental results for t
resistivity are qualitatively consistent with numerical simu
tions. For some fields, the structure factor indicates the
currence of smectic peaks at an intermediate temperatur
gime.

II. COMMENSURATE STATES IN THE LONDON
APPROXIMATION

In order to analyze the low-temperature structures of
vortex lattice we resort to the London approach in an an
tropic material and in the presence of a uniaxial poten
representing the effect of the planes. Following the work
Campbell, Doria, and Kogan10 ~CDK!, the free energy pe
unit length in the direction of vortices for an anisotrop
material is given by

F05E ~h21l2mi j curlihcurljh!
dxdz

8p
, ~1!

whereh(x,z) is the local magnetic field in the plane perpe
dicular to the vortices,l2 is proportional to theaverage mass
Mav5(M1M2M3)1/3 with Mk being the principal values o
the mass tensorMi j , andmi j 5Mi j /Mav is theeffective-mass
tensor. We consider the external field in they direction~par-
allel to the planes! that coincides with one of the principa
axis of the crystal,h5(0,hy,0). Then we takemxx5myy
5m1 andmzz5m3 .

For a vortex lattice,hy(x,z) is a periodic function with
nonzero Fourier componentshy(G), whereG are the recip-
rocal lattice vectors of the vortex lattice. The free energy
minimized with respect toh and following CDK,F0 is given
by

F05
B2

8p (
G

1

11l2~m1Gx1m3Gz!
, ~2!

where B5f0n is the magnetic induction,f0 is the flux
quantum, andn is the number density of vortices. In th
expression, the summation is over all the reciprocal lat
vectorsG of the vortex lattice. The mass anisotropy disto
the hexagonal lattice compressing it in thez direction and
expanding it along thex direction. The lattice can rotate t
form an angleu with the x axis as shown in Fig. 1~b!. For
this particular configuration, in which the magnetic field
parallel to one of the principal axis of the crystal, CDK ha
shown that theF0 contribution to the free energy does n
depend onu.

The above considerations are valid for continuous an
tropic superconductors. In layered superconductors, the p
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ence of planes introduces a periodic potential that will p
tially break the degeneracy inu. In a first-order
approximation, we describe the effect of the planes by
cluding a periodic potential that tends to localize the vortic
in the interplane spacing:

F5F01E hy~x,z!V~z!dxdz, ~3!

whereV(z) is a periodic potential with the periodicity of th
c-axis lattice parameter. The condition for commensurabi
of the vortex lattice with the periodic potential, correspon
ing to the situation in which all vortices are placed at a mi
mum of V(z), is given by the conditionxj5ns, wherexj is
thex component of the coordinate of vortexj, n is an integer,
ands is thec-axis lattice parameter~the interplane distance!.
In the reciprocal space this condition gives a relation
tween the reciprocal lattice vectors and the vectorQ of the
periodic potentialV(z):

Q5
2p

s
ẑ5pG11qG2 , ~4!

wherep andq are integers and

G15
2p

gL

sin~u1p/3!

sinp/3
x̂2

2pg

L

cos~u1p/3!

cosp/3
ŷ, ~5!

G252
2p

gL

sinu

sinp/3
x̂1

2pg

L

cosu

cosp/3
ŷ ~6!

with g25Am1 /m3 the anisotropy factor and L2

5(2F0)/()B).
This condition can be put in the form

tan~u!5
p cos~p/3!2q

p sin~p/3!
~7!

and

B5
2f0g2 sin2~p/3!

)s2@p sin~u1p/3!2q sin~u!#2 . ~8!

In Fig. 2, all angles 0<u<p/6 satisfying the condition for
commensurability are shown as a function of the magn

FIG. 2. Angles of rotation of the vortex lattice vs magnetic fie
Each point of the diagram corresponds to a commensurate sta
minimum energy. Magnetic field is in tesla and the parameters
those typically used to describe Y-Ba-Cu-O:s510 Å and mass
anisotropym1 /m3550.
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induction B. In the London approximation, since the fre
energy isu independent, all commensurate states obtai
for a given magnetic inductionB are degenerate. As can b
seen in Fig. 2, for low fields, between two consecutive co
mensurate structures of the type of Fig. 1~a!—corresponding
to u50 or p/6—there are a large number of commensur
phases withuÞ0. As the field increases the number of com
mensurate phases decreases and in the limit of high mag
fields ~or high anisotropy! there are only two undistorte
lattices corresponding tou50 andp/6, and at all tempera
tures the vortex density is the same between any two c
secutive planes. In this limit, increasing the magnetic fi
compresses the vortex lattice in thez direction. Our simple
model is not appropriate to describe this limit.12,13

For all angles, the high anisotropy generates structu
where the vortex-vortex distance along the plane directi
is much larger than the distance perpendicular to the pla
giving rise to vortex chains. Recently Hu and Tachiki8 stud-
ied the ground-state configuration of the vortex lattice, us
Monte Carlo simulations in the highly anisotropicXY model
for large systems. They found structures consisting of bu
ling vortex chains. We interpret these results as rotated
tices with discommensurations due to the mismatch of
vortex lattice parameter with the interplane distance. In
numerical simulations, transverse discretization of the sp
could be another source of discommensurations. Althoug
general, we expect the discommensuration to form an a
of 45° with respect to the planes,14,15 the boundary condi-
tions in a finite sample could stabilize discommensurati
parallel to the planes. The buckling vortex chains structu
are consistent with Bitter-pattern observations, however
the experimental case twin boundaries may be relevan
stabilize the observed structure.16,4

III. NUMERICAL SIMULATIONS

In this section we present numerical simulations for
transport properties and structure factor in an anisotropic
tem described by a three-dimensional~3D! Josephson-
junction array. The model has been extensively used an
described in Refs. 17 and 18, and here we give only a b
summary of the method.

The equilibrium physics of this system is described by
Hamiltonian of a three-dimensional frustratedXY
model:19–21

H52EJ (
^ i ,i 8&Pab plane

cos~w i2w i 82Aii 8!

1
1

g2
(

^ i ,i 8&Pc axis

cos~w i2w i 82Aii 8! ~9!

with EJ5f0
2s/16p3l2 ~l is the penetration length in theab

planes and s is the interplane distance! and Aii 8

[(2e/\c)* i
i 8A•dl the integral of the vector potential of th

external magnetic field from sitei to site i 8. The phases
w i(t) are defined in the nodes of a lattice and represent
phase of the order parameter. The thermodynamics of
Hamiltonian coincides with the equilibrium properties of t
3D Josephson-junction array.
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The dynamics of the 3D Josephson-junction array is c
tained in the time evolution of the phasesw i(t). Nearest-
neighbor nodes are coupled with Josephson junctions c

acterized by critical currentsI c
ii 8 and normal resistancesRii 8.

The equations describing the model are

j i i 85I c
ii 8 sin~w i2w i 82Aii 8!1

\

2eRii 8

]~w i2w i 8!

]t
1h i i 8~ t !,

~10!

(
$ i 8%

j i i 85 j ext
i . ~11!

Equation ~10! gives the current between the neare
neighbor nodesi andi 8 with phasesw i andw i 8. Hereh i i 8(t)
is an uncorrelated Gaussian noise that incorporates the e
of the temperature. Equation~11! ensures the current conse
vation at each node andj ext

i is the external current applied a
nodei. Equations~10! and~11! are numerically integrated on
time using a Runge-Kutta method. The typical time step u
is Dt50.1tJ (tJ5f0/2pR0I c) and the number of iteration
is 20 000<N<100 000. Details of the numerical metho
have been presented in previous works.17,18 The mean in-
plane critical currentsI c

i are larger than the mean interplan
critical currentsI c

' by an anisotropy factorg2 (g2[I c
i /I c

'),
and I c

i
5I c52pEJ /f0 . At the same time, the ratio betwee

the in-plane resistanceRi and the out-of-plane resistanceR'

is given by 1/g2. We also consider a small amount of diso
der by taking a uniform distribution of critical currents o
width D defined as

D5
~ I c

max2I c
min!

~ I c
max1I c

min!
, ~12!

whereI c
max and I c

min are the maximum and minimum value
of the critical current in the corresponding directions. T
disorder simulated are typically 0<D<0.1. As in the previ-
ous section, we take thez direction as the direction perpen
dicular to the planes~parallel to thec axis of the crystal! and
the external magnetic field along they direction. The mag-
netic fields simulated are172 < f < 1

6 , where f 5Ba2/f0 ~a is
the square lattice period!. The values of anisotropy are
<g2<45 and typical system sizes are 8<Lx ,Ly ,Lz<64.
We calculate the resistivity in the three directions by app
ing a small probe current and evaluating the average volta
For example, for the resistivityrm in the m direction we
drive the system with a small currentI m (I m50.01I c

m) and
measure the voltage

Vm5
\

2e K d

dt
~w i 1m2w i !L . ~13!

Thenrm5Vm /I m .

A. Transport properties

The results for the resistivity calculated with period
boundary conditions~PBC’s! along the field direction and
free boundary conditions~FBC’s! in the other directions are
shown in Fig. 3. These results correspond to a sample w
f 5 1

12 , g2520, Lx5Ly5Lz530, D50.05, andN550 000.
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We found similar results for systems withf 5 1
48 , 1

24 , 1
6 ,g2

55,10,25 and the same sizes and disorder as the ones
cated above. The general behavior is qualitatively simila
the experimental data obtained by Grigeraet al.11 shown in
the inset for comparison.

The response of the system when the external curren
perpendicular to the planes~and the Lorenz force is paralle
to them! is given byrz . For this geometry, the pinning du
to the planes is unimportant and for temperatures higher
a characteristic temperatureTi the resistivity rz increases
rapidly. The stable phase forT.Ti corresponds to a liquid
phase and the rapid increase ofrz is an indication of the high
mobility of vortices parallel to the planes. The transitio
from the low-temperature phase to the high-temperature
uid phase is continuous. These results, obtained in the fi
system, are not conclusive on whether the change of be
ior observed atTi is a second-order phase transition or
crossover between two different regimes. In finite syste
thermal activation is observed down to low temperatures
finite-size scaling is necessary in order to characterize
transition. Based on previous results and the discussio
the next section, we will refer to this behavior as continuo
transition and to zero resistivity when the noise in the vo
age is larger than its mean value, corresponding typically
rm,Rm31025, wherem5x,y,z.

When the external current is applied along thex direction,
the Lorenz force is perpendicular to the planes and for te
peraturesT*Ti the in-plane pinning dominates the vorte
dynamics resulting in a smallrx . The resistivity rx de-
creases strongly near a characteristic temperatureT* .Ti
and has a tail that extends down toTi . This behavior is
obtained for different values of the anisotropy and magn
field, it qualitatively reproduces the experimental obser
tion, and resembles the prediction of the smectic ph
theory. In this theory, as the temperature is lowered, the
tem undergoes a transition to a smectic phase at a temp
ture Ts . In the temperature intervalTi,T,Ts the system
develops long-~or quasilong-! range order in the direction
perpendicular to the planes and the resistivity shows, in

FIG. 3. Resistivities in the three directions for a system w
FBC’s in x and z directions and PBC’s in the field direction. Th
parameters aref 5

1
12, g2520, D50.05, N550 000, andLx5Ly

5Lz530. ry is the resistivity parallel to the field,rx is the resis-
tivity perpendicular to the field but parallel to theab planes, andrz

is perpendicular both to the planes and the field. In the inset exp
mental results of Ref. 11 are shown.
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vicinity of the smectic temperatureTs , a critical behavior of
the form rx(T)2rx(Ts)}uT2Tsu12a, wherea is the spe-
cific heat critical exponent. At the temperatureTi , long-
range order in the direction parallel to the planes appe
giving rise to a crystalline structure. Since in finite-size sy
tems the resistivity is not necessarily a good quantity to ch
acterize a phase transition~in particular it will not show an
infinite slope! we search for some signature of a smec
phase by analyzing the structure of the liquid for tempe
turesT*Ti corresponding to the regime whererx shows a
tail. The details of the structure factors calculated w
PBC’s at different temperatures are presented in next sec

Finally, we have also calculated the resistivityry corre-
sponding to a transport current along the field direction
which there is zero Lorentz force. In this geometry, the
sistivity goes to zero at a temperatureTp.Ti . This behavior
is due to finite-size effects; dissipation occurs when vorti
entangle to form a structure that percolates in the directi
perpendicular to the external field. This happens at a te
peratureTp that is sensitive to the thickness (Ly) of the
sample, the thicker the sample, the lower theTp . Previous
studies18 of the resistivity in the direction of the field show
that in the thermodynamic limitTp coincides withTi as ex-
perimentally observed, and we expect the resistivity alo
the three directions to vanish at the same temperature.

In order to discard boundary effects due to surface ba
ers, we have also calculated the resistivities and struc
factors using PBC’s in the three directions. Results for
resistivity in a highly anisotropic sample with weak disord
are shown in Fig. 4. For this case, the parameters arf
5 1

24, g259, Lx5Lz548, Ly58D50, andN530 000. We
have also done some simulations with PBC’s in the th
directions forf 5 1

72 , 1
48 , 1

8 , g251240, andN5104– 105, and
we found similar results. Whilerx andry behave essentially
as in the previous case, as the temperature decreasesrz satu-
rates at a value different from zero, which increases w
anisotropy. TheI -V characteristics for the current along th
three directions at low temperatures are shown in the in
and indicates a very small value of the critical current in t
z direction. The saturation of the resistivity at low temper
tures is due to the fact that the run was done with a value
the transport currentj ext larger than the critical currentj c and

ri-

FIG. 4. Resistivities in the three directions with PBC’s for
system withf 5

1
24, g259, Lx5Lz548, andLy58. rx , ry , andrz

are defined in Fig. 3. In the inset theI-V characteristics for the
current along the three directions are shown.
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the results correspond to a flux-flow regime. A systema
study of the resistivities withj ext, j c requires much more
statistics and generates larger numerical errors. In any c
these results show two important points: first, for the syste
under consideration,rx andry are not very sensitive to th
boundary conditions, and second, when vortices flow para
to the planes, pinning is very weak. In the case of FBC’s
surface barriers generate some extra pinning that incre
the critical current. In the thermodynamic limit, any rig
structure is pinned by impurities and surface effects and
this sense, it may be more appropriate to compare the ca
FBC’s with experiments if results withj ext, j c are not avail-
able for the case of PBC’s. As a side comment, notice
the noise inrz disappears at a temperature of the order ofTi
at whichry vanishes. A simple interpretation of this effect
that in the flux-flow regime an ordered structure genera
less noise than a liquid. However, a systematic study of
noise, that could give information on the nature of the d
ferent phases, is needed to reach definitive conclusions.

B. Structure factor

In this section we present results for the structure fac
calculated for different temperatures. At high temperatu
in the liquid phase, the system is highly disordered and p
sents vortex loop excitations. An instantaneous picture of
vortices crossing a plane perpendicular to the external fi
(y5Ly/2) is shown in Fig. 5~a! for the same system as Fig
4.

The vortex-antivortex pairs are small loops confined
tween twoab planes and cut by they5Ly/2 plane. As the
temperature decreases the system evolves towards an or
solid structure. It is known that, due to numerical limitation
in three dimensions it is very difficult to cool the system in
an ordered lattice. The type of structure obtained by slo
cooling the system is shown in Fig. 5~b!. We obtain this kind
of structure for systems withf < 1

12 . For higher magnetic
fields, a triangular vortex lattice was found like the one p
dicted by Ref. 3.

Although the obtained structure is very disordered,
tendency to form vortex chains~at approximately 45° in the
figure! can be observed. This tendency is reflected by
structure factorS(q' ,y) defined as22

FIG. 5. Instantaneous configuration of the vortices in a pla
perpendicular to the field for the system of Fig. 4. Black dots
vortices and white ones are antivortices. In~a! the temperature is
kT/Ej51.1, and in~b! kT/Ej50.
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S~q' ,y!5
1

N2 U(
j

h je
iq'•r jU2

, ~14!

where N is the total number of vortices,h j is the vortex
charge: 1 for vortices and21 for antivortices, andr j are the
vortex coordinates in the direction perpendicular to the
ternal field at a plane with coordinatey. We defineS(q') as
the average overy of S(q' ,y).

In Fig. 6 the high- and low-temperature structure fac
for the system of fig. 5 are shown.

At high temperatures only a background of the for
cos(qxa), where a is the lattice parameter of the junctio
network, is obtained. This background is due to the prese
of small loops which in general are confined between t
consecutiveab planes, i.e., vortex-antivortex pairs which a
oriented in thex direction and bound at a distancea. At low
temperatures, the background disappears and well-defi
peaks are observed. The peaks in the structure factor co
spond to a rotated vortex lattice with a small angleu. In Fig.
6~b! we draw one of the corresponding rotated hexago
reciprocal space unit cells. We also see that there are p
corresponding to the same lattice structure reflected in 1
with respect to thez axis. The coexistence of these two r
flected structures could explain the chainlike ordering o
served in real-space configurations@Fig. 5~b!#. For this par-
ticular value of the external field, we follow the evolution o
the structure factor as the system is cooled and observe s
indications of a smectic phase at intermediate temperatu
A sequence of the structure factor at intermediate temp
tures is shown in Fig. 7.

At temperaturesT*Ti , where the resistivityrx presents a
small tail, a peak atq5(0,qz

0) is clearly observed@Fig. 7~a!#.
This peak indicates the presence of a smectic phase. As
temperature is lowered from high temperatures, first the
tensity of the smectic peak increases, goes through a m
mum, and then decreases as the crystalline peaks corresp
ing to a rotated structure increase. The wave vectorqz

0 may
also be weakly temperature dependent: The first sme
peak observed hasqz

0.Q/3(Q52p/s) and as the tempera
ture is lowered it shifts towardsQ/2. At the temperature
corresponding to Fig. 7~a! the wave vector characterizing th
density modulation of the liquid isqz

0.Q/2, indicating that
the vortex liquid is modulated with a period 2s. At a lower

e
e FIG. 6. Structure factor of the configurations of Fig. 5.~a! and
~b! correspond to the same temperatures shown in that figure.
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temperature@Fig. 7~b!# the amplitude of the smectic peak
smaller and some crystalline peaks are observed. The l
increase asT decreases.

In Fig. 8 the temperature dependence of the smectic p
and one of the crystalline peaks are shown. The oscillati

FIG. 7. Smectic structure factor for the system of Fig. 5
intermediate temperatures. A Bragg peak of smectic order ca
observed atqz

0.Q/2 at T50.53 ~a!, which decreases at a lowe
temperatureT50.30~b!. The zone in the middle was painted blac
in order to enhance the small peaks atqz.Q/4. The peak atqz

0

.Q/2 corresponds to an average vortex spacing of 2s in the z
direction.

FIG. 8. Temperature dependence of the intensity of the sme
peak described in the text~filled symbols! and a crystalline peak
(qx

0,qz
0).(Q/12,Q/4) ~open symbols!.
ter

ak
s

in the amplitude of the smectic peak are probably due
finite-size effects, since only some discrete values ofqz

0 are
consistent with the PBC’s. At temperaturesT;Ti both the
smectic and the crystalline peaks coexist, indicating the
existence of the two phases.

Since the symmetry group of the smectic phase is no
subgroup of the one corresponding to the symmetry of
rotated lattice, we expect a first-order transition betwe
these two phases. This is consistent with the observation
coexistence of the two phases in the numerical simulatio

For other values of the parameters studied (f 5 1
24 and

g252.56,25) for which the low-temperature phase cor
sponds to a rotated crystal with a larger rotation angle, we
not observe indications of a smectic order in the liquid pha
In these cases, our preliminary results indicate a continu
transition from the liquid to the frozen state without an
precursor of long- or quasilong-range order in the direct
perpendicular to the planes.

IV. SUMMARY AND DISCUSSION

We have studied the problem of the low-temperatu
structure, the thermodynamic and transport properties of v
tices when the external field is applied parallel to the C
planes in high-Tc superconductors. A simple analysis bas
on the London theory in the presence of a periodic poten
indicates the possibility of a variety of commensurate str
tures that essentially correspond to anisotropy-distor
Abrikosov lattices rotated to match the periodic potenti
For low fields a large number of degenerate structures
responding to different rotation angles are obtained. Us
parameters like those typically used to describe Y-Ba-Cu
s510 Å and a mass anisotropym1 /m3550, for magnetic
induction between 5 and 6 T, we obtain about seven rota
angles which generate commensurate structures.

The numerical simulations in anXY model clearly show
the tendency to form rotated structures. Our results sh
structures with grains of twin phases.

The transport properties qualitatively reproduce the
perimental results. In particular,rx shows a rapid decreas
and a tail that extends down toTi . This behavior is similar to
the predictions of the smectic phase theory although tra
port properties seem not to be enough to prove the existe
of this phase at an intermediate temperature range.

When the rotated angle of the low-temperature structu
which depends both on the value of the external field and
anisotropy, is small, we observe, at intermediate tempe
tures, well-defined peaks corresponding to a smectic ph
The vectorQ and the amplitude of the smectic peak a
temperature dependent and a first-order transition is expe
from the smectic to the crystalline phases. For the parame
that give a larger rotation angle of the crystalline phase,
observe a direct evolution of a system from the anisotro
liquid to the vortex lattice without any indication of an inte
mediate smectic phase.
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