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Transport properties and structures of vortex matter in layered superconductors
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In this paper we analyze the structure, phase transitions, and some transport properties of the vortex system
when the external magnetic field lies parallel to the planes in layered superconductors. We show that experi-
mental results for resistivity are qualitatively consistent with numerical simulations that describe the melting of
a commensurate rotated lattice. However, for some magnetic fields, the structure factor indicates the occur-
rence of smectic peaks at an intermediate temperature regime.

I. INTRODUCTION planes, i.e., the liquid develops some density oscillations
along this direction as a precursor of the frozen state. This
The discovery of highF, superconductivity renewed the phase is known as the smectic phase. The existence of the
interest for the thermodynamic, structural, and dynamicapmectic phase is unconfirmed and there are many relevant
properties of vortex matter. Due to the large temperatureguestions concgrning_its nature and stability. One of them is
available for the vortex system and an important number ofvhat happens if the field does not produce a commensurate
relevant parameters, such as anisotropy, disorder, and ti§ructure like the one shown in Fig. 1. One possibility is that
magnitude and direction of the external magnetic field, thdhe lattice locally retains its structure and orientation and
physics of these systems is very rich. First- and second-ordéenerates discommensuration to accommodate to the peri-
phase transitions between a low-temperature solid phase afdic potential generated by the planes. If the mismatch is not
a high-temperature liquid phase have been predicted and ofR0 large the discommensurations are far apart and the physi-
served experimentally. The low-temperature phase can beal properties of the system are not very affected. In this case
either a crystalline or a glassy phase depending on thé could be possible to detect the existence of the smectic
amount and nature of the disorder present in the safrfple. Phase without tuning the external field to its commensurate
All the cuprate highF, materials have in common a crys- Value. The other alternative is that as the field is changed, the
talline structure based on the existence of CuO planes. Thi¥ortex lattice rotates and distorts—due to the anisotropic
makes all of them anisotropic materials with a layered strucProperties of the system—to form a new structure that is
ture. In the usual convention, tleaxis points in the direc- Commensurate with the periodic potential like the one shown

tion perpendicular to the planes and thandb axis are the in Fig. 1(b). In this paper we will show that at low fields, as
in-plane crystalline axis. the field changes, betweeq two consecutive commensurate
Concerning the study of the vortex properties in thesestructures of the type of Fig.(d), there are a number of
materials, most of the work was devoted to the study of th&ommensurate phases of the type illustrated in Fig).1
configuration in which the external field points along the _ For the particular case of the rotated structure shown in
axis, particularly in the case of experimental work. There isFig. 1, the vortex density of the lattice is the same between
however, an increasing interest in the properties of the sys2ny two consecutive planes. In this case, as the temperature
tem for fields parallel to the planés® Theoretically, in
many cases, the system is simulated as a highly anisotropic (a)
but homogeneous systethThe planes, however, act as a * -
strong potential for the vortices that tend to localize them
between planes where superconductivity is w&ak.
In a clean system and at low temperatures, for the external . -
field parallel to the ab planes, the vortices form an
anisotropy-distorted Abrikosov lattice. If the lattice is com- x

V-

mensurate with the periodic potential due to the planes, the

ground state of the system is a commensurate structure like ) 0 ®

the one schematically shown in Fig@l In this particular —
case, the vortex density in the direction perpendicular to — Z

the planes is modulated with a period given by the lattice . *
parameter of the vortex lattice. For this type of structure, the

most salient theoretical prediction is the existence, at an in-
termediate temperature interval, of a smectic piddae.this FIG. 1. Commensurate structures at low temperature ) line
picture the transition between the crystalline state and thehagnetic field applied in the direction generates a nonrotated
high-temperature liquid state takes place in two steps. In thgortex lattice for which the vortex densit§ is modulated in the
intermediate regime the system develops lon@r  direction perpendicular to theb planes. In(b) the vortex lattice is
quasilong} range order in the direction perpendicular to therotated an angl®, and & is the same for all the planes.
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increases, the lattice could melt going directly from the solid
to the liquid state. If this is the case, it would be very difficult
to observe the smectic phase for an arbitrary chosen extern:
field.

The transport properties of the vortex system for the con-0
figuration of interest were recently measurednd the data
were compared with the theory of the smectic phase. Experi- G
ments and theory are only partially consistent.

In the rest of the paper we discuss, in terms of the London
theory with a periodic potential, the stability of the different
commensurate phases. We also present some numeric
simulations for the resistivity in layered structures and ana-
lyze the corresponding low-temperature vortex configura-
tions. We will show that the experimental results for the
resistivity are qualitatively consistent with numerical simula-
tions. For some fields, the structure factor indicates the oc- FIG. 2. Angles of rotation of the vortex lattice vs magnetic field.
currence of smectic peaks at an intermediate temperature rEach point of the diagram corresponds to a commensurate state of
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gime. minimum energy. Magnetic field is in tesla and the parameters are
those typically used to describe Y-Ba-Cu-©=10A and mass

anisotropym, /m5;=>50.
II. COMMENSURATE STATES IN THE LONDON

APPROXIMATION

ence of planes introduces a periodic potential that will par-

In order to analyze the low-temperature structures of thdially break the degeneracy iné. In a first-order
vortex lattice we resort to the London approach in an aniso@PProximation, we describe the effect of the planes by in-
tropic material and in the presence of a uniaxial potentiaF'Ud'”g a periodic potential that tends to localize the vortices

representing the effect of the planes. Following the work by" the interplane spacing:

Campbell, Doria, and Kogah (CDK), the free energy per
unit length in the direction of vortices for an anisotropic
material is given by

dxdz
F0=J (h2+)\2mijcurlihcurljh)¥, (1)

whereh(x,z) is the local magnetic field in the plane perpen-
dicular to the vortices\? is proportional to theverage mass
M = (M;M,M3)¥3 with M, being the principal values of
the mass tensdvl;; , andm;; = M;; /M, is theeffective-mass
tensor We consider the external field in tlyedirection (par-
allel to the planesthat coincides with one of the principal
axis of the crystalh=(0h,,0). Then we takem,,=m,,
=m; andm,,=mj;.

For a vortex latticeh,(x,z) is a periodic function with
nonzero Fourier components(G), whereG are the recip-

rocal lattice vectors of the vortex lattice. The free energy is

minimized with respect th and following CDK,F is given
by
BZ

1
Fozg%

1+ N2(m G+ myG,)’

2

where B= ¢on is the magnetic inductiong, is the flux
guantum, andh is the number density of vortices. In this

expression, the summation is over all the reciprocal lattice
vectorsG of the vortex lattice. The mass anisotropy distorts

the hexagonal lattice compressing it in thalirection and
expanding it along the direction. The lattice can rotate to
form an angled with the x axis as shown in Fig. (b). For
this particular configuration, in which the magnetic field is

parallel to one of the principal axis of the crystal, CDK have

shown that the~, contribution to the free energy does not
depend ory.

F:Fo+f hy(x,2)V(z)dxdz ©)

whereV(z) is a periodic potential with the periodicity of the
c-axis lattice parameter. The condition for commensurability
of the vortex lattice with the periodic potential, correspond-
ing to the situation in which all vortices are placed at a mini-
mum ofV(2z), is given by the conditiox;=ns, wherex; is
thex component of the coordinate of vortgxn is an integer,
ands is thec-axis lattice parametdthe interplane distange

In the reciprocal space this condition gives a relation be-
tween the reciprocal lattice vectors and the veoof the
periodic potentiaV(z):

27
Q: ?Z: pG1+q621 (4)
wherep andq are integers and
_277 sin(@+m/3) 2wy cog 0+ w/3) .
"L sinw/3 L cosez V. ©
G 2w sind A+27T'y cosf _ 6
2= YL sina/3" ' L cosmi3” ©
with  y?*=\m;/m; the anisotropy factor andL?
=(2®d)/(V3B).
This condition can be put in the form
_pcogn/3)—q
tan(9) = W (7)
and
2¢oy? sirt(l3)
- ®

B= A psin 6+ 7/3)—qsin 6) 1"

The above considerations are valid for continuous anison Fig. 2, all angles & 6< /6 satisfying the condition for
tropic superconductors. In layered superconductors, the presemmensurability are shown as a function of the magnetic
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induction B. In the London approximation, since the free  The dynamics of the 3D Josephson-junction array is con-
energy is# independent, all commensurate states obtainethined in the time evolution of the phase4t). Nearest-
for a given magnetic inductioB are degenerate. As can be neighbor nodes are coupled with Josephson junctions char-

seen in Fig. 2, for low fields, between two consecutive comygterized by critical curreml{ and normal resistancéd .

mensurate structures of the type of Figa)i—corresponding  The equations describing the model are
to #=0 or w/6—there are a large number of commensurate

phases withg# 0. As the field increases the number of com- =~ | o o oae—)
mensurate phases decreases and in the limit of high magnetic' =1¢ sin(¢'—¢' —A" )+ = n +
fields (or high anisotropy there are only two undistorted 2eR
lattices corresponding t6=0 and #/6, and at all tempera-
tures the vortex density is the same between any two con-
secutive planes. In this limit, increasing the magnetic field E j“’:jgxt_ (12)
compresses the vortex lattice in theiirectio;ﬁ.ll(?’)ur simple {in
model is not appropriate to describe this lirrfit. . .

For all angles, the high anisotropy generates structures .Equatlon (1(_)) g|\{es 'the current betwgen the A_n’earest—
where the vortex-vortex distance along the plane direction§€ighbor nodesandi’ with phasesp' and¢' . Heren" (t)
is much larger than the distance perpendicular to the planet an uncorrelated Gaussgan noise that incorporates the effect
giving rise to vortex chains. Recently Hu and Tachiiud- of the temperature. Equatidfil) ensures the current conser-
ied the ground-state configuration of the vortex lattice, using/ation at each node arjd,, is the external current applied at
Monte Carlo simulations in the highly anisotropi¢y model ~ nodei. Equationg10) and(11) are numerically integrated on
for large systems. They found structures consisting of bucktime using a Runge-Kutta method. The typical time step used
ling vortex chains. We interpret these results as rotated lats At=0.17; (7;= ¢¢/2mRgl ) and the number of iterations
tices with discommensurations due to the mismatch of thés 20 006<N<=100000. Details of the numerical method
vortex lattice parameter with the interplane distance. In théave been presented in previous work® The mean in-
numerical simulations, transverse discretization of the spacplane critical Currentskﬂ are larger than the mean interplane
could be another source of discommensurations. Although iwritical currentsl; by an anisotropy factos/? (yzzl‘éllé),
general, we expect the discommensuration to form an anglgnd|l=|czzq-rEJ/¢o, At the same time, the ratio between
of 45° with respect to the plané$;® the boundary condi-  the in-plane resistande! and the out-of-plane resistange
tions in a finite sample could stabilize discommensurationss given by 14?. We also consider a small amount of disor-
parallel to the planes. The buckling vortex chains structuregler by taking a uniform distribution of critical currents of
are consistent with Bitter-pattern observations, however, ijidth A defined as
the experimental case twin boundaries may be relevant to

stabilize the observed structuf®? (17— | min)
A= —F— (12

max__ | miny »
(I 1)

’

7" (1),
(10

lll. NUMERICAL SIMULATIONS wherel ™ and ™ are the maximum and minimum values

In this section we present numerical simulations for theof the critical current in the corresponding directions. The
transport properties and structure factor in an anisotropic syslisorder simulated are typically<0A<0.1. As in the previ-
tem described by a three-dimensioné@D) Josephson- OuUs section, we take thedirection as the direction perpen-
junction array. The model has been extensively used and @icular to the planegparallel to thec axis of the crystaland

described in Refs. 17 and 18, and here we give only a briefhe external magnetic field along tlyedirection. The mag-
summary of the method. netic fields simulated arg;<f<g%, wheref=Ba? ¢, (ais

The equilibrium physics of this system is described by thethe square lattice peripdThe values of anisotropy are 1
Hamiltonian of a three-dimensional frustratedkY  <7y°<45 and typical system sizes are<8,,L,,L,<64.
model19-21 We calculate the resistivity in the three directions by apply-

ing a small probe current and evaluating the average voltage.
For example, for the resistivity , in the u direction we

I max
Cc

H=-E;, X coge'— ¢ —Al") drive the system with a small currehf, (1,=0.01%) and
(i.i")cab plane measure the voltage
1 o .
+— cog ' — ¢ — Al 9 Aojd o -
72<i,i’>§: axis te-e ) ( ) Vu:£<a(¢l+ﬂ_¢l)>- (13

with E;= ¢3s/167°\2 (\ is the penetration length in b~ Thenp,=V,/I,.
planes ands is the interplane distange and A"’

E(2e/ﬁc)f}'A- dl the integral of the vector potential of the
external magnetic field from site to sitei’. The phases The results for the resistivity calculated with periodic
¢'(t) are defined in the nodes of a lattice and represent thboundary condition§PBC’s) along the field direction and
phase of the order parameter. The thermodynamics of thisee boundary condition€-BC’s) in the other directions are
Hamiltonian coincides with the equilibrium properties of the shown in Fig. 3. These results correspond to a sample with
3D Josephson-junction array. f=4, ¥*=20, Ly=L,=L,=30, A=0.05, andN =50 000.

A. Transport properties
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FIG. 3. Resistivities in the three directions for a system with G- 4 Resilstivigies in the three directions with PBC’s for a
FBC's in x and z directions and PBC's in the field direction. The SyStem withf=3z, y°=9,L,=L,=48, andL,=8. p,, py, andp,
parameters aré= 15, y?=20, A=0.05, N=50000, andL,=L are defined in Fig. 3. In the inset tHeV characteristics for the

y ’ . ’ y X y

=L,=30. p, is the resistivity parallel to the fielgh, is the resis- current along the three directions are shown.

tivity perpendicular to the field but parallel to tlab planes, ang, R . ., .
is perpendicular both to the planes and the field. In the inset experi\-/ICInIty of the smectic temperatufk, a critical behavior of

mental results of Ref. 11 are shown. th? form pX(_T_)_pX(Ts)“|T_T5|17a’ where a is the spe-
cific heat critical exponent. At the temperatufe, long-

We found similar results for systems with=75,2,%,9>  range order in the direction parallel to the planes appears,
=5,10,25 and the same sizes and disorder as the ones ingjiving rise to a crystalline structure. Since in finite-size sys-
cated above. The general behavior is qualitatively similar tdems the resistivity is not necessarily a good quantity to char-
the experimental data obtained by Grigetaal}* shown in  acterize a phase transitidim particular it will not show an
the inset for comparison. infinite slope we search for some signature of a smectic
The response of the system when the external current ighase by analyzing the structure of the liquid for tempera-
perpendicular to the planéand the Lorenz force is parallel turesT=T, corresponding to the regime whepg shows a
to them is given byp,. For this geometry, the pinning due tail. The details of the structure factors calculated with
to the planes is unimportant and for temperatures higher thaRBC'’s at different temperatures are presented in next section.
a characteristic temperatuig the resistivity p, increases Finally, we have also calculated the resistivity corre-
rapidly. The stable phase far>T,; corresponds to a liquid sponding to a transport current along the field direction for
phase and the rapid increasepgfis an indication of the high  which there is zero Lorentz force. In this geometry, the re-
mobility of vortices parallel to the planes. The transition sistivity goes to zero at a temperatdrg>T; . This behavior
from the low-temperature phase to the high-temperature ligis due to finite-size effects; dissipation occurs when vortices
uid phase is continuous. These results, obtained in the finitentangle to form a structure that percolates in the directions
system, are not conclusive on whether the change of behayerpendicular to the external field. This happens at a tem-
ior observed aff; is a second-order phase transition or aperatureT, that is sensitive to the thicknes& ) of the
crossover between two different regimes. In finite systemssample, the thicker the sample, the lower g Previous
thermal activation is observed down to low temperatures andtudied® of the resistivity in the direction of the field show
finite-size scaling is necessary in order to characterize ththat in the thermodynamic limiT,, coincides withT; as ex-
transition. Based on previous results and the discussion gferimentally observed, and we expect the resistivity along
the next section, we will refer to this behavior as continuoughe three directions to vanish at the same temperature.
transition and to zero resistivity when the noise in the volt- In order to discard boundary effects due to surface barri-
age is larger than its mean value, corresponding typically t@rs, we have also calculated the resistivities and structure
Pu<R,X 10°°, wherepu=x,y,z. factors using PBC'’s in the three directions. Results for the
When the external current is applied along fdirection,  resistivity in a highly anisotropic sample with weak disorder
the Lorenz force is perpendicular to the planes and for temare shown in Fig. 4. For this case, the parametersfare
peraturesT=T; the in-plane pinning dominates the vortex =3, ¥*=9, L,=L,=48, L,=8A=0, andN=30000. We
dynamics resulting in a smal,. The resistivity p, de- have also done some simulations with PBC’s in the three
creases strongly near a characteristic temperafire T;  directions forf = 55, 75,5, y°=1—40, andN=10*-1C, and
and has a tail that extends down 9. This behavior is we found similar results. Whilp, andp, behave essentially
obtained for different values of the anisotropy and magneti@s in the previous case, as the temperature decrpasesu-
field, it qualitatively reproduces the experimental observatates at a value different from zero, which increases with
tion, and resembles the prediction of the smectic phasanisotropy. Thd-V characteristics for the current along the
theory. In this theory, as the temperature is lowered, the syshree directions at low temperatures are shown in the inset
tem undergoes a transition to a smectic phase at a temperand indicates a very small value of the critical current in the
ture T5. In the temperature interval; <T<T, the system zdirection. The saturation of the resistivity at low tempera-
develops long{or quasilong} range order in the direction tures is due to the fact that the run was done with a value of
perpendicular to the planes and the resistivity shows, in théhe transport currerjt, larger than the critical curreft and
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FIG. 5. Instantaneous configuration of the vortices in a plane
perpendicular to the field for the system of Fig. 4. Black dots are F|G. 6. Structure factor of the configurations of Fig.(8. and
vortices and white ones are antivortices.(& the temperature is () correspond to the same temperatures shown in that figure.
kT/E;j=1.1, and in(b) KT/E;=0.
1 2
the results correspond to a flux-flow regime. A systematic S(q,,¥Y)= 3
study of the resistivities with o<, requires much more
statistics and generates larger numerical errors. In any case,
these results show two important points: first, for the systemshere N is the total number of vorticesy; is the vortex
under consideratiorp, andp, are not very sensitive to the charge 1 for vortices and-1 for antivortices, and; are the
boundary conditions, and second, when vortices flow parallelortex coordinates in the direction perpendicular to the ex-
to the planes, pinning is very weak. In the case of FBC's theaernal field at a plane with coordinaye We defineS(q, ) as
surface barriers generate some extra pinning that increasése average ovey of S(q, ,y).
the critical current. In the thermodynamic limit, any rigid In Fig. 6 the high- and low-temperature structure factor
structure is pinned by impurities and surface effects and ifor the system of fig. 5 are shown.
this sense, it may be more appropriate to compare the case of At high temperatures only a background of the form
FBC's with experiments if results with,,,<j. are not avail-  cos@,a), where a is the lattice parameter of the junction
able for the case of PBC’s. As a side comment, notice thatetwork, is obtained. This background is due to the presence
the noise inp, disappears at a temperature of the ordef,of of small loops which in general are confined between two
at whichp, vanishes. A simple interpretation of this effect is consecutiveab planes, i.e., vortex-antivortex pairs which are
that in the flux-flow regime an ordered structure generatesriented in thex direction and bound at a distanagAt low
less noise than a liquid. However, a systematic study of théemperatures, the background disappears and well-defined
noise, that could give information on the nature of the dif-peaks are observed. The peaks in the structure factor corre-
ferent phases, is needed to reach definitive conclusions. spond to a rotated vortex lattice with a small anglén Fig.
6(b) we draw one of the corresponding rotated hexagonal
reciprocal space unit cells. We also see that there are peaks
B. Structure factor corresponding to the same lattice structure reflected in 180°

In this section we present results for the structure factolVith respect to thez axis. The coexistence of these two re-
calculated for different temperatures. At high temperaturesieCtéd structures could explain the chainlike ordering ob-
in the liquid phase, the system is highly disordered and pre3€rved in real-space configuratioffdg. S(b)]. For this par-
sents vortex loop excitations. An instantaneous picture of thécular value of the external field, we follow the evolution of
vortices crossing a plane perpendicular to the external field€ Structure factor as the system is cooled and observe some

(y=L,/2) is shown in Fig. &) for the same system as Fig. indications of a smectic phase at inter_mediate 'temperatures_.
A sequence of the structure factor at intermediate tempera

The vortex-antivortex pairs are small loops confined be{Ures is shown in Fig. 7. o
tween twoab planes and cut by thg=L,/2 plane. As the At ter_nperaturengi , v(\)/hgre the resistivity, presents a
temperature decreases the system evolves towards an ordefsB2ll tail, a peak ag=(0,q;) is clearly observedFig. 7(a)].
solid structure. It is known that, due to numerical limitations, This peak indicates the presence of a smectic phase. As the
in three dimensions it is very difficult to cool the system into teémperature is lowered from high temperatures, first the in-
an ordered lattice. The type of structure obtained by slowlytensity of the smectic peak increases, goes through a maxi-
cooling the system is shown in Fig(t. We obtain this kind Mum, and then decreases as the crystalline peaks correspond-
of structure for systems withi<-. For higher magnetic ing to a rotated structure increase. The wave vegfomay
fields, a triangular vortex lattice was found like the one pre-also be weakly temperature dependent: The first smectic
dicted by Ref. 3. peak observed haqs(z)zQ/S(Q:Zw/s) and as the tempera-

Although the obtained structure is very disordered, thgure is lowered it shifts toward®/2. At the temperature
tendency to form vortex chair@&t approximately 45° in the corresponding to Fig.(d) the wave vector characterizing the
figure) can be observed. This tendency is reflected by thelensity modulation of the liquid ig?=Q/2, indicating that
structure factoiS(q, ,y) defined a% the vortex liquid is modulated with a periods2At a lower

2 ﬂjeiqL'rj (14
]
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in the amplitude of the smectic peak are probably due to
finite-size effects, since only some discrete valueg,oére
consistent with the PBC’s. At temperatur€s-T; both the
smectic and the crystalline peaks coexist, indicating the co-
existence of the two phases.

Since the symmetry group of the smectic phase is not a
subgroup of the one corresponding to the symmetry of the
rotated lattice, we expect a first-order transition between
these two phases. This is consistent with the observation of a
coexistence of the two phases in the numerical simulations.

For other values of the parameters studide-§; and
y?=2.56,25) for which the low-temperature phase corre-
sponds to a rotated crystal with a larger rotation angle, we do
not observe indications of a smectic order in the liquid phase.
In these cases, our preliminary results indicate a continuous
transition from the liquid to the frozen state without any
precursor of long- or quasilong-range order in the direction
perpendicular to the planes.

IV. SUMMARY AND DISCUSSION

We have studied the problem of the low-temperature
structure, the thermodynamic and transport properties of vor-
tices when the external field is applied parallel to the CuO
planes in hight, superconductors. A simple analysis based
on the London theory in the presence of a periodic potential
indicates the possibility of a variety of commensurate struc-
tures that essentially correspond to anisotropy-distorted
Abrikosov lattices rotated to match the periodic potential.
For low fields a large number of degenerate structures cor-
responding to different rotation angles are obtained. Using
FIG. 7. Smectic structure factor for the system of Fig. 5 atParameters like those typically used to describe Y-Ba-Cu-O,

intermediate temperatures. A Bragg peak of smectic order can be™— 10{& and a mass anisotropy, /mz=50, for magnetic
observed ag?~Q/2 at T=0.53 (a), which decreases at a lower induction between 5 and 6 T, we obtain about seven rotation

temperaturdl =0.30(b). The zone in the middle was painted black angles which generate commensurate structures.

in order to enhance the small peaksogt=Q/4. The peak af’ The numerical simulations in adY model clearly show
=Q/2 corresponds to an average vortex spacing fi2the z  the tendency to form rotated structures. Our results shows
direction. structures with grains of twin phases.

The transport properties qualitatively reproduce the ex-

temperaturdFig. 7(b)] the amplitude of the smectic peak is Perimental results. In particulap, shows a rapid decrease

smaller and some crystalline peaks are observed. The latt@fd a tail that extends down 1. This behavior is similar to

increase ag decreases. the predictions of the smectic phase theory although trans-
In Fig. 8 the temperature dependence of the smectic pedort properties seem not to be enough to prove the existence

and one of the crystalline peaks are shown. The oscillation8f this phase at an intermediate temperature range.
When the rotated angle of the low-temperature structure,

which depends both on the value of the external field and the
anisotropy, is small, we observe, at intermediate tempera-
tures, well-defined peaks corresponding to a smectic phase.
crystalline peak The vectorQ and the amplitude of the smectic peak are
temperature dependent and a first-order transition is expected
from the smectic to the crystalline phases. For the parameters
that give a larger rotation angle of the crystalline phase, we
observe a direct evolution of a system from the anisotropic
liquid to the vortex lattice without any indication of an inter-
mediate smectic phase.

1.50< T T T

o smectic peak

S(K)(107%)
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