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Random negative-U Hubbard model
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In the case of superconductors whose electrons attract each other only if they are near certain centers, the
question arises of how many such centers are needed to make the ground state superconducting? We shall
examine it in the context of a randomU Hubbard model. In short, we study the case whereUi is 2uUu and 0
with probability c and 12c, respectively, on a lattice whose sites are labeledi using the Gorkov decoupling
and the coherent potential approximation. We argue that for this model there is a critical concentrationc0

below which the system is not a superconductor.
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I. INTRODUCTION

In many attempts to construct a viable model for hig
temperature superconductors the notion of negative-U cen-
ters is invoked.1–4 In this connection there is a simple, nat
ral question that arises: How many such centers are ne
to make a superconductor. In this paper we shall argue
under certain circumstances there is a critical concentra
c0 below which there is no superconducting order. Mo
over, we developed a strategy for investigating the fact
which determinec0.

In order to deal with a well posed problem we shall stu
a single orbital random-U Hubbard model defined by th
Hamiltonian

H52(
i j s

t i j cis
1 cj s1

1

2 (
is

Uicis
1 cisci 2s

1 ci 2s

2m(
is

cis
1 cis , ~1!

where i and j label lattice sites,t i j is the hopping integra
connecting only nearest neighbori and j ’s, m is the elec-
tronic chemical potential,cis

1 , cis create and annihilate, re
spectively, electrons at the single sitei with spin s, and the
coupling constant

Ui5H 2uUu with probality c,

0 with probability 12c.

The question we shall ask is: Is there a finite concentra
c0 such that forc,c0 the cofigurationally averaged, supe
conducting long range order parameterx̄ vanishes even a
zero temperature?

As is natural we definex̄ by the relation

x̄5
1

N (
i

x i , ~2!

where the local pairing amplitude is given by
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x i5^ci↑ci↓&. ~3!

Following the conventional notation̂•••& denotes a thermo

dynamic average andQ̄, for an arbitrary operatorQ̂, implies

the average ofQ̂ over all configurationsUi , such that the
fraction of negativeU sites is c, with equal weight. A sampl

will be said to be superconducting ifx̄Þ0 This implies that
x iÞ0 on a finite fraction of all sites. Namely, ifx iÞ0 only

on a finite number of sitesx̄ will go to zero asN→` and the
system will be regarded as not superconducting.

To make progress we calculatex i within the Hartree-
Fock-Gorkov ~HFG! decoupling scheme for the Green
functions and the averaging over theU configurations is ac-
complished with the help of the coherent potential appro
mation ~CPA!.5 In short, at the risk of missing some impo
tant feature of the problem, such as localization of electro
we develop a mean field theory for the phenomena descr
by H in Eq. ~1! This approach may be justified by noting th
little is known about the problem at hand systematically1–3

and hence as a preliminary study a mean field theory
called for.

Note that the simplest approximations to the proble
would be to setUi at each site equal to its average val
Ū5cU. In some contexts this is called the virtual cryst
approximation.7,5 Since, as is well known,3 any amount of
attraction leads to superconductivity,Ū5cU implies super-
conductivity for all non zero concentrations with the tran
tion temperatureTC decreasing albeit nonanalytically, wit
c. Thus before setting out the details of the above theory
worthwhile to pause, briefly, to consider a number of fai
general arguments which suggest that the above conclu
is premature and that there is a critical concentrationc0 of
negativeU centers for superconductivity.

~i!. Classical percolation theory for a mixture of two me
als with resistivitiesr1 andr2 have been studied in the e
fective medium approximation.6–8 For r15r0 and r250
~Fig. 1!, namely, in the case where metal 2 is a superc
ductor, it yields an effective resistivity given by
6629 ©2000 The American Physical Society
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reff5H r0~12dc! for c,c05
1

d
,

0 for c.c05
1

d
,

~4!

whered is the number of spatial dimension in which perc
lation is allowed. Thus, this model predicts critical conce
trations ind51, 2, and 3 dimensions, More over,c0 depends
on the dimensionalityd. More generallyreff;(c2c0)s near
c0 but a mean field theory cannot be expected to deal w
the critical exponents adequately.

~ii !. The propagation of Cooper pairs between negativeU
centers by hopping from site to site, whereU50 on the
intermediate sites, is depicted in Fig. 2. Assuming that
distance between two negative-U centers isc21/d, in units of
the lattice constanta on ad-dimensional lattice, we estimat
the number of individual hopsl necessary to reach one su
center from its nearest neighbors. Assuming random w
c21/d5 l 1/(d21) ~for d.1). If each hop takes\/W seconds
whereW is the bandwidth for the pairs, the time to trav
between two negative U centers is given by t
5(\/W)c2(d21)/d. Now we note that in between two cente
the Cooper pair is without its binding energyU. Conse-
quently, such travel is allowed only for such timesdt that the
energy uncertaintydE5\/dt.U. Taking dt5t we con-
clude that fordE5Wc(d21)/d.U the pair will propagate for
dE5Wc(d21)/d,U the pair will not propagate. Thus forc
,c0, where

c05S U

WD d/(d21)

, ~5!

FIG. 1. A mixture of normal, with resistancer5r0, and super,
with r50, conductors.

FIG. 2. The propagation of Cooper pairs between negativeU
,0 centers by hopping from site to site, whereU50 on the inter-
mediate sites.
-

h

e

lk

a system of negativeU centers will not be superconducting
Presumably, the Cooper pairs will be localized. On the ot
hand forc.c0 it will be a superconductor.

~iii !. Localization of Cooper pairs by local charge an
order-parameter-phase fluctuation is the third argum
which we wish to recall briefly. It was explored in th
present context by Doniach and Inui.1 In a Ginzburg-Landau
theory on a lattice the relative phases of the local order
rametersc i5uc i ueiQ i are determined by the quadratic ter
in the free energy functionF($c i%). This may be written in
the form of Josephson coupling energiesF($Q i%)
5 1

2 ( i j Ei j
J cos(Qi2Qj), where the precise relationship of th

coefficients to various parameters of the theory need not c
cern us here. To describe charge fluctuations associated
Cooper pairs arriving and leaving a site a charging ene
needs to be added toF. Because, the local potential is relate
to the phase by Josephson voltage relationVi5(\/2e)Q̇ i this
has the form of a kinetic energy term. Finally, to recove
microscopic description the local phases are treated as q
tum mechanical variables by the Hamiltonian

H5
1

2
EC(

i
S i

]

]Q i
D 2

2
1

2
EJ(

i j
cos~Q i2Q j !. ~6!

This is a much studied Hamiltonian in connection wi
granular superconductivity. In particular it was investigat
by Gosset and Gyo¨rffy10 in the Hartree approximation. In
short they factorized the wave function as shown below

C~$Q i%!5)
i

f i~Q i ! ~7!

and found the following self-consistent equation for the
dividual site wave functionf0(Q)

F2
1

2
ECS ]

]Q D 2

2EJ cos~Q2Q̄!Gf0~Q!5E0f0~Q!,

~8!

where

^eiQ&5E dQf0* eiQf0~Q!5rei Q̄.

The amplituder, determined by solving the above equ
tion numerically is shown in Fig. 1 of Ref. 10, as a functio
of the ratio EJ /EC ([ Josephson energy/charging energ!
For EJ /EC,0.125 we findr50 and hence we conclude tha
the system of point superconductors we have been cons
ing do not have long range superconducting order. Clearl
is tempting to associateEJ with the coupling between the
negative-U centers in our Hubbard model and assume tha
goes to zero asc→0. Evidently, this would imply a critical
concentration determined byEC5EJ(c0) . In short, charge
fluctuations can destroy the phase coherence of super
ducting order parameter if the coupling between t
negative-U centers drops below certain critical value. Inde
this was one of the main point of the paper by Doniach a
Inui.1 In what follows we shall develop a strategy for inve
tigating the possible link between the microscopic model
fined by Eq.~1! and the above semiphenomenological arg
ments. In any case, even if such direct link does not exist
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shall take the demise of superconductivity due to phase fl
tuations in granular samples as a hint that such fluctuat
might play similar role in the model we are about to stud

In concluding this Introduction we note that the speci
task we shall undertake is a contribution to the general pr
lem of treating disorder and electron-electron interactions
multaneously. For a comprehensive discussion of the
evant issues in this field the reader is referred to
relatively recent review article by Belitz and Kirkpatrick9

We also note that many authors with interest similar to o
convert the problem into that of bosons~Cooper pairs! in a
random potential and focus attention on the possibility t
they might be localized.11,12 We wish to avoid such an indi
rect approach and will tackle the problem head on in term
a simple but well-defined model.

II. THE COHERENT POTENTIAL APPROXIMATION
FOR THE RANDOM- U HUBBARD MODEL

The physics described by this simple model appears to
exceedingly rich. For instance, one might expect that, un
some circumstances, the Cooper pairs are subject to An
son localization13 and hence they form a random set of A
dreev scatterers for the quasiparticles.14 Such system of scat
tering centers may then Anderson localize the quasiparti
themselves and turn the system into an insulator below
critical concentrationc0 for superconductivity. However
very little systematic fully microscopic work has been do
on the problem and hence, as a preliminary exercise, a m
field theoretic treatment is called for even at the risk of fa
ing to capture some of its important features. In any case
we shall show, even such limited description turns out to
of physical interest.

Formally, the task is to find the Green’s function

G~ i , j ;t;$Ui%!

52F ^T$ci↑~t!ci↑
1~0!%& ^T$ci↑~t!ci↓~0!%&

^T$ci↓
1~t!ci↑

1~0!%& ^T$ci↓~t!ci↓~0!%&
G ,

~9!
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where the creation and annihilation operatorscis(t) and
cis

1 (t) evolve in complex timet according the random-U
Hamiltonian H in Eq. ~1!, T is the t-ordering operator,
^•••& denotes here the usual equilibrium thermal avera
corresponding toH, and average the result with respect to
arrangement of theU centers each denoted by$Ui%. In short
we wish to find

Ḡ~ i , j ;t!5(
$Ui %

P~$Ui%!G~ i , j ;t;$Ui%!, ~10!

where the probability distribution is assumed to be of for

P~$Ui%!5)
i

P~Ui !, ~11!

with P~Ui !5H c for Ui5U

12c for Ui50.
~12!

Note that the local order parameter defined by Eq.~3! is
given by

x̄ i5Ḡ12~ i ,i ;t501!, ~13!

and hence the knowledge of the averaged one particle Gr
functions matrix is sufficient to address the question whet
or not there is superconducting long range order at a gi
concentrationc.

As we have indicated above we shall now proceed t
mean field approximation to the above problem. This co
sists of two steps. Firstly, we make use of the Hartree-Fo
Gorkov decoupling scheme to find the following ‘‘mea
field’’ equation of motion:
(
l F S ıvn1m2

1

2
Uini D d i l 1t i l D id i l

D i* d i l S ıvn2m1
1

2
Uini D d i l 2t i l

GG~ l , j ;ıvn!51d i j , ~14!
eli-
n a

the
where

ni5
2

b (
n

eıvndG11~ i ,i ;ıvn!,

x i5
1

b (
n

eıvndG12~ i ,i ;ıvn!,

D i52Uix i ,
vn is the Matsubara frequency.
Secondly, we find average of the solution to Eq.~13!,

namelyG( i , j ;ıvn ;$ui%), over allU-configurations using the
coherent potential approximation~CPA!. The justification for
this second step is that the CPA is well known to be a r
able mean-field theory of disorder for wave propagation i
medium described by independent random variables.6–8,15In
what follows we shall investigate the consequences of
above theory by implementing it for a 2d, square lattice.
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To implement the CPA we rewrite Eq.~13! in the Dyson
form

G~ i , j ;ıvn!5G0~ i , j ;ıvn!1(
l

G0~ i ,l ;ıvn!Vl G~ l , j ;ıvn!,

~15!

where

Vl5S 1

2
Ulnl 2D l

2D l* 2
1

2
Ulnl

D . ~16!

The CPA recipe forḠ( i , j ;ıvn) is to set it equal to the
coherent Green’s functionGC( i , j ;ıvn), which is the solu-
tion of Eq.~15! for the case where the random potentialVl is
replaced by the energy dependent, complex coherent po
tial S(ıvn), the same on every site. To determine the coh
ent potential~self-energy! we study, in turn aUi52uUu im-
purity in the coherent lattice. On the impurity site ati we find

Ga~ i ,i ;ıvn!5@12GC~ i ,i ;ıvn!Vi
a

2S~ ıvn!#21GC~ i ,i ;ıvn!,

for a50 and U, ~17!

where

Vi
a50 and Vi

a5U5S 1

2
Uni 2D i

2D i* 2
1

2
Uni

D . ~18!

Then, the usual CPA condition that determines the s
energyS(ıvn) is given by

cG(0)~ i ,i ;ıvn!1~12c!G(U)~ i ,i ;ıvn!5GC~ i ,i ;ıvn!.
~19!

Similar equations have been used to describe random
perconductors by Lustfeld16 and more recently by Litaket
al.17 The principle difference between our present conce
and that of these earlier authors is that we are focusing on
randomness of the interaction parameterUi and not on the
random site energiese i as was their aim. To put it anothe
way, we are studying a problem analogous to that of a ‘‘s
glass’’4 rather than that of dirty superconductors.

Equations~17!, ~18!, and~19! together with

na5
2

b (
n

eıvndG11
a ~ i ,i ;ıvn!,

xa5
2

b (
n

eıvndG12
a ~ i ,i ;ıvn!, ~20!

DU52Uaxa,

n̄5cn(U)1~12c!n(0),
n-
r-

f-

u-

s
he

n

x̄5cx (U)1~12c!x (0),

wherea50 andU as before@Eq. ~17!#, are the fundamenta
equations of our theory. Manipulating the CPA equatio
yield the following gap equation:

x̄52
U

b (
n

eıvndF2
c

2ıvn
Tr$G(U)%

iG(U)i

iGCi

1iG(U)i S c
2ıvn2TrS

2ıvn

iG(U)i

iGCi
21D G x̄, ~21!

where

Tr$Ga%5G11
a ~ i ,i ;ıvn!1G22

a ~ i ,i ;ıvn!,

uuGauu5G11
a ~ i ,i ,ıvn!G22

a ~ i ,i ;ıvn!

2G12
a ~ i ,i ;ıvn!G21

a ~ i ,i ;ıvn!.

In what follows we present results of solving the abo
equations numerically for various interesting regimes.
particular interest is the largeU limit. As Ui change its val-
ues form 0 to2uUu there exists a Mott-Hubbard meta
insulator transition for large enough interactionuUu. Another
interesting feature of the problem at hand is that fluctuati
of pairing potentialsD i , which changes randomly from 0 t
DU, invalidate the Anderson theorem19–21 and hence state
appear in the gap.22

III. ORDER PARAMETER FLUCTUATIONS

At first we have calculatedTC andx̄ for zero temperature
(T50) by means of VCA where, as we mentioned in t
Introduction, effective interaction between electronsUeff
5cU. Figures 3~a! and 3~b! show the critical temperature
TC

(c) normalized to the corresponding quantities of the cle
system withU on every site, namelyTC(c51) and averaged
pairing parameterD̄(T50,c51), calculated for effective in-
teractionUeff , respectively, as functions of concentrationc.
Calculations were done for various values of the interact
parameterU/W5 20.3, 20.5, 21.0, 22.0, whereW58t is
the bandwidth and for a half filled bandn51. One can see
that for these approximations there is no evidence of crit
concentrationc0.0 below which the system is normal a
T50, i.e., no percolation.

As is clear from Eq.~14!, Ui fluctuating between 0 and
2uUu has two distinct direct consequences. On the one h
it causes the Hartree potential1

2 Uini to fluctuate. On the
other it gives rise to a fluctuating pairing parameter –D i . As
it turns out these two effects have very different influence
the solutions to Eqs.~18!–~21!. Therefore, we examine them
separately. As disorder was treated by CPA, at first we m
calculations after neglecting Hartree potential1

2 Uini , in Eq.
~18! and studied the case of order parameter fluctuation
their own. This means that we took the impurity potential
Eq. ~18! to be

Vl5S 0 2D l

2D l* 0 D . ~22!
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In Figures 4~a!–4~c! we show the critical temperatur
TC /TC(c51) ~a!, the order parameter~for T50) x̄/x(c
51) ~b!, and the local pairing potential onU site
DU /DU(c51) ~c!, versus concentration of negativeU cen-
ters c for n51. Calculations were done by means of CP
neglecting the Hartree term and using the same value
interaction parameters as in Fig. 3.

Surprisingly, our simplified CPA results agree with th
VCA argument in the Introduction inasmuch as we fou
nonzero local order parameter on both theU50 andU,0
sites at all concentrationscÞ0. That is to say we obtaine
finite x̄Þ0 and TC for any value of concentrationc and
interactionUi,0 and no evidence of percolation. The ord
parameterx̄ increases gradually from 0 to its maximal valu
with changing the concentrationc. Interestingly, in the large
U limit, uUu/W.0.5, TC and DU are nearly constant fo
variousc and they reach large finite values for arbitrary sm
concentrations of negative centersc.

To further pursue the matter of percolation, as might
manifested by a critical concentration, we return to the f
CPA solution. Restoring the Hartree potential, which w
neglected in the above discussion, we have used the
impurity potentialVi

a5U as in Eq.~18! to carry out the CPA
procedure. Figures 5~a!–5~d! show the critical temperatur
TC

(c)/TC(c51) ~a!, the order parameterx̄/x(c51) ~b!, the
local pairing potential onU site DU /DU(c51) ~c!, and the
local charge onU site nU ~d! versus concentration of nega
tive centersc for n51 and the same interactions as in Fig
3 and 4. Here one can clearly see that all that quantitiesTC ,
x̄(T50) andDU are tending to zero for some small enou
concentration of negativeU centersc0. Below this critical
concentration the system is normal. For larger interact
(U/W521.0,22.0)c050.5 and the order parameter scal

FIG. 3. The critical temperatureTC /TC(c51) ~a! and the pair-

ing parameterD̄/D(c51) ~b! ~calculated with VCA! versus con-
centration of negative centersc for n51. Values of the interaction
parameterU specified in the figures.
of

r

l

e
ll
s
ull

.

n

asx'(c2c0)1/2. DecreasinguUu we observe systematic de
crease ofc0. Thus we have discovered a percolation li
phenomenon.

To investigate the cause of critical concentrationc0 we
have studied the density of quasiparticle states both in su
conducting and in the normal states. In the latter case,
large enough interactionuUu.0.5W, there exists a band
splitting in the system. With changing the concentrationc we
observe Mott metal-insulator transition. It is caused by la
fluctuations of Hartree term1

2 Uini @Eq. ~14!# as in the origi-
nal paper of Hubbard.18 In Figs. 6~a!–6~c! we plotted the
densities of states~full line! and the local density of states o
U site ~dashed line! for U/W522.0, n51 and T50 for
different concentrationsc: c50.4 (a normal metal!, c50.5
(b insulator!, andc50.6 (c superconductor!. The Fermi en-
ergy in these plots:eF5m50. Thus changingc from 0 to 1
system changes from normal metal@Fig. 6~a!# to a supercon-
ductor @Fig. 6~c!# through an insulator@Fig. 6~b!#. Remark-
ably, for a low concentration of negative centers@Fig. 6~a!#
c50.4,c0 ~here c050.5) in spite of finite and relatively
large value of averaged density of states at the Fermi en
D̄(0)521/pImG11

C (01ıd), the local density of states onU

FIG. 4. The critical temperatureTC /TC(c51) ~a!, the order

parameterx̄/x(c51) ~b!, and the local pairing potential onU site
DU /DU(c51) ~c!, calculated with CPA neglecting diagonal Ha
tree terms, versus concentration of negative centersc for n51.
Values of the interaction parameterU specified in the figures.
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sites DU(0)52(1/p)Im G11
U (01ıd) appears to be ex

tremely small. Evidently the doubly occupied states form
lower ‘‘Hubbard’’ band split off from the upper band whic
is associated with the singly occupied sites. Belowc0 the
band of doubly occupied sites are filled and hence the p
can not move. Thus, sinceeF is in the gap between the band
of double and single occupancy this is an insulating stat

This effect has been further investigated for other ba
fillings. The transition from normal to superconducting pha
occurred for each of band fillingsn at some, specific, critica
concentrationc0(n). Figures 7~a!–7~d! show simultaneously

FIG. 5. The critical temperatureTC /TC(c51) ~a!, the order

parameterx̄/x(c51) ~b!, the local pairing potential onU site
DU /DU(c51) ~c!, and the local charge onU sitenU ~d! calculated
with CPA including diagonal Hartree terms, versus concentratio
negative centersc for n51. Values of the interaction parametersU
specified in the figures.
a

irs

d
e

the order parameterx̄ ~a!, the local pairing potential onU
siteDU ~b!, the local charge onU sitenU ~c!, and the chemi-
cal potentialm ~d! plotted versus concentrationc for U/W
522.0, atT50 and several values ofn (n5 1.8, 1.6, 1.4,
1.2, 1.0, 0.8, 0.6, 0.4, 0.2). Interestingly, that transition fro
superconducting to normal phase is accompanied by a l
value of local charge occupationnU @Fig. 7~c!# and large
jump of a chemical potentialm ~from one subband to an
other! nearc0 @Fig. 7~d!#. It appears that forc below c0 nU
'2. Namely, everyU site is doubly occupied with a pair o
electrons@Fig. 7~c!#. Because there are no empty spareU
sites in the system these pairs cannot move. That is to
they are localized on theU sites.

Similar calculations have been performed for smaller
teraction uUu(U/W520.5) The corresponding results a
presented in Figs. 8~a!–8~d!, respectively. Here the interac
tion uUu is not large enough to create a band splitting eff
but the tendency withx̄→0 is still observable as concentra
tion c is tending to some finitec0.0(c→c0). Herec0 is less
than in former case of larger interactionuUu52W ~Fig. 7!.
The occupation of negativeU centers is larger thann but
clearly less than two electrons per site. For small enou

f

FIG. 6. The densities of states~full line! and the local density of
states onU site ~dashed line! for U/W522.0 andn51 for differ-
ent concentrationsc: c50.4 (a metal!, c50.5 (b insulator!, andc
50.6 (c superconductor!.
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band fillingn50.2, the order parameterx̄ was finite for allc
and we have not observed a percolation phenomenon.
larger band fillings we have obtainedx̄50 belowc,c0 but
instead of a square root behaviorx̄'(c2c0)1/2 for c close to
c0 for largerU @U/W522.0, Fig. 7~a!# herex goes to zero
rather in the asymptotic way@Fig. 8~a!#.

To investigate the demise of the superconducting s
nearc0 we have studied the density of states in the appro
ate region of parameter space. Figures 9~a! and 9~b! shows
the quasiparticle densities of states~a! and the local densities
of states onU site ~b! for U/W520.5, n50.4, and three

FIG. 7. The order parameterx̄ ~a!, the local pairing potential on
U siteDU ~b!, and the local charge onU sitenU ~c! and the chemi-
cal potentialm ~d! plotted versus concentrationc for U/W522.0
and several values ofn (n5 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4
0.2 — the direction ofn changing is pointed out by the arrow!.
or

te
i-

values ofc specified in the figures. It is clearly visible how
the superconducting gap is filled in, due to pair breaki
with c. Beginning from the clean system with interactionU
on every site (c51) we start with sharp edges in the qua
particle density of states@Fig. 9~a!#, then for smaller value of
c (c50.6) and the gap parameterD of the same order@Fig.
7~b!# the real gap in the quasiparticle density of statesD̄(E)
changes significantly. The gap becomes smaller with sma
c and loses its clear edges. For small enoughc (c50.14) it
nearly disappears. Clearly, the Anderson theorem for a
perconductor with nonmagnetic disorder is not satisfied
this case.19 As is well known, according to Anderso

FIG. 8. The order parameterx̄ ~a!, the local pairing potential on
U siteDU ~b!, and the local charge onU sitenU ~c! and the chemi-
cal potentialm ~d! plotted versus concentrationc for U/W520.5
and several values ofn (n5 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4
0.2 — the direction ofn changing is pointed out by the arrow!.
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theorem the gap remains absolute in presence of disorde
to potential scattering provided the spatial fluctuations ofD i

aboutD̄ are negligible.20 Clearly, in the random interaction
case this is not true and this kind of disorder leads to p
breaking.

Thus, on account of the large fluctuations of pairing p
tentialD i in our system, due to disorder, we observe a qu
tative change in quasiparticle density of states shown in
9~a!. These fluctuations lead also to complicated gap eq
tions whereTC is determined not only byGC but also byS,
GU @Eq. ~21!#.

Finally, we investigated the factors which determine t
critical concentrationc0. In Fig. 10 we showc0 as a function
of band filling for two interaction parametersU/W522.0
and20.5. In both cases function can be approximated b
straight linec05a1bn. In case ofU/W522.0, a50 and
b50.5 but forU/W520.5, a'0.32 andb'0.6.

IV. CONCLUSIONS

We have examined the question of percolating superc
ductivity in the context of a randomU Hubbard model. We
have studied the case whereUi is 2uUu and 0 with probabil-
ity c and 12c, respectively, on a lattice whose sites a
labeledi using the Gorkov decoupling. Changing concent
tion c, we checked that simple averaging procedures suc
virtual crystal approximations~VCA! do not lead to any zero
temperature phase transition. Furthermore, we found th
charge fluctuations are neglected, even a full mean fi
theory of disorder, such as the CPA, does not predict a

FIG. 9. The averaged quasiparticle densities of states~a! and the
local densities of states onU site ~b! for U/W520.5, n50.4 and
several values ofc specified in the figures.
ue

ir

-
i-
g.
a-

e

a

n-

-
as

if
ld
r-

colation transition. However, when the fluctuations in t
Hartree potential are included on equal footing with the flu
tuations in the pairing potentialD and the problem is treate
in the coherent potential approximation a percolation p
nomena, with a critical concentrationc0 of the negativeU
centers, is discovered in our fully microscopic theory. F
c,c0 the lack of superconductivity is due to Mott localiza
tion of Cooper pairs and it highlights the qualitative diffe
ence between disorder in the crystal potential and the di
der in the interaction between the carriers. In short, the wh
phenomenon is due to the combined effect of electr
electron interaction and disorder.9 Having found the critical
concentrationc0 we investigated its dependence on vario
parameters which defined the problem. In short we stud
c0(n,U). For strong attractive interactionc05n/2 and x̄

'(c2c0)1/2 nearc0 but for smaller interactionx̄→0 ~as c
→c0) rather in a nonpolynomial manner. Calculations ha
been performed by a real space recursion algorithm wh
we developed for disordered superconductors in a ea
publication.23

Finally, we note that the inhomogeneous conduc
model, discussed in the Introduction, predictsc050.5 for d
52 @Eq. ~4!#. Obviously, the argument leading to that res
do not engage the basic physics of the fundamental quan
phenomenon described above. Moreover, our results ma
brought to correspondence with the prediction of the gra
lar superconductor model, also mentioned in the Introd
tion, by associating localU site of our lattice with one grain
Then it is clear thatEJ goes to zero as the distance betwe
U centers increases. Thus one expects a minimum con
tration c0 for which EJ /EC,0.125 and hence no superco
ductivity. Unfortunately it would be difficult to estimatec0
since we do not know the the specific dependence ofEJ on c.
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FIG. 10. The critical concentration of negative centersc versus
band filling n for U/W522.0 and20.5.
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