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In the case of superconductors whose electrons attract each other only if they are near certain centers, the
guestion arises of how many such centers are needed to make the ground state superconducting? We shall
examine it in the context of a randothHubbard model. In short, we study the case wHeyés —|U| and 0
with probability c and 1-c, respectively, on a lattice whose sites are labé&lading the Gorkov decoupling
and the coherent potential approximation. We argue that for this model there is a critical concewyyation
below which the system is not a superconductor.

I. INTRODUCTION Xi={Ci1Ci)). ©)

In many attempts to construct a viable model for high-
temperature superconductors the notion of negdtiveen-  Following the conventional notatiap - - ) denotes a thermo-

ters is inVOked'._4 In this connection there is a Simple, natu- dynamic average arﬁ' for an arbitrary Operatdﬁ), |mp||es

ral question that arises: How many such centers are need?ﬁe average of over all configurationdJ;, such that the

to make a s_upgrconductor. In this paper we shall argue t.har‘raction of negativel sites is ¢, with equal weight. A sample
under certain circumstances there is a critical concentration

co below which there is no superconducting order. More-Will be said to be superconducting ¥+ 0 This implies that
over, we developed a strategy for investigating the factorsi# 0 on a finite fraction of all sites. Namely, j;#0 only
which determinecy,. on a finite number of siteg will go to zero alN—< and the

In order to deal with a well posed problem we shall studysystem will be regarded as not superconducting.

a single orbital randond Hubbard model defined by the To make progress we calculajg within the Hartree-
Hamiltonian Fock-Gorkov (HFG) decoupling scheme for the Green’s
L functions and the averaging over thleconfigurations is ac-
_ + + + n complished with the help of the coherent potential approxi-
H= ;,, biCioCiot 3 .E(, UiCisCioCi-oCi-o mation (CPA).® In short, at the risk of missing some impor-
tant feature of the problem, such as localization of electrons,
—Mz ¢ Ciy (1 we dgvelop amean field theory for thg phe_znomena Qescribed
T by H in Eq. (1) This approach may be justified by noting that
little is known about the problem at hand systematicafly
and hence as a preliminary study a mean field theory is
called for.

Note that the simplest approximations to the problem
would be to setU; at each site equal to its average value
U=cU. In some contexts this is called the virtual crystal
approximation’:® Since, as is well knowf,any amount of
attraction leads to superconductivity,=cU implies super-
conductivity for all non zero concentrations with the transi-
rtlion temperaturelT ¢ decreasing albeit nonanalytically, with
. Thus before setting out the details of the above theory it is
. . worthwhile to pause, briefly, to consider a number of fairly
conducting long range order paramejenvanishes even at general arguments which suggest that the above conclusion
zero temperature? _ is premature and that there is a critical concentratigrof

As is natural we defing by the relation negativeU centers for superconductivity.

(i). Classical percolation theory for a mixture of two met-

wherei andj label lattice sitest;; is the hopping integral
connecting only nearest neighbbrand j’s, w is the elec-
tronic chemical potentialr;f:,, Ci, Create and annihilate, re-
spectively, electrons at the single sitevith spin o, and the
coupling constant

—|U| with probality c,
T 0 with probability 1—c.
The question we shall ask is: Is there a finite concentratio
Co such that forc<cy the cofigurationally averaged, super-

— 1 E als with resistivitiesp; and p, have been studied in the ef-
XTN < X @ fective medium approximatiot. For p;=p, and p,=0
(Fig. 1), namely, in the case where metal 2 is a supercon-
where the local pairing amplitude is given by ductor, it yields an effective resistivity given by
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a system of negative) centers will not be superconducting.
Presumably, the Cooper pairs will be localized. On the other
hand forc>c, it will be a superconductor.

(iii ). Localization of Cooper pairs by local charge and
order-parameter-phase fluctuation is the third argument
which we wish to recall briefly. It was explored in the
present context by Doniach and Irtuin a Ginzburg-Landau
theory on a lattice the relative phases of the local order pa-
rametersy; =|¢;|€® are determined by the quadratic term
in the free energy functiok ({¢;}). This may be written in
the form of Josephson coupling energieS({0;})

FIG. 1. A mixture of normal, with resistange= p,, and super, = %E”—Efj cos@®;—0)), where the precise relationship of the
with p=0, conductors. coefficients to various parameters of the theory need not con-

cern us here. To describe charge fluctuations associated with
Cooper pairs arriving and leaving a site a charging energy
, needs to be added ta Because, the local potential is related

(4)  tothe phase by Josephson voltage relatipn (112€)0; this
has the form of a kinetic energy term. Finally, to recover a
microscopic description the local phases are treated as quan-
tum mechanical variables by the Hamiltonian

po(l—dc) for c<co=

Peff=
0 for c>cp=

ol Ol

whered is the number of spatial dimension in which perco- 1
lation is allowed. Thus, this model predicts critical concen- H= EECZ
trations ind=1, 2, and 3 dimensions, More oveg, depends :
on the dimensionalitgl. More generallyp.;~ (C—cp)® near o . S . .
' .. This is a much studied Hamiltonian in connection with
fr?ebgrtitﬁ:z;?Zi;of:]eelﬂstgzggyu;?er;;m be expected to deal Wltréjranular superconductivity. In particular it was investigated

b ' ) by Gosset and Gytfy' in the Hartree approximation. In
(ih). The propa_gatlon of C_ooper pairs between negaltlve- short they factorized the wave function as shown below
centers by hopping from site to site, whelle=0 on the
intermediate sites, is depicted in Fig. 2. Assuming that the
distance between two negatitkcenters isc™ 9, in units of voh=II ¢:i(0) (7)
the lattice constard on ad-dimensional lattice, we estimate :
the number of individual hoplsnecessary to reach one such and found the following self-consistent equation for the in-
center from its nearest neighbors. Assuming random wallividual site wave functionpy(®)
¢~ Yd=1d=1) (for d>1). If each hop take®/W seconds
whereW is the bandwidth for the pairs, the time to travel 1 a\? —
between two negativeU centers is given by 7 —5Ec E) —E;c040—-0)|¢o(0)=Eqpo(0),
=(#/W)c~ (@18 Now we note that in between two centers ®)
the Cooper pair is without its binding enerdy. Conse-
quently, such travel is allowed only for such timétsthat the
energy uncertaintySE=#/6t>U. Taking §t=7 we con- _
clude that for6E=Wcl~ V4> U the pair will propagate for (ei@’):f dO ¢ge'®po(0)=pe'®.
SE=Wcl" V<Y the pair will not propagate. Thus far
<cCq, Where

9\ 1
'a_@i) —EEJ%} cog®;—0)). (6)

where

The amplitudep, determined by solving the above equa-

tion numerically is shown in Fig. 1 of Ref. 10, as a function

U\ d/(d-1) of the ratioE;/E- (= Josephson energy/charging energy
o

W , (5) ForE;/E;<0.125 we findo=0 and hence we conclude that

the system of point superconductors we have been consider-
ing do not have long range superconducting order. Clearly, it
N is tempting to associatg; with the coupling between the
negativet) centers in our Hubbard model and assume that it
goes to zero as— 0. Evidently, this would imply a critical

e U<O concentration determined ty-=E;(cy) . In short, charge
O e e e O fluctuations can destroy the phase coherence of supercon-
ducting order parameter if the coupling between the
e © O e O © U=0 negativet) centers drops below certain critical value. Indeed

this was one of the main point of the paper by Doniach and
Inui.t In what follows we shall develop a strategy for inves-
FIG. 2. The propagation of Cooper pairs between negative tigating the possible link between the microscopic model de-
<0 centers by hopping from site to site, whéte=0 on the inter-  fined by Eq.(1) and the above semiphenomenological argu-
mediate sites. ments. In any case, even if such direct link does not exist we

[ ] O L] o] [ ]



PRB 62 RANDOM NEGATIVE-U HUBBARD MODEL ... 6631

shall take the demise of superconductivity due to phase fluoxhere the creation and annihilation operatars(7) and

tuations in granular samples as a hint that such fluctuations; (7) evolve in complex timer according the randori*

might play similar role in the model we are about to study. Hamiltonian H in Eq. (1), T is the r-ordering operator,
In concluding this Introduction we note that the specific<. . > denotes here the usual equi“brium thermal averages

task we shall undertake is a contribution to the general probeorresponding téd, and average the result with respect to all

lem of treating disorder and electron-electron interactions siarrangement of the) centers each denoted by;}. In short

multaneously. For a comprehensive discussion of the relwe wish to find

evant issues in this field the reader is referred to the

relatively recent review article by Belitz and Kirkpatrigk.

We also note that many authors with interest similar to ours — .

convert the problem into that of bosof@ooper pairsin a G("JW):{U} PAUHG(.jim{Ui}), (10

random potential and focus attention on the possibility that '

they might be localized>? We wish to avoid such an indi-

rect approach and will tackle the problem head on in terms oWwhere the probability distribution is assumed to be of form

a simple but well-defined model.

II. THE COHERENT POTENTIAL APPROXIMATION P({Ui})ZH P(U)), (11)
FOR THE RANDOM- U HUBBARD MODEL i

The physics described by this simple model appears to be
exceedingly rich. For instance, one might expect that, under c for U.=U
some circumstances, the Cooper pairs are subject to Ander- with P(U;) = !
son localizatiof® and hence they form a random set of An-
dreev scatterers for the quasiparticléSuch system of scat-
tering centers may then Anderson localize the quasiparticles ] )
themselves and turn the system into an insulator below the Note that the local order parameter defined by €0.is
critical concentrationc, for superconductivity. However, 9iven by
very little systematic fully microscopic work has been done
on the problem and hence, as a preliminary exercise, a mean _
field theoretic treatment is called for even at the risk of fail- Xi=Guli,i;7=0"), (13
ing to capture some of its important features. In any case, as
we shall show, even such limited description turns out to b
of physical interest.

Formally, the task is to find the Green’s function

12
1-c for U;=0. (12

%nd hence the knowledge of the averaged one particle Greens
functions matrix is sufficient to address the question whether
or not there is superconducting long range order at a given
G(i,j;m{U}) concentratiorc. o
As we have indicated above we shall now proceed to a
mean field approximation to the above problem. This con-
' sists of two steps. Firstly, we make use of the Hartree-Fock-
Gorkov decoupling scheme to find the following “mean-
(9 field” equation of motion:

(T{cii(neh (0} (T{ci(7)ci (0)})
(T{c | (D (0} (T{ci(n)ci (0)})

1
|(1)n+,LL_§Uini 6i|+ti| Ai5i|
2 . G(l,j1wy) =15, (14)
Af 6y (lwn—M+§Uini)5n—ti|
|
where w, is the Matsubara frequency.

5 Secondly, we find average of the solution to Ef3),
ni=— > G (i,ilo,), namelyG(i,j;1w,;{u;}), over allU-configurations using the

B “n coherent potential approximati@@PA). The justification for

this second step is that the CPA is well known to be a reli-
:l 2 e'ndG (i 1wp) able mean-field theory of disorder for wave propagation in a
XiTp < 1255/ medium described by independent random variablg€’In
what follows we shall investigate the consequences of the
Ai=—Ujxi, above theory by implementing it for &2square lattice.
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for;o implement the CPA we rewrite E¢L3) in the Dyson x=cxW+(1-c)x©,
wherea=0 andU as beford Eq. (17)], are the fundamental
equations of our theory. Manipulating the CPA equations

. _ 0/ . /i |- .
G(i,ji1wn) =G ("]"w“)+2| G'(i.E1on)V Gl ji1wn), yield the following gap equation:

(15
where 2 IO {G‘U)}—|| i
X=—— 2 €n r
21wy IG%]
1
—U|n| _AI 21w —TrE ||G(U)|| —
2 +lcgV n _
J— * —_
A 7Y where
The CPA recipe foiG(i,j;1w,) is to set it equal to the Tr{G"}=Gy(i,i;10,) + Goi,ij10y),
coherent Green’s functio®®(i,j;1w,), which is the solu- _
tion of Eq.(15) for the case where the random potentiais [[G*]|=G1y(i,i,1wn) Gl i1 wp)

replaced by the energy dependent, complex coherent poten-
tial 3(1w,), the same on every site. To determine the coher-

ent potentialself-energy we study, in turn &J;= —|U]| im-
purity in the coherent lattice. On the impurity sitei ave find

—G(i,i1w,)G54(i,i10p).

In what follows we present results of solving the above
equations numerically for various interesting regimes. Of
agi i —T1_Ci i @ particular interest is the largd limit. As U; change its val-
G110 =[1=GH1 Fitwn)Vi ues form 0 to—|U| there exists a Mott-Hubbard metal-
—3(1lwy) ] 1GC(ii1wy), insulator transition for large enough interactidh . Another
interesting feature of the problem at hand is that fluctuations
for =0 and U, (17) of pairing potentials\;, which changes randomly from 0 to
AY, invalidate the Anderson theoré?! and hence states
where appear in the gaf’

=Un; —A Ill. ORDER PARAMETER FLUCTUATIONS
a=0 a=U _ —
Vi and Vi 7= 1 - (19 At first we have calculated - and y for zero temperature
—-AF - EUni (T=0) by means of VCA where, as we mentioned in the
Introduction, effective interaction between electrodsg

Then, the usual CPA condition that determines the self=cU. Figures 8a) and 3b) show the critical temperature

energyX(lw,) is given by T normalized to the corresponding quantities of the clean
o y . system withU on every site, namely-(c=1) and averaged
cGOi,i;10n) +(1=¢)GV)(i,i510n)=GC(i i} 1wp). pairing parameteA (T=0,c=1), calculated for effective in-

teractionU ., respectively, as functions of concentratian

. . . Calculations were done for various values of the interaction
Similar equations have been used to describe random SBarameteU/W— —0.3,-0.5, 1 0, —2.0, wheréW=8t is

perconductors by Lustfell and more recently by Litalet
al.’ The principle dlfference between our present concern

concentrat|onco>0 below which the system is normal at

T=0, i.e., no percolation.

As is clear from Eq(14), U; fluctuating between 0 and

|U| has two distinct direct consequences. On the one hand

it causes the Hartree potentiall;n; to fluctuate. On the

other it gives rise to a fluctuating pairing parametek - As

it turns out these two effects have very different influence on

2 gdondge i), the solutions to Eq418)—(21). Therefore, we examine them
separately. As disorder was treated by CPA, at first we made
calculations after neglecting Hartree potengial;n;, in Eq.

E EUnGE (i i1 .) (20) (18) and studied the case of order parameter fluctuation on

= 12 n/ their own. This means that we took the impurity potential in

Eqg. (18) to be

randomness of the interaction paramdterand not on the
random site energies as was their aim. To put it another
way, we are studying a problem analogous to that of a “spin
glass™ rather than that of dirty superconductors.
Equations(17), (18), and(19) together with

RIN

><
‘QII\J

AU:_UDzXa

0 -4
_ V= . 22
n=cn+(1-¢c)n®, l-ar oo 22
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FIG. 3. The critical temperaturé:/Tc(c=1) (a) and the pair- 10

ing parameteK/A(c=1) (b) (calculated with VCA versus con- 0.8
centration of negative centecsfor n=1. Values of the interaction

1)

06} - e

parameteld specified in the figures. )
\5 /'/
. . < ye .

In Figures 4a)—4(c) we show the critical temperature ;3 0.4 Vs Bm;_f-g — 1
Tc/Te(c=1) (a), the order parameteffor T=0) x/x(c 0.2 / U/W=-0.5 ...
=1) (b), and the local pairing potential orJ site /(c) UW=-0.3 -
Ay/Ay(c=1) (c), versus concentration of negatitkcen- 0'%.6‘/ 55 = 5 55 o

tersc for n=1. Calculations were done by means of CPA c
neglecting the Hartree term and using the same values of
interaction parameters as in Fig. 3.

Surprisingly, our simplified CPA results agree with the
VCA argument in the Introduction inasmuch as we found
nonzero local order parameter on both the-0 andU<0
sites at all concentrations#0. That is to say we obtained
finite y#0 and T for any value of concentratiom and
interactionU;<<0 and no evidence of percolation. The order
parametety increases gradually from 0O to its maximal value
with changing the concentratian Interestingly, in the large
U limit, |U|/W>0.5, Tc and A, are nearly constant for

FIG. 4. The critical temperatur@./Tc(c=1) (a), the order
parametery/ x(c=1) (b), and the local pairing potential dd site
Ay/Ay(c=1) (c), calculated with CPA neglecting diagonal Har-
tree terms, versus concentration of negative centefsr n=1.
Values of the interaction parametdrspecified in the figures.

as y~(c—co) Y2 DecreasindU| we observe systematic de-
crease ofcy. Thus we have discovered a percolation like
phenomenon.
To investigate the cause of critical concentratgnwe
X U ; have studied the density of quasiparticle states both in super-
variousc ar_1d they reach_large finite values for arbitrary Sma"conducting and in the normal states. In the latter case, for
concentrations of negative centers _ _ large enough interactiofU|>0.5W, there exists a band
To further pursue the matter of percolation, as might b&jitting in the system. With changing the concentratiane
ng'fizﬁﬁﬁo?]y aReCSt%(iie:gc?I:]gelzgztrEg’pvél)(tae:ﬁitglmvxtﬁi;uevxf/gl observe Mott metal-insulator transition. It is caused by large
neglected in the above discussion, we have used the fjﬂ:}:tggggpso? f,_m%ggzqt?:%#égf [Ellzz;)ll—%(ﬁ))] @Selggfegnt%le
impurity potentialVi*~" as in Eq.(18) to carry out the CPA  ensities of statedull line) and the local density of states on
procedure. Figures(8-5(d) show the_cntlcal temperature | gjte (dashed ling for U/W=—2.0, n=1 and T=0 for
TOITc(c=1) (a), the order parametey/x(c=1) (b), the different concentrations: c=0.4 (a normal metal, c=0.5
local pairing potential orJ site Ay /Ay(c=1) (c), and the (b insulato), andc=0.6 (c superconductor The Fermi en-
local charge orU site n, (d) versus concentration of nega- ergy in these plotseg=u=0. Thus changing from 0 to 1
tive centersc for n=1 and the same interactions as in Figs.system changes from normal mefiglg. 6(a)] to a supercon-
3 and 4. Here one can clearly see that all that quanflties  ductor[Fig. 6(c)] through an insulatofFig. 6(b)]. Remark-
x(T=0) andA, are tending to zero for some small enoughably, for a low concentration of negative centéifig. 6a)]
concentration of negative) centersc,. Below this critical ~¢=0.4<cq (herec,=0.5) in spite of finite and relatively
concentration the system is normal. For larger interactiodarge value of averaged density of states at the Fermi energy
(U/W=—1.0,-2.0)c,=0.5 and the order parameter scalesD(0)= —1/77ImG‘131(0+ 18), the local density of states dn
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A U/W=-0.3 A
s 9° o 15
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|:< 0.4 n 1.0
0.2 05
(b)
0. (b)
Xy 0.2 0.0L—5 : 5
1.0
U/W=-2.0 2.5
0.8 U/W=-1.0
—_ U/W=-0.5 2.0
I U/W=-0.3 .-
L o6
= o 15
< o4 a
<:> 1.0
0.2
(c) 0.5 ©
0.0 C
0.0 0.2 0.0 ‘
-2 -1 0 2
1.8]7 "\,,\ (d) FIG. 6. The densities of statéfull line) and the local density of
states orlJ site (dashed lingfor U/W=—2.0 andn=1 for differ-
5 1.6 ent concentrations: c=0.4 (a meta), c=0.5 (b insulatoy, andc
c =0.6 (c superconductor
140 UW=20 —
UW=1.0 _
1.2 erg.g the order parametey (a), the local pairing potential ot
10 e site Ay (b), the local charge obJ siteny (c), and the chemi-

0.0 0.2 04 . 06 08 1.0 cal potentialy (d) plotted versus concentratianfor U/W
=—2.0, atT=0 and several values aof (n= 1.8, 1.6, 1.4,

FIG. 5. The critical temperatur&./Tc(c=1) (a), the order 1.2, 1.0, 0.8, 0.6, 0.4, 0.2). Interestingly, that transition from
parametery/x(c=1) (b), the local pairing potential oty site ~ superconducting to normal phase is accompanied by a large
Ay/Ay(c=1) (), and the local charge dd siten,, (d) calculated ~ Vvalue of local charge occupatiom, [Fig. 7(c)] and large
with CPA including diagonal Hartree terms, versus concentration ofump of a chemical potentigl (from one subband to an-
negative centers for n=1. Values of the interaction parametéts ~ othen nearc, [Fig. 7(d)]. It appears that foc below ¢ ny
specified in the figures. ~2. Namely, evenyJ site is doubly occupied with a pair of

electrons[Fig. 7(c)]. Because there are no empty spéte
sites DY(0)=—(1/7)ImG},(0+15) appears to be ex- sites in the system these p_airs cannot move. That is to say,
tremely small. Evidently the doubly occupied states form afhey are localized on th® sites.
lower “Hubbard” band split off from the upper band which Sm_ular calculations have been performed for smaller in-
is associated with the singly occupied sites. Belgyvthe  teraction |U[(U/W=—0.5) The corresponding results are
band of doubly occupied sites are filled and hence the pairBresented in Figs.(@-8(d), respectively. Here the interac-
can not move. Thus, sinag is in the gap between the bands tion [U] is not large enough to create a band splitting effect
of double and single occupancy this is an insulating state. but the tendency witly— 0 is still observable as concentra-

This effect has been further investigated for other bandion cis tending to some finite,>0(c—cg). Herecy is less
fillings. The transition from normal to superconducting phasethan in former case of larger interactipd|=2W (Fig. 7).
occurred for each of band fillingsat some, specific, critical The occupation of negativel centers is larger than but
concentratiorcy(n). Figures Ta)—7(d) show simultaneously clearly less than two electrons per site. For small enough
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FIG. 7. The order parametgr (a), the local pairing potential on FIG. 8. The order parametgr (a), the local pairing potential on

U site Ay (b), and the local charge od siteny, (c) and the chemi- Y SitéAy (b), and the local charge ad siteny (c) and the chemi-
cal potentialy. (d) plotted versus concentratianfor U/w=—2.0  cal potentialu (d) plotted versus concentratianfor U/W=—0.5
and several values of (n= 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, and several values of (n= 18, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4,
0.2 — the direction oh changing is pointed out by the arrpw 0.2 — the direction of changing is pointed out by the arraw

- B — - values ofc specified in the figures. It is clearly visible how
band fillingn=0.2, the order parametgrwas finite for allc o superconducting gap is filled in, due to pair breaking,

and we have not observed a percolation phenomenon. Fgjith c. Beginning from the clean system with interaction
larger band fillings we have obtaingd=0 belowc<cy but  on every site ¢=1) we start with sharp edges in the quasi-
instead of a square root behav%p (C_ CO) 12 for c close to partiCIe denSity of Statd:flg 9(a)], then for smaller value of
co for largerU [U/W= —2.0, Fig. 7a)] herey goes to zero € (¢=0.6) and the gap parametarof the same ordeffig.
rather in the asymptotic wa\Fig. 8a)]. 7(b)] the real gap in the quasiparticle density of std&)

To investigate the demise of the superconducting statehanges significantly. The gap becomes smaller with smaller
nearc, we have studied the density of states in the approprie and loses its clear edges. For small enoaglt=0.14) it
ate region of parameter space. Figuréa) @nd 9b) shows nearly disappears. Clearly, the Anderson theorem for a su-
the quasiparticle densities of statesand the local densities perconductor with nonmagnetic disorder is not satisfied in
of states onU site (b) for U/W=—0.5, n=0.4, and three this cas€® As is well known, according to Anderson
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FIG. 10. The critical concentration of negative centergersus
band filling n for U/W= —2.0 and—0.5.

w4, colation transition. However, when the fluctuations in the
=] Hartree potential are included on equal footing with the fluc-
50 ) tuations in the pairing potential and the problem is treated
' in the coherent potential approximation a percolation phe-
(b) nomena, with a critical concentratiary of the negativeU
XS - a— . 1.0 centers, is discovered in our fully microscopic theory. For
E/W c<cg the lack of superconductivity is due to Mott localiza-

tion of Cooper pairs and it highlights the qualitative differ-
ence between disorder in the crystal potential and the disor-
der in the interaction between the carriers. In short, the whole
phenomenon is due to the combined effect of electron-
Séectron interaction and disordéHaving found the critical
concentratiorcy we investigated its dependence on various

— arameters which defined the problem. In short we studied
aboutA are negligible?® Clearly, in the random interaction P P

case this is not true and this kind of disorder leads to paifo(™U)- For strong attractive interactiono=n/2 and x
breaking. ~(c—co) Y2 nearc, but for smaller interactiory—0 (asc
Thus, on account of the large fluctuations of pairing po-—Co) rather in a nonpolynomial manner. Calculations have
tential A; in our system, due to disorder, we observe a qualiPeen performed by a real space recursion algorithm which
tative change in quasiparticle density of states shown in FigV€ Qevglog)sed for disordered superconductors in a earlier
9(a). These fluctuations lead also to complicated gap equaRublication: _
tions whereT is determined not only b@® but also by, Finally, we note that the inhomogeneous conductor
GY [Eq. (2D)]. model, discussed in the Introduction, predicgs=0.5 ford
Finally, we investigated the factors which determine the=2 [EQ. (4)]. Obviously, the argument leading to that result

critical concentratiort,. In Fig. 10 we showg, as a function ~do not engage the basic physics of the fundamental quantum
of band filling for two interaction parametets/W=—2.0  Phenomenon described above. Moreover, our results may be

and —0.5. In both cases function can be approximated by #rought to correspondence with the prediction of the granu-
straight linec,=a+bn. In case ofU/W=—2.0,a=0 and lar superconductor model, also mentioned in the Introduc-
b=0.5 but forU/W=—0.5, a~0.32 andb~0.6. tion, by associating locdl site of our lattice with one grain.
Then it is clear thaE; goes to zero as the distance between
U centers increases. Thus one expects a minimum concen-
tration ¢, for which E;/E-<0.125 and hence no supercon-
We have examined the question of percolating supercorductivity. Unfortunately it would be difficult to estimaig,
ductivity in the context of a randord Hubbard model. We since we do not know the the specific dependendg;ain c.
have studied the case wheeis —|U| and 0 with probabil-
ity c ar_1d 1_—c, respectively, on a lattice wh_ose sites are ACKNOWLEDGMENTS
labeledi using the Gorkov decoupling. Changing concentra-
tion ¢, we checked that simple averaging procedures such as This work has been partially supported by the Royal So-
virtual crystal approximation8/CA) do not lead to any zero ciety. B.L.G. was partially assisted by NATO International
temperature phase transition. Furthermore, we found that $cientific Exchange Programs. The authors would like to
charge fluctuations are neglected, even a full mean fielthank Professor S. Alexandrov and Professor R. Micnas for
theory of disorder, such as the CPA, does not predict a pelhelpful discussions.

FIG. 9. The averaged quasiparticle densities of st@esnd the
local densities of states du site (b) for U/W=—0.5, n=0.4 and
several values of specified in the figures.

theorem the gap remains absolute in presence of disorder d
to potential scattering provided the spatial fluctuationd pf

IV. CONCLUSIONS
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