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Dimerization of 3He in 3He-4He dilute mixtures filling narrow channels
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~Received 14 September 1998; revised manuscript received 7 February 2000!

We consider dimerization of3He in a dilute solution of3He in superfluid 4He filling straight narrow
channels that can be found in nanoscale porous media. Dimer formation is facilitated by the restricted geometry
and occurs despite the fact that in bulk fluid the interparticle interaction is too weak to lead to a bound state.
Dimerization results in the effective ‘‘bosonization’’ of the system: a Bose quantum fluid of (3He)2 arises in
place of the 3He Fermi component. At high temperatures, when the3He impurity quasiparticles form a
Maxwell-Boltzmann gas, a drastic change in the thermodynamics occurs due to the presence of dimers. The
specific heat and magnetic susceptibility of the3He component, which we calculate at arbitrary degrees of
dimerization, show a marked deviation from behavior expected of an undimerized3He component. We show
that the binding energy—which depends on the channel width—is expected to be sufficiently high to make
experimental observation feasible. The presence of (3He)2 dimers gives rise to an extra absorption mechanism
for first sound propagating through the superfluid4He, due to resonant absorption and decay of dimers in the
acoustic field. We have calculated the absorption coefficient. Several experiments suggest themselves, utiliz-
ing, perhaps, K-L zeolites or carbon nanotubes. If the dimers themselves turn out to be attractive, then
quadrumers may appear: it may even be the case that a single3He polymer will form over the entire length of
the channel.
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I. INTRODUCTION

The problem of a bound state of two~or more! helium
atoms has attracted a great deal of interest over the last
decades, leading to active theoretical and experimental s
ies throughout the world. To form a molecule, a sufficien
strong attractive interaction potential is required. The van
Waals attraction between two4He atoms in vacuum result
in a weakly-bound state with a binding energy of about
mK,1 which makes4He dimers difficult to observe. Despit
the difficulties, experimental observation of4He dimers in a
supersonic expansion beam was reported by Luoet al.2 Ex-
periments with a cooled pulsed beam of4He atoms carried
out by Silveraet al.1,3 revealed the giant cross section co
sistent with the existence of a dimer state of4He.

The situation is quite different in the case of3He. Due to
the smaller atomic mass, the kinetic energy of the rela
motion of two 3He atoms plays a more important role than
the case of4He. As a result, the interaction in vacuu
proves to be insufficiently strong for a dimer state of3He
atoms to form. In other words,3He dimers do not exist in
vacuum. Experimental data on low-energy3He-3He
scattering3 did not show any vestige of a bound state.

The interaction between two3He atoms dissolved in su
perfluid 4He is, to be sure, affected by the presence of
superfluid background. Nevertheless the basic features o
effective 3He-3He interaction remain the same, and it r
sembles the interatomic interaction in vacuum. For exam
the attraction between two3He quasiparticles, which exist
at large distances, falls off in the same fashion~albeit with a
different numerical factor! as in vacuum. It is well estab
lished experimentally that on average the overall effect
interaction between two3He impurities in superfluid4He
corresponds to attraction, in the sense that thes-wave scat-
PRB 620163-1829/2000/62~10!/6614~15!/$15.00
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tering lengtha is negative,a,0 ~for a review see Ref. 4!.
This attraction is, however, too weak to allow the formati
of a dimer state.

Nevertheless, a statement that Mother Nature does
allow 3He dimers to exist would certainly be rash. It wa
shown5 that in 3He systems with reduced dimensionali
~such as surface impurity states or3He quasiparticles local-
ized on vortices in superfluid4He) or in restricted geom-
etries~such as narrow capillaries or porous media! the 3He
component will definitely dimerize. The origin of the effe
can easily be understood by means of simple arguments.
well known that in 2D or 1Dany attraction, no matter how
weak it is, leads to a bound state. For that reason,
3He-4He solution is placed under these conditions, that is
the 3He component can effectively be treated as a 2D or
system, even the very weak3He-3He attraction will cause
the 3He impurities to form a dimer. An objection may b
raised that the ‘‘theorem’’ for bound states in 2D and 1
holds only for perturbative potentials, whereas the r
3He-3He interaction has a strong repulsive core and does
satisfy the perturbation theory criterion. However, it will b
shown below that this ‘‘theorem’’ remains valid even in th
3He-3He case provided thes-wave scattering length is nega
tive.

The dimerization of the3He component leads to the e
fective ‘‘bosonization’’ of the impurity system: as the tem
perature is lowered, instead of a Fermi fluid of3He impurity
atoms, one ends up with a Bose quantum fluid of (3He)2
dimers. In other words, as a result of dimer formation, t
Fermi-Bose liquid of3He-4He is replaced with a quantum
liquid that contains two Bose components,4He and (3He)2.
Needless to say, the thermodynamics and transport o
dimerized 3He-4He dilute mixture differ drastically from
those given by the conventional description. Of course,
6614 ©2000 The American Physical Society
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significant changes in the macroscopic properties of the m
ture due to dimerization can occur only if the temperaturT
is lower than or at least comparable to the binding energD
of a 3He dimer,T&D. For this reason, the binding energy
the most important scale in the dimerization problem.

So far research has concentrated primarily on dil
3He-4He solutions in various 2D geometries and on the A
dreev states of3He at the free surface of4He.7–9 A number
of encouraging results for thin3He-4He films on various
substrates, which yield reasonable values for the binding
ergies, have been obtained with the help of the density fu
tional method.10 It should be emphasized, however, that t
binding energy of a dimer state in two dimensions is ex
nentially small, so irrespective of the substrate or experim
tal conditions it is difficult to hold a dimer long enough for
to be observed.10 Also, computations in the 2D case are lim
ited because the pre-exponential factor in the expression
the binding energyD cannot be calculated exactly.

The one dimensional problem is free of these drawbac
First, the binding energy of the dimer state can be calcula
rigorously. Second, in contrast to the 2D case, the magnit
of D has a power law, rather than exponential, depende
on the interaction strength and pore radius. This means
the binding energy in one dimension is generically high
than in two dimensions. Observing the phenomenon exp
mentally in traditional 1D3He systems is, unfortunately, no
straightforward. Vortex filaments in superfluid4He with cap-
tured 3He atoms are difficult to work with. Moreover, th
density of vortices is usually very low, necessitating an
paratus with high sensitivity. Conventional porous me
~like Vycor glass! are far from ideal because they cann
provide a suitable network of sufficiently straight capillarie
as the geometry of pores in such systems tends to be ran
and chaotic. In typical conventional porous media the av
age diameter of a pore is about 100 Å which is simply t
big to allow a sizable binding energy.

To achieve a significant binding energy one has to turn
porous nanomaterials such as aluminosilicate, aluminop
phate, and zincophosphate zeolites. Recently, zeolitic m
rials have found application in chemistry, materials scien
and advanced technology. Zeolites are inorganic crystal
compounds comprised of networks of nanoscale pores t
cally less than 15 Å in diameter.11 Of most interest to the
dimerization problem are those materials~such as mordenite
K-L zeolite and carbon nanotubes! that exhibit a good net-
work of narrow, straight pores. The behavior of3He and
4He in three-, two-, and one-dimensional geometries
zeolitic pores has been actively studied experimentally.12–17

In all cases it was demonstrated that helium can flow~as a
gas or liquid depending on the amount of helium adsorb!
through the pores. Motional states of3He and 4He in one-
dimensional channels of K-L zeolite at relatively high tem
peraturesT;0.1–10 K were studied experimentally12,13 by
measuring the heat of sorption and heat capacity. One sh
keep in mind that the effective diameter of the pore may
even smaller due to solidification of helium on the walls a
the formation of 1–3 solid atomic layers. Under these c
cumstances the ‘‘healing’’~correlation! length in superfluid
helium could become comparable to or greater than the
fective diameter of the pore, which would mean that t
liquid helium is no longer a superfluid.~Moreover, in two-
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dimensional geometries an unconventional type of super
idity, the Kosterlitz-Thouless phase transition, can come i
effect!. Recent experimental data18,19 provide evidence for
superfluidity of 4He in nanoporous media with pores of d
ameter 17–25 Å, and the suppression of superfluidity
zeolite of 10 Å pore diameter has also been reported.19 But
even a diameter of 17 Å is small enough to give rise to
binding energy of high magnitude, and this is what mak
zeolites suitable for the experimental search for3He dimers.

This paper has a two-fold goal. First, it elucidates a co
plete description of the dimerized state of a3He-4He dilute
mixture in a 1D geometry. We focus mainly on calculatin
the binding energy and thermodynamic properties. The hi
temperature range where the3He dimers behave as
Maxwell-Boltzmann gas of quasiparticles, as well as t
low-temperature regime in which collective phenome
come into effect and interaction between dimers may
come important, will be discussed. As an example of a qu
tatively new phenomenon that pertains to a gas of (3He)2
dimers in a superfluid4He background, we discuss an ext
mechanism of sound absorption caused by the decay of
dimer state in the field of an acoustic wave propagat
through the4He component. Second, for concreteness,
make clear predictions and recommendations for experim
tal study of a3He-4He mixture in a particular type of nan
oporous medium. The magnitude of the effect suggests
zeolites provide the most favorable conditions under wh
3He dimer states could be observed conclusively.

We restrict ourselves to considering dimers in a rarefi
system of Fermi particles. Clearly, the mechanism that le
to formation of dimers in restricted geometries can a
manifest itself in Bose fluids, as well as, in principle,
systems of higher density. We discuss briefly some of th
possibilities in the last section of the paper.

II. BINDING ENERGY

Let us consider a narrow pore~capillary! filled with a
dilute 3He-4He mixture. The radius of the poreR is assumed
to be large enough,R@d whered is the atomic size, for the
superfluid 4He component to be considered a bulk contin
ous medium. From here on we also assume that the temp
ture is low enough so that the effect of rotons and phon
can be neglected. An isolated3He quasiparticle can trave
freely and perform infinite motion along the pore~thez axis!
whereas its motion in thexy–plane is finite and quantized. A
bound state~if any! of two 3He impurities should be sough
as a solution to the appropriate Schro¨dinger equation with
the exact3He-3He interaction potential. Because the latt
has a strong repulsive core, one could nota priori be abso-
lutely sure that in the pure 1D case whereR;d a bound state
of two 3He atoms exists. On the other hand, in the quasi-
circumstances we are considering, in which the character
length describing the delocalization of a single-particle3He
excitation in thexy direction ~perpendicular to the capillary
axis! is much larger than the interaction range, the situat
is entirely different.~We are considering a hybrid bulk-1D
system, whose existence is strongly suggested by the re
of recent experiments by Wada and others.12–17 The 3He
atoms form anideal 1D gas of impurities movingunhindered
along the axis of zeolite pores,even when the initial pore
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width is close to5 Å. This is the experimental justificatio
for our approach. The actual effective mass and scatte
length in such a system in general will approach the b
values when the radius is ‘‘large enough,’’ but when t
most important quantities~such as interaction range! fall off
exponentially quickly, then ‘‘large enough’’ can be taken
mean ‘‘not much larger than the quantity itself.’’ This a
pears to be the case with zeolites. Moreover, the error ba
experimental values forM anda are not inconsiderable—w
choose two conservative values—and to this level of ac
racy it is permissible to consider a tight radius to be with
the hybrid bulk-1D superfluid regime, especially given t
experimental facts for zeolites. This is why we use bulk e
perimental values in our estimates.! As will be proved below,
for this case, whether or not a bound (3He)2 state forms
depends only on the sign of the effective interaction~the 3D
s-wave scattering lengtha) in bulk. @The overall strategy
may be viewed as follows. We shall find the first term in
expansion for the binding energy. Other terms—due to
tractive or repulsive effects mediated by phonons in the
perfluid background, fourth sound, etc.—must be added
this. When the radius is large enough, these will be ne
gible. As the radius of the pore is decreased, these will
come stronger, but in the case of zeolites, experiments
gest that they are unlikely to overwhelm the van der Wa
attraction~or change the sign of the scattering length! before
the lower limit for the radius is reached at which4He ceases
to be superfluid. As already noted above, this hybrid
system is free of the drawbacks of 2D films~such as the KT
transition!.# If a is negative, which corresponds to an effe
tive attraction, two3He impurities do form a spinless boun
state. As was indicated above, all theoretical calculations
experimental data demonstrate thata,0.4,20,21 That is why
the (3He)2 dimer exists. Hence a dimerized phase of3He is
expected to manifest itself at sufficiently low temperatur
The magnitude of the binding energyD can be expressed i
terms of the 3Ds-wave scattering lengtha and an integral of
the wave function of a bare3He quasiparticle in thexy
plane.

To calculate the binding energyD we will apply the
Fermi renormalization method,22 according to which a two
particle pseudopotentialV(rW,rW8) is introduced which is as
sumed to meet the perturbation theory criterion. Let us e
phasize that such a pseudopotential has nothing to do
the real interaction between particles, which indeed can
be treated in terms of a perturbation theory at all. Howev
the pseudopotentialV(rW,rW8) is postulated to give rise to th
true scattering amplitude when calculated within the Bo
approximation,

a5
M

4p\2E V~r !d3r , urW2rW8u5r , ~1!

whereM is the effective mass of a bare3He excitation. The
idea of the method is to carry out all calculations in t
framework of a perturbation theory for the pseudopoten
and then to express the final formulas through the t
s-wave scattering lengtha by means of the renormalizatio
relation ~1!. All expressions thus obtained contain th
pseudopotentialV(rW) only in the integral form~1!.
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The starting point of the calculation is the fact that t
interaction between3He atoms just slightly disturbs the mo
tion of particles in thexy plane but entirely changes the
relative motion along thez axis, which leads to a bound stat
In other words, a perturbation theory for the weak pseu
potential can be applied to describe the perpendicular mo
in thexy plane only but the dynamics of both particles alo
the pore axis should be found as an exact solution to
two-particle Schro¨dinger equation. Quantitatively it mean
that one has to solve the 1D Schro¨dinger equation rigorously
with the pseudopotential averaged over the unpertur
wave functions of the bare3He quasiparticles in thexy
plane.

The two-particle Hamiltonian can be represented as
lows:

Ĥ5Ĥ01V̂~rW 1 ,z1 ;rW 2 ,z2!,

Ĥ05Ĥ1
(0)~rW 1!1ĥ1

(0)~z1!1Ĥ2
(0)~rW 2!1ĥ2

(0)~z2!, ~2!

whererW i5(xi ,yi) and the indexi 51,2 designates differen
particles. Equations~2!, indeed, imply some extra require
ments for an external potential acting on the3He particle.
For instance, in the case of a narrow channel the potentia
the walls of the capillary is assumed to depend only on thrW
coordinate.@It is reasonable to ask at this point wheth
channel walls can ever be smooth enough for this condi
to hold. We believe that the zeolites investigated by Wa
and others12–19 are smooth enough. Wada’s group13 find a
stable situation in which4He atoms are adsorbed into th
phosphorous ‘‘valleys’’ in the zeolite wall, making the wa
smooth and the motion one dimensional~translations in the
x-y direction are reduced to vibrations!. Channels with an
initial radius of 5 Å were used in Wada’s experiments, a
the 4He was reportedly superfluid even after adsorption
the first layer. The heat capacity of the3He impurities at
high temperature was found experimentally to be 1/2, in
cating free motion in 1D and vibration in the other two d
mensions of the bulk system. So it is reasonable to assum
a first approximation that the external potential of the w
does not depend onz, and that the motion in thex-y plane
can be averaged. The fact that a second solid layer fo
later is irrelevent to the question of the existence of suita
conditions for dimerization~just choose a bigger channel t
start with; or a sample with many channels of vario
widths!.#

As was explained above, we assume that the influenc
the interparticle interactionV on the motion in the (xy) plane
can be taken into account through perturbation theo
whereas the ‘‘disturbed’’ motion along thez direction cannot
be considered as a perturbation. Let the wave functi
c in

(0)(rW i) be eigenfunctions of the equation,

Ĥ i
(0)~rW i !c in

(0)~rW i !5Ein
(0)c in

(0)~rW i !. ~3!

Here the indexn labels different quantum-mechanical stat
and Ein

(0) are the corresponding eigenvalues of the ener

The solution to the Schro¨dinger equationĤC5EC will
then be sought in the form,

C~rW 1 ,z1 ;rW 2 ,z2!5f~rW 1 ,rW 2!x~z1 ,z2!,
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f~rW 1 ,rW 2!5(
kn

Cknc1n
(0)~rW 1!c2k

(0)~rW 2!. ~4!

Multiplying the Schro¨dinger equation by
c1m

(0)* (rW 1)c2l
(0)* (rW 2) and integrating overdrW 1drW 2 one can

easily find,

Clm~ ĥ1
(0)1ĥ2

(0)!x1(
kn

CknE c1m
(0)* c2l

(0)* V̂c1n
(0)c2k

(0)xdrW 1drW 2

5Clme lmx, ~5!

wheree lm5E2E1m
(0)2E2l

(0) . To the first order of the pertur
bation theory for the motion in thex-y plane~specified by
the coordinatesrW 1 andrW 2) we should putClm51, andCkn
50 if lÞk andmÞn. Thus we obtain

~ ĥ1
(0)1ĥ2

(0)!x1^V̂&x5e lmx,

^V̂&5E c1m
(0)* c2l

(0)* V̂c1n
(0)c2k

(0)drW 1drW 2 . ~6!

When separating as usual the relative motion of partic
from the center-of-mass motion one gets,

ĥr
(0)x r1^V̂&x r5~e lm2Ec!x r , ~7!

whereEc is the energy corresponding to the center-of-m
motion, Ec5p2/4M , pW 5pW 12pW 2, and the subscriptr labels
quantities pertaining to the relative motion of the particl
e.g.ĥr

(0) is related to the ‘‘kinetic energy’’ of a particle with
reduced mass,

ĥr
(0)5

q2

M
, qW 5

pW 22pW 1

2
. ~8!

Let us recall that the pseudopotentialV is assumed to mee
the perturbation theory criterion. The 1D Schro¨dinger equa-
tion (7) can therefore be solved exactly when the exact
tential V̂ is replaced with the pseudopotentialV.6 The solu-
tion reads,

e lm2Ec5e r5
M

4\2 F E
2`

`

^V&dzG2

. ~9!

Equation~9!, indeed, turns out to be consistent with the e
pression in Ref. 5 for the binding energy, obtained in ter
of an ‘‘effective’’ potential.

The integral that enters Eq.~9! can be rewritten as fol-
lows:

I 5E
2`

`

^V&dz5E V~Ar21z2!F~rW !drW dz,

F~rW !5E Uc1m
(0)S hW 2

rW

2
D U2Uc2l

(0)S hW 1
rW

2
D U2

dhW . ~10!

Let the quantityD be the characteristic localization range
the xy plane ~for the wave functionsc1m

(0) and c2l
(0)). If the

localization radius is sufficiently large, so thatD@r 0, where
r 0 is the interaction range, one can easily convince one
that
s

s

,

-

-
s

lf

I 5
1

L2E V~r !d3r ,
1

L2 5E uc1m
(0)~hW !u2uc2l

(0)~hW !u2dhW , L;D.

~11!

Combining Eq. ~11! and the renormalization relation~1!
yields

e r54p2
\2

Ma2 S a

L D 4

. ~12!

One can see from Eq.~12! that the binding energye r is
expressed in terms of the true scattering amplitude and d
not contain the pseudopotential, which shows that the us
the Fermi method here is fully justified. It is convenient
choose the pseudopotential in its traditional form,

V~rW !5
4p\2

M
ad~rW !. ~13!

In the opposite limiting case,D!r 0, the integralI reduces to

I 5E
2`

`

V~z!dz, ~14!

and the binding energye r explicitly depends on the
pseudoptential chosen. In this case the renormaliza
method is no longer valid. To find the binding energy~if a
bound state still exists! one should solve the 1D Schro¨dinger
equation with the real3He-3He interaction potential.@The
point is we have laid down the condition@i.e., the ‘‘quasi-1D
condition,’’ when the integral I in Eq.~10! does not depend
explicitly on the pseudopotential V~z! nor the actual poten-
tial V̂, and I separates into a product of known quantitie#
whereby a pseudopotential can always be used in s
bulk-1D hybrid systems. The actual interactionV̂ between
3He is then irrelevent in determining the first term of th
energy expansion, apart from providing the first term or so
a Fourier expansion of the potential~as in Ref. 5! which is
equivalent in the Born approximation to taking a delt
function potential~as in the present paper!. Fermi’s essential
insight is that the first term of a Fourier expansion will d
even when the interparticle interaction contains a singular
if the particles have space to move around each other. In
dimension, this is expressed in the quasi-1D condition.
remark that there are numerous circumstances in which
gularities are quite naturally ‘‘smoothed over’’: compa
Eqs. ~54! and ~60! in this paper, in which the averaging e
fect of Maxwell-Boltzmann motion smooths over the sing
larity in the zero-temperature absorption cross section.#

To estimate the binding energye r of a (3He)2 dimer one
has to know the3He impurity wave functions,c1m

(0)(rW ), for
the motion in thexy–plane in the external potential of th
capillary walls. In principle, these wave functions should
found on the basis of the Schro¨dinger equation involving the
interaction potential of the impurity with the walls and th
actual profile of the pore.~These can get quite complicate
for example, the 1D channels of K-L zeolite are form
within ‘‘cages’’ interconnected via many narrow
apertures13!. However, if the average radius of the pore
large enough, so thatR@d, and the temperature~or the con-
centration, in the case of a degenerate mixture! is sufficiently
low, so that the de Broglie wavelength of the3He quasipar-
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ticle is much larger than the typical scale of wall roughne
the approximation of a particle in a 2D potential box loo
quite reasonable. Assuming the channel has axial symm
the normalized wave function reads,

c1m
(0)~rW !5

~21!(m11)

p1/2J1~jm!R
J0S r

R
jmD , m51,2,3, . . . ,

~15!

whereJ0(j) andJ1(j) are Bessel functions of the first kind
andjm are the zeros of the functionJ0(j). Substituting the
wave functions~15! into Eqs.~11! and ~12! yields

e r516Bnm
2 \2

Ma2 S a

RD 4

. ~16!

The numerical coefficientBnm is defined as follows:

Bnm5
1

J1
2~jn!J1

2~jm!
E

0

1

J0
2~jnz!J0

2~jmz!zdz. ~17!

Equation~16! gives the binding energy of a3He dimer in a
cylindrical pore. The two3He atoms are confined in thexy
plane by means of the walls of the pore whereas their rela
motion along thez axis is finite due to the attractive inte
particle interaction. In other words, two3He impurities can
travel along thez axis only as a whole, i.e., as a 1D qua
molecule (3He)2.

Consider the case where both3He particles are in the
ground statem51, c1m5c2m5c1. Using the typical values
M52.33m3 and a'21.0 Å,20,4 we obtain the binding en
ergy as a function of pore radius~Fig. 1!. Considering a
mordenite sample in which, typically,R57 Å, we havee r
5D50.05 K, which is quite a sizable effect from the view
point of modern low temperature experiment. Due to
power-law relationship, the binding energy is sizeable e
at large radii.~Theupperbound for the radius is provided b
the criterion that the spacing between the transverse en
levels must be large compared to the temperature of
fluid.! The normalized wave functionx(z) of the bound state
is

FIG. 1. Binding energy of the (3He)2 dimer in a superfluid4He
background. The quasi-one-dimensional geometry of the nar
pore causes a power law relationship with pore radius, givin
sizeable value for the binding energy at small radii.
,

ry,

e

e
n

gy
e

x~z!5~2n!1/2exp~2nuzu!, n25
MD

\2 , z5z22z1 .

~18!

The size of the dimer is

z05E
2`

`

uzuux~z!u2dz5n215
\

~MD!1/2
5

1

4B11
uauS R

a D 2

,

~19!

which leads to a quite macroscopic valuez0511.7 Å. The
smallest pore radius for which the dimer size exceedsR—if
the system is then still within the ‘‘superfluid bulk-1D hy
brid’’ regime—is R54.2 Å. @The salient result is not par
ticular values ofe(R), but the power-law dependence of th
binding energy, which arises because of the restricted ge
etry.#

So far nothing has been said with regard to the spin str
ture of the dimer. In the case where both3He particles form-
ing the dimer are in the ground state of thexy motion, the
total wave functionC(rW 1,z1 ;rW 2,z2) is symmetric, corre-
sponding to a singlet~spinless! pairing of the3He impurities.
If the 3He particles were in different energy states,un&
Þum&, dimers of both the singlet and triplet type could exi
The correct wave function should then be constructed b
proper symmetrization or antisymmetrization.

III. THERMODYNAMIC FUNCTIONS: HIGH
TEMPERATURES

The thermodynamic properties of a3He system in a su-
perfluid 4He background are strongly temperature dep
dent. The simplest and most practical limiting case is
high temperature regime in which quantum degeneracy
fects may be neglected and the3He impurities forming an
ideal Maxwell-Boltzmann gas are in the ground state for m
tion in thexy plane,

TF* !T!TE* , ~20!

where TF* 5p2\2n3
2/2M is the 1D Fermi degeneracy tem

perature for3He atoms, andTE* is the highest temperature a
which a 3He atom remains in the ground state. In this te
perature regime, even ifT@D and the number of dimers i
negligibly small, the heat capacity per3He atom,cv51/2,
differs drastically from its value in bulk,cv(bulk)53/2 due to
the reduced geometry of the porous structure.

@The impurities in the superfluid background always fo
a weakly-interacting~almost ideal! gas or fluid—irrespective
of the 3He density—as long as one stays away from
phase separation concentration. The impurities form eith
Maxwell-Boltzmann ideal gas or a highly correlated, dege
erate weakly-interacting fluid~of bosons, fermions, or a mix
ture of both!. In this sense, the impurity density~ignoring
phonons etc. in the background superfluid! has no effect on
the van der Waals interparticle interaction. Note also that
is a two-body interaction because the average interpar
spacing is always far greater than the interaction ran
which falls off exponentially.

We note that the saturation concentration may be affec
by a change in scattering length as channel radius is
creased~the mixture going from bulk to quasi-1D!. We use

w
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the bulk value as an indicative upper bound. The existen
when the mixture is dilute enough, of ideal impurity g
conditions was shown in the relatively very high temperat
experiments cited in footnote 3. The precise relationship
tween saturation concentration and radius is an open q
tion, and an interesting possibility for experiment.#

To find the number density of dimers in equilibrium on
should consider the ‘‘chemical reaction’’3He13He
→(3He)2. The corresponding equilibrium condition is, 2m1
5m2, wherem1 and m2 are the chemical potentials of th
3He and (3He)2 components respectively. It is convenient
introduce the degree of dimerization,a, defined as

a5
2n2

n3
, n112n25n3 . ~21!

Heren1 andn2 are the numbers of unpaired3He atoms and
(3He)2 dimers, respectively, per unit length, andn3 is the
total number of3He atoms per unit length in the mixture
The thermodynamic functions in the high-temperature
gime were calculated in Ref. 5. Reformulating the resu
obtained in that paper, using the Free Energy together w
the chemical equilibrium condition, one can easily find th
the total heat capacityCv can be expressed in the form

Cv5Nn3F1

2
2

a

4
1

1

2
a

12a

11a S D

T
1

1

2D 2G , ~22!

whereN is the areal density of pores in the sample, and
degree of dimerizationa is given by the equation,

a511X2~X212X!1/2,

X5
1

2p1/2

AMT

\n3
expS 2

D

T D5Ap

8 S T

TF*
D expS 2

D

T D .

~23!

The degree of dimerization tends to unity exponentially r
idly as T→TF1* ~Fig. 2!. As one would expect, a highe
density facilitates dimerization.@The nature of this ‘‘density
dependence’’ is the following. At sufficiently high temper
ture, Boltzmann statistics holds for the3He quasiparticles.
For low density, the Fermi energyTF* !D. Now suppose the
mixture is cooled from some high initial temperature. Due
thermal agitation, there are virtually no dimers whenTF*
!D!T. As the mixture is cooled below the binding ener
D, with TF* !T&D, the number of unpaired3He impurities
decreases exponentially rapidly,a→1. Impurities want to
dimerize before the temperature reachesTF* , and they find it
easy to do so becauseT&D. This can be seen in the expre
sion for the free energy~2.3! in Ref. 5. At higher densities
within the Boltzmann regime,TF* is higher, so rapid dimer
formation occurs sooner asT becomes comparable toD.
Thus, ‘‘higher density facilitates dimerization.’’ But if th
density is too high and channel radius too large, then it m
happen thatTF* @D, and the fermi particles cannot effec
tively dimerize in the Maxwell-Boltzmann regime. Favorab
circumstances for observing dimers occur whenTF* !D, and
complete dimerization (a→1) can occur before the syste
becomes degenerate. The3He density must be low enoug
~but not too low, if the experimental apparatus cannot re
e,

e
e-
s-

-
s
th
t

e

-

y

h

TF* ) and the channel narrow enough~but not too narrow,
otherwise either the background stops being superfluid
the dimer sizez0 will be smaller than the channel width
resulting in a rotational degree of freedom!. Depending on
the relative sizes ofz0

21 and n3, we can have strong cou
pling, weak coupling, or anything in between, after the s
tem becomes highly correlated.#

Since it is the singlet~spinless! dimerization that occurs
predominantly in the3He component, directly measuring th
magnetic susceptibility or conducting NMR experimen
would probably be the best means of detecting the dim
The magnetic susceptibility,x, is given simply by the num-
ber of the unpaired3He atoms,

x5
b2

T
Nn3~12a!, ~24!

whereb is the nuclear magnetic moment of3He. The tem-
perature dependence of the heat capacity and magnetic
ceptibility is shown in Figs. 3~a! and 3~b!. The effect seems
to be sizable enough to be experimentally observable.

It may be noted that the effective interaction between
dimers themselves could prove attractive, which could le
to the formation of quadrumers. Generalizing this possibi
one could end up with a polymer state involvingn>2 atoms
of 3He or even with an antiferromagnetlike chainn→` at

FIG. 2. Degree of dimerization of the3He component in super
fluid 4He as a function of temperature, in the high temperat
regime. As the temperature is lowered, at low density, there
region (T;10 mK, for R;7 Å) of exponential growth of the
number of dimers, resulting in virtually complete dimerization
the degeneracy temperature. The3He component thus turns into
Bose gas of dimers. The3He Fermi temperature is limited abov
because of phase separation: in bulk mixture, this occurs at a
centration ofx;0.06, i.e.,TF* ;85 mK. In channels, the actua
phase separation concentration may depend on channel radius~see
Sec. III!. There is no lower limit on density, apart from that im
posed by the limitations of the apparatus: if the apparatus ca
reachTF* , and since the degree of dimerization is an increas
function of n3, the density cannot be too low if the sample is
contain a good proportion of dimers. In other words, given a p
ticular apparatus, the3He impurity densityn3 must be high enough
for dimers to be easily observable. But for larger channel widt
the density cannot be too high, otherwiseTF* ;D and complete
dimerization cannot occur.
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T→0. To describe such states one would need someho
take many-particle effects into consideration. To some ex
collective effects are considered in the next section on
basis of the Bethe ansatz.

@Such a 1D chain could be capable of information tra
fer: the flipping of a spin at one end would propagate a s
wave through the chain to the other end, causing the spi
the last particle to flip. The decisive factor in the formati
of such a 1D wire may well turn out to be the influence
the corrugation of the channel walls, even when the3He gas
does not feel the potential of the channel wall ‘‘substrate
This would be analogous to the ‘‘4/7 commensurate pha
observed when pure3He is adsorped onto a 2D graphi
substrate~see Ref. 38!. The 4/7 phase could not exist withou
substrate corrugation, and the second3He layer feels only
other 3He atoms~in our case it would also feel the back
ground 4He superfluid!.#

IV. THERMODYNAMIC FUNCTIONS: LOW
TEMPERATURES

In the low temperature limit,T&TF* , many-body correla-
tions and quantum-statistical effects pertaining to 1D s

FIG. 3. Specific magnetic susceptibility and specific heat o
dilute mixture of 3He in superfluid4He. At T;10 mK, dimeriza-
tion causes pronounced deviation from the behavior expecte
dimers were absent. In~a!, the specific heat deviates from the hig
temperature value ofcv51/2. In ~b!, the magnetization deviate
markedly from Curie’s Law.
to
nt
e

-
n
of

f

’
’’

-

tems become important and have to be taken into acco
Fortunately, in the limiting caseR@d, the problem effec-
tively reduces to one with thed-function pseudopotentia
~see above and Ref. 23! and can be solved exactly. To b
specific and to avoid extra complications related to the sy
metry of the total wave function we will restrict ourselves
considering an ‘‘antiferromagnetic’’ chain of3He particles
along the pore in the absence of an external magnetic fi
The corresponding Hamiltonian reads

Ĥ52
\2

2M (
i 51

N3 d2

dzi
2 2

4p\2uau
ML2 (

i , j
d~zi2zj !. ~25!

HereN3 is the total number of3He atoms in the pore, andL
is defined by Eq.~11!. For the case where the3He impurities
are in the ground state,

T&TF* !
\2

2MR2 ~j2
22j1

2!, ~26!

the characteristic lengthL can be expressed in the form,

1

L2 5
2

pR2 B11. ~27!

Let the Hamiltonian~25! be rewritten in the following di-
mensionless form:

Ĥ85Ĥ
2M

\2n3
2 52(

i 51

N3 d2

dz i
2 22l(

i , j
d~z i2z j !. ~28!

where new coordinatesz i5n3zi are introduced, and the pos
tive coupling constantl is defined as follows:

l54p
uau

n3L2 58B11

uau
n3R2 5

2

n3z0
5pS 2D

TF*
D 1/2

52h.

~29!

Herez0 is the size of the dimer calculated in Eq.~19!. Vary-
ing l by changing the densityn3 one could trace the cross
over from a correlated Fermi gas~similar to the Cooper pair-
ing regime in conventional BCS superconductors! where the
size of the dimerz0 would considerably exceed the avera
spacing between the3He impurities, to an interacting Bos
fluid of dimers in the limiting case ofz0!n3

21.
A method based on the celebrated Bethe ansatz for fi

ing an exact solution to the Schro¨dinger equation for a one
dimensional system of particles interacting via ad-function
potential was developed and successfully applied to b
bosons and fermions by Yang and Yang,24 Lieb et al.,25

Takahashi,26 Gaudin,27 and others~for review see Ref. 28!.
In our analysis of the low temperature behavior of therm
dynamic functions we will use the results obtained by La29

that describe the thermodynamics of attractive spin one-
fermi particles in one dimension on the basis of the Ham
tonian ~28!. According to Lai,29 the energy densityE and
number densityN per unit pore length of the system in equ
librium can be presented in the form,

E52E
2`

`

~k22h2!rdk1E
2`

`

k2tdk,

a

if
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N52E
2`

`

rdk1E
2`

`

tdk, ~30!

where the distribution functionsr(k) andt(k) are defined as
follows:
-

-

ic

n
e
a
fo
re

io
tio

h

r~k!5
21

2p

]e~k!/]A

11ee(k)/T , t~k!5
21

2p

]c~k!/]A

11ec(k)/T . ~31!

The effective excitation energiese andc entering Eqs.~31!
are given by the following set of integral equations,
e~k!52~k22h2!22A2TE
2`

`

K2~k2k8!ln~11e2e(k8)/T!dk82TE
2`

`

K1~k2k8!ln~11e2c(k8)/T!dk8,

c~k!5k22A2TE
2`

`

K1~k2k8!ln~11e2e(k8)/T!dk82
T

2E2`

`

G1~k2k8!ln~11e2c(k8)/T!dk8

1
T

2E2`

`

G0~k2k8!ln~11ef1(k8)/T!dk8,

~32!

fn~k!5
T

2E2`

`

G0~k2k8!ln~11efn11(k8)/T!dk81
T

2E2`

`

G0~k2k8!ln~11efn21(k8)/T!dk8,

lim
n→`

E
2`

`

G0~k2k8!$ ln~11efn(k8)/T2 ln~11efn21(k8)/T%dk850,
is
nnot
one
ac-

lify
ural,
the
r-
f the

age
-
of

hat

la-
wheren>1, f05c, the otherfnu also being excitation en
ergies, and the kernelsKn(x) andGn(x) are defined as

Kn~x!5
1

pnh

1

11S x

nh D 2 ,

Gn~x!5
1

2pE2`

` e2 ivxe2nhuvu

coshhv
dv. ~33!

The quantityA in Eqs.~31! and ~32! is the Lagrange multi-
plier for the conditiondN50 when minimizing the free en
ergy.

Equations~30!–~34! provide a complete thermodynam
description of a system with the reduced Hamiltonian~28!
valid at arbitrary values ofl, i.e., at any densityn3. These
equations can, in principle, be analyzed numerically for a
given density and temperature. Since there are no experim
tal data available at sufficiently low temperatures in situ
tions where this model is applicable, no computations
any particular densities and temperatures will be conside
here. Instead we will discuss general features of the solut
and the temperature dependence of thermodynamic func
in the two limiting cases of high densities~smalll) and of a
dilute gas of dimers~largel).

The first case,l!1, corresponds to a sufficiently hig
number density,n3, per unit length along the pore,

1

z0
!n3!

1

R
. ~34!

The right-hand side of criterion~34! is equivalent to Eq.~20!
and expresses the condition under which most3He impuri-
ties occupy the ground state for the motion in thexy plane.
y
n-
-
r
d

ns
ns

In this situation where a formally calculated dimer size
greater than the average interparticle separation, one ca
actually consider the dimer as a real particle. Rather,
should talk about a correlated fermion pair with the char
teristic coherence length of the order ofz0. In the extreme
limiting casel→0, the kernels in the integrals in Eqs.~32!
reduce to delta-functions,Kn(x)→d(x) and Gn(x)→d(x).
Under these conditions all the equations drastically simp
and, as was shown in Ref. 29 and as is, indeed, quite nat
reduce to the ones pertaining to a free fermion gas with
chemical potentialA. The heat capacity of the gas is propo
tional to the temperature and can be expressed in terms o
density of states in the standard fashion~usual units!,

C5
p2

3
TS dk

de D
A

5
MT

3\2n3
. ~35!

The second case of interest,l→`, is more tricky. This
situation implies a sufficiently low density of3He particles,

n3!
1

z0
, ~36!

so that the size of the dimer is much smaller than the aver
distance between3He impurities and one can definitely iden
tify dimers as real one-dimensional molecules. The system
3He atoms can thus be viewed as a dilute mixture of (3He)2
dimers and unbound3He particles~monomers!. As l→`,
the integrals containing the kernelsK2 , K1, andG1 do not
contribute. Taking this into account one can conclude t
with good accuracy the potentialsfn from Eqs. ~32! are
positive constants that satisfy the following functional re
tions:
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2xn5 ln~11xn11!~11xn21!, xn5
fn

T
. ~37!

After simple algebra we obtain

e~k!52k222A0 , A052~h21A!,

c~k!5k22A1 , A15A2
T

2
ln~11x1!. ~38!

As was spelled out above, in the case in question one
always distinguish between the contribution of dimers a
unpaired atoms. QuantityA does not make sense as an effe
tive chemical potential any longer. Instead one has to d
with the chemical potentialsm1 andm2 of both species, i.e.
of the ‘‘monomers’’ and dimers, respectively. The equili
rium densities of both components,n1 andn2 should again
be found from the conditions

2m15m2 ,n112n25n3 . ~39!

However, one can easily convince oneself that at zero t
perature and in the low-density limit Eq.~39! does not have
a solution, simply becausem1→D0 asn3→0 ~in an ideal gas
m3}n3

2, and D0 is the binding energy with the superflui
background! whereasm2→2uDu12D0 under the same con
ditions. In other words, atT50 andl→` where the chemi-
cal potentialm2 of the dimers is always smaller than that
the unbound particles,m1, there are no ‘‘monomers’’ at al
and only the dimerized phase of (3He)2 survives. When for-
mulated in terms of the reduced dimensionless Hamilton
(28) and the corresponding variables in Eqs.~31! and ~38!
this criterion is equivalent to the situation in which atT50
the functionc(k) can never be negative, i.e.,c(k)>0 for all
k. In this case the terms containing the ‘‘monomer’’ dist
bution functiont do not contribute to the thermodynamic
Simple calculations using Eqs.~30!, ~31! and ~38! at T
50,l@1 lead to

A5
p2N 2

16
2

l2

4
,0,

E5
N
4 S p2N 2

12
2l2D ,

m252
l2

2
1

p2N 2

8
. ~40!

At finite but sufficiently low temperatures,TÞ0, even in
the case ofl→` a small number of unpaired particles ca
appear in the system due to the thermal decay of the dim
However, the contribution of these ‘‘monomers’’ is exp
nentially small as the temperature is lowered and can stil
neglected. On the other hand, the temperature dependen
rections toA and consequently toA0 provide an important
contribution to thermodynamic properties and should
taken into account. Substituting the low-temperature exp
sion of the distribution functionr(k),
an
d
-
al

-

n

rs.

e
or-

e
n-

1

11exp
e~k!

T

5Q~e!Q~A02e!2
p2

24
T2

]

]e
d~e2A0!,e5k2,

~41!

into Eqs.~30! and ~31! one immediately obtains

E5
4

pE0

A0
e

dk

de
de1

p

6
T2F ]

]e S e
dk

deD G
e5A0

2h2N,

N5
4

pE0

A0dk

de
de1

p

6
T2F ]

]e S dk

deD G
e5A0

. ~42!

DifferentiatingE with respect to the temperature and taki
into account the obvious relation

]N
]T

5
4

p Fdk

deG
e5A0

]A0

]T
1

p

3
TF ]

]e S dk

deD G
e5A0

50, ~43!

one can easily end up with the sought after specific heat

C5
p

6
T

1

A0
1/2

5
2T

3N , ~44!

or in conventional units,

C5
4MT

3\2n3
. ~45!

Thus the temperature dependence of the heat capacity ca
be a decisive factor in distinguishing between Fermi-li
~unbound particles! and Bose-like~dimers! behavior as this
dependence proves to be linear in both cases. In other wo
the difference between the properties of a Fermi gas and
Bose gas in one dimensional geometry is much more su
than in the 3D case, a point which has already been discu
in the literature.

We have considered the exact solution of Lai’s model
the two limiting cases of high and low densities of3He par-
ticles where the3He component manifests itself as a Fer
gas of ‘‘monomers’’ and pure Bose fluid of dimers, respe
tively. The critical concentration,n3c , at which the cross-
over between two those regimes occurs, is of the orde
z0

21 and should be found by exactly solving Eqs.~30!–~33!
at arbitrary l;1. The situation very much resembles th
crossover between the Cooper pair and Bose molecule
gimes in three-dimensional BCS superconductors30,31,33and
2D Fermi fluids.7,32

V. ABSORPTION OF SOUND

The presence of (3He)2 dimers can drastically influenc
the attenuation of the first sound in a dilute3He-4He mix-
ture. An extra absorption mechanism due to the decay of
dimerized state in the field of the acoustic wave can exh
itself at sufficiently low temperatures. It was shown in Ref
that the sound absorption coefficient in a dimerized quasi
3He system should have a clearly pronounced resonant c
acter. To come up with quantitative figures that can be u
when running an experiment, one has to take into accoun
quantum-mechanical indistinguishability of two3He par-
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ticles and the Doppler effect due to the thermal motion of
dimers.

The calculation of the sound absorption coefficient p
ceeds in a natural way once the wave function for the aco
tically split 3He particles is known. Since the (3He)2 dimer
in the ground state is spinless, the dissociated3He particles
have opposite spin~equal to a half!. In concordance with the
validity of the Fermi renormalization method~in the Born
approximation!, and by virtue of the Hamiltonian of Eqs
~25! and ~28!, the motion in the narrow pore reduces to th
of fermions interacting with an attractive delta functio
pseudopotential in one dimension. The explicit exact so
tion to this two body problem, obtained by McGuire,34

shows that when the length of the pore is much greater t
the scattering length of the delta function potential, the m
mentum eigenvalues of the unpaired particles are indep
dent of the attraction strength to an exponentially small er
that is, apart from an exponentially small~but finite! term,
the particles are free of each other’s influence once t
separate and the final spatial wave function is simply a s
metric superposition of plane waves corresponding to a
glet state of free fermions.

To begin with, the transition probability is calculated
the center-of-mass system for the case of no thermal mo
of dimers ~i.e., T50, no Doppler shift!. The absorption
mechanism exists because of the inelastic single-phonon
cess whereby the (3He)2 dimer is split by a sound wave o
definite frequencyv0>uDu/\. The golden rule reads

dw5
2p

\
u^c f uĤ intuc i&u2d~2D1\v2E!

dp

2p\
, ~46!

whereE andp are the energy and momentum of the relat
motion of the particles in the final state,c i5x(z), given by
Eq. ~18!, is the normalized wave function of the initial stat
and c f is a symmetric superposition of plane waves pro
gating along thez axis, which in the c.m.s. is

c f521/2cos
pz

\
. ~47!

To construct the operatorĤ int for the interaction of a (3He)2
dimer with the phonon field in the superfluid4He back-
ground, we start with the interactionV̂int of a single 3He
impurity with the acoustic wave,35,4,20which has the form

V̂int5
]e0

]r
dr̂1

1

2

dM

M
~ p̂v̂s1 v̂sp̂!, ~48!

wheree0'22.8 K is the binding energy of a single impu
rity atom with the superfluid4He background,r is the den-
sity of the pure4He in equilibrium,p̂52 i\]/]z is the mo-
mentum operator,dr̂ andv̂s are hydrodynamic operators fo
the density and velocity~respectively! of the 4He superfluid
under acoustic perturbation, anddM5M2m3 , m3 being the
atomic mass of3He. The operatorsdr̂ andv̂s are defined by
the expressions,

dr̂5ae2 iv0t1 iqz, v̂s5be2 iv0t1 iqz. ~49!

Here\q5\v0 /c is the momentum of the acoustic phono
assumed definite for simplicity,c is the speed of first soun
e

-
s-

t

-

n
-
n-
r;

y
-

n-

n

ro-

-

,

in liquid 4He, anda andb are normalizing constants. In th
zeroth order of3He concentration, the equation of continui

]r

]t
1div rvs50 ~50!

yields the relation

a5
rb

c
. ~51!

The intensity of the sound wave isrcv̄s
25 1

2 rcubu2, which
gives the constantb normalized to one phonon,

ubu25
2\v0

rc
. ~52!

Combining Eqs.~48!, ~49!, and ~52! for two 3He particles
that form a (3He)2 dimer we arrive at the HamiltonianĤ int
of the dimer-phonon interaction in the c.m.s.,

Ĥ int52b
r

c

]e0

]r
cos

qz

2
1 i

dM

M
bS p̂ sin

qz

2
1sin

qz

2
p̂D .

~53!

To avoid lengthy expressions we will restrict ourselves
calculating the cross section of sound absorption in the
pole approximation only, in which the phonon momentu
q→0, and the second term in Eq.~53! is neglected. The
phenomenon is then similar to the well known effect in cla
sical electrodynamics in which neither dipole radiation n
absorption exist in a system of charged particles that h
the same charge-to-mass ratio. For this reason the recoil
mentum\q in the operatorsdr̂ andv̂s is then also neglected
The criterion of validity for the dipole approximation isqd
!1 which is consistent with the hydrodynamic conditio
applying here.

Substituting the Hamiltonian~53! and Eq.~52! into Eq.
~46! yields the zero-temperature cross section per part
s(v0) for acoustic splitting at constant pore radius,

s~v0!5
2Mv0

p

r

\c3 S ]e0

]r D 2

@x~k!1x~2k!#2,

x~k!5
2n3/2

n21k2
, \k5p. ~54!

Herex(k) is the Fourier transform of the wave function~18!
of the initial dimerized state, andn is the inverse dimer size
given in Eq.~19!. Taking into account the energy conserv
tion law

p2

M
1D5\v0 , ~55!

one obtains the expression

s~v0!532
r

\c3 S ]e0

]r D 2 h3/2

~12h!1/2
, h5

D

\v0
. ~56!
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In agreement with general principles regarding the beha
of cross sections near reaction thresholds,6 the cross section
~56! is proportional to the momentump and thus diverges
like (\v02D)21/2 ash→1.

In a realistic experiment, thermal motion of dimers
well as nonmonochromaticity of the emitted sound sig
will cause the singularity to be smoothed over. We proce
now to consider the effect on the singularity of thermal m
tion in the high temperature regime in which the (3He)2
dimers form a classical Maxwell-Boltzmann gas.

In the high temperature regime the dimers in equilibriu
are in random thermal motion along the length of the po
their velocities distributed according to the Maxwell dist
bution. The frequency of phonons arriving at the dimers
Doppler shifted according to

v5v0S 11
vz

c D . ~57!

For a phonon of definite source frequencyv0, one must take
into account all scattering events for which the arrival ene
\v>D, which is the single fact that gives rise to the smoo
ing of the singularity. The total cross section per particle
acoustic splitting at constant pore radius is

sMB~v0!5E
D/\

`

s~v!g~v!dv, ~58!

where g(v)dv is the Maxwell-Boltzmann probability pe
particle of a phonon arriving at a dimer with Doppler shift
energy\v,

g~v!dv5
1

p1/2v0

z1/2expF2zS v

v0
21D 2Gdv, ~59!

where we have introduced the dimensionless parametz
5Mc2/T. Expressing the cross-section integral~58! in terms
of the parametersz andh, we have

sMB~z,h!5
32

p1/2

z0

n3
uJ~z,h!, ~60!

whereu is a dimensionless parameter,

u5
r

\c3 S ]e0

]r D 2 n3

z0
, ~61!

and

J~z,h!5hz1/2e2z(h21)2E
0

`

t21/2~11t !21e2at2bt2dt,

a52zh~h21!, b5zh2. ~62!

Using a saddle-point method, one finds to ord
O„1/(2z1/4h1/2)…,

J~z,h!;Ap
h21h21

h1/2
z1/4e2z(h21)2H21/2„z

1/2~h21!…,

~63!

whereH21/2(x) is a Hermite function.
r

l
d
-

,

s

y
-
r

r

We define the absorption coefficient in one dimension
the narrow pore problem in the high temperature regime

G1D5
n2

A
sMB5

a

2

n3

A
sMB5

16

p1/2

z0

A
uaJ~z,h!, ~64!

whereA is the~fixed! cross-sectional area of the pore, anda
is the degree of dimerization defined in Eqs.~21! and ~23!.
The dimensionless ratio of the absorption coefficient a
phonon wave number@Fig. 4~a!# is given simply by

FIG. 4. Resonance peak for acoustic splitting of dimers in
dimerized 3He component in superfluid4He. ~a! is a plot of the
exact dimensionless functionG* 5G/k05haJ(z,h) (1.2310232)
at a density ofTF* 50.5 mK, whereG is the absorption cross
section calculated with the Maxwell distribution. Damping
caused at high temperatures by thermal disruption of dimers.~b!
shows the displacement of the absorption cross-section peak
temperature. Displacement towardsh51 slows markedly with fall-
ing temperature.
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G1D* 5
G1D

k0
516

\c

D

z0

A
uhaJ~z,h!, ~65!

wherec is the speed of first sound in superfluid4He.
The total cross section for acoustic splittings(z,h) is

finite and smooth ath51. As the temperature is increase
from the lower end of the Maxwell-Boltzmann regime, a
asymmetric distribution appears which shows the strong
fluence of the exponential factor in the Maxwell veloci
distribution. The maximum of the absorption cross sect
shifts towards decreasing values ofh @Fig. 4~b!#; i.e., to-
wards higher phonon source frequenciesv0. This can be
understood as follows. Although the Maxwell velocity dist
bution for motion along the pore is a Gaussian that is sy
metric aboutvz50, only dimers with a sufficiently large
velocity towards the phonon source can be acoustically s
there is a threshold energy below which the phonon has
effect, and only these dimers see a sufficiently large Dopp
shifted phonon energy. Thus an asymmetry is introduced
the problem. As the temperature is increased, the Maxw
distribution becomes broader and flatter, which means th
are fewer low speed splittable dimers: the most probable
ergy for splitting shifts towards higher dimer speed a
hence higher phonon source frequency. The position of
absorption cross-section peak should be found from the t
scendental equation,

H23/2„z
1/2~h21!…

H21/2„z
1/2~h21!…

522z1/2~h21!, ~66!

which is obtained by only keeping terms toO(1/z1/4) in the
asymptotic series for the derivative of the exact integral~62!
then setting the derivative to zero~otherwise ill-conditioning
will cause problems with numerical algorithms!. Using prop-
erties of cylinder functions~see Ref. 37!, analysis of the
transcendental equation~66! yields for the position of the
absorption cross-section peak, to orderO„@z1/2(h21)#3

…,

h* ~T!'12
11A21~112A223A4!1/2

2A3

1

Az~T!
,

A5

2GS 3

4D
GS 1

4D . ~67!

Taking a working density of 3.843107 m21 (TF*
50.5 mK, concentrationx50.000026, one3He particle ev-
ery 260 Å along the pore!, for R57 Å, the independen
parameters are explicitly,

z5
Mc2

kBT
'

48.4

T~K!
, h5

D

\v0
'

6.63109

v0~rad s21!
,

u'6.9310243n3 ~m21!, ~68!

where the last quantity was evaluated using the dimens
less group
-

n

-

it:
o
r-
to
ll
re
n-

e
n-

n-

r

m4c2

]e0

]r
51.28, ~69!

m4 being the bare mass of a4He atom. The position of the
absorption cross-section peak is then given by

h* ~T!'120.0750AT. ~70!

The temperatures for which quantum degeneracy
thermal excitation effects can be neglected suggest bound
the order 2420&z&9680, while in view of the high frequen
cies involved~hypersound! we would expect experimenta
equipment to attain a narrow range in the vicinity ofh51;
say, 0.95&h&1.05. The accuracy of the approximation~63!
~i.e., the ratio of second and first terms of the asympto
expansion! for the sound absorption coefficient is better th
2% at higher temperatures, and getsworseas the tempera-
ture is lowered, tending toh(h21)/@2(h21h21)# for all
low temperatures. Close to the maximum the approximat
is better than 0.05% at low temperatures.

It is an open question as to what happens in the cross-
region between the semi-classical and degenerate regi
As noted above, the dimers may well form quadrumers a
longer polymers as the temperature is lowered. In any c
one might expect that thermal effects would ensure the p
ence of a transition region in which dimers exist in their ow
right. It is well known that even a small attraction in on
dimensional systems causes drastic deviation from ideal
behavior even in dilute systems. However, here we are c
sidering a quasi-one-dimensional dilute gas in a narrow p
An experiment that confirms ideal gas behavior for the s
tem in the cross-over region would imply that realistic app
cation of one dimensional models is critically dependent
the confinement length in thex-y plane. To this end, it is
worthwhile to calculate the absorption cross section with
assumption that in the cross-over region, the dimers beh
like an ideal Bose gas in vacuum.

The Bose-Einstein probability per particle of a phonon
frequencyv0 arriving at a dimer with Doppler shifted energ
\v is,

f ~v!dv5
4Mc

hn3v0

dv

expFg1zS v

v0
21D 2G21

, ~71!

whereg is found from the normalization condition,

15dE
0

` de

Ae„exp~g1e!21…
, d5

4AMkBT

hn3

5A2T

TF*
.

~72!

The total cross section per particle for acoustic splitting
then given by

sBE~z,h!5ED
\

`

s~v! f ~v!dv

532
z0

n3
uS 4Mc

hn3
D (

n51

`

e2ng
Jn~z,h!

z1/2
, ~73!

where
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Jn~z,h!5hz1/2e2nz(h21)2E
0

`

t21/2~11t !21e2n(at1bt2)dt,

~74!

with a and b as in Eq.~62!. Use of the same saddle-poin
method as before yields

Jn~z,h!;Ap
h21h21

h1/2
z1/4

e2nz(h21)2

n1/4
H21/2„Anz~h21!…

1O„1/~2z1/4h1/2!…. ~75!

Expressing the integrand in Eq.~72! as an infinite series an
keeping only the first term, one obtains the well-known hi
temperature asymptotic form ofg, ghigh5 logApd. Substi-
tuting ghigh into Eq. ~73! and allowing the temperature t
grow large shows thatsBE→sMB . At lower temperatures
as expected, the cross section manifests enhanced aco
splitting due to the tendency of the Bose particles to att
like velocities as they are cooled@Figs. 5~a! and 5~b!#.

It should be emphasized that the above treatment con
ered the propagation of sound through a liquid that fills n
row pores, rather than a solid matrix~capillary walls!. Excit-
ing sound vibrations in the liquid that fills a nanoporo
medium may present a difficult technical problem. It may
easier to let a sound wave propagate through an acousti
inhomogeneous system, e.g., a porous sample filled with
fluid, as a whole. In the latter case some expressions suc
Eqs.~51! and~52! can no longer be used and the appropri
part of the description should be modified. However,
statement regarding the resonant sound absorption assoc
with the decay of the dimerized states as well as the desc
tion of the resonance peak remain valid. Observing n
monotonic resonant behavior of the sound absorption wo
provide direct evidence for the existence of dimers.

VI. CONCLUDING REMARKS

All the above results apply directly to any rarefied syst
in restricted geometries provided thes-wave scattering
length for a two-particle collision is negative. It might b
tempting to try to detect dimers in various gases placed
porous media. Experimental data of Wadaet al.12,13 on the
heat capacity show a one-dimensional gas-like behavior
sufficiently small amount of4He in the pores of K-L zeolite.
By measuring the isosteric heat of sorption Takaishiet al.36

observed one-dimensional gas states of Xe and Ar atom
the one-dimensional channel network of mordenite with
pore diameter about 7 Å. So far all low-temperature exp
ments with fluids filling the 1D channels of various zeolit
have been done in the temperature range 0.1–10 K whic
well above the estimated value of the binding energy o
dimer. Lower temperatures are more favorable for the ob
vation of the dimerized state. However, when dealing wit
gaseous phase at low temperatures the rapidly decrea
saturated vapor pressure may cause serious experimenta
ficulties.

Another luring experimental possibility would be to a
tempt tracing dimers in dense quantum liquids of pure3He
and 4He placed in nanoporous media. Of course, the me
ods used above to describe low-density systems do not w
in the case of a dense liquid. On the other hand, one ca
stic
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exclude the possibility that the dimerized state, althou
modified, may survive when increasing the density and so
vestige of that state might be detected even at high densi
In the case of a Fermi liquid, the approach applied in t
paper can be generalized to consider bound states of
single-particle excitations. It seems unlikely that thes-wave
(3He)2 dimers could exist in liquid3He as the latter does no

FIG. 5. Resonance peak for acoustic splitting in the cross-o
region between semiclassical and degenerate regimes, assu
that the dimers form an ideal Bose gas in this region. The disc
ancy with the semiclassical picture is pronounced atT;0.1 mK.
Enhanced acoustic splitting occurs due to the tendency of the B
particles to attain like velocities as they are cooled. Plotted here
partial sum of the exact dimensionless absorption cross sec
given by (Apn3)/(32z0u)sBE(1..N)5776/z1/2(e2ngJn(h), low or-
der individual terms of the series, as well as the exact semiclas
absorption cross-section given by (Apn3)/(32z0u)sMB5J(h). g
is obtained from Eq.~72!, keeping two terms in the expansion of th
integrand. It is an open question whether the dimers form qua
mers or even longer polymers at lower temperatures.



r
le

d
o
it
n

in
it
o
y

in
ed
pu

r
in

or
nc

-
re

o

n

a

the

.

in
at

for

PRB 62 6627DIMERIZATION OF 3He IN 3He-4He DILUTE . . .
exhibit superfluidity associated with thes-wave pairing, i.e.,
the l 50-harmonic of the effective scattering amplitude co
responds to a repulsion between quasiparticles. Neverthe
dimers with l 51 or higher might well be present in liqui
3He that fills narrow channels. A concentrated solution
3He in superfluid4He might be a good candidate to exhib
the s-wave (3He)2 dimers because, according to experime
tal data~Ref. 4 and references therein!, thes-harmonic of the
effective interaction is attractive. As was noted at the beg
ning of the paper, two4He atoms form a bound state, albe
a very shallow one, even in a 3D geometry. For this reas
liquid 4He in porous media is an interesting object of stud
the observation of dimerized states with a higher bind
energy being likely. Theoretically describing the dimeriz
states in dense liquids would require more powerful com
tations and are beyond the scope of this paper.
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APPENDIX: EVALUATION OF THE ABSORPTION
CROSS-SECTION INTEGRAL

After substituting the parametersz and h into Eq. ~59!,
the integral we want is

J~z,h!5hz1/2e2z(h21)2E
0

`

t21/2~11t !21e2at2bt2dt

[hz1/2e2z(h21)2J~a!,

a52zh~h21!, b5zh2. ~A1!

We will use the known integral,

I n21~a![E
0

`

tn21e2at2bt2dt5
G~n!

bn/2
H2nS a

2Ab
D ,

I ~a![I 21/2~a!. ~A2!

We use a saddle-point method to find an expansion ofJ(a)
in powers of 1/b which converges quickly at low tempera
tures and shows excellent agreement in the region of inte
h'1. We seek an asymptotic expansion ofJ(a) that is uni-
formly valid ash passes through unity. The saddle-point
e2at2bt2 in the integrand of Eq.~A1! is at t052a/(2b)
51/h21, which is near the end-point of integration whe
h→1. Now write

J~a!5E
0

`

t21/2f ~ t !e2at2bt2dt, f ~ t !5
1

~11t !
, ~A3!
-
ss,

f

-

-

n,
,
g

-

a
t
k
il

st

f

and let

f ~ t !5p1q~ t2t0!1t~ t2t0!g~ t !, ~A4!

where

p5 f ~ t0!, q5
f ~ t0!2 f ~0!

t0
52

1

11t0
. ~A5!

Substitute Eq.~A5! into Eq.~A4! and findg(t). The integral
we want,J(a), is then the sum of two known integrals and
third integral involvingg(t) which we callJ1(a). Integrating
this by parts, we find that we return to the same form as
original integral~A1! if we define a functionf 1(t) to be

f 1~ t !5
1

2
g~ t !1tg8~ t !. ~A6!

Repeat the process. Let f 1(t)5p11q1(t2t0)1t(t
2t0)g1(t) with thep’s andq’s defined in an analogous way
Note that limt0→0q150, therefore defineq150 whent050.

Substituting f 1(t) into the expression forJ1(a) we obtain
two known integrals and a third integral involvingg1(t).
Meanwhile we have also obtained two asymptotic series
negative powers ofb. After some rearranging, one arrives
the following expression forJ(z,h), accurate to order
O(1/b3/2):

J~z,h!5Ape2z(h21)2H ~p2t0!b1/4H21/2S a

2Ab
D

1
q

2b1/4
H23/2S a

2Ab
D 1

~p12q1t0!

2b3/4
H21/2S a

2Ab
D

1
q1

4b5/4
H23/2S a

2Ab
D 1O~1/b3/2!J , ~A7!

whereH2n(x) are Hermite polynomials, and

p5
1

11t0
, q52p, p15

p2

2
2p3t0 , q15

p1

t0
2

p

2t0
.

~A8!

For low temperaturesT;0.01 K, the main contribution
comes from the first term of this expansion~A7!, and we
have simply the expression in Eq.~61!. Finally, since the
~exact! classical cross-section integral~59!, asT approaches
zero, tends to a delta function peaked ath51, the expression
~61! becomes a good approximation to the exact integral
all frequenciesh.

To evaluate the Bose-Einstein cross-section integral~69!,
the relation,

1

exp~d1x2!21
5 (

n51

`

exp@2n~d1x2!#, d>0, ~A9!

gives integrals of the form (A1). It is an easy matter to arrive
at an expansion in powers of 1/(nb) analogous to Eq.~A7!.
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