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Dimerization of 3He in 3He-*He dilute mixtures filling narrow channels
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We consider dimerization ofHe in a dilute solution of*He in superfluid*He filling straight narrow
channels that can be found in nanoscale porous media. Dimer formation is facilitated by the restricted geometry
and occurs despite the fact that in bulk fluid the interparticle interaction is too weak to lead to a bound state.
Dimerization results in the effective “bosonization” of the system: a Bose quantum fluidH#)§ arises in
place of the®He Fermi component. At high temperatures, when fh impurity quasiparticles form a
Maxwell-Boltzmann gas, a drastic change in the thermodynamics occurs due to the presence of dimers. The
specific heat and magnetic susceptibility of tftde component, which we calculate at arbitrary degrees of
dimerization, show a marked deviation from behavior expected of an undimetizd¢omponent. We show
that the binding energy—which depends on the channel width—is expected to be sufficiently high to make
experimental observation feasible. The presencéldé), dimers gives rise to an extra absorption mechanism
for first sound propagating through the superflide, due to resonant absorption and decay of dimers in the
acoustic field. We have calculated the absorption coefficient. Several experiments suggest themselves, utiliz-
ing, perhaps, K-L zeolites or carbon nanotubes. If the dimers themselves turn out to be attractive, then
quadrumers may appear: it may even be the case that a sidgleolymer will form over the entire length of
the channel.

[. INTRODUCTION tering lengtha is negative,a<O0 (for a review see Ref.)4
This attraction is, however, too weak to allow the formation
The problem of a bound state of twor more helium  of a dimer state.
atoms has attracted a great deal of interest over the last few Nevertheless, a statement that Mother Nature does not
decades, leading to active theoretical and experimental studilow *He dimers to exist would certainly be rash. It was
ies throughout the world. To form a molecule, a sufficiently showr? that in *He systems with reduced dimensionality
strong attractive interaction potential is required. The van detsuch as surface impurity states e quasiparticles local-
Waals attraction between twtHe atoms in vacuum results ized on vortices in superfluidHe) or in restricted geom-
in a weakly-bound state with a binding energy of about 1.7etries(such as narrow capillaries or porous meédize He
mK,! which makes*He dimers difficult to observe. Despite component will definitely dimerize. The origin of the effect
the difficulties, experimental observation 4fle dimers in a  can easily be understood by means of simple arguments. It is
supersonic expansion beam was reported by ¢@al? Ex-  well known that in 2D or 1Dany attraction, no matter how
periments with a cooled pulsed beam te atoms carried weak it is, leads to a bound state. For that reason, if a
out by Silveraet all® revealed the giant cross section con- 3He-*He solution is placed under these conditions, that is, if
sistent with the existence of a dimer state‘dfe. the *He component can effectively be treated as a 2D or 1D
The situation is quite different in the case #fle. Due to  system, even the very weakde-*He attraction will cause
the smaller atomic mass, the kinetic energy of the relativahe *He impurities to form a dimer. An objection may be
motion of two *He atoms plays a more important role than inraised that the “theorem” for bound states in 2D and 1D
the case of*He. As a result, the interaction in vacuum holds only for perturbative potentials, whereas the real
proves to be insufficiently strong for a dimer statefe  He-*He interaction has a strong repulsive core and does not
atoms to form. In other words3He dimers do not exist in satisfy the perturbation theory criterion. However, it will be
vacuum. Experimental data on low-energyHe*He  shown below that this “theorem” remains valid even in the
scattering did not show any vestige of a bound state. 3He-He case provided thewave scattering length is nega-
The interaction between twéHe atoms dissolved in su- tive.
perfluid “He is, to be sure, affected by the presence of the The dimerization of theHe component leads to the ef-
superfluid background. Nevertheless the basic features of tifective “bosonization” of the impurity system: as the tem-
effective 3He-*He interaction remain the same, and it re- perature is lowered, instead of a Fermi fluid¥%{e impurity
sembles the interatomic interaction in vacuum. For exampleatoms, one ends up with a Bose quantum fluid H€),
the attraction between twdHe quasiparticles, which exists dimers. In other words, as a result of dimer formation, the
at large distances, falls off in the same fashfalbeit with a  Fermi-Bose liquid of*He-*He is replaced with a quantum
different numerical factoras in vacuum. It is well estab- liquid that contains two Bose componenféje and ¢He),.
lished experimentally that on average the overall effectiveNeedless to say, the thermodynamics and transport of a
interaction between two'He impurities in superfluid*He  dimerized 3He-*He dilute mixture differ drastically from
corresponds to attraction, in the sense thatsteave scat- those given by the conventional description. Of course, any
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significant changes in the macroscopic properties of the mixdimensional geometries an unconventional type of superflu-
ture due to dimerization can occur only if the temperaflire idity, the Kosterlitz-Thouless phase transition, can come into
is lower than or at least comparable to the binding enérgy effect. Recent experimental daf&® provide evidence for
of a 3He dimer, T<A. For this reason, the binding energy is superfluidity of *He in nanoporous media with pores of di-
the most important scale in the dimerization problem. ameter 17-25 A, and the suppression of superfluidity in

So far research has concentrated primarily on dilutezeolite of 10 A pore diameter has also been repotiegiit
3He-~He solutions in various 2D geometries and on the An-even a diameter of 17 A is small enough to give rise to a
dreev states ofHe at the free surface dfHe/~® A number  binding energy of high magnitude, and this is what makes
of encouraging results for thifHe-*He films on various Zzeolites suitable for the experimental search¥ele dimers.
substrates, which yield reasonable values for the binding en- This paper has a two-fold goal. First, it elucidates a com-
ergies, have been obtained with the help of the density funcPlete description of the dimerized state oflde-*He dilute
tional method It should be emphasized, however, that themixture in a 1D geometry. We focus mainly on calculating
binding energy of a dimer state in two dimensions is expothe binding energy and thermodynamic properties. The high-
nentially small, so irrespective of the substrate or experimentemperature range where théHe dimers behave as a
tal conditions it is difficult to hold a dimer long enough for it Maxwell-Boltzmann gas of quasiparticles, as well as the
to be observed® Also, computations in the 2D case are lim- low-temperature regime in which collective phenomena
ited because the pre-exponential factor in the expression fdgiome into effect and interaction between dimers may be-
the binding energyA cannot be calculated exactly. come important, will be discussed. As an example of a quali-

The one dimensional problem is free of these drawbackdatively new phenomenon that pertains to a gas fe{),
First, the binding energy of the dimer state can be calculatedimers in a superfluidHe background, we discuss an extra
rigorously. Second, in contrast to the 2D case, the magnitud@echanism of sound absorption caused by the decay of the
of A has a power law, rather than exponential, dependencdimer state in the field of an acoustic wave propagating
on the interaction strength and pore radius. This means thairough the“He component. Second, for concreteness, we
the binding energy in one dimension is generically highermake clear predictions and recommendations for experimen-
than in two dimensions. Observing the phenomenon expertal study of a®He-*He mixture in a particular type of nan-
mentally in traditional 1D°He systems is, unfortunately, not oporous medium. The magnitude of the effect suggests that
straightforward. Vortex filaments in superflufthe with cap- ~ zeolites provide the most favorable conditions under which
tured 3He atoms are difficult to work with. Moreover, the *He dimer states could be observed conclusively.
density of vortices is usually very low, necessitating an ap- \We restrict ourselves to considering dimers in a rarefied
paratus with high sensitivity. Conventional porous mediasystem of Fermi particles. Clearly, the mechanism that leads
(like Vycor glasg are far from ideal because they cannotto formation of dimers in restricted geometries can also
provide a suitable network of sufficiently straight capillaries, manifest itself in Bose fluids, as well as, in principle, in
as the geometry of pores in such systems tends to be randosistems of higher density. We discuss briefly some of these
and chaotic. In typical conventional porous media the averpossibilities in the last section of the paper.
age diameter of a pore is about 100 A which is simply too
big to aIIo_vv a singlg_binding energy. Il. BINDING ENERGY

To achieve a significant binding energy one has to turn to
porous nanomaterials such as aluminosilicate, aluminophos- Let us consider a narrow poreapillary) filled with a
phate, and zincophosphate zeolites. Recently, zeolitic matailute *He-*He mixture. The radius of the poRis assumed
rials have found application in chemistry, materials sciencdo be large enouglR>d whered is the atomic size, for the
and advanced technology. Zeolites are inorganic crystallinsuperfluid “He component to be considered a bulk continu-
compounds comprised of networks of nanoscale pores typbus medium. From here on we also assume that the tempera-
cally less than 15 A in diametét.Of most interest to the ture is low enough so that the effect of rotons and phonons
dimerization problem are those materiédsich as mordenite, can be neglected. An isolatetHe quasiparticle can travel
K-L zeolite and carbon nanotubethat exhibit a good net- freely and perform infinite motion along the pdtbe z axis)
work of narrow, straight pores. The behavior 8fle and  whereas its motion in they—plane is finite and quantized. A
“He in three-, two-, and one-dimensional geometries obound statdif any) of two 3He impurities should be sought
zeolitic pores has been actively studied experimentdily/ ~ as a solution to the appropriate Satlirger equation with
In all cases it was demonstrated that helium can flawa the exact®He-*He interaction potential. Because the latter
gas or liquid depending on the amount of helium adsorbedhas a strong repulsive core, one could agtriori be abso-
through the pores. Motional states @fle and “He in one-  lutely sure that in the pure 1D case wh&e d a bound state
dimensional channels of K-L zeolite at relatively high tem- of two 3He atoms exists. On the other hand, in the quasi-1D
peraturesT~0.1-10 K were studied experimentafly*by  circumstances we are considering, in which the characteristic
measuring the heat of sorption and heat capacity. One shouldngth describing the delocalization of a single-partithe
keep in mind that the effective diameter of the pore may beexcitation in thexy direction (perpendicular to the capillary
even smaller due to solidification of helium on the walls andaxis) is much larger than the interaction range, the situation
the formation of 1-3 solid atomic layers. Under these cir-is entirely different.(We are considering a hybrid bulk-1D
cumstances the “healing(correlation length in superfluid system, whose existence is strongly suggested by the results
helium could become comparable to or greater than the ebf recent experiments by Wada and oth&rs? The 3He
fective diameter of the pore, which would mean that theatoms form andeal 1D gas of impurities movingnhindered
liquid helium is no longer a superfluigMoreover, in two-  along the axis of zeolite poresyven when the initial pore
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width is close ta5 A. This is the experimental justification The starting point of the calculation is the fact that the
for our approach. The actual effective mass and scatteringteraction betweerfHe atoms just slightly disturbs the mo-
length in such a system in general will approach the bulkion of particles in thexy plane but entirely changes their
values when the radius is “large enough,” but when therelative motion along the axis, which leads to a bound state.
most important quantitieguch as interaction rangéall off In other words, a perturbation theory for the weak pseudo-
exponentially quickly, then “large enough” can be taken to potential can be applied to describe the perpendicular motion
mean “not much larger than the quantity itself.” This ap- in thexy plane only but the dynamics of both particles along
pears to be the case with zeolites. Moreover, the error bars ithe pore axis should be found as an exact solution to the
experimental values fdvl anda are not inconsiderable—we two-particle Schrdinger equation. Quantitatively it means
choose two conservative values—and to this level of accuthat one has to solve the 1D ScHiager equation rigorously
racy it is permissible to consider a tight radius to be withinwith the pseudopotential averaged over the unperturbed
the hybrid bulk-1D superfluid regime, especially given thewave functions of the baréHe quasiparticles in they
experimental facts for zeolites. This is why we use bulk ex-plane.

perimental values in our estimate8s will be proved below, The two-particle Hamiltonian can be represented as fol-
for this case, whether or not a boundHg), state forms lows:

depends only on the sign of the effective interactithre 3D

swave scattering lengti) in bulk. [The overall strategy H=Ho+V(p1.21;p2.25),
may be viewed as follows. We shall find the first term in an
expansion for the binding energy. Other terms—due to at- |2|0:|2|(10>(5l)+ﬁ(lo)(zl)+|2|(2°)(§2)+ﬁ(zo)(zz), 2

tractive or repulsive effects mediated by phonons in the su- .
perfluid background, fourth sound, etc.—must be added tavherep;=(x;,y;) and the index =1,2 designates different
this. When the radius is large enough, these will be negliparticles. Equation$2), indeed, imply some extra require-
gible. As the radius of the pore is decreased, these will bements for an external potential acting on thide particle.
come stronger, but in the case of zeolites, experiments sudror instance, in the case of a narrow channel the potential of
gest that they are unlikely to overwhelm the van der Waalghe walls of the capillary is assumed to depend only orpthe
attraction(or change the sign of the scattering lendtefore  coordinate.[lIt is reasonable to ask at this point whether
the lower limit for the radius is reached at whiéHle ceases channel walls can ever be smooth enough for this condition
to be superfluid. As already noted above, this hybrid 1Dto hold. We believe that the zeolites investigated by Wada
system is free of the drawbacks of 2D filtmich as the KT  and other®1° are smooth enough. Wada’s grédifind a
transition).] If a is negative, which corresponds to an effec-staple situation in whicH'He atoms are adsorbed into the
tive attraction, two®He impurities do form a spinless bound phosphorous “valleys” in the zeolite wall, making the wall
state. As was indicated above, all theoretical calculations angmooth and the motion one dimensiofi@hnslations in the
experimental data demonstrate that0.*?%?' That is why .y direction are reduced to vibrationsChannels with an
the CHe), dimer exists. Hence a dimerized phase®dle is initial radius of 5 A were used in Wada’s experiments, and
expected to manifest itself at sufficiently low temperaturesihe “He was reportedly superfluid even after adsorption of
The magnitude of the binding energdycan be expressed in the first layer. The heat capacity of thle impurities at
terms of the 3Ds-wave scattering length and an integral of  high temperature was found experimentally to be 1/2, indi-
the wave function of a baréHe quasiparticle in thecy  cating free motion in 1D and vibration in the other two di-
plane. mensions of the bulk system. So it is reasonable to assume in
To calculate the binding energx we will apply the 3 first approximation that the external potential of the wall
Fermi renormalization method,according to which a two does not depend on and that the motion in the-y plane
particle pseudopotentiaY(F,F’) is introduced which is as- can be averaged. The fact that a second solid layer forms
sumed to meet the perturbation theory criterion. Let us emlater is irrelevent to the question of the existence of suitable
phasize that such a pseudopotential has nothing to do witbonditions for dimerizatiorjust choose a bigger channel to
the real interaction between particles, which indeed cannagtart with; or a sample with many channels of various
be treated in terms of a perturbation theory at all. Howeverwidths).]
the pseudopotential(r,r’) is postulated to give rise to the As was explained above, we assume that the influence of

true scattering amplitude when calculated within the Bornthe interparticle interactiod on the motion in thexy) plane
approximation, can be taken into account through perturbation theory,

whereas the “disturbed” motion along tlzedirection cannot
be considered as a perturbation. Let the wave functions

M . - -
a= Wf v(r)d3r, |r—r'|=r, 1) #{%(p;) be eigenfunctions of the equation,
T

O 2y O 5y =EO 4O 5
whereM is the effective mass of a bare excitation. The H (oo i (pi) = Ein™Yin (1) ®
idea of the method is to carry out all calculations in theHere the indexn labels different quantum-mechanical states
framework of a perturbation theory for the pseudopotentiaband Ei(r?) are the corresponding eigenvalues of the energy.
and then to express the final formulas through the truerhe solution to the Schdbnger equationdV¥ =E¥ will
swave scattering lengta by means of the renormalization then pe sought in the form,
relation (1). All expressions thus obtained contain the

pseudopotentiaV/(r) only in the integral form(1). W (p1.,21:p2.22)=d(p1,p2) X(21.25),
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> - > > 1 1 - - >
(p1,p2)= 2 CrntA () YR (p2)- @ 1= f V(Ndr, = f [ P19 ()[Pd 7, L~D.

Multiplying the Schralinger equation by (3

l/’(l%*(ﬁl)(/f(z(l))*(l;z) and integrating ovedﬁldﬁz one can Cpmbining Eq.(11) and the renormalization relatiofi)

easily find, yields
r? [a\*

£(0) 4 R ' PP =4m?——| - 12

Cim(A{?+AEM) X+ 2 Crn f YR v Yy xdpadp; AT Maz| L 12

One can see from Ed12) that the binding energy, is

=C (5) ) . .
Im€imX; expressed in terms of the true scattering amplitude and does

where e,,=E—E{Q—EY) . To the first order of the pertur- Nnot contain the pseudopotential, which shows that the use of
bation theory for the motion in the-y plane (specified by ~the Fermi method here is fully justified. It is convenient to

the coordinate§1 and 52) we should putC;,=1, andCy, choose the pseudopotential in its traditional form,
=0 if I#k andm#n. Thus we obtain _ 4mh?
V(r)=

ST . as(r). (13)
(A +hP) x+(V)x= eimx,

In the opposite limiting cas®) <r, the integral reduces to

(V)= f v us Ve usldeide,. (6) -

sz V(z)dz, (14)

When separating as usual the relative motion of particles -

from the center-of-mass motion one gets, and the binding energye, explicity depends on the

£ (0) A pseudoptential chosen. In this case the renormalization
he”xe +(V)xr=(em—Eo)xr (M method is no longer valid. To find the binding ener@ya
whereE, is the energy corresponding to the center-of-mas§ound state still exisine should solve the 1D Sclitinger
motion, E.= pZ/4M, p=p;— p,, and the subscript labels equation with the reaPHe-*He interaction potential[The
y Ec— y — M1 23 . . . e « i
guantities pertaining to the relative motion of the particles,pc"m.'.S W(f have laid QOwn the gondmcﬁne., the "quasi-1D
£(0) : e . _ ___‘condition,” when the integral | in Eq(10) does not depend
e.g.h;”’ is related to the “kinetic energy” of a particle with explicitly on the pseudopotential(¥) nor the actual poten-
reduced mass, i . .
tial V, and | separates into a product of known quanfjties
2 > whereby a pseudopotential can always be used in such

ﬁ§°)=m, q= > (8)  bulk-1D hybrid systems. The actual interactivhbetween
3He is then irrelevent in determining the first term of the
Let us recall that the pseudopotentiais assumed to meet energy expansion, apart from providing the first term or so in
the perturbation theory criterion. The 1D Sctlimger equa- @ Fourier expansion of the potenti@s in Ref. $ which is
tion (7) can therefore be solved exactly when the exact poequivalent in the Born approximation to taking a delta-

tential V is replaced with the pseudopotentiaf The solu-  function potentialas in the present papeFermi’s essential
tion reads, insight is that the first term of a Fourier expansion will do
even when the interparticle interaction contains a singularity,
2 if the particles have space to move around each other. In one
) dimension, this is expressed in the quasi-1D condition. We
remark that there are numerous circumstances in which sin-
Equation(9), indeed, turns out to be consistent with the ex-gularities are quite naturally “smoothed over”: compare
pression in Ref. 5 for the binding energy, obtained in termsEgs. (54) and(60) in this paper, in which the averaging ef-

M %
€lm— ECZ Gr:W JLOC<V>dZ

of an “effective” potential. fect of Maxwell-Boltzmann motion smooths over the singu-
The integral that enters E49) can be rewritten as fol- larity in the zero-temperature absorption cross sedtion.
lows: To estimate the binding energy of a (*He), dimer one
B has to know the*He impurity wave functionsy{%)(p), for
|:f (V)dz=J V(\pZ+Z%)F(p)dpdz, the motion in thexy—plane in the external potential of the
— capillary walls. In principle, these wave functions should be

found on the basis of the Scldioger equation involving the
. ol - 5 . interaction potential of the impurity with the walls and the
F(P)Zf Ol 7= > d7. (10 actual profile of the porgThese can get quite complicated:
for example, the 1D channels of K-L zeolite are formed
Let the quantityD be the characteristic localization range in within ~ “cages” interconnected via many narrow
the xy plane (for the wave functions/{®) and y&)). If the  aperture¥’). However, if the average radius of the pore is
localization radius is sufficiently large, so tHat>r,, where large enough, so th&>d, and the temperatur@r the con-
ro is the interaction range, one can easily convince oneselfentration, in the case of a degenerate mixtigsufficiently
that low, so that the de Broglie wavelength of tRkle quasipar-

2

>

- p
+_
3

2

(0)
2l
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FIG. 1. Binding energy of the®He), dimer in a superfluidHe

background. The quasi-one-dimensional geometry of the narro
pore causes a power law relationship with pore radius, giving

sizeable value for the binding energy at small radii.
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x(2)=(2v)*2exp — v|Z]), v2=ﬁ . 2=2,—1;.
(18
The size of the dimer is
_fx 2y e A1 R)\?
2= | |ZdIx(2)]*dz=v _(|\/|T)1/2_En|a| K
(19

which leads to a quite macroscopic valgg=11.7 A. The
smallest pore radius for which the dimer size exceRdsif
the system is then still within the “superfluid bulk-1D hy-
brid” regime—is R=4.2 A. [The salient result is not par-
ticular values ofe(R), but the power-law dependence of the
binding energy, which arises because of the restricted geom-
etry.]

So far nothing has been said with regard to the spin struc-

‘;f’ure of the dimer. In the case where bdtHe particles form-

ing the dimer are in the ground state of the motion, the
total wave function\P(ﬁl,zl;ﬁz,zz) iS symmetric, corre-

ticle is much larger than the typical scale of wall roughness?Pondigg to a singlepinless pairing of the *He impurities.
the approximation of a particie in a 2D potential box looks!f the °He particles were in different energy statgs)
quite reasonable. Assuming the channel has axial symmetry: |m), dimers of both the singlet and triplet type could exist.

the normalized wave function reads,
(_ 1)(m+ 1)

()= R

im

, m=123...,

Jo(gém
(15

whereJy (&) andJ (&) are Bessel functions of the first kind,

and &, are the zeros of the functiady(¢). Substituting the
wave functiong(15) into Egs.(11) and(12) yields

, h? [a
€ 16Ban R (16)
The numerical coefficierB,,, is defined as follows:
1 Lo 2
BnmszJo(fnZ)Jo@mZ)ZdZ 17)

Equation(16) gives the binding energy of 2He dimer in a
cylindrical pore. The twoHe atoms are confined in they

The correct wave function should then be constructed by a
proper symmetrization or antisymmetrization.

Ill. THERMODYNAMIC FUNCTIONS: HIGH
TEMPERATURES

The thermodynamic properties of 3#le system in a su-
perfluid “He background are strongly temperature depen-
dent. The simplest and most practical limiting case is the
high temperature regime in which quantum degeneracy ef-
fects may be neglected and tRele impurities forming an
ideal Maxwell-Boltzmann gas are in the ground state for mo-
tion in thexy plane,

(20

where Tt = 72#?n3/2M is the 1D Fermi degeneracy tem-
perature for’He atoms, and} is the highest temperature at
which a 3He atom remains in the ground state. In this tem-
perature regime, even >A and the number of dimers is

TE<T<TE,

plane by means of the walls of the pore whereas their relativeegligibly small, the heat capacity péHe atom,c,=1/2,
motion along thez axis is finite due to the attractive inter- differs drastically from its value in bulkG, gy =3/2 due to

particle interaction. In other words, twitHe impurities can

travel along thez axis only as a whole, i.e., as a 1D quasi-

molecule EHe),.

Consider the case where boftiHe particles are in the
ground staten=1, 1 ,= o= 1. Using the typical values
M=2.33m; anda~—1.0 A2**we obtain the binding en-
ergy as a function of pore radiu§ig. 1). Considering a
mordenite sample in which, typicallR=7 A, we havee,

the reduced geometry of the porous structure.

[The impurities in the superfluid background always form
a weakly-interactingalmost idegl gas or fluid—irrespective
of the ®He density—as long as one stays away from the
phase separation concentration. The impurities form either a
Maxwell-Boltzmann ideal gas or a highly correlated, degen-
erate weakly-interacting fluitbf bosons, fermions, or a mix-
ture of both. In this sense, the impurity densitjgnoring

=A=0.05 K, which is quite a sizable effect from the view- phonons etc. in the background superfluicis no effect on
point of modern low temperature experiment. Due to thethe van der Waals interparticle interaction. Note also that this
power-law relationship, the binding energy is sizeable everis a two-body interaction because the average interparticle
at large radii(Theupperbound for the radius is provided by spacing is always far greater than the interaction range,
the criterion that the spacing between the transverse energyhich falls off exponentially.

levels must be large compared to the temperature of the We note that the saturation concentration may be affected
fluid.) The normalized wave functiogp(z) of the bound state by a change in scattering length as channel radius is de-
is creasedthe mixture going from bulk to quasi-)DWe use
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the bulk value as an indicative upper bound. The existence, 1.0
when the mixture is dilute enough, of ideal impurity gas
conditions was shown in the relatively very high temperature 5 4
experiments cited in footnote 3. The precise relationship be- g
tween saturation concentration and radius is an open ques- §
tion, and an interesting possibility for experimént. g 06
To find the number density of dimers in equilibrium one g

should consider the “chemical reaction”3He+3He S 0.4
—(3He),. The corresponding equilibrium condition isp2 ?é)
= u,, Whereu, and u, are the chemical potentials of the 3
3 . ; X 0.2

He and €He), components respectively. It is convenient to
introduce the degree of dimerization, defined as

0.0 : . .
2n, 0.00 0.03 0.06 0.09
a= n—g, n,+2n,=ns. (21 temperature (K)

Heren, andn, are the numbers of unpairéﬂi—le atoms and FIG. 2. Degree of dimerization of théHe component in super-

(3He)2 dimers, respectively, per unit length, ang is the fluid “He as a function of temperature, in the high temperature
' ' ' regime. As the temperature is lowered, at low density, there is a

total number of*He atoms per unit length in the mixture. region (T~10 mK, for R~7 A) of exponential growth of the
;Pr:etwérngogglgigltz dfuirr:c':l?c;r;s 5'” Iét;?orr;gur;;:iar:gpterzgtlﬁgiurltehumber of dimers, resulting in virtually complete dimerization at

1 o 1 1-«a

Co= Ny 5= 2 3974

. . . She degeneracy temperature. THée component thus turns into a

obtained In that paper, using Fhe Free Energy t(_)get_her W't%ose gas of dimers. ThéHe Fermi temperature is limited above

the chemical equ'l'br'um condition, one car_1 easily find thatbecause of phase separation: in bulk mixture, this occurs at a con-

the total heat capacit¢, can be expressed in the form centration ofx~0.06, i.e., TE~85 mK. In channels, the actual

A 1\2 phase separation concentration may depend on channel fadiis

—— _) (22) Sec. Ill). There is no lower limit on density, apart from that im-

T 2/ posed by the limitations of the apparatus: if the apparatus cannot

. . . reachTE , and since the degree of dimerization is an increasing

where\is the areal density of pores in the sample, and thg,,ion of ng, the density cannot be too low if the sample is to

degree of dimerizatiom is given by the equation, contain a good proportion of dimers. In other words, given a par-

ticular apparatus, thHe impurity densityn; must be high enough
a=1+X—(X?>+ 2X)12, for dimers to be easily observable. But for larger channel widths,
the density cannot be too high, otherwi$g ~A and complete
X 1 JMT A) \/; T ’{ A) dimerization cannot occur.
oa2 fing O T T g\ 1| T)

(23  Tf) and the channel narrow enoughut not too narrow,

S ) ] otherwise either the background stops being superfluid, or
The degree of dimerization tends to unity exponentially raptnhe dimer sizez, will be smaller than the channel width,
idly as T—Tg, (Fig. 2. As one would expect, a higher resulting in a rotational degree of freedpnDepending on
density facilitates dimerizatiofiThe nature of this “density the relative sizes otgl andns;, we can have strong cou-
dependence” is the following. At sufficiently high tempera- pling, weak coupling, or anything in between, after the sys-
ture, Boltzmann statistics holds for th#He quasiparticles. tem becomes highly correlatdd.
For low density, the Fermi energh <A. Now suppose the  Since it is the singletspinles$ dimerization that occurs
mixture is cooled from some high initial temperature. Due topredominantly in the’He component, directly measuring the
thermal agitation, there are virtually no dimers wh&  magnetic susceptibility or conducting NMR experiments
<A<T. As the mixture is cooled below the binding energy would probably be the best means of detecting the dimers.
A, with TE<T=<A, the number of unpairedHe impurities  The magnetic susceptibility, is given simply by the num-
decreases exponentially rapidlg— 1. Impurities want to  ber of the unpairedHe atoms,
dimerize before the temperature reacligs and they find it
easy to do so becau3esA. This can be seen in the expres- B?
sion for the free energy2.3) in Ref. 5. At higher densities X= 7/\/“3(1—&), (24)
within the Boltzmann regimeT¢ is higher, so rapid dimer

formation occurs sooner ab becomes comparable th. where g is the nuclear magnetic moment 8fle. The tem-
Thus, “higher density facilitates dimerization.” But if the perature dependence of the heat Capacity and magnetic Sus-
density is too high and channel radius too large, then it mayeptibility is shown in Figs. @ and 3b). The effect seems
happen thafTf>A, and the fermi particles cannot effec- to be sizable enough to be experimentally observable.

tively dimerize in the Maxwell-Boltzmann regime. Favorable It may be noted that the effective interaction between the
circumstances for observing dimers occur wign<A, and  dimers themselves could prove attractive, which could lead
complete dimerizationd¢— 1) can occur before the system to the formation of quadrumers. Generalizing this possibility
becomes degenerate. TRele density must be low enough one could end up with a polymer state involving:2 atoms

(but not too low, if the experimental apparatus cannot reaclof 3He or even with an antiferromagnetlike chain- at
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tems become important and have to be taken into account.

15 Fortunately, in the limiting cas®>d, the problem effec-
tively reduces to one with thé-function pseudopotential
2 (a) (see above and Ref. 2&nd can be solved exactly. To be
&2t specific and to avoid extra complications related to the sym-
5> metry of the total wave function we will restrict ourselves to
- considering an “antiferromagnetic” chain ofHe particles
_§ 0.9 1 along the pore in the absence of an external magnetic field.
£ The corresponding Hamiltonian reads
Q
(5]
2 06 ¢ . fLZ N3 d2 47Tﬁ2|a| E
H= M 2 dz,-z MLZ & d(zi—z). (29
0.3

"0.00 0'63 0.66 0'69 0.12 HereNj is the total number ofHe atoms in the pore, arid
is defined by Eq(11). For the case where th#He impurities

t i K i
emperature (K) are in the ground state,

,Z:» * hz 2 2
NEJ. 45 ¢ TSTF< 2M R2(§2_§1)! (26)
f (b) the characteristic length can be expressed in the form,
?—5 Tp=0.5mK 1 2
2 30+t 'F |
& 72= _52Bu. (27)
% Curie’s Law L mR
2 Let the Hamiltonian(25) be rewritten in the following di-
g 15} mensionless form:
<
1§ R _2M N3 d2
B H =H55=—2 —%—-2 2 8¢(—¢). (28
2 | | | | 2= &g A o). (@9
0.00 0.02 0.04 0.06 0.08 0.10

where new coordinate = nsz; are introduced, and the posi-
temperature (K) tive coupling constank is defined as follows:

FIG. 3. Specific magnetic susceptibility and specific heat of a | > oA 1/2
dilute mixture of *He in superfluid*He. At T~10 mK, dimeriza- )\:477-1':88 ﬂ: — =g = =27
tion causes pronounced deviation from the behavior expected if f'l3L2 llnst N3Zp TE '
dimers were absent. Ifa), the specific heat deviates from the high (29
temperature value of,=1/2. In (b), the magnetization deviates
markedly from Curie’s Law. Herez, is the size of the dimer calculated in E49). Vary-

) ing A by changing the density; one could trace the cross-
T—0. To describe such states one would need somehow t§yer from a correlated Fermi gésimilar to the Cooper pair-
take many-particle effects into consideration. To some extenhg regime in conventional BCS superconductarbere the
collective effects are considered in the next section on thgjze of the dime, would considerably exceed the average
ba?gs thgelBDeé?l(aa'ﬁnsgtTd be canable of information trans SP2CINg between théHe impurities, to an interacting Bose
u In cou P ' ! fluid of dimers in the limiting case afy<n; .

fer: the flipping of a spin at one end would propagate a spin '
wave through the chain to the other end, causing the spin of A method based on the celebrated Bethe ansatz for find-

the last particle to flip. The decisive factor in the formation'nNd an exact solution to the Scltfiager equation for a one-

of such a 1D wire may well turn out to be the influence 0fdlmen.smnal system of particles interacting vmwﬁ_mctmn

the corrugation of the channel walls, even when the gas ~ Potential was developed and successfully applied t(z)5 both
does not feel the potential of the channel wall “substrate.”00sons and fermions by Yang and Yaiglieb et al,

This would be analogous to the “4/7 commensurate phaseTakahashf’ Gaudin?’ and others(for review see Ref. 28
observed when puréHe is adsorped onto a 2D graphite In our analysis of the low temperature behavior of thermo-
substratésee Ref. 38 The 4/7 phase could not exist without dynamic functions we will use the results obtained by ai
substrate corrugation, and the secotide layer feels only that describe the thermodynamics of attractive spin one-half
other 3He atoms(in our case it would also feel the back- fermi particles in one dimension on the basis of the Hamil-

ground “He superfluigl] tonian (28). According to Lai?® the energy densit¥ and
number densityV per unit pore length of the system in equi-
IV. THERMODYNAMIC FUNCTIONS: LOW librium can be presented in the form,
TEMPERATURES
~ Inthe low temperature limiff<T¢ , many-body correla- gzsz (K= n?) pdk+ fx K2rdk.
tions and quantum-statistical effects pertaining to 1D sys- — —o
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N—sz e Jw i 0 o ZLoeioA 1 ou(k)/oA
=2| »p mdk, (30) p(K) =5 T eamrm:  7(K=5— 1w 8D

—

where the distribution functions(k) andr(k) are defined as The effective excitation energiesand s entering Eqs(31)
follows: are given by the following set of integral equations,

o0

e(k)=2(k>— nz)—zA—Tf

—o0

K2(k—k’)In(1+e’5(k')’T)dk’—Tj Ky(k—k")In(1+e~ Yk Mydk’,

0 , T o0 ,
¢(k)=k2—A—Tf Ki(k—Kk)In(1+e <) M)dk’ — EJ Gy(k—k")In(1+e Y Mgk’

T (= ,
+ Ef Go(k—k")In(1+ e Mydk’,

— 00

(32)
T (= , T (= ,
¢, (k)= Ef Go(k—k")In(1+e?r+2:(K)MygK’ + Ef Go(k—k")In(1+e?»-1) Mgk’

lim f Go(k—k"){In(1+e? k)T —n(1+e?»- 1K)V T gk’ =0,

v—

wherev=1, ¢o= ¢, the otherg,, also being excitation en- In this situation where a formally calculated dimer size is
ergies, and the kernel§,(x) andG,(x) are defined as greater than the average interparticle separation, one cannot
actually consider the dimer as a real particle. Rather, one

1 should talk about a correlated fermion pair with the charac-
Kn(X)= W X |2’ teristic coherence length of the order zf. In the extreme
1+ ﬁ) limiting case\ — 0, the kernels in the integrals in Eq82)
reduce to delta-functions,(x)— (x) and G,(x)— &(x).
1 (= e loxg—nmlel Under these conditions all the equations drastically simplify
Gp(x)= _f - do. (33 and, as was shown in Ref. 29 and as is, indeed, quite natural,
2m) - coshypw reduce to the ones pertaining to a free fermion gas with the

chemical potential. The heat capacity of the gas is propor-
tional to the temperature and can be expressed in terms of the
density of states in the standard fashiosual unit$,

The quantityA in Egs.(31) and(32) is the Lagrange multi-
plier for the conditiondA/=0 when minimizing the free en-

ergy.

Equations(30)—(34) provide a complete thermodynamic )
description of a system with the reduced Hamilton{@8) C= W_T(ﬂ() _ MT (35)
valid at arbitrary values ok, i.e., at any density;. These 3 \de/, 342n,”

equations can, in principle, be analyzed numerically for any

given density and temperature. Since there are no experimen- The second case of intereat—oc, is more tricky. This
t_al data ava||at_)|e at suff_|0|ently_ low temperaiures N Sty ati0n implies a sufficiently low density dHe particles,
tions where this model is applicable, no computations for

any particular densities and temperatures will be considered

here. Instead we will discuss general features of the solutions Ng<< i (36)
and the temperature dependence of thermodynamic functions zy'
in the two limiting cases of high densitiésmall\) and of a
dilute gas of dimerglarge\). so that the size of the dimer is much smaller than the average
The first casex<1, corresponds to a sufficiently high distance betweefHe impurities and one can definitely iden-
number densityns, per unit length along the pore, tify dimers as real one-dimensional molecules. The system of
3He atoms can thus be viewed as a dilute mixture®sfe(),
1 1 dimers and unboundHe particles(monomers As A — o,
Z_O<“3<§- (34 the integrals containing the kernefs,, K, andG; do not

contribute. Taking this into account one can conclude that
The right-hand side of criterio84) is equivalent to Eq(20)  with good accuracy the potentials, from Egs. (32) are
and expresses the condition under which mtide impuri-  positive constants that satisfy the following functional rela-
ties occupy the ground state for the motion in #heplane. tions:
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_o 1 _ ™
X, =—=. (37) —e(k)—G)(E)@(AO—E)—ﬂT

VT
1+exp?

d

vazln(1+xv+l)(1+XVf1)l Je

Sle—Ay),e=k?,

After simple algebra we obtain (41)
into Egs.(30) and(31) one immediately obtains

d [ dk
e\ “de

e(k)=2k>—2A,, Ap=2(7*+A),

5_4J‘Ao dkd +7TT2
7)o €de®" 6

— 7N,

-
P(K)=K>—A,, A1=A—§In(1+x1). (39 e=A,

. . . 4 (Aodk T
As was spelled out above, in the case in question one can N=—| —de+ 5

T2 J (dk)

always distinguish between the contribution of dimers and 7o de de\de

unpaired atoms. Quanti# does not make sense as an effec-_. o ) )
tive chemical potential any longer. Instead one has to dea{plfferentlatmgé’ with respect to the temperature and taking
with the chemical potentialg; and ., of both species, i.e., [Nt0 account the obvious relation

of the “monomers” and dimers, respectively. The equilib-

(42

e=A,

rium densities of both components; andn, should again ﬁz i ﬂ( a_AO+ T i(ﬂ( =0, (43
be found from the conditions oT  mlde|,_, T 3 [oelde/| _,
2401= pp Nyt 20p=1 (39) one can easily end up with the sought after specific heat,
17 M2,MN1 2= N3.

However, one can easily convince oneself that at zero tem- C= zTi: 2_T (44)

perature and in the low-density limit E¢39) does not have 6 A2 3N

a solution, simply because; — Ay asng—0 (in an ideal gas . tional unit

,u3o<n§, and A, is the binding energy with the superfluid or in conventional units,

backgroungl whereasu,— — |A|+2Ag under the same con- AMT

ditions. In other words, af =0 and\ — < where the chemi- BT (45)
3

cal potentialu, of the dimers is always smaller than that of

the unbound particlesy,, there are no “monomers” at all
and only the dimerized phase ofHe), survives. When for-

Thus the temperature dependence of the heat capacity cannot
be a decisive factor in distinguishing between Fermi-like

mulated in terms of the reduced dimensionless Hamiltoniaiunbound particlesand Bose-like(dimers behavior as this

(28) and the corresponding variables in E(&l) and (38)
this criterion is equivalent to the situation in which®&t 0
the functiony(k) can never be negative, i.g(k)=0 for all

dependence proves to be linear in both cases. In other words,
the difference between the properties of a Fermi gas and of a
Bose gas in one dimensional geometry is much more subtle

k. In this case the terms containing the “monomer” distri- than in the 3D case, a point which has already been discussed

bution function~ do not contribute to the thermodynamics. in the literature.

Simple calculations using Eq$30), (31) and (38) at T We have considered the exact solution of Lai's model in

=0\A>1 lead to the two limiting cases of high and low densities %e par-
ticles where theHe component manifests itself as a Fermi

N2 )\? gas of “monomers” and pure Bose fluid of dimers, respec-
=16 Z<0’ tively. The critical concentratioms., at which the cross-
over between two those regimes occurs, is of the order of
52 zgl and should be found by exactly solving E¢30)—(33)
:N(” N _ 2) at arbitraryA~1. The situation very much resembles the
4\ 12 ’ crossover between the Cooper pair and Bose molecule re-
gimes in three-dimensional BCS superconducfots®*3and
N2 A2 2D Fermi fluids’*

Mo== o T —g—- (40
V. ABSORPTION OF SOUND

At finite but sufficiently low temperatured,#0, even in The presence of°He), dimers can drastically influence
the case ok — a small number of unpaired particles can the attenuation of the first sound in a dilutele-*He mix-
appear in the system due to the thermal decay of the dimerture. An extra absorption mechanism due to the decay of the
However, the contribution of these “monomers” is expo- dimerized state in the field of the acoustic wave can exhibit
nentially small as the temperature is lowered and can still béself at sufficiently low temperatures. It was shown in Ref. 5
neglected. On the other hand, the temperature dependent cadirat the sound absorption coefficient in a dimerized quasi-1D
rections toA and consequently td, provide an important 3He system should have a clearly pronounced resonant char-
contribution to thermodynamic properties and should beacter. To come up with quantitative figures that can be used
taken into account. Substituting the low-temperature expanahen running an experiment, one has to take into account the
sion of the distribution functiop(k), quantum-mechanical indistinguishability of twéHe par-
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ticles and the Doppler effect due to the thermal motion of then liquid “He, anda andb are normalizing constants. In the

dimers. _ _ o zeroth order of’He concentration, the equation of continuity
The calculation of the sound absorption coefficient pro-

ceeds in a natural way once the wave function for the acous- ip

tically split 3He particles is known. Since théHe), dimer o Tdivpus=0 (50
in the ground state is spinless, the dissociateleé particles

have opposite spifequal to a half In concordance with the yields the relation

validity of the Fermi renormalization methag the Born

approximation, and by virtue of the Hamiltonian of Egs. pb

(25) and (28), the motion in the narrow pore reduces to that a=-- (51)
of fermions interacting with an attractive delta function

pseudopotential in one dimension. The explicit exact soluThe intensity of the sound wave jsco>= % pc|b|2, which

tion to this two body problem, obtain_ed by McGuite, gives the constartt normalized to one phonon,
shows that when the length of the pore is much greater than

the scattering length of the delta function potential, the mo- 2hwg
mentum eigenvalues of the unpaired particles are indepen- |b|2= c (52
dent of the attraction strength to an exponentially small error; P

that is, apart from an exponentially smaltiut finite) term, Combining Eqs(48), (49), and (52) for two 3He particles

the particles are free of each other’s influence once theYhat form a BHe), dimer we arrive at the Hamiltonial
separate and the final spatial wave function is simply a SYM-t the dimer-ph02r10n interaction in the c.m.s int

metric superposition of plane waves corresponding to a sin-
glet state of free fermions.

To begin with, the transition probability is calculated in |2|im:2b£ ﬁcosq_zﬂ 5—Mb<ﬁsin(lz+sin(lzﬁ _
the center-of-mass system for the case of no thermal motion cdp 2 M 2 2
of dimers (i.e., T=0, no Doppler shift The absorption (53)

mechanism exists because of the inelastic single-phonon pro-
cess whereby the’He), dimer is split by a sound wave of
definite frequencywy=|A|/%. The golden rule reads

To avoid lengthy expressions we will restrict ourselves to
calculating the cross section of sound absorption in the di-
pole approximation only, in which the phonon momentum
20 R dp g—0, and the second term in E¢3) is neglected. The
dw= 7|<'//f|Hint| Yi)|28(—A+Hho— E)m, (46)  phenomenon is then similar to the well known effect in clas-
sical electrodynamics in which neither dipole radiation nor
whereE andp are the energy and momentum of the relativeabsorption exist in a system of charged particles that have
motion of the particles in the final staté,= x(z), given by  the same charge-to-mass ratio. For this reason the recoil mo-
Eqg. (18), is the normalized wave function of the initial state, mentum#iq in the operatorsp ando. is then also neglected.
and ¢ is a symmetric superposition of plane waves propa-The criterion of validity for the dipole approximation ¢

gating along the axis, which in the c.m.s. is <1 which is consistent with the hydrodynamic conditions
. applying here.
z//f=21’2cos%. (47) Substituting the Hamiltoniaig53) and Eq.(52) into Eq.

(46) yields the zero-temperature cross section per particle

To construct the operatdf'tint for the interaction of a{He), o(wo) for acoustic splitting at constant pore radius,

dimer with the phonon field in the superfluitHe back-

. . - . 2Mwy p [deg)? 2
ground, we start with the interactiovi,, of a single *He o(wg)= 5 7l o, [x(k)+x(—=k)]%,
impurity with the acoustic wav&,*?*which has the form P P

~ (960 - 1M .. ~A A 21/3/2
Vint:$5p+§V(pvs+Usp)a (48) X(k)zm, hk=p. (59

whereeg~—2.8 K is the binding energy of a single impu-

rity atom with the superfluidHe backgroundp is the den- Here x(k) is the Fourier transform of the wave functigtB)

) ar T - ) ) of the initial dimerized state, and is the inverse dimer size
sity of the pure™He in equilibrium,p=—ifid/dz is the mo-  given in Eq.(19). Taking into account the energy conserva-
mentum operatordp andvg are hydrodynamic operators for tion law

the density and velocitjrespectively of the *He superfluid

under acoustic perturbation, aatl = M —ms, ms being the p?

atomic mass ofHe. The operatorsp andv, are defined by M A= Two, (55
the expressions,

one obtains the expression

5;):ae—ia)0t+iqz' l’;S: be_im0t+iqz. (49)
— H . p an 2 773/2 A
Herefiq=#hwq/c is the momentum of the acoustic phonon, o(wg) =325 —| ————, n=+—. (56)
assumed definite for simplicity is the speed of first sound ficc\ dp ) (1— n)*? fiwg
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In agreement with general principles regarding the behavior
of cross sections near reaction thresh@ltise cross section
(56) is proportional to the momentump and thus diverges
like (hwo—A) Y2 asp—1.

In a realistic experiment, thermal motion of dimers as
well as nonmonochromaticity of the emitted sound signal
will cause the singularity to be smoothed over. We proceed
now to consider the effect on the singularity of thermal mo-
tion in the high temperature regime in which th&Hg),
dimers form a classical Maxwell-Boltzmann gas.

In the high temperature regime the dimers in equilibrium
are in random thermal motion along the length of the pore,
their velocities distributed according to the Maxwell distri-
bution. The frequency of phonons arriving at the dimers is
Doppler shifted according to

32

T=20mK

T=50mK

dimensionless absorption coefficient T/k (1.2x10

v
1+ =
Cc

w=wg : (57) 0.85 0.90 0.95 1.00 1.05

_ honon frequency 1 = A/(hvy)
For a phonon of definite source frequengy, one must take P queneyn 0

into account all scattering events for which the arrival energy

hw=A, which is the single fact that gives rise to the smooth- 0.995
ing of the singularity. The total cross section per particle for
acoustic splitting at constant pore radius is

154
o
©
[\

[’

s (o) = f (w)g(@)do, (59

A

where g(w)dw is the Maxwell-Boltzmann probability per
particle of a phonon arriving at a dimer with Doppler shifted
energyh w,

0.990 ¢

0987 ¢

g(w)dw=;§1/zexr{—§(i—l)2 do, (59
12 wo '

T "Wo

absorption coefficient maximum n*(T)

where we have introduced the dimensionless paraméter 0.985
=Mc?/T. Expressing the cross-section integs8) in terms

of the parameterg and », we have

0.005 0.015 0.025 0.035 0.045

32 Zy K
owe(lm)= 5 o 63 m), (60 temperature (1)
m FIG. 4. Resonance peak for acoustic splitting of dimers in a
where# is a dimensionless parameter, dimerized ®*He component in superfluidHe. (a) is a plot of the
exact dimensionless functiof* =T"/ky= 7aJ({,7) (1.2<10 %)
p [deg\?ng at a density ofTE=0.5 mK, wherel" is the absorption cross-
o= 7c3 % z_o' (61) section calculated with the Maxwell distribution. Damping is
caused at high temperatures by thermal disruption of dinéys.
and shows the displacement of the absorption cross-section peak with
temperature. Displacement towargls- 1 slows markedly with fall-
35 m) = nete ity f Y1+ lem by, 19 femperalure.
0
We define the absorption coefficient in one dimension for
a=2¢{n(p—1), b={(x% (62) the narrow pore problem in the high temperature regime as

Using a saddle-point method, one finds to order N 0 16 2
14,1 2 a Il 0
O(1/(2¢Y*7*)), o= Ows=5 & e~ 15 A 0ad(¢,7), (64)

2
ot =1 1y
&)~ mm——r— M I H (MR -1)), whereA is the(fixed) cross-sectional area of the pore, and
K (63) is the degree of dimerization defined in E¢®1) and (23).

The dimensionless ratio of the absorption coefficient and
whereH _;,5(x) is a Hermite function. phonon wave numbdiFig. 4(a)] is given simply by
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o= =16 2403 6 Pl 128 69
0= ~ 165 A 0« (Zim), (65) e ap 28 (69)

The total cross section for acoustic splitting¢,7) is ~ @Psorption cross-section peak is then given by
finite and smooth atyj=1. As the temperature is increased
from the lower endb]of the MaxweII-BF:)Itzmann regime, an 77*(T)~1—0.O750ﬁ. (70
asymmetric distribution appears which shows the strong in-
fluence of the exponential factor in the Maxwell velocity
distribution. The maximum of the absorption cross sectior}h
shifts towards decreasing values gf[Fig. 4b)]; i.e., to-
wards higher phonon source frequencieg. This can be
understood as follows. Although the Maxwell velocity distri-
butiqn for motion alang thg pore is.a Gaussian that is Sym'(i.e., the ratio of second and first terms of the asymptotic
metng aboutv,=0, only dimers with a sufﬁmently large _expansiop for the sound absorption coefficient is better than
velocity towards the phonon source can be acoustically Sp|lté% at higher temperatures, and gefsrseas the tempera-
there is a threshold energy below which the phonon has O re is lowered tending tO](’ﬂ—l)/[Z(n2+ 7—1)] for all
effect, and only these dimers see a sufficiently large Dopplerl—ow temperatur;as Close to the maximum the approximation
shifted phonon energy. Thus an asymmetry is introduced int?)F better than 0_0'5% at low temperatures.
the problem. As the temperature is increased, the Maxwe It is an open question as to what happens in the cross-over

g;zt?syvg?Tosvegg;needsprrlci)t?;;re%?g]élgt?;éwn?g: ;gsg;léheerrfegion between the semi-classical and degenerate regimes.
ergy for spliting shifts towards higﬁer dimer speed andAS noted above, the dimers may weI_I form quadrumers and
. longer polymers as the temperature is lowered. In any case,
Bne might expect that thermal effects would ensure the pres-
"Ence of a transition region in which dimers exist in their own
right. It is well known that even a small attraction in one
dimensional systems causes drastic deviation from ideal gas
H_3({"(n—1)) AR (66) behavior even in dilute systems. However, here we are con-
H_1({Y%(p—1)) =—20" (=), sidering a quasi-one-dimensional dilute gas in a narrow pore.
An experiment that confirms ideal gas behavior for the sys-
which is obtained by only keeping terms @(1/%% in the  tem in the cross-over region would imply that realistic appli-
asymptotic series for the derivative of the exact inte¢6a) cation of one dimensional models is critically dependent on
then setting the derivative to zefotherwise ill-conditioning the confinement length in the-y plane. To this end, it is
will cause problems with numerical algorithm#Jsing prop-  worthwhile to calculate the absorption cross section with the
erties of cylinder functiongsee Ref. 3Y, analysis of the assumption that in the cross-over region, the dimers behave
transcendental equatioi®6) yields for the position of the like an ideal Bose gas in vacuum.

The temperatures for which quantum degeneracy and
ermal excitation effects can be neglected suggest bounds of
e order 242& (<9680, while in view of the high frequen-
cies involved(hypersoungl we would expect experimental
equipment to attain a narrow range in the vicinity »f 1;
say, 0.95c »=1.05. The accuracy of the approximati@8)

absorption cross-section peak should be found from the tra
scendental equation,

absorption cross-section peak, to or@sf 37— 1)1°%), The Bose-Einstein probability per particle of a phonon of
frequencyw, arriving at a dimer with Doppler shifted energy
1+A%+(1+2A%-3AH 12 1 fiw is,
7 (T)~1- 3 :
2A V() 4Mc dw
f(w)dw hnawg 5 ., (7D
3 exgy+{——1] |—-1
2r 7
A=—m (67)  wherey is found from the normalization condition,
iH
4 % de 4\/WBT 2T
) , ) S . 1z5] , O=————=1\[—.
Taking a working density of 3.8410° m (Tg 0 \/;(exp(wr e)—1) hng TE
=0.5 mK, concentration=0.000026, one’He particle ev- (72)

ery 260 A along the povefor R=7 A, the independent

parameters are explicitly, The total cross section per particle for acoustic splitting is

then given by

g_McZ 484 A 6.6x10° .
keT T(K)' " %oy wo(rads ™)’ UBE(f:ﬂ)—LA{O'(w)f(w)dw
~ 43 -t Zo (4Mc) < J (¢
9~6.9x10"%n; (mY), (68) :32n_o (hn ) oy n(izn), 73
3 3 /n=1 g

where the last quantity was evaluated using the dimension-
less group where
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In(&m)= ne“”ze_”“"_l)zfxt‘l’z(1+t)—1e-“<at+bt2)dt,
0
(74)

with a andb as in Eq.(62). Use of the same saddle-point
method as before yields

24 —n¢(n—1)
ntn—1 e
In(gm) =T g H-1ni(7-1)
7

+0(LU2¢ 7). (75

Expressing the integrand in E(f.2) as an infinite series and
keeping only the first term, one obtains the well-known high
temperature asymptotic form of, yhighzlog\/;ﬁ. Substi-

dimensionless absorption cross-section

tuting yhign into Eq. (73) and allowing the temperature to OBEQ)
grow large shows thatrge— oy . At lower temperatures, _/,/\
as expected, the cross section manifests enhanced acousti % %0 0'95 "160

splitting due to the tendency of the Bose particles to attain
like velocities as they are coolg&igs. 5a) and §b)].

It should be emphasized that the above treatment consid-
ered the propagation of sound through a liquid that fills nar- 84 ¢
row pores, rather than a solid matfigapillary wallg. Excit-
ing sound vibrations in the liquid that fills a nanoporous
medium may present a difficult technical problem. It may be
easier to let a sound wave propagate through an acoustically
inhomogeneous system, e.g., a porous sample filled with the
fluid, as a whole. In the latter case some expressions such as
Egs.(51) and(52) can no longer be used and the appropriate
part of the description should be modified. However, the
statement regarding the resonant sound absorption associate(
with the decay of the dimerized states as well as the descrip-
tion of the resonance peak remain valid. Observing non-
monotonic resonant behavior of the sound absorption would
provide direct evidence for the existence of dimers.

phonon frequency 1 = A/(hvy)

OBE(1..10)

dimensionless absorption cross-section

VI. CONCLUDING REMARKS

All the above results apply directly to any rarefied system 0 == ;
in restricted geometries provided thewave scattering 0.990 0.995 1.000 1.005
length for a two-particle collision is negative. It might be phonon frequency 1 = A/(hvy)

tempting to try to detect dimers in various gases placed in
porous media. Experimental data of Waetzal 1?2 on the
heat capacity show a one-dimensional gas-like behavior of

sufficiently 'small a’.“"“”t pre in the porgs of K'L.ze.0|3|tse' ancy with the semiclassical picture is pronounced at0.1 mK.

By measuring the '5°$te”c heat of sorption Takahal. Enhanced acoustic splitting occurs due to the tendency of the Bose
observed _one-d_lmen5|onal gas states of Xe and _Ar aFomS I[5‘51rticles to attain like velocities as they are cooled. Plotted here is a
the one-dimensional channel network of mordenite with th,aial sum of the exact dimensionless absorption cross section

pore dlar'neter.abo.ut_ 7 A.So far all Iow-temperature eXPerigiven by (/7ns)/(32206) ey =776k 25 e ™I, (7), low or-

ments with fluids filling the 1D channels of various zeolites ger individual terms of the series, as well as the exact semiclassical

have been done in the temperature range 0.1-10 K which igssorption cross-section given by#%ns)/(32200)opm=3(7). v

well above the estimated value of the binding energy of as obtained from Eq(72), keeping two terms in the expansion of the

dimer. Lower temperatures are more favorable for the obselintegrand. It is an open question whether the dimers form quadru-

vation of the dimerized state. However, when dealing with amers or even longer polymers at lower temperatures.

gaseous phase at low temperatures the rapidly decreasing

saturated vapor pressure may cause serious experimental difxclude the possibility that the dimerized state, although

ficulties. modified, may survive when increasing the density and some
Another luring experimental possibility would be to at- vestige of that state might be detected even at high densities.

tempt tracing dimers in dense quantum liquids of pdife  In the case of a Fermi liquid, the approach applied in this

and “He placed in nanoporous media. Of course, the methpaper can be generalized to consider bound states of the

ods used above to describe low-density systems do not workingle-particle excitations. It seems unlikely that ga@ave

in the case of a dense liquid. On the other hand, one cann¢tHe), dimers could exist in liquiHe as the latter does not

FIG. 5. Resonance peak for acoustic splitting in the cross-over
region between semiclassical and degenerate regimes, assuming
%at the dimers form an ideal Bose gas in this region. The discrep-
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exhibit superfluidity associated with tlsawave pairing, i.e., and let
the |=0-harmonic of the effective scattering amplitude cor-
responds to a repulsion between quasiparticles. Nevertheless, f(t)=p+a(t—to) +t(t—to)g(t), (A4)
dimers withl =1 or higher might well be present in liquid \yhere

3He that fills narrow channels. A concentrated solution of

3He in superfluid*He might be a good candidate to exhibit f(to) —1(0) 1
the swave GHe), dimers because, according to experimen- p=f(to), a= to - 1+ty

tal data(Ref. 4 and references thergithes-harmonic of the . . . .
effective interaction is attractive. As was noted at the beginSubstitute EQ(AS) into Eq. (A4) and findg(t). The integral

ning of the paper, twdHe atoms form a bound state, albeit W& Want,J(a), is then the sum of two known integrals and a
a very shallow one, even in a 3D geometry. For this reasorflird integral involvingg(t) which we callJ,(a). Integrating
liquid “He in porous media is an interesting object of study,hiS by parts, we find that we retum to the same form as the
the observation of dimerized states with a higher bindingPf9inal integral(Al) if we define a functiorf,(t) to be
energy being likely. Theoretically describing the dimerized 1

states in dense liquids would require more powerful compu- fi(t)= Eg(t)+tg’(t). (AB)
tations and are beyond the scope of this paper.

(A5)

Repeat the process. Letf(t)=p;+aq.(t—tg)+t(t
ACKNOWLEDGMENTS —1)094(t) with thep’s andq’s defined in an analogous way.

One of the authordJ.W) would like to thank Nico Note t,ha'f “mo%oq_l_o' therefore dgﬂnql—o whento—q.
Temme, of the Centrum voor Wiskunde en Informatica, for a>uPstitutingfa(t) into the expression fod,(a) we obtain
very helpful suggestion on how to adapt the saddle-poinf’/© known integrals and a third integral involvingy(t).
method to the absorption cross-section integral. This wori/€anwhile we have also obtained two asymptotic series in
was supported in part by the Australian Research Council€9ative powers db. After some rearranging, one arrives at

under Grant No. A69600107. the following expression forJ({,#), accurate to order
O(1/b%?:
APPENDIX: EVALUATION OF THE ABSORPTION a
CROSS-SECTION INTEGRAL I m)= \/;ez(nl)z{ (p—to)bYH 1/2( m)
After substituting the parametetsand 7 into Eg. (59),
the integral we want is a (P1—9ato) a
+ ——aH-32 + 3a H-12l =
, (= , 2pY4 2\b 2b%4 2\b
J(gyn): ngllze—g(n—l) f t—1/2(1+t)—le—at—bt dt
0
i 2 3/2
_ Vet D2)(a), 4b5’4H3/2(2\/B +0(1b%) ¢, (AT)
a=2¢p(n—1), b=iq2 (A1) whereH _ (x) are Hermite polynomials, and
We will use the known integral, p= 1 q=-p, p :p_z_pst q :&_ P
1+ty’ L) O 1T 2ty
* I'(v a (A8)
|V,l(a)zf t'~le at-bCgi= (/2) H (—)
0 b” 2\b For low temperature§ ~0.01 K, the main contribution

comes from the first term of this expansi¢A7), and we

l(a)=1_1,xa). (A2)  have simply the expression in E¢1). Finally, since the
We use a saddle-point method to find an expansiod(aj (exac} classical cross-sect_ion integr&og), asT approaches
in powers of 16 which converges quickly at low tempera- Z€r°; tends to a delta functlon_ pegkedyatl, the expression
tures and shows excellent agreement in the region of intere§p1) Pécomes a good approximation to the exact integral for
n~1. We seek an asymptotic expansionJé&) that is uni- &l frequenciesy. o o
formly valid as» passes through unity. The saddle-point of 10 evaluate the Bose-Einstein cross-section intel,
e 2b% in the integrand of Eq(A1) is at to=—a/(2b) the relation,
=1/n—1, which is near the end-point of integration when 1

7—1. Now write = exg—n(d+x?)], d=0, (A9)

expd+x%)—1 n=1

. (A3) gives integrals of the formA1). It is an easy matter to arrive
(1+t) at an expansion in powers of hf) analogous to EqA7).

J(a)=f:tfl’zf(t)e*at*btzdt, f(t)=
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