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We calculate exactly the Josephson currentd@ixis coherent tunneling between two layered supercon-
ductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results
also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects
of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling
Hamiltonian. Our results are also correct for strong tunneling. However-thés tunneling expressions of
Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we considerattie coherent
critical current between two identical layered superconductors twisted an @pgleout thec axis with respect
to each other. Regardless of the order-parameter symmetry, our coherent tunneling results using a tight-binding
intralayer quasiparticle dispersion are inconsistent with the recaxis twist bicrystal BjS,CaCyOg, 5
twist junction experiments of Lét al. [Li et al, Phys. Rev. Lett83, 4160(1999].

[. INTRODUCTION face states have previously been negledtéd. addition,
when the quasiparticle dispersions of the two superconduct-
One of the most interesting features of superconductivityors are different, such as for different materials or identical
is the Josephson effect. This occurs when flat surfaces of twiéght-binding materials that are rotated with respect to one
superconductors are brought together, forming a uniforn@nother, an impedance mismatch occurs, reducing the coher-
junction. A supercurrent flows without a voltage drop acrossent critical current. _ _
the junction, provided that the properties of the superconduc- We consider the Josephson tunneling alongctiagis be-
tivity in the two superconductors are compatible. For con-tween two distinct layered superconductors, assuming all of
ventional superconductors in which both the normal statdéhe tunneling processes can be taken to be purely coherent,
and superconducting properties are isotropic, it does not ma@s Pictured in Fig. 1. In Sec. Il, we solve for the Green’s
ter which particular crystal surfaces are employed to fornfunction in each layer, keeping the quasiparticle dispersions
the junction. and OP symmetries fully ggneral. The gffects of surfac_e
However, for anisotropic superconductors, the junctionStates are prllcnly included in the calculations, and the vari-
orientation can be very important. Even if the superconduct@Us tunneling strengths are included exactly. In Sec. IlI, we
ing order parametefOP) is isotropic, the intrinsic aniso- derive the temperatur€l) dependence of the superconduct-
tropic normal-state properties of a layered superconductdf'd 9aps under three specific assumptions about the quasipar-
make the properties of Josephson junctions involving one ofi¢lé band structures and three different OP symmetries in
more layered superconductors different from those forme@ach layered superconductor. T_hese quasiparticle dispersions
from two isotropic materials. For example, Josephson juncr® chosen to model the experimental cases of underdoped,
tions between an isotropic, conventional superconductor angPtimally — doped, and overdoped fSi,CaCyOg. ;s
a layered superconductor can differ greatly, depending upofBSCCO, respectively, with respective Fermi surfaces that
whether the junction is on the top or an edge of the layeredve denote as FS1, FS2, and FS3. However, the dispersions
superconductor. This is especially true if the layered super-
conductor has an anisotropic OP. In addition, the properties
of Josephson junctions formed between two layered super-
conductors depend strongly upon the junction orientation,
especially if the OP’s are anisotropic.
In this paper, we consider the case of a Josephson junc-
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tion formed between two layered superconductors stacked on Jy/2
top of each other along theaxis. Our results can be easily J/2
modified to include the related problems in which one or Jy/2
both of the superconductors is bulk, rather than layered. By Ji/2

treating the two superconductors as layered, the surface E_,m_(kL)

states that form near the junction appear naturally in the cal-

culation. These surface states affect the Josephson currentFIG. 1. Sketch of the junction under study. Layer numbers and
results, even when the limit of tunneling between two isotro-interlayer tunneling strengths are indicated, along with the general
pic superconductors is taken. With one exception, these suferms for the bare quasiparticle dispersions.
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for overdoped samples can also be made to fit the threghese two half space Green'’s functions together.
dimensional free-quasiparticle dispersions of conventional The Green’s function matrig” for a bulk superconductor
bulk superconductors. The OP symmetries chosen are thg type 5 satisfies
isotropic sswave and the tight-bindingl,2_,.-wave and
“extendeds”-wave OP functions, respectlvely. In Sec. IV, [iw—&o,ms—A,m+ T1r3]G7=1, (1
we solve for the gaps for the symmetric case of two identical
superconductors. Then, in Sec. V, we calculate the Joseplvhere the layer space matri¥” has the elements
son tunneling current across the two layered superconduct-
ors, assuming that the coupling across the junction is not . Iy
stronger than the intrinsic coupling within each layered su- mn_f(ém,nﬂ"' Sm,n-1)- 2
perconductor. Our final results for the tunneling current can
be used to calculate theaxis Josephson critical curreht, ~ Terms not containing a Pauli matrix are implicitly propor-
and can be generalized to the standard case of two bulkional to 7o. In a bulk layered superconductor, it is then pos-
conventional superconductors, for which the usually nesible to Fourier transform this expression, as we did in the
glected surface states are explicitly included. Then, in SedAppendix, with the result differing only from that of a bulk,
VI, we present detailed(¢,) results for coherent-axis  three-dimensional superconductor by the corrugated cylinder
twist junctions between identical coherent layered supercorform of the quasiparticle dispersions,(k,k,) = &, (k)
ductors. Finally, we discuss our results in Sec. VII. —J,cosk;s). However, for a half space, such Fourier trans-
formation is not permissible, and so we must keep the layer
indicesn,m explicitly.
Il. MODEL AND PROCEDURE FOR SOLVING IT To constructg”, we first remove the tunneling matrix

We assume that two |ayered superconductors are p|ac@ements across the jUnCtionAbetween the two Superconduct-
with the uppenU) one on top of the lowerl(), and that the ors by adding the perturbation”r3, with elements
contact between them is sufficiently strong that quasiparticle
tunneling between them occurs. For simplicity, we assume
each superconductor consists &1 layers separated an
equal distance apart. We index the layers witt,m, where _ o
—N+1<n,m=N. In theU half space, £n,m=<N, and in taking account of the restrictions,m=0 for »=L and
the L half space,—N+1<n,m=0, as pictured in Fig. 1. n,m=1 for »=U. The perturbatior}:/’7 “cuts” the bonds
Within each layer in thep=L,U half space, the quasiparti- connecting the two identical half spaces which terminate at
cles propagate with dispersidg, (k) and have the gap func- layers 0 and £.We then solve for the elementg,, of g”
tion A, (k), wherek=(k,,ky) is a two-dimensional wave satisfying
vector. We assumd , is independent of layer index. This
assumption will be checked in Sec. Ill, and is found to be g7= G+ GN 759" %)
usually valid. Between adjacent layers in each half space, the
quasiparticles tunnel with matrix elemehf/2. At the junc-  Solutions for eacly” are given in the Appendix.
tion between layers 0 and 1 where theand U half spaces So far, we have found the expressions for two distinct half
meet, the quasiparticles tunnel with matrix elem@i2. space Green’s functions, which are electronically uncoupled
Since we are not interested in spin-dependent effects, wigom each other, since no quasiparticle propagation from one
assume the quasiparticles are spinless fermions, only takingalf space to the other has yet been introduced. We thus
account of the spin values in counting the number of quasicoupleg¥ andg" together via the local perturbatiqfi with
particles. We sekg=c=#=1. matrix elements

We shall focus on the general procedure for evaluaBng
The details are given in the Appendix. In order to calculate J
the Josephson current across the junction between the two jmn:§(5m05nl+ Sm1Ono).- ®)
half spaces, we first find the form of the finite temperature

Green's-functions matrixz. This matrix is the product of For tunneling strength comparisons, we then let
two matrices, one of rankl, with elements indexed by the
layersn,m, and the other the Nambu matrix of rank 2, with y= ) (6)
elementss, F, —G', andF in the usual cyclic order begin- Judy
ning with the upper left-hand position. This Nambu matriX iS The exact solution to this problem of coupled half spaces
represented by the Pauli matricesfor i=1,2,3, plus the
rank two identity matrixrg. We letw represent the Matsub-
ara frequencies.

We first begin by constructing the Green’s-function ma-
trix G for a bulk layered superconductor. We then add a lll. GAP EQUATION
perturbation with the particular form that decouples the |n order to obtain the temperature dependence of the Jo-
Green’s functions in each half space from each other. Thgephson critical current, we need to solve a gap equation for
resulting Green'’s functiong” of two single half spaces have the temperature dependence of the gap. For this we make a
parameters appropriate for each half space. We then coupsmple assumption of a BCS-like equation:

J
Vrrr]m: - ?7]( OmoOn1t Om10n0), (3

then yields the full Green’s function matri®, with matrix
elementsG,,,, which are given in the Appendix.
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This layer-dependent gap function is in contradiction to the
layer-independent gap function used to calculate the Green’s
functions. This must therefore be regarded as the first correc-
tion to the assumed constant gap, which determines the
Green'’s function on the right-hand side of this equation. Ide-
ally, this should be a small correction, if our initial assump-
tion is justifiable.

In the Appendix, we found an expression B&gy(J, /2) 73.
Using this result, letting

FIG. 2. Fermi surfaces studied for tunneling between two lay-
2 ered superconductors. Dashed curves: underdoped FS1. Solid: opti-

= - - , (8) mally doped FS2. Dotted: overdoped FS3.
T €0yt iQ, (&, +i0 )2 =512

where Q,=\w?+[A,[?, and defining=!=ReE,) and A(K,T),surracefor #=L,U, and compare the magnitudes of
E"=Im(E,), the equation for the gap at the interface in thethese to the bulk results. Ideally, the difference in magni-

I

lower superconductor is tudes between the bulk gaps and the interface gaps should be
small. In the following section, we will investigate this for
A(kk™) the special case of a symmetric junction.
Ak =T X mf(k W), ©)
w k’ 1
IV. GAPS FOR THE SYMMETRIC CASE
where . _
In this section, we assume that=U and solve for the
AE! EUIELR3PA bulk gap, and the gap at the interface witk 1. To find the
f= O, + 20, : (10 bulk gap, we fixT. at 9 meV, and solve Eq12) for the
temperature-dependent gap. We assume each superconductor
32[ | w2+ A Aycod b — dy) has a single OP, which for simplicity, we limit ® d,2_2,
D=+ 9.0 )E[’JE[—E(,EL +1 or extendeds-wave symmetry. We index these OP’s by
Ut =s,d,es. For each OP, we take the pairing interaction on the
J4 n=L,U superconductor to have the form
+1—6|ﬂu|2|ﬂ|_|2: (11) , ’

gnd q_SL—d:U is the phase difference of the OP’s across tht=Where W(K)=1, Wy(k) = coska)—cosk,a), and W.(k)
Junction. ={[cosk a)—cos’((ya)]2+e2}1’2 wheree<1.
. . _ & , .
dA? adthctktﬁhe(:kdc’f th'st result, we take=U andy=1, By fixing T, we determine the value af;, . These then
and find that this reduces to determine thelT dependence of thewave ord-wave gaps,

ALK ) respectively, via Eq(12), and the extendeskwave gap with
AkT)=TY > )\L(k,k’)QLT,' e—0 has an identical dependence to that of thlbwave
@ K Lk’ @) gap. We take the in-plane dispersion to be
' : ' 2 12\—1/
XIm[([€o (K" ) +i1Q (K", 0)]*—I}) 2], fy;o(k):Jn_JnH[COS(kxa)J"COS{kya)
(12 —vcogk,a)cogkja) — u], (15
in agreement with the result for a homogeneous coherent ) ) )
layered superconductor. where the part proportional td, is chosen to approximate

Note that in Eq(9), the proximity effect couples the gap f[he in-plane dispersion relation for BSCCO. The valud gf
function at the interface i to the gap function irJ. This 1S thus taken to be 500 meV. We choose three sets of param-

disappears in the limiyy<1, whereinAy(k,T) becomes the €tersv andu, which determine the details of the quasiparti-

gap function at the surface &f cle dispersion, and the resulting shape of the two-
dimensional Fermi surface, pictured in Fig. 2. For a heavily
A (k' w)El (K o) underdoped sample, we chooge=—1.3, v=1.3, with
AK T surtace= T2 2 Ai(kk") 0, (K.w) : Fermi surface denoted FS1 in Fig. 2. For the tight-binding
w k' 1

(13) dispersion appropriate for an optimally doped sample of
BSCCO, we taker=1.3 andu.=0.6. This dispersion has the
in agreement with previous resufts. Fermi surface denoted FS2 in Fig. 2. In addition, for a
The gap functions which go into the right-hand side ofheavily overdoped sample, we choose=0 and x=1.0,
Eq. (9) are the spatially constaiftzeroth order”) bulk gap  with the Fermi surface FS3 in Fig. 2. The only remaining
functions, obtained from Eq(12) for L, and an analogous free parameter is the value df/2, the interlayer overlap
equation forU. We use these to calculate,(k,T) and integral. We therefore perform our calculations for three dif-
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ferent values: J,=25,50,100 meV. In each case], 18- ‘
=25 meV gives results which closely approximate the weak R (a)
hopping limit J,—0, as has been verified by explicitly ‘\\\
checking our results withl, =1 meV. However, for that 16 I T
small an interlayer hopping parameter, one needs to use a S 5L S ]
much finer grid for the Brillouin-zone integration, in order to ‘E’ o
obtain sufficient accuracy. ~14 _____ % 56 ]
For each OP symmetry, we calculateA (T) from the S 13l —-— 100 1
symmetric gap equation. We note th&t(T)=A4(T) for D S
Teq= Tces: Which occurs fols=A4. In the casey=1, the 125 =TT == T L
combined junction of two layered superconductors is just the d
same as a single layered superconductor, as long as the two nr ]
halves are not twisted with respect to each other. However, 10 w w w w
for y<1, the central junction is different than the intrinsic 0 02 04 06 08 1
ones in each layered superconductor. In this case, surface ¥
states can arise, and the gapcan in principle depend upon 17 S .
the layer index. This would be particularly true in the case of
two incompatible OP components, which has been consid-
ered in detail for a cylindrical Fermi surface previously. 16.5
For the Fermi surface FS2 and only one OP component, if _
y<1 andJ,=0, then each layer would be completely iso- >
lated from each other, and the gap would not depend upon E 16
the layer index, reducing to the two-dimensional mean-field
value of independent layers. Hence the question of whether S
the gap depends upon the layer index can be more easily < 15.5
answered by checking whether the gap depends upon the
intrinsic interlayer hopping strength, and on the imped-
ance mismatch parametgr In Fig. 3a), we plottedA ,(0) 15
for {=s,d andJ,=1,25,50,100 meV, as functions of (0 0 10 20 30 40 50 60 70 80
<+y=<1), for the optimally doped Fermi surface FS2, evalu- Jﬂ (meV)
ated with»=1.3 andu=0.6, pictured in Fig. 2. Although
there is a wealy dependence ok (0) forJ, =100 meV, all FIG. 3. (8 s and d-wave superconducting gap magnitudes at

other cases have essentially no significardependence, so T=0 as functions ofy for FS2 with J,=1,25,50,100 meV(b)
that the gap values are essentially the same as for indepeBlots of theT=0 swave gap magnitudes at<1 for Fermi sur-
dent layers. The slightly greater dependence ok ,(0) for ~ faces FS1 and FS2, as a functionJgfin meV.

J,=100 meV apparently arises because the Fermi energy

Er is not much further thad,, from the top of the quasipar- brackets indicate a thermodynamic equilibrium average. In
ticle band. In Ref. 3, it was also found that for a free particleterms of the full space Green’s functions, this is

dispersion within the layers that the gap at the surfage (

=0) was thesameas that in the bulk y=1). Thus our ) 1

results for a finite in-plane bandwidth closely approximate 'Z'eJT; > Tr 5 (10t 73)(G1o~Goy) |, (17)
that infinite bandwidth limit. ¢

We also studied\4(0) as a function ofl,, at y<1 for  \yhere we have suppressed thie,¢) dependence of the
Fermi surfaces FS1 and FS2, and plotted the results in Figsreen’s functions.

3(b). Again, we found very littleJ, dependence to the | the Appendix, the matriceS,; and G, are given, and
s-wave gap magnitudes for<1, so that it is generally safe the trace evaluated. We find

to take the gap to be the bulk value calculated far from the

central junction location. We also found that(T)/A,(0) A AGEIE!

EL=u

for {=s,d with Fermi surface FS2 were rather independent |=GTE 2 ——————sin(¢.— dy), (18)
of J, for J,,=1,25,50,100 meV, each of the curves differing Kk 0.QyD
only slightly from the ordinary BCS curves fa(T). . o
where= , is given by Eq.(8) andD is given by Eq.(11).
The equations derived above relate the supercurrent
through the interface between two layered superconductors
The tunneling current across the junction is given by  to the phase difference across this interface. We can find the
critical currentlg of this interface by varying the phase dif-
: ference until the maximum current is obtained. We can vary
|=—|eJ; (cs(kyes(k)—ci(k)eo(k)), (16 the value ofy, which we term “the impedance match pa-
rameter,” to obtainl (y). We can also varyl to obtain
where theci(k),ciT(k) are creation and annihilation operators | .(T). Finally, we can investigate all of the above frand
for electrons with wavevectde in theith layer. The angular d-wave and extendeshwave gaps, and mixtures thereof.

V. JOSEPHSON TUNNELING CURRENT
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To orderJ?, we can seD—1, andlg obtained from Eq. 1 RS w . w
(18) reduces precisely to our previous result, E).of Ref. i \:?‘\ ;"‘ff‘;e’ extended-s
5, derived using the tunneling Hamiltonian, provided only ) \ ]
that one neglects the incoherent tunneling, and repldces — O (a)
with 27, in the coherent tunneling partHowever, this result I
differs greatly from that found by Tanaka and Kashiwaya
(TK).X TK did not correctly derive the coherentaxis tun-
neling between two layered superconductors, but instead at-
tempted to approximate the tight-binding quasiparticle dis-
persion in thec-axis direction by treating the corrugated L _ __ 100 ‘l\\
Fermi surface as a narrow belt around a spherical Fermi sur- 0.2 N\
face. This procedure leads to the uncontrolled approximation
of dividing zero by zero. Thus, E4100) of TK, obtained in ol . ‘ . ‘

the weak tunneling limit of their calculation, is not correct 0 02 04 06 08 1
for coherent tunneling. Instead, it happéfrem compensat- T/Tc

ing errorg to be correct for purely incoherent tunneling, as in

the model of Ambegaokar-BaratoffAB).> However, the 1 TS ‘
subsequent Eq102) of TK is still not quite correct for any \\ (b)
type of tunneling, and Eqs102—(104) of TK are com- 0.8
pletely wrong for both incoherent and coherent tunneling. A "\ =1
modified version of Eq(101), correct for incoherent tunnel- *
ing between a conventional and an unconventional supercon-
ductor, was used appropriately in fits ¢eaxis tunneling be-
tween Pb and BSCCO.

In this notation, we can also investigate the case of the )
coherent tunneling matrix elements depending upon the in- \\
plane wave vectors],(k, k,)=J,¢%(k,), and J(k_,ky) 0.2 \\ )
=Jo(k.) e(ky), where ¢(k) =|cosk.a)—coska)|, as sug-
gested from band-structure calculations of Liechtensé&tin
al® This form, along with the wave-vector independent 0 02 04 06 08 1
model, is useful for studying the coherent critical currents T/T
across a-axis twist junction. We note thag(k, ,ky)=1y is c
independent of thé, . 1

As long asy=<1, the overall critical current; will be Q ~
given by the above?. For both strongy=1 and weaky N NN =T
<1 coupling with Fermi surface FS2 andJ, 081 N\ N (C) i
=1,25,50,1000 meV, we calculatég{ T), normalized to its N AN
T=0 value, for each of the OP symmetries considered. For
y<1, the swave I(T)/I.(0) curves are almost indistin-
guishable from the standaAB curve, as for Fig. 2 of Ref. 5.
The other results are plotted in Fig. 4. Note that theave
and extended-wave curves are identical, but they differ ~  }  =meemmees 50
substantially from thes-wave results. However, as shown in . - -
Fig. 4(a), the d-wave (and extended-wave |.(T)/1.(0) ‘§
curves are strongly dependent updj, in @ nonmonotonic I R\
fashion, unlike Fig. 3 of Ref. 5. Those curves in Ref. 5 were 0 ‘ ‘ ‘ ‘
evaluated using the free-particle quasiparticle dispersion 0 02 04 06 08 1
within the layers. In addition, in Figs.(d) and(c), we plot- T/Tc
ted 1,(T)/1.(0) for the strong coupling case=1 for ¢
=s, d, respectively. In this case, the nonmonotonicity of the
d-wave (and extended-wave case is similar to that in the
y<1 limit, but theJ,, variation ofl,(T)/I1;(0) is stronger in
Fig. 4(c) for y=1 than for y<1 in Fig. 4a). Similarly, a
much stronger,, variation of I(T)/1.(0) is seen in Fig.
4(b) for y=1 than for the(not pictured BCS-like results coherent. That is, the andR superconductors can have dif-
obtained withy<<1. ferent quasiparticle dispersioifisoth parallel and normal to

We remark that Eq(18) is a fully general expression for the junction, different OP symmetries, and differeff val-
the c-axis tunneling between two layered superconductorsues. Thus Eq(18) also describes the tunneling between a
assuming that only one OP component exists in each supethree-dimensional, conventional superconductor placed on
conductor, and that all tunneling processes are completelthe top of a layered superconductor with an unknown OP
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FIG. 4. Plots of the normalized critical curreh{(T)/I.(0) for
superconductors  with  Fermi  surface FS2 and,
=1,25,50,100 meV(a) d wave and extendesl-wave with y<<1.
(b) s wave with y=1. (c) d wave and extendesl-wave with y
=1.
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symmetry. It also applies to the case of coherent tunnelin@ special case of coherent tunneling between two different
between two three-dimensional superconductors. When orlayered superconductors. However, the OP symmetry must
of the superconductors is a three-dimensional material, onke the same on each superconductor, with the only caveat
simply modifies the quasiparticle dispersiod,(k,k,) that the OP has to arise from the local pairing interaction, Eq.
=&o,(K) —J,coskys) far from the junction, by setting, (14). The only difference is that the crystal orientation is
sufficiently large, and,, comparable td,, . Except for the rotated by* ¢/2 in the two half spaces, and this leads to
case of real-space pairing with a component normal to theimilarly rotated quasiparticle wave vectors. Thus, in the two
junction, the fact that the pairing was assumed to take placsuperconducting half spaces, we tadkg=(ky,,,ky,), which
only within the layers is not important, since the layer indexare rotated by+ ¢4/2 for n=L,U, respectively. For any OP
is dropped, so that the pairing strength is constant throughowlymmetry, we thus haveé,,(k)=£&(k,) and A, (k)
each superconductor. Thus a superconductor with an isotre=A(k,). Although for an isotropics-wave pairing interac-
pic, three-dimensional quasiparticle dispersion would haveion, the twist orientation does not matter as far as theAOP
&, (k,k)= (k?+k2)/(2m) far from the junction, wherenis  is concerned, a nonvanishirfg, still causes the quasiparticle
the quasiparticle effective mass. This form is obtained frondispersions to be different in the two superconductors. This
Eq. (2) by settingd,;=(ma®*) ! andJ,=(ms’) !, and re- leads to a strong impedance mismatch forgajlvalues not
quiring J,,,J,,> €. An anisotropic three-dimensional su- too close to 0°, 90°.
perconductor might have eithel, or J,, different from In Figs. 5-8, we have presented our results for
these values. I(¢o)/1:(0) at T/T,=0.5 for different values of the mate-

We remark additionally that for the two-dimensional rial parameters. In Fig. 5, we presented our results for the
tight-binding Fermi surfaces, one restricts the wave-vectooptimally doped tight-binding quasiparticle dispersion, Eq.
integration to the first Brillouin zon¢BZ), which for a te- (15, in which ©=0.6, v=1.3, and J;=500 meV, with
tragonal material haslk,|,|k,|<7/a. In the three- Fermi surface FS2. We include curves for each of the three
dimensional limit, one can use the free-particle form for theOP symmetries, and fod,=25,50,100 meV. For the
quasiparticle dispersion far from the junction, and removeextendeds-wave OP, we set=0, so that the wave-vector
the BZ limits on the components, ,k, of the wave vectors dependence of the OP has dlmeskxa)—cos((yaﬂ form. Re-
parallel to the junction. Note that one still does not integratesults for the extended-wave OP withe>0 are intermediate
overk,, the wave vector normal to the junction, which is not to the extended-ands-wave results shown.
a good quantum number in the presence of the junction. In each case, there are both direct and umklapp tunneling
Thus, even in the limit of Josephson tunneling between twgrocesses. In the direct processes, a quasiparticle undergoing
conventional bulk superconductors, surface states arginneling across the twist junction has wave vectqrand
present, and affect the tunneling. Except for the tunneling, both within the first BZ. However, for the case in which
Hamiltonian limit y<1, for which we had previously in- either the initial or the final wave vectors is outside of the
cluded the effects of these surface statesy present calcu- respective first BZ, umklapp processes can occur, due to the
lation correctly includes the surface states in coherent Joperiodic nature of the quasiparticle dispersions assumed. To
sephson tunneling between two superconductors, whethétivestigate whether these umklapp processes are important,
conventional bulk or layered. we treat the two limiting cases, eith@) that they can be

It is important to note that when the quasiparticle dispercompletely neglected, dii) that they are equal in weight to
sions in the two superconductors are not identical, there is athe direct processes.
intrinsic impedance mismatch between the two materials. In Fig. 5a), we sety<<1, the tunneling Hamiltonian limit.
Since in coherent tunneling, the wave vector parallel to then this case, we included the umklapp processes with the
junction is preserved exactly, if for some wave vectors thesame weighting as for direct tunneling processes within the
Fermi surfaces in the two half spaces are not identical, it igirst BZ on each side of the twist junction. Preliminary ver-
not possible for the tunneling at those places in the BZ to b&ions of Fig. %a) with slightly different parameters were
elastic. That is, one cannot preserve both the momenta arnstesented earliéf. For comparison, in Fig.(®), we used the
the energy. The result of this impedance mismatch is that theame parameters as in Figah but the umklapp processes
amplitude of the coherent tunneling, and hence the criticalvere completely excluded. We note that for this quasiparticle
current, is reduced from what it would be if this impedancedispersion, not very much of the intersection of the Fermi
mismatch did not occur. This impedance mismatch shouldurfaces is excluded by neglecting the umklapp processes for
actually occur in coherent tunneling between all inequivalent twisted junction. In addition, in Fig.(6), we presented our
superconductors. For example, in tunneling between Nb angsults fory=1, including the umklapp processes. We note
Pb, the Fermi surfaces, which are both three-dimensional ithat comparing these results with those of Figp)5the main
nature, are not identical, and some amount of coherent turttifferences occur for the larget, values, especiallyd,
neling would be suppressed by this effect. The amount of the- 100 meV. Otherwise, for small,, there is very little dif-
suppression ought to depend strongly upon the particulsfierence between them.
crystal surfaces studied at the junction location. In addition, we note that the main differences between the
dy2_,2-wave and extendeskwavel (o) results appear for
¢o close to 45°. As¢po—45°, 1.(¢g)/1:(0)—0 for the
d-wave OP, whereas for the extendetrave OP,

We now consider the case of purely coherefaixis tun-  1.(¢q)/1.(0) remains finite and flattens out, becoming only
neling between identical layered superconductors twisted aweakly dependent og,. Note that for Fermi surface FS2,
angleg, about thec axis with respect to each othefthisis  even the isotropicswave OP leads to an anisotropic

VI. c-AXIS TWIST JUNCTIONS
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FIG. 5. Plots ofl .(¢)/1:(0) atT/T.=0.5 for c-axis twist junc-
tions between layered superconductors with FS2 and ORss df,
and extended-wave symmetry, forJ,=25,50,100 meV.(a vy

<1, including umklapp processeé) y<<1, without umklapp pro-
cesses(c) y=1 with umklapp.

I(¢0)/1(0), for each of thel, values shown, reflecting the
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FIG. 6. Plots ofl .(¢)/1.(0) atT/T,=0.5 andy<<1 with um-
klapp for c-axis twist junctions between layered superconductors
with  FS2 and J(k,k")=J¢(k)e(K"), J,,(kﬂ,k,?)=\],7§o2(k,7),
where ¢(k)=|coska)—coska)|, ky=k and k. =k’, J,
=25,50,200 meV and-, d-, and extended-wave OP symmetry.

greatest impedance mismatch occurring dgrfar from 0°,
90°.

In Fig. 6, we again plottedl.(¢¢)/1.(0) atT/T.=0.5 for
c-axis twist junctions between optimally doped samples with
Fermi surface FS2 in the tunneling Hamiltonian liny#< 1,
including the umklapp processes. But, we now used the
wave-vector-dependent coherent interlayer tunneling similar
to that suggested by Liechtensteihal® We note that this
wave-vector-dependent interlayer tunneling gives rise to a
stronger¢, dependence df, than does the constant, wave-
vector-independent tunneling model. In addition, for this
model, the extended-and d-wave OP’s give rise to nearly
identicall ;( ¢q)/1:(0) curves, except foh, near to 45°, of

course, wheré.(¢y) — 0 for thed-wave case, but not for the
other two OP’s.
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FIG. 7. Plots ofl .(¢g)/1.(0) atT/T,=0.5 andy<<1 with um-
impedance mismatch across the twist junction. The greategtapp for c-axis twist junctions of layered superconductors with
¢, variation occurs for the smalledt, values, as the quasi- Fs1 withJ, =100 meV, ands-, d-, and extended-wave OP sym-
particle dispersions are the most two dimensional, with thenetry.
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1 = . ‘ Such surface states were first investigated for supercon-
I AT T~ ductors in the case of a vacuum interfdcEhen, the role of
— ‘\,R,\ el o ] surface states upon the coherent Josephson tunneling be-
0.8 i \ :x\ ------ P tween layered superconductors was investigated within the
— \\\’Q\\\x\ — tunneling Hamiltonian limif Our present results comprise a
o [ NAN el T T calculation of the strong coherent Josephson tunneling be-
~, 06 o swave %\ Temede-- .
- N tween two superconductors which properly takes account of
= x extended-s *. N . T
~ | A d-wave ] the surfaces states. The earlier results of “Tihich were
£ 04 y<<1 FS3 \A 1 claimed_ to give the correct results_for this problem, are com-
-° TT =05 S\ pletely incorrect. In those calculations, the quasiparticle dis-
I \ persions were not of the proper layered, tight-binding form,
0.2 —— 50 q and the approximations used were not correct in any limit.
I .- 95 R Unfortunately, the incorrect TK results were recently used by
ol 3 Rae, rendering his calculations inaccurate at best.
‘ — ' - Our results also apply to the case of tunneling between
0 10 20 30 40 e g

d two superconductors in other orientations. For instance, in
¢o (deg) the case of an isotropic bulk superconductor, the surface
states present along the sides of a junction normal tacthe
axis are precisely the same as that along the sides of a junc-
tion in another orientation. Thus, the calculations done by
others, including T for the Josephson tunneling within the

In Fig. 7, we plottedl (¢o)/1(0) at T/T.=0.5 in the ab plane of layered ;uperconductors, do. pot cqrrectly take
tunneling Hamiltonian limit §/<1) for c-axis twist junctions ~these surface states into account. In addition, since they al-
between heavily underdoped samples with Fermi surfac¥/@ys assume a circular Fermi surface cross sedsonilar
FS1, including umklapp processes, and kdptfixed at to FS3 in Fig. 2, all effects of impedance mismatching
100 meV. Although curves are shown for each of the thredresent in our investigation of theaxis twist junctions are
OP symmetries studied, for this quasiparticle dispersion, it iieglected. As shown in Sec. VI, such effects can be very
difficult to distinguish them, as thk.(¢o)/1.(0) values all ~ strong, especially when the OP is highly anisotropic.
either vanish(for the d-wave OB or become very small for Although we have not introduced the effects of incoherent
Po~45°. c-axis tunneling, we found that coherent tunneling between

Finally, in Fig. 8, we presented plots &f(#¢)/1.(0) at  two superconductors that are not precisely the same gives
T/T.=0.5 in the tunneling Hamiltonian limit ¥<1) for  rise to strong impedance mismatch effects. For coherent tun-
c-axis twist junctions between heavily overdoped samplesieling between identical layered superconductors with non-
with Fermi surface FS3. Results far,=25,50,100 meV are cylindrical Fermi surfaces twisted about theaxis with re-
shown. In this case, there is very little impedance mismatcispect to each other, the impedance mismatch effects are
for the isotropics-wave OP, since the rotation induced by the strong. Even when the OP is isotropic, one expects a strong
twist junction nearly maps the Fermi surface onto itself. Ondwist angle¢, dependence of the Josephson critical current.
of these curvegthe swave OP curve withll, =100 meV) is  Although umklapp processes are present in tunneling be-
actually consistent with the data of let al,, although the tween superconductors twisted about thexis, they make
quasiparticle dispersion assumed is very metallic and threenly a very small correction to the actual critical current.
dimensional, completely inconsistent with that expected for We calculated the Josephson critical current accessis
BSCCO. Thes-wave curve with], =50 meV is only mar-  twist junctions, for OP’s of the isotropiswave, the tight-
ginally consistent with the data at best, and sheave curve  binding d,2_,>-wave cosfa)—cosk.a), and the tight-
with smaller J, values can be ruled out. Similarly, the binding ‘“extendeds-wave” {[coska)—coska)’+ e}
extendeds and especially the-wave curves are all incon- forms. We studied the cases of relative weak tunnelipg (
sistent with the experimental data. <1) and strong tunnelingy=1), for variousc-axis disper-
sion bandwidths. Except for the simple case of an isotropic
OP on a circular Fermi surfadakin to FS3, we conclude
that coherent tunneling cannot possibly explain the data of Li

We calculated the Josephson current deaxis coherent et al® Moreover, since thel,2_,2-wave OP cannot possibly
tunneling between two layered superconductors exactly. Wét the data of Liet al. under any circumstances, we conclude
assumed the intralayer quasiparticle dispersion of the tightstrongly that the OP is nat wave near tdl';. Since there is
binding form, Eq.(15). Since the parameters in this model widespread agreement that the Fermi surface of BSCCO is
are arbitrary, our results also apply to the cases in which onenlikely to have a circular cross-section, our calculations
or both of the superconductors is a conventional, bulk matethus support the contention of kt al. that thec-axis tunnel-
rial. In these cases, one simply lets one or both of ihe ing intrinsic in BSCCO must be largely incoherém brief
—J,—. For y#1, the tunneling properties across the discussion of the role of incoherent tunneling has been pre-
junction are different than the intrinsic tunneling betweensented, supporting this arguméfAtA more thorough treat-
adjacent layers far from the junction, and the role of surfacenent of the role of incoherent tunneling will be discussed in
states on the sides of the junction becomes important. detail elsewheré?

FIG. 8. Plots ofl .(¢¢)/1(0) atT/T,=0.5 andy<<1 with um-
klapp for c-axis twist junctions of layered superconductors with
FS3 and withs-, d-, and extended-wave OP symmetry.

VIl. CONCLUSIONS
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ENG-38. Imn=T mn gm1 > = 73050 (A10)
APPENDIX: EXACT SOLUTIONS FOR GREEN'S which is easily solved foggn by settingm=0, yielding
FUNCTIONS IN THE LAYERS 3 1
L
To obtain the elementg,,, of the bulk tight-binding Irn=Gm (gml 5T 1+981§7'3 Gon-
Green's-function matrixj, we can first Fourier series trans- (A11)

form in the layer index, lettin L ) )
Y g Similarly, for theU half space defined byn,n=1, we find

) fw/s sdk, i ,
gmn(liaw) /s 2 € n: :ZS(I I “)]g (k1k21w)'

Equation(1) can then be solved algebraically to give

u Ju o U
1+g10?7'3 Gin-
(A12)

g#m:g#m (gmo 2

After some straightforward algebra, one finds for each
iw+A, 7+ E,73 half space

GT'(K,Kkyy0)=——F 5o (A2)
Z W8P E, 7 In e b1 e e 6 ryal
- T3= = +(€,73—0,72)q
where the quasiparticle dispersion Imng 73 Imn=Bmn™ (€573 05 72)Amn
£,(K,ky) = £o,(K)—J,co8k,s. (A3) =bJ . +al, 7 (A13)

For notational simplicity in the following, we shall omit the Where
k and o dependencies of the various functions.

Performing the integral in EqLA1) and multiplying by a” =1(X’7+—X7'_) (A14)
(3,/2)75 on the right, we write mn noamn

3 and
r?’m_yl7-3:Br?’m+(e7yT3_5nTZ)ar¥m 1
bin=5 Otin+ Xihn) (A15)
=Bl +al. 7, (A4)
Bma® emn for »=L,U. Forn=m=<0, we have
where
I N —exgd Fif (n—1)]sin 6, +(m— 1)]
=(bmtin— Prhn)12, (A5) mn Sin( 6 +)
X (A16)
— 7 7
Brn=($mn+ émn)/2, (A6) For 1=sms=n,
and =10y, n)sin( 0 )
. exp(xify«n)si ~m
. . YU = v & (A17)
nt_ilexp(ilani|n—m|) a7 mn sin(6y+)
mn 2sin(6,.) ’ (A7)

To allow for different OP phases in the two sides of the
with junction, we introduce a phase factor multiplying the order
parameter in the left hand side, letting
é0,xiQ2,
Coiani):J—n' (A8) s.=|d.exdi(pL—du)]. (A18)
: . T : The functiondy thus does not include such a phase factor.
The parametey, is defined to have a positive imaginary So far, we have found expressions for the two distinct half

part, andd,,  is defined to have negative imaginary part. For , . . .
convenience, we have defined, =w2t[A |7 e space Green’s functions, which are electronically uncoupled
7 7 = from each other, since no quasiparticle propagation from one

=wlQ, 2 and 5,=A,/Q,,. For comparison with previous half space to the other has yet been introduced. We thus
notatlon we then wrlte _ " _
couple them together via the local perturbati@mwith matrix
J elements given by E(5).
expif, )= ?”E (A9) The exact solution to this problem of coupled half spaces
then yields the full Green's-function matri®, with matrix
where= , is given by Eq.(8). elements5,,,. In theL half spacen,m=0, theG,,, satisfy

7
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Ji _ _
Gmn? T3:§h1n+ ya[FnO[(a:[LJl) 1 75[60] 15[6n :
(A19)

Now the gap equation, Eq7) in Sec. Il can be found
from G,,,. On theL side of the junction, we then ne&gh,.
From Eq.(A19) we find that the exact Green'’s function at
the interface and in the lower superconductor is

I O~ Ylexpioy. +i6 )X (gt !
0075 3= D )
(A20)
where
D=1+ y?lexpify,+if )|
—2y{le eyt dydL.cod ¢ — dy) JALAL
+ByB.}, (A21)
A,=[expif,,)—exp—id, )]/2 (A22)
and
B,=[expif,,)+exp—if,_)]/2. (A23)

Then, the trace in Eq7) can be evaluated by first multi-
plying Eg. (A20) by 2753/J, on the right side, leading to

—2i
Tr{ (11 +i75)Gool = 7= [ALSL+ y]exp(i 6.+ )[*PAydy].
3D

(A24)
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This then leads to Eq9) in the text.

In order to calculate the Josephson tunneling current, we
need to findGy; and G,y explicitly. Solving for these func-
tions yields the exact results

J
Gor57s=705d (950 '~ 705l * (A25)
and
J
GlOE T3= 7[(6?1)71_ 75[60]716[60- (A26)

Combining and evaluating the trace, we find

5|60l AUA
I=4eyT; > %sin@:u—q). (A27)

From this expression, it is elementary to obtain EB) of
the text.
In the tunneling Hamiltonian limity<1, this reduces to

I=—4eyT; § |8.|| SulImlexpli 6y )]

XIm[exp(i 6y ) Isin(¢y— o). (A28)

This result agrees with the tunneling Hamiltonian result for
the coherent tunneling limit, as expected.
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