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Theory of coherent c-axis Josephson tunneling between layered superconductors
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We calculate exactly the Josephson current forc-axis coherent tunneling between two layered supercon-
ductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results
also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects
of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling
Hamiltonian. Our results are also correct for strong tunneling. However, thec-axis tunneling expressions of
Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider thec-axis coherent
critical current between two identical layered superconductors twisted an anglef0 about thec axis with respect
to each other. Regardless of the order-parameter symmetry, our coherent tunneling results using a tight-binding
intralayer quasiparticle dispersion are inconsistent with the recentc-axis twist bicrystal Bi2Sr2CaCu2O81d

twist junction experiments of Liet al. @Li et al., Phys. Rev. Lett.83, 4160~1999!#.
vit
tw
rm
s
u
n
at
a

rm

io
c

-
ct

e
nc
a
po
re
e
tie
pe
on

un
d
ly
o
B

fa
ca
rr
ro
su

uct-
cal
ne
her-

ll of
rent,
’s

ons
ce

ari-
we
t-
ipar-

in
ions
ped,

at
ions

nd
eral
I. INTRODUCTION

One of the most interesting features of superconducti
is the Josephson effect. This occurs when flat surfaces of
superconductors are brought together, forming a unifo
junction. A supercurrent flows without a voltage drop acro
the junction, provided that the properties of the supercond
tivity in the two superconductors are compatible. For co
ventional superconductors in which both the normal st
and superconducting properties are isotropic, it does not m
ter which particular crystal surfaces are employed to fo
the junction.

However, for anisotropic superconductors, the junct
orientation can be very important. Even if the supercondu
ing order parameter~OP! is isotropic, the intrinsic aniso
tropic normal-state properties of a layered supercondu
make the properties of Josephson junctions involving one
more layered superconductors different from those form
from two isotropic materials. For example, Josephson ju
tions between an isotropic, conventional superconductor
a layered superconductor can differ greatly, depending u
whether the junction is on the top or an edge of the laye
superconductor. This is especially true if the layered sup
conductor has an anisotropic OP. In addition, the proper
of Josephson junctions formed between two layered su
conductors depend strongly upon the junction orientati
especially if the OP’s are anisotropic.

In this paper, we consider the case of a Josephson j
tion formed between two layered superconductors stacke
top of each other along thec axis. Our results can be easi
modified to include the related problems in which one
both of the superconductors is bulk, rather than layered.
treating the two superconductors as layered, the sur
states that form near the junction appear naturally in the
culation. These surface states affect the Josephson cu
results, even when the limit of tunneling between two isot
pic superconductors is taken. With one exception, these
PRB 620163-1829/2000/62~1!/661~10!/$15.00
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face states have previously been neglected.1 In addition,
when the quasiparticle dispersions of the two supercond
ors are different, such as for different materials or identi
tight-binding materials that are rotated with respect to o
another, an impedance mismatch occurs, reducing the co
ent critical current.

We consider the Josephson tunneling along thec axis be-
tween two distinct layered superconductors, assuming a
the tunneling processes can be taken to be purely cohe
as pictured in Fig. 1. In Sec. II, we solve for the Green
function in each layer, keeping the quasiparticle dispersi
and OP symmetries fully general. The effects of surfa
states are explicitly included in the calculations, and the v
ous tunneling strengths are included exactly. In Sec. III,
derive the temperature~T! dependence of the superconduc
ing gaps under three specific assumptions about the quas
ticle band structures and three different OP symmetries
each layered superconductor. These quasiparticle dispers
are chosen to model the experimental cases of underdo
optimally doped, and overdoped Bi2Sr2CaCu2O81d
~BSCCO!, respectively, with respective Fermi surfaces th
we denote as FS1, FS2, and FS3. However, the dispers

FIG. 1. Sketch of the junction under study. Layer numbers a
interlayer tunneling strengths are indicated, along with the gen
forms for the bare quasiparticle dispersions.
661 ©2000 The American Physical Society
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662 PRB 62G. B. ARNOLD AND R. A. KLEMM
for overdoped samples can also be made to fit the th
dimensional free-quasiparticle dispersions of conventio
bulk superconductors. The OP symmetries chosen are
isotropic s-wave and the tight-bindingdx22y2-wave and
‘‘extended-s’’-wave OP functions, respectively. In Sec. IV
we solve for the gaps for the symmetric case of two ident
superconductors. Then, in Sec. V, we calculate the Jos
son tunneling current across the two layered supercond
ors, assuming that the coupling across the junction is
stronger than the intrinsic coupling within each layered
perconductor. Our final results for the tunneling current c
be used to calculate thec-axis Josephson critical currentI c ,
and can be generalized to the standard case of two b
conventional superconductors, for which the usually
glected surface states are explicitly included. Then, in S
VI, we present detailedI c(f0) results for coherentc-axis
twist junctions between identical coherent layered superc
ductors. Finally, we discuss our results in Sec. VII.

II. MODEL AND PROCEDURE FOR SOLVING IT

We assume that two layered superconductors are pla
with the upper~U! one on top of the lower (L), and that the
contact between them is sufficiently strong that quasipart
tunneling between them occurs. For simplicity, we assu
each superconductor consists ofN@1 layers separated a
equal distances apart. We index the layers withn,m, where
2N11<n,m<N. In the U half space, 1<n,m<N, and in
the L half space,2N11<n,m<0, as pictured in Fig. 1.
Within each layer in theh5L,U half space, the quasipart
cles propagate with dispersionj0h(k) and have the gap func
tion Dh(k), where k5(kx ,ky) is a two-dimensional wave
vector. We assumeDh is independent of layer index. Thi
assumption will be checked in Sec. III, and is found to
usually valid. Between adjacent layers in each half space
quasiparticles tunnel with matrix elementJh/2. At the junc-
tion between layers 0 and 1 where theL andU half spaces
meet, the quasiparticles tunnel with matrix elementJ/2.
Since we are not interested in spin-dependent effects,
assume the quasiparticles are spinless fermions, only ta
account of the spin values in counting the number of qu
particles. We setkB5c5\51.

We shall focus on the general procedure for evaluatingĜ.
The details are given in the Appendix. In order to calcul
the Josephson current across the junction between the
half spaces, we first find the form of the finite temperatu
Green’s-functions matrixĜ. This matrix is the product of
two matrices, one of rank 2N, with elements indexed by th
layersn,m, and the other the Nambu matrix of rank 2, wi
elementsG, F, 2G†, andF† in the usual cyclic order begin
ning with the upper left-hand position. This Nambu matrix
represented by the Pauli matricest i for i 51,2,3, plus the
rank two identity matrixt0. We letv represent the Matsub
ara frequencies.

We first begin by constructing the Green’s-function m
trix Ĝ for a bulk layered superconductor. We then add
perturbation with the particular form that decouples t
Green’s functions in each half space from each other.
resulting Green’s functionsĝh of two single half spaces hav
parameters appropriate for each half space. We then co
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these two half space Green’s functions together.
The Green’s function matrixĜh for a bulk superconducto

of type h satisfies

@ iv2j0ht32Dht11Ĵht3#Ĝh51̂, ~1!

where the layer space matrixĴh has the elements

J mn
h 5

Jh

2
~dm,n111dm,n21!. ~2!

Terms not containing a Pauli matrix are implicitly propo
tional tot0. In a bulk layered superconductor, it is then po
sible to Fourier transform this expression, as we did in
Appendix, with the result differing only from that of a bulk
three-dimensional superconductor by the corrugated cylin
form of the quasiparticle dispersion,jh(k,kz)5j0h(k)
2Jhcos(kzs). However, for a half space, such Fourier tran
formation is not permissible, and so we must keep the la
indicesn,m explicitly.

To constructĝh, we first remove the tunneling matri
elements across the junction between the two supercond
ors by adding the perturbationV̂ht3, with elements

Vmn
h 52

Jh

2
~dm0dn11dm1dn0!, ~3!

taking account of the restrictionsn,m<0 for h5L and
n,m>1 for h5U. The perturbationV̂h ‘‘cuts’’ the bonds
connecting the two identical half spaces which terminate
layers 0 and 1.2 We then solve for the elementsgmn

h of ĝh

satisfying

ĝh5Ĝh1ĜhV̂ht3ĝh. ~4!

Solutions for eachĝh are given in the Appendix.
So far, we have found the expressions for two distinct h

space Green’s functions, which are electronically uncoup
from each other, since no quasiparticle propagation from
half space to the other has yet been introduced. We t
coupleĝU and ĝL together via the local perturbationĴ with
matrix elements

Jmn5
J

2
~dm0dn11dm1dn0!. ~5!

For tunneling strength comparisons, we then let

g5
J2

JLJU
. ~6!

The exact solution to this problem of coupled half spac
then yields the full Green’s function matrixĜ, with matrix
elementsGmn , which are given in the Appendix.

III. GAP EQUATION

In order to obtain the temperature dependence of the
sephson critical current, we need to solve a gap equation
the temperature dependence of the gap. For this we ma
simple assumption of a BCS-like equation:
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Dhn~k,T!5
T

2 (
v

(
k8

lh~k,k8!Tr@~t11 i t2!Gnn~k8,v!#.

~7!

This layer-dependent gap function is in contradiction to
layer-independent gap function used to calculate the Gre
functions. This must therefore be regarded as the first cor
tion to the assumed constant gap, which determines
Green’s function on the right-hand side of this equation. I
ally, this should be a small correction, if our initial assum
tion is justifiable.

In the Appendix, we found an expression forG00(JL/2)t3.
Using this result, letting

Jh5
2

j0h1 iVh1@~j0h1 iVh!22Jh
2 #1/2, ~8!

where Vh5Av21uDhu2, and definingJh85Re(Jh) and
Jh95Im(Jh), the equation for the gap at the interface in t
lower superconductor is

DL0~k,T!5T(
v

(
k8

lL~k,k8!

D~k8,v!
f ~k8,v!, ~9!

where

f 5
DLJL9

VL
1

JU9 uJLu2J2DU

4VU
, ~10!

D5
J2

2 F S v21DLDUcos~fL2fU!

VUVL
DJU9 JL92JU8 JL8 G11

1
J4

16
uJUu2uJLu2, ~11!

and fL2fU is the phase difference of the OP’s across
junction.

As a quick check of this result, we takeL5U andg51,
and find that this reduces to

DL~k,T!5T(
v

(
k8

lL~k,k8!
DL~k8,v!

VL~k8,v!

3Im@~†j0L~k8!1 iVL~k8,v!#22JL
2!21/2

‡,

~12!

in agreement with the result for a homogeneous cohe
layered superconductor.

Note that in Eq.~9!, the proximity effect couples the ga
function at the interface inL to the gap function inU. This
disappears in the limitg!1, whereinD0(k,T) becomes the
gap function at the surface ofL:

D~k,T!L,sur f ace5T(
v

(
k8

lL~k,k8!
DL~k8,v!JL9~k8,v!

VL~k8,v!
,

~13!

in agreement with previous results.3

The gap functions which go into the right-hand side
Eq. ~9! are the spatially constant~‘‘zeroth order’’! bulk gap
functions, obtained from Eq.~12! for L, and an analogous
equation for U. We use these to calculateDh(k,T) and
e
’s
c-
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D(k,T)h,sur f ace for h5L,U, and compare the magnitudes
these to the bulk results. Ideally, the difference in mag
tudes between the bulk gaps and the interface gaps shou
small. In the following section, we will investigate this fo
the special case of a symmetric junction.

IV. GAPS FOR THE SYMMETRIC CASE

In this section, we assume thatL5U and solve for the
bulk gap, and the gap at the interface withgÞ1. To find the
bulk gap, we fixTc at 9 meV, and solve Eq.~12! for the
temperature-dependent gap. We assume each supercond
has a single OP, which for simplicity, we limit tos, dx22y2,
or extended-s-wave symmetry. We index these OP’s byz
5s,d,es. For each OP, we take the pairing interaction on
h5L,U superconductor to have the form

lzh~k,k8!5lzhCz~k!Cz~k8!, ~14!

where Cs(k)51, Cd(k)5cos(kxa)2cos(kya), and Ces(k)
5$@cos(kxa)2cos(kya)#21e2%1/2, wheree!1.

By fixing Tc , we determine the value oflzh . These then
determine theT dependence of thes-wave ord-wave gaps,
respectively, via Eq.~12!, and the extended-s-wave gap with
e→0 has an identicalT dependence to that of thed-wave
gap. We take the in-plane dispersion to be

jh0~k!5Jh2Jhuu@cos~kxa!1cos~kya!

2n cos~kxa!cos~kya!2m#, ~15!

where the part proportional toJhuu is chosen to approximate
the in-plane dispersion relation for BSCCO. The value ofJhuu
is thus taken to be 500 meV. We choose three sets of par
etersn andm, which determine the details of the quasipar
cle dispersion, and the resulting shape of the tw
dimensional Fermi surface, pictured in Fig. 2. For a heav
underdoped sample, we choosem521.3, n51.3, with
Fermi surface denoted FS1 in Fig. 2. For the tight-bind
dispersion appropriate for an optimally doped sample
BSCCO, we taken51.3 andm50.6. This dispersion has th
Fermi surface denoted FS2 in Fig. 2. In addition, for
heavily overdoped sample, we choosen50 and m51.0,
with the Fermi surface FS3 in Fig. 2. The only remaini
free parameter is the value ofJh/2, the interlayer overlap
integral. We therefore perform our calculations for three d

FIG. 2. Fermi surfaces studied for tunneling between two l
ered superconductors. Dashed curves: underdoped FS1. Solid:
mally doped FS2. Dotted: overdoped FS3.
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664 PRB 62G. B. ARNOLD AND R. A. KLEMM
ferent values: Jh525,50,100 meV. In each case,Jh
525 meV gives results which closely approximate the we
hopping limit Jh→0, as has been verified by explicitl
checking our results withJh51 meV. However, for that
small an interlayer hopping parameter, one needs to u
much finer grid for the Brillouin-zone integration, in order
obtain sufficient accuracy.

For each OP symmetryz, we calculateDz(T) from the
symmetric gap equation. We note thatDes(T)5Dd(T) for
Tcd5Tces, which occurs forles5ld . In the caseg51, the
combined junction of two layered superconductors is just
same as a single layered superconductor, as long as the
halves are not twisted with respect to each other. Howe
for g,1, the central junction is different than the intrins
ones in each layered superconductor. In this case, sur
states can arise, and the gapDz can in principle depend upo
the layer index. This would be particularly true in the case
two incompatible OP components, which has been con
ered in detail for a cylindrical Fermi surface previously.4

For the Fermi surface FS2 and only one OP componen
g!1 andJh50, then each layer would be completely is
lated from each other, and the gap would not depend u
the layer index, reducing to the two-dimensional mean-fi
value of independent layers. Hence the question of whe
the gap depends upon the layer index can be more e
answered by checking whether the gap depends upon
intrinsic interlayer hopping strengthJh and on the imped-
ance mismatch parameterg. In Fig. 3~a!, we plottedDz(0)
for z5s,d and Jh51,25,50,100 meV, as functions ofg (0
<g<1), for the optimally doped Fermi surface FS2, eva
ated withn51.3 andm50.6, pictured in Fig. 2. Although
there is a weakg dependence ofDz(0) for Jh5100 meV, all
other cases have essentially no significantg dependence, so
that the gap values are essentially the same as for inde
dent layers. The slightly greaterg dependence ofDz(0) for
Jh5100 meV apparently arises because the Fermi ene
EF is not much further thanJh from the top of the quasipar
ticle band. In Ref. 3, it was also found that for a free parti
dispersion within the layers that the gap at the surfaceg
50) was thesameas that in the bulk (g51). Thus our
results for a finite in-plane bandwidth closely approxima
that infinite bandwidth limit.

We also studiedDs(0) as a function ofJh at g!1 for
Fermi surfaces FS1 and FS2, and plotted the results in
3~b!. Again, we found very littleJh dependence to the
s-wave gap magnitudes forg!1, so that it is generally safe
to take the gap to be the bulk value calculated far from
central junction location. We also found thatDz(T)/Dz(0)
for z5s,d with Fermi surface FS2 were rather independ
of Jh for Jh51,25,50,100 meV, each of the curves differin
only slightly from the ordinary BCS curves forD(T).

V. JOSEPHSON TUNNELING CURRENT

The tunneling current across the junction is given by

I 52 ieJ(
k

^c0
†~k!c1~k!2c1

†~k!c0~k!&, ~16!

where theci(k),ci
†(k) are creation and annihilation operato

for electrons with wavevectork in the i th layer. The angular
k
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brackets indicate a thermodynamic equilibrium average
terms of the full space Green’s functions, this is

I 5 ieJT(
k

(
v

TrS 1

2
~t01t3!~G102G01! D , ~17!

where we have suppressed the (k,v) dependence of the
Green’s functions.

In the Appendix, the matricesG01 andG10 are given, and
the trace evaluated. We find

I 5eT(
v

(
k

J2DLDUJL9JU9

VLVUD
sin~fL2fU!, ~18!

whereJh is given by Eq.~8! andD is given by Eq.~11!.
The equations derived above relate the supercur

through the interface between two layered superconduc
to the phase difference across this interface. We can find
critical currentI c

J of this interface by varying the phase di
ference until the maximum current is obtained. We can v
the value ofg, which we term ‘‘the impedance match pa
rameter,’’ to obtainI c(g). We can also varyT to obtain
I c(T). Finally, we can investigate all of the above fors- and
d-wave and extended-s-wave gaps, and mixtures thereof.

FIG. 3. ~a! s- and d-wave superconducting gap magnitudes
T50 as functions ofg for FS2 with Jh51,25,50,100 meV.~b!
Plots of theT50 s-wave gap magnitudes atg!1 for Fermi sur-
faces FS1 and FS2, as a function ofJh in meV.



ly
es

ya

is
d
su
tio

ct

in

. A
-
co

th
i

n
nt

Fo
-
.

r
in

r
io

he

r
r
p
te

f-

a
on

OP

PRB 62 665THEORY OF COHERENTc-AXIS JOSEPHSON . . .
To orderJ2, we can setD→1, andI c
J obtained from Eq.

~18! reduces precisely to our previous result, Eq.~8! of Ref.
5, derived using the tunneling Hamiltonian, provided on
that one neglects the incoherent tunneling, and replacJ
with 2T0 in the coherent tunneling part.5 However, this result
differs greatly from that found by Tanaka and Kashiwa
~TK!.1 TK did not correctly derive the coherentc-axis tun-
neling between two layered superconductors, but instead
tempted to approximate the tight-binding quasiparticle d
persion in thec-axis direction by treating the corrugate
Fermi surface as a narrow belt around a spherical Fermi
face. This procedure leads to the uncontrolled approxima
of dividing zero by zero. Thus, Eq.~100! of TK, obtained in
the weak tunneling limit of their calculation, is not corre
for coherent tunneling. Instead, it happens~from compensat-
ing errors! to be correct for purely incoherent tunneling, as
the model of Ambegaokar-Baratoff~AB!.6 However, the
subsequent Eq.~101! of TK is still not quite correct for any
type of tunneling, and Eqs.~102!–~104! of TK are com-
pletely wrong for both incoherent and coherent tunneling
modified version of Eq.~101!, correct for incoherent tunnel
ing between a conventional and an unconventional super
ductor, was used appropriately in fits toc-axis tunneling be-
tween Pb and BSCCO.7

In this notation, we can also investigate the case of
coherent tunneling matrix elements depending upon the
plane wave vectors,Jh(kh ,kh)5Jhw2(kh), and J(kL ,kU)
5Jw(kL)w(kU), wherew(k)5ucos(kxa)2cos(kya)u, as sug-
gested from band-structure calculations of Liechtensteinet
al.8 This form, along with the wave-vector independe
model, is useful for studying the coherent critical curre
across ac-axis twist junction. We note thatg(kL ,kU)5g is
independent of thekh .

As long asg<1, the overall critical currentI c will be
given by the aboveI c

J . For both strongg51 and weakg
!1 coupling with Fermi surface FS2 andJh
51,25,50,1000 meV, we calculatedI c(T), normalized to its
T50 value, for each of the OP symmetries considered.
g!1, the s-wave I c(T)/I c(0) curves are almost indistin
guishable from the standardAB curve, as for Fig. 2 of Ref. 5
The other results are plotted in Fig. 4. Note that thed-wave
and extended-s-wave curves are identical, but they diffe
substantially from thes-wave results. However, as shown
Fig. 4~a!, the d-wave ~and extended-s-wave! I c(T)/I c(0)
curves are strongly dependent uponJh , in a nonmonotonic
fashion, unlike Fig. 3 of Ref. 5. Those curves in Ref. 5 we
evaluated using the free-particle quasiparticle dispers
within the layers. In addition, in Figs. 4~b! and~c!, we plot-
ted I c(T)/I c(0) for the strong coupling caseg51 for z
5s, d, respectively. In this case, the nonmonotonicity of t
d-wave ~and extended-s-wave! case is similar to that in the
g!1 limit, but theJh variation ofI c(T)/I c(0) is stronger in
Fig. 4~c! for g51 than forg!1 in Fig. 4~a!. Similarly, a
much strongerJh variation of I c(T)/I c(0) is seen in Fig.
4~b! for g51 than for the~not pictured! BCS-like results
obtained withg!1.

We remark that Eq.~18! is a fully general expression fo
the c-axis tunneling between two layered superconducto
assuming that only one OP component exists in each su
conductor, and that all tunneling processes are comple
at-
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coherent. That is, theL andR superconductors can have di
ferent quasiparticle dispersions~both parallel and normal to
the junction!, different OP symmetries, and differentTc val-
ues. Thus Eq.~18! also describes the tunneling between
three-dimensional, conventional superconductor placed
the top of a layered superconductor with an unknown

FIG. 4. Plots of the normalized critical currentI c(T)/I c(0) for
superconductors with Fermi surface FS2 andJh

51,25,50,100 meV.~a! d wave and extended-s wave with g!1.
~b! s wave with g51. ~c! d wave and extended-s wave with g
51.
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symmetry. It also applies to the case of coherent tunne
between two three-dimensional superconductors. When
of the superconductors is a three-dimensional material,
simply modifies the quasiparticle dispersionjh(k,kz)
5j0h(k)2Jhcos(kzs) far from the junction, by settingJhuu
sufficiently large, andJh comparable toJhuu . Except for the
case of real-space pairing with a component normal to
junction, the fact that the pairing was assumed to take p
only within the layers is not important, since the layer ind
is dropped, so that the pairing strength is constant through
each superconductor. Thus a superconductor with an iso
pic, three-dimensional quasiparticle dispersion would h
jh(k,kz)5(k21kz

2)/(2m) far from the junction, wherem is
the quasiparticle effective mass. This form is obtained fr
Eq. ~2! by settingJhuu5(ma2)21 andJh5(ms2)21, and re-
quiring Jh ,Jhuu@eF . An anisotropic three-dimensional su
perconductor might have eitherJh or Jhuu different from
these values.

We remark additionally that for the two-dimension
tight-binding Fermi surfaces, one restricts the wave-vec
integration to the first Brillouin zone~BZ!, which for a te-
tragonal material has ukxu,ukyu<p/a. In the three-
dimensional limit, one can use the free-particle form for t
quasiparticle dispersion far from the junction, and remo
the BZ limits on the componentskx ,ky of the wave vectors
parallel to the junction. Note that one still does not integr
overkz , the wave vector normal to the junction, which is n
a good quantum number in the presence of the junct
Thus, even in the limit of Josephson tunneling between
conventional bulk superconductors, surface states
present, and affect the tunneling. Except for the tunne
Hamiltonian limit g!1, for which we had previously in-
cluded the effects of these surface states,5 our present calcu-
lation correctly includes the surface states in coherent
sephson tunneling between two superconductors, whe
conventional bulk or layered.

It is important to note that when the quasiparticle disp
sions in the two superconductors are not identical, there i
intrinsic impedance mismatch between the two materi
Since in coherent tunneling, the wave vector parallel to
junction is preserved exactly, if for some wave vectors
Fermi surfaces in the two half spaces are not identical,
not possible for the tunneling at those places in the BZ to
elastic. That is, one cannot preserve both the momenta
the energy. The result of this impedance mismatch is that
amplitude of the coherent tunneling, and hence the crit
current, is reduced from what it would be if this impedan
mismatch did not occur. This impedance mismatch sho
actually occur in coherent tunneling between all inequival
superconductors. For example, in tunneling between Nb
Pb, the Fermi surfaces, which are both three-dimensiona
nature, are not identical, and some amount of coherent
neling would be suppressed by this effect. The amount of
suppression ought to depend strongly upon the partic
crystal surfaces studied at the junction location.

VI. c-AXIS TWIST JUNCTIONS

We now consider the case of purely coherentc-axis tun-
neling between identical layered superconductors twisted
anglef0 about thec axis with respect to each other.9 This is
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a special case of coherent tunneling between two differ
layered superconductors. However, the OP symmetry m
be the same on each superconductor, with the only ca
that the OP has to arise from the local pairing interaction,
~14!. The only difference is that the crystal orientation
rotated by6f0/2 in the two half spaces, and this leads
similarly rotated quasiparticle wave vectors. Thus, in the t
superconducting half spaces, we takekh5(kxh ,kyh), which
are rotated by6f0/2 for h5L,U, respectively. For any OP
symmetry, we thus havej0h(k)5j0(kh) and Dh(k)
5D(kh). Although for an isotropics-wave pairing interac-
tion, the twist orientation does not matter as far as the OPD
is concerned, a nonvanishingf0 still causes the quasiparticl
dispersions to be different in the two superconductors. T
leads to a strong impedance mismatch for allf0 values not
too close to 0°, 90°.

In Figs. 5–8, we have presented our results
I c(f0)/I c(0) at T/Tc50.5 for different values of the mate
rial parameters. In Fig. 5, we presented our results for
optimally doped tight-binding quasiparticle dispersion, E
~15!, in which m50.6, n51.3, and Juu5500 meV, with
Fermi surface FS2. We include curves for each of the th
OP symmetries, and forJh525,50,100 meV. For the
extended-s-wave OP, we sete50, so that the wave-vecto
dependence of the OP has theucos(kxa)2cos(kya)u form. Re-
sults for the extended-s-wave OP withe.0 are intermediate
to the extended-s ands-wave results shown.

In each case, there are both direct and umklapp tunne
processes. In the direct processes, a quasiparticle underg
tunneling across the twist junction has wave vectorskL and
kU both within the first BZ. However, for the case in whic
either the initial or the final wave vectors is outside of t
respective first BZ, umklapp processes can occur, due to
periodic nature of the quasiparticle dispersions assumed
investigate whether these umklapp processes are impor
we treat the two limiting cases, either~i! that they can be
completely neglected, or~ii ! that they are equal in weight to
the direct processes.

In Fig. 5~a!, we setg!1, the tunneling Hamiltonian limit.
In this case, we included the umklapp processes with
same weighting as for direct tunneling processes within
first BZ on each side of the twist junction. Preliminary ve
sions of Fig. 5~a! with slightly different parameters wer
presented earlier.10 For comparison, in Fig. 5~b!, we used the
same parameters as in Fig. 5~a!, but the umklapp processe
were completely excluded. We note that for this quasipart
dispersion, not very much of the intersection of the Fer
surfaces is excluded by neglecting the umklapp processe
a twisted junction. In addition, in Fig. 5~c!, we presented our
results forg51, including the umklapp processes. We no
that comparing these results with those of Fig. 5~b!, the main
differences occur for the largerJh values, especiallyJh
5100 meV. Otherwise, for smallJh , there is very little dif-
ference between them.

In addition, we note that the main differences between
dx22y2-wave and extended-s-wave I c(f0) results appear for
f0 close to 45°. Asf0→45°, I c(f0)/I c(0)→0 for the
d-wave OP, whereas for the extended-s-wave OP,
I c(f0)/I c(0) remains finite and flattens out, becoming on
weakly dependent onf0. Note that for Fermi surface FS2
even the isotropics-wave OP leads to an anisotrop
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I c(f0)/I c(0), for each of theJh values shown, reflecting th
impedance mismatch across the twist junction. The grea
f0 variation occurs for the smallestJh values, as the quasi
particle dispersions are the most two dimensional, with

FIG. 5. Plots ofI c(f0)/I c(0) atT/Tc50.5 forc-axis twist junc-
tions between layered superconductors with FS2 and OP’s ofs-, d-,
and extended-s-wave symmetry, forJh525,50,100 meV.~a! g
!1, including umklapp processes.~b! g!1, without umklapp pro-
cesses.~c! g51 with umklapp.
st

e

greatest impedance mismatch occurring forf0 far from 0°,
90°.

In Fig. 6, we again plottedI c(f0)/I c(0) at T/Tc50.5 for
c-axis twist junctions between optimally doped samples w
Fermi surface FS2 in the tunneling Hamiltonian limitg!1,
including the umklapp processes. But, we now used
wave-vector-dependent coherent interlayer tunneling sim
to that suggested by Liechtensteinet al.8 We note that this
wave-vector-dependent interlayer tunneling gives rise t
strongerf0 dependence ofI c than does the constant, wave
vector-independent tunneling model. In addition, for th
model, the extended-s and d-wave OP’s give rise to nearly
identical I c(f0)/I c(0) curves, except forf0 near to 45°, of
course, whereI c(f0)→0 for thed-wave case, but not for the
other two OP’s.

FIG. 6. Plots ofI c(f0)/I c(0) at T/Tc50.5 andg!1 with um-
klapp for c-axis twist junctions between layered superconduct
with FS2 and J(k,k8)5Jw(k)w(k8), Jh(kh ,kh)5Jhw2(kh),
where w(k)5ucos(kxa)2cos(kya)u, kU5k and kL5k8, Jh

525,50,200 meV ands-, d-, and extended-s-wave OP symmetry.

FIG. 7. Plots ofI c(f0)/I c(0) at T/Tc50.5 andg!1 with um-
klapp for c-axis twist junctions of layered superconductors w
FS1 withJh5100 meV, ands-, d-, and extended-s-wave OP sym-
metry.
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In Fig. 7, we plottedI c(f0)/I c(0) at T/Tc50.5 in the
tunneling Hamiltonian limit (g!1) for c-axis twist junctions
between heavily underdoped samples with Fermi surf
FS1, including umklapp processes, and keptJh fixed at
100 meV. Although curves are shown for each of the th
OP symmetries studied, for this quasiparticle dispersion,
difficult to distinguish them, as theI c(f0)/I c(0) values all
either vanish~for the d-wave OP! or become very small for
f0'45°.

Finally, in Fig. 8, we presented plots ofI c(f0)/I c(0) at
T/Tc50.5 in the tunneling Hamiltonian limit (g!1) for
c-axis twist junctions between heavily overdoped samp
with Fermi surface FS3. Results forJh525,50,100 meV are
shown. In this case, there is very little impedance misma
for the isotropics-wave OP, since the rotation induced by t
twist junction nearly maps the Fermi surface onto itself. O
of these curves~thes-wave OP curve withJh5100 meV) is
actually consistent with the data of Liet al., although the
quasiparticle dispersion assumed is very metallic and th
dimensional, completely inconsistent with that expected
BSCCO. Thes-wave curve withJh550 meV is only mar-
ginally consistent with the data at best, and thes-wave curve
with smaller Jh values can be ruled out. Similarly, th
extended-s and especially thed-wave curves are all incon
sistent with the experimental data.

VII. CONCLUSIONS

We calculated the Josephson current forc-axis coherent
tunneling between two layered superconductors exactly.
assumed the intralayer quasiparticle dispersion of the ti
binding form, Eq.~15!. Since the parameters in this mod
are arbitrary, our results also apply to the cases in which
or both of the superconductors is a conventional, bulk ma
rial. In these cases, one simply lets one or both of theJh
→Jhuu→`. For gÞ1, the tunneling properties across th
junction are different than the intrinsic tunneling betwe
adjacent layers far from the junction, and the role of surfa
states on the sides of the junction becomes important.

FIG. 8. Plots ofI c(f0)/I c(0) at T/Tc50.5 andg!1 with um-
klapp for c-axis twist junctions of layered superconductors w
FS3 and withs-, d-, and extended-s-wave OP symmetry.
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Such surface states were first investigated for superc
ductors in the case of a vacuum interface.3 Then, the role of
surface states upon the coherent Josephson tunneling
tween layered superconductors was investigated within
tunneling Hamiltonian limit.5 Our present results comprise
calculation of the strong coherent Josephson tunneling
tween two superconductors which properly takes accoun
the surfaces states. The earlier results of TK,1 which were
claimed to give the correct results for this problem, are co
pletely incorrect. In those calculations, the quasiparticle d
persions were not of the proper layered, tight-binding for
and the approximations used were not correct in any lim
Unfortunately, the incorrect TK results were recently used
Rae, rendering his calculations inaccurate at best.11

Our results also apply to the case of tunneling betwe
two superconductors in other orientations. For instance
the case of an isotropic bulk superconductor, the surf
states present along the sides of a junction normal to thc
axis are precisely the same as that along the sides of a j
tion in another orientation. Thus, the calculations done
others, including TK,1 for the Josephson tunneling within th
ab plane of layered superconductors, do not correctly ta
these surface states into account. In addition, since they
ways assume a circular Fermi surface cross section~similar
to FS3 in Fig. 2!, all effects of impedance mismatchin
present in our investigation of thec-axis twist junctions are
neglected. As shown in Sec. VI, such effects can be v
strong, especially when the OP is highly anisotropic.

Although we have not introduced the effects of incoher
c-axis tunneling, we found that coherent tunneling betwe
two superconductors that are not precisely the same g
rise to strong impedance mismatch effects. For coherent
neling between identical layered superconductors with n
cylindrical Fermi surfaces twisted about thec axis with re-
spect to each other, the impedance mismatch effects
strong. Even when the OP is isotropic, one expects a str
twist anglef0 dependence of the Josephson critical curre
Although umklapp processes are present in tunneling
tween superconductors twisted about thec axis, they make
only a very small correction to the actual critical current.

We calculated the Josephson critical current acrossc-axis
twist junctions, for OP’s of the isotropics-wave, the tight-
binding dx22y2-wave cos(kxa)2cos(kya), and the tight-
binding ‘‘extended-s-wave’’ $@cos(kxa)2cos(kya)#21e2%1/2

forms. We studied the cases of relative weak tunnelingg
!1) and strong tunneling (g51), for variousc-axis disper-
sion bandwidths. Except for the simple case of an isotro
OP on a circular Fermi surface~akin to FS3!, we conclude
that coherent tunneling cannot possibly explain the data o
et al.9 Moreover, since thedx22y2-wave OP cannot possibly
fit the data of Liet al.under any circumstances, we conclu
strongly that the OP is notd wave near toTc . Since there is
widespread agreement that the Fermi surface of BSCCO
unlikely to have a circular cross-section, our calculatio
thus support the contention of Liet al. that thec-axis tunnel-
ing intrinsic in BSCCO must be largely incoherent.9 A brief
discussion of the role of incoherent tunneling has been p
sented, supporting this argument.10 A more thorough treat-
ment of the role of incoherent tunneling will be discussed
detail elsewhere.12
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APPENDIX: EXACT SOLUTIONS FOR GREEN’S
FUNCTIONS IN THE LAYERS

To obtain the elementsGmn of the bulk tight-binding
Green’s-function matrixĜ, we can first Fourier series trans
form in the layer index, letting

G mn
h ~k,v!5E

2p/s

p/s s dkz

2p
exp@ ikzs~m2n!#G h~k,kz ,v!.

~A1!

Equation~1! can then be solved algebraically to give

G h~k,kz ,v!52
iv1Dht11jht3

v21uDhu21jh
2 , ~A2!

where the quasiparticle dispersion

jh~k,kz!5j0h~k!2Jhcoskzs. ~A3!

For notational simplicity in the following, we shall omit th
k andv dependencies of the various functions.

Performing the integral in Eq.~A1! and multiplying by
(Jh/2)t3 on the right, we write

G mn
h Jh

2
t35bmn

h 1~eht32dht2!amn
h

[bmn
h 1aW mn

h
•tW , ~A4!

where

amn
h 5~fmn

h12fmn
h2!/2, ~A5!

bmn
h 5~fmn

h11fmn
h2!/2, ~A6!

and

fmn
h65

6 i exp~6 iuh6un2mu!
2 sin~uh6!

, ~A7!

with

cos~uh6!5
j0h6 iVh

Jh
. ~A8!

The parameteruh1 is defined to have a positive imagina
part, anduh2 is defined to have negative imaginary part. F
convenience, we have definedVh5Av21uDhu2, eh
5v/Vh , and dh5Dh /Vh . For comparison with previous
notation,4 we then write

exp~ iuh1!5
Jh

2
Jh , ~A9!

whereJh is given by Eq.~8!.
-
-

r

We then find the half space Green’s functions, using
procedure of Eqs.~3! and~4!. For theL half space defined by
m,n<0, we have

gmn
L 5G mn

L 2G m1
L JL

2
t3g0n

L , ~A10!

which is easily solved forg0n
L by settingm50, yielding

gmn
L 5G mn

L 2S G m1
L JL

2
t3D F11G 01

L JL

2
t3G21

G 0n
L .

~A11!

Similarly, for theU half space defined bym,n>1, we find

gmn
U 5G mn

U 2S G m0
U JU

2
t3D F11G 10

U JU

2
t3G21

G 1n
U .

~A12!

After some straightforward algebra, one finds for ea
half space

gmn
h Jh

2
t3[ḡmn

h 5bmn
h 1~eht32dht2!amn

h

[bmn
h 1aW mn

h
•tW , ~A13!

where

amn
h 5

1

2
~xmn

h12xmn
h2! ~A14!

and

bmn
h 5

1

2
~xmn

h11xmn
h2! ~A15!

for h5L,U. For n<m<0, we have

xmn
L65

2exp@7 iuL6~n21!#sin@uL6~m21!#

sin~uL6!
.

~A16!

For 1<m<n,

xmn
U65

exp~6 iuU6n!sin~uU6m!

sin~uU6!
. ~A17!

To allow for different OP phases in the two sides of t
junction, we introduce a phase factor multiplying the ord
parameter in the left hand side, letting

dL5udLuexp@ i ~fL2fU!#. ~A18!

The functiondU thus does not include such a phase facto
So far, we have found expressions for the two distinct h

space Green’s functions, which are electronically uncoup
from each other, since no quasiparticle propagation from
half space to the other has yet been introduced. We t
couple them together via the local perturbationĴ with matrix
elements given by Eq.~5!.

The exact solution to this problem of coupled half spac
then yields the full Green’s-function matrixĜ, with matrix
elementsGmn . In theL half space,n,m<0, theGmn satisfy
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Gmn

JL

2
t35ḡmn

L 1gḡm0
L @~ ḡ11

U !212gḡ00
L #21ḡ0n

L .

~A19!

Now the gap equation, Eq.~7! in Sec. III can be found
from Gnn . On theL side of the junction, we then needG00.
From Eq.~A19! we find that the exact Green’s function
the interface and in the lower superconductor is

G00

JL

2
t35

ḡ00
L 2guexp~ iuU11 iuL1!u2~ ḡ11

U !21

D
,

~A20!

where

D511g2uexp~ iuU11 iuL1!u2

22g$@eLeU1dUdLcos~fL2fU!#AUAL

1BUBL%, ~A21!

Ah5@exp~ iuh1!2exp~2 iuh2!#/2 ~A22!

and

Bh5@exp~ iuh1!1exp~2 iuh2!#/2. ~A23!

Then, the trace in Eq.~7! can be evaluated by first multi
plying Eq. ~A20! by 2t3 /JL on the right side, leading to

Tr@~t11 i t2!G00#5
22i

JLD
@ALdL1guexp~ iuL1!u2AUdU#.

~A24!
s

.M

N.

d,
This then leads to Eq.~9! in the text.
In order to calculate the Josephson tunneling current,

need to findG01 andG10 explicitly. Solving for these func-
tions yields the exact results

G01

J

2
t35gḡ00

L @~ ḡ11
U !212gḡ00

L #21 ~A25!

and

G10

J

2
t35g@~ ḡ11

U !212gḡ00
L #21ḡ00

L . ~A26!

Combining and evaluating the trace, we find

I 54egT(
k

(
v

udLuudUuAUAL

D
sin~fU2fL!. ~A27!

From this expression, it is elementary to obtain Eq.~18! of
the text.

In the tunneling Hamiltonian limit,g!1, this reduces to

I 524egT(
k

(
v

udLuudUuIm@exp~ iuU1!#

3Im@exp~ iuL1!#sin~fU2fL!. ~A28!

This result agrees with the tunneling Hamiltonian result
the coherent tunneling limit, as expected.5
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