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High-field magnetotransport in composite conductors: Effective-medium approximation
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The self-consistent effective-medium approximati@EMA) is used to study three-dimensional random
conducting composites under the influence of a strong magneticBieid the case where all constituents
exhibit isotropic response. Asymptotic analysis is used to obtain almost closed-form results for the strong-field
magnetoresistance and Hall resistance in various types of two- and three-constituent isotropic mixtures for the
entire range of compositions. Numerical solutions of the SEMA equations are also obtained, in some cases, and
compared with those results. In two-constituent free-electron-metal/perfect-insulator mixtures, the magnetore-
sistance is asymptotically proportional [B| at all concentrations above the percolation threshdid three-
constituent metal/insulator/superconductor mixtures a line of critical points is found, where the strong-field
magnetoresistance switches abruptly from saturating to nonsaturating dependéBieaba certain value of
the insulator-to-superconductor concentration ratio. This transition appears to be related to the phenomenon of
anisotropic percolation.

[. INTRODUCTION A modified SEMA has been developed that incorporates
those exact relationgthe “columnar unambiguous self-
Over the years, the Bruggeman self-consistent effectiveconsistent effective-medium approximati¢@USEMA)” |;
medium approximatiotSEMA) for the bulk effective elec- it has been used for a detailed asymptotic analysis of metal/
trical conductivity of a composite medidrihas spawned a insulator (M/I) and metal/superconductoM(S) random
number of extensions and generalizations. Those include @olumnar mixtures in the strong field linfit.Very recently,
SEMA for elastic stiffness of a composite medidtha the CUSEMA was applied to a three-constituent metal/
SEMA for a weakly nonlinear conducting compositand a  insulator/superconductorM/1/S) random columnar com-
SEMA for a strongly nonlinear(power-law conducting posite mixture; a line of critical points was found to appear
composite®”’ They also include a SEMA for a linear con- whenever thd and theS constituents are present in equal
ducting composite medium where the constituents are chagmounts, i.e., when their volume fractiopg and ps are
acterized bynonscalar conductivity tensafs’ Such approxi- equal. At this point, the asymptotic strong-field behavior of
mations are needed to study the nonscalar conductivity duéde magnetoresistance switches abruptly from saturated for
to an externally applied magnetic fieki®12 Ps>p, to nonsaturatingz|B|? behavior forps<p, .l This
In composite conductors, the microstructure can induce &ritical point exhibits scaling behavior, along with critical
dependence of the Ohmic resistivity on magnetic figle., exponents and scaling functions, all of which were deter-
magnetoresistang@ven when none of the constituents ex- mined, approximately, using CUSEMA.
hibits any such dependence by itself. This arises because the In this article we present a theoretical study of magnetore-
local current density(r) acquires spatial fluctuations in both sistance in three-dimensional disordered composite media.
magnitude and direction, as a result of the heterogeneity dsome of the systems we study are isotropic, two-constituent
microstructure. Those are reflected in similar fluctuations ofmixtures of isotropic constituents. In this category, we con-
the local Hall (electrig field Ey(r), which usually has a sider mixtures of normal conductor$ig/M;), M/l mix-
nonzero component along the direction of the volume avertures, andM/S mixtures. No “intrinsic anisotropy” is al-
aged current densityJ). The volume average of that com- lowed for any constituent; thus, open orbit constituents are
ponent ofE, vanishes to leading order iB, but in higher not considered. The normal conducting constituents can be
orders that average is usually nonzero. As a result, the bulgimple free-electron conductors, in which case only the Hall
effective Ohmic resistivity of the composite usually dependgesistivity depends upoB, or they can be more complicated
uponB. The SEMA developed in Refs. 8 and 9 was used inconductors or semiconductors where the Ohmic resistivity
numerical studies of magnetotransport in various types olso depends upoB. But the longitudinal Ohmic resistivity
composites, where this induced magnetoresistance played ap(alongB) and the transverse Ohmic resistivity (perpen-
important role’>*11314|t was also used in an unpublished dicular to B), as well as the Hall resistivityy, are as-
discussion of asymptotic strong-field behavior of magnetoresumed to beéndependent of the directionf B. We also con-
sistance in a free-electron-conductor host with open orbisider anM/1/S mixture, again with isotropic constituents, an

inclusions!® isotropic microstructure, angf"’, p{™, (A} of theM con-
More recently, it was shown that this type of SEMA, stituent that are independent of the directiorBof
when applied to composites withcalumnar microstructure The SEMA equations for these composites do not admit

often violates some exact relations that exist between thexact closed-form solutions. However, in the strong-field
different components of the bulk effective resistivity tensor.limit, asymptotic analysis can be applied to those equations.
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The strong-field limit means thdH|>1, whereH is the In practice, the SEMA requires that one calculate the elec-
Hall-to-transverse-Ohmic resistivity ratio in a metallic or tric field E; induced inside a single inclusion, with conduc-
normal conducting constituent tivity tensor oj,., embedded in an otherwise uniform host
o with gon.ductivit'y tenspr&host, when' an external uniform
PHail electric fieldE, is applied at large distances. Whenever the

H= M) =ulB], (1.9) inclusion is an ellipsoidE; is uniform, whatever the values

pL ~ ~ . . ;

. B ™) of ojne, Ohost- ObVviously, E; will be a homogeneous linear
and whereu is the Hall mobility; note thag andpy,i, and  function of Ey, which can be written with the help of a ma-
therefore alsdH, can be either positive or negative, depend-.. Vil e s o)

Inc Inc» 0S!

ing on the sign of the majority charge carriers. This
asymptotic analysis often leads to results in simple closed
form, or at least “almost closed form.” In several cases we
have also solved the SEMA equations numerically in ordeif the coordinate axes are taken to lie along the principal axes

E1= YincEo- 2.

to compare with the asymptotic analysis. of the symmetric part of the tensef,., then we can write
The rest of this paper is organized as follows. In Sec. Il

we briefly review the SEMA, using a formulation that repro- 1 n. .o

duces the usual SEMA equations for nonscalar conducting (A—) = 5a7—2 m, (2.2

constituents in terms of depolarization coefficients of the dif- Yine/ g, B (04 0pp ))

ferent types of inclusions. In Secs. Il and IV asymptotic

analysis is used to find almost closed-form solutions to those 80=Opos Tinc- 2.3
equations for a number of special cases. Those asymptotic

solutions are compared, in some cases, with numerical solorhe factorsn,; are elements of the depolarization tensor
tions of the same equations. In Sec. Ill, we treat the speciatot of the actual physical inclusipbut of its image after the
case of anM /M, binary mixture. All concentrations are coordinate axes have been rescaled by the following trans-
considered, starting from the limit of extreme dilution and all formation

the way to the percolation threshold. In Sec. IM/I/S

three-constituent mixtures are treated using asymptotic X y 7

. . .y . . ! — ! — [ p—
analysis. A line of critical points is found where the strong- X'= Tl y'= Nk 2'= e 2.9
field response changes abruptly in the manner of a second- XX vy 2z

order-phase-transition, as the relative amountsaidSare  ynder this transformation, the ellipsoidal inclusion is usually
varied. Critical exponents, a scaling variable, and scalingransformed into another ellipsoidal shape, with major axes
functions are found that characterize the critical behaviorihat have different lengths and different orientations com-

We also discuss1/S andM/I mixtures as special cases of pared to those of the physical inclusion. The SEMA is then
these three-constituent composites. A linear dependence 8[)tained by settiné.= & and demanding that the small
the magnetoresistance up¢B| is found in free-electron- y @host™ Te g

metal/perfect-insulator mixtures fail concentrationsvhere but exactly calculable change {d), caused by one isolated
P : ellipsoidal inclusion, vanish when averaged over the differ-
the mixture conducts macroscopically.

Section V provides a discussion of the results. We formu-em kinds of inclusions. This leads to the following self-

late a physical picture of the microscopic procesées, lo- ~ consistency equations for the elementsgf
cal current flow patternswhich lead to some of the results A
found in previous sections for the macroscopic response. We 0=((0e= Tinc) Yinc Tinc: Te))- (2.9

also discuss a possible relation between the line of criticaj general, these are nonlinear equations, in which there ap-

points found in the macroscopic magnetotransport of three[f)earnonelementary transcendental functiamfghe elements
constituentM/1/S mixtures and the phenomenon of aniso-

tropic percolation. of fre_. Thus, closed-form_ solutions are usually out qf the
question. However, we will show below that asymptotic so-
lutions, for a very strong magnetic fieRl can sometimes be
obtained in almost closed form. For smaller value8pthe
The self-consistent effective-medium approximation SEMA equations can be solved numerically, where needed;
(SEMA) for constituents with arbitrary conductivity tensors, these solutions are discussed below. o _
which appear in the system as ellipsoidal grains, was devel- We assume the following forms for the resistivity matri-
oped many years ago by one of the present authditss  ces of the host and inclusion:
development followed more specialized versions, such

Il. REVIEW OF SEMA FOR THE CURRENT PROBLEMS

as all scalar conductiviti€s® and later, strong-field a —p 0 1 -HO
magnetotranspdtiand weak-field Hall conductivity® Here [Jhost: pol B a 0], ;)inc: plH 1 0
we describe a slightly different formulation of the general 0o 0 0o 0 v
theory of Ref. 9. We use this formulation to find asymptotic (2.6)

physical solutions of the SEMA equations when the mag-
netic field is very strong. This formulation was described inThese forms mean that both the host and the inclusion have
detail in Ref. 16. A similar formulation also appeared in Ref.isotropic electrical response, and that the only physically se-
12. lected direction is that of the magnetic fieRl which is
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always taken to lie along This implies that the microstruc- The conductivity tensoré’hosta (}inc are easily found by in-
ture, as well as the electrical response of all the constituent%mng ;) ~

. . . LA . host: Pinc-
are isotropic. Thex coefficient inppogis actually redundant. Because we are considering isotropic microstructures, we
We will sometimes exploit that redundancy by choosig  will assume that all the constituents appear as spherical in-
of the bulk effective resistivity tensor of the composite me-clusions in the fictitious uniform effective medium host. In
dium to be the same as one of the constituent valugs of that case we find

1 1-n Po czz-l-,B2 ny é_@ a2+,82 H 0
Dinc e a(1+H?) Dincl@ p1 @ 1+4H?
2 2 2 2
A A ~ n a‘+ H 1 a“+
Yind Tincs Ohosd = | — —— é—@—ﬁ 1—nx+nX@—ﬁ 0 , (2.7
Dincla p1 @ 1+H? Dinc P1 a(1+H?)
1
0 0 - -
1-n,+n,A/v
|
where a —-B 0
2 pe=p1| B a O], (3.2
0o a2+,82 Pe=P1
Dine=| 1—ny+ny———— 0O 0 M\
P1 a(1+H?%) A A
2 Note thatp. and p; have been expressed in terms of the

same resistivity factop;. The forms(3.1) and (3.2) imply
that both constituents are isotropic conductors, as is the com-
posite, and that the magnetic fieldis applied along. They

and wheren,, n,=n,, andn, are the depolarization factors include the case where bogh andp, represent simple free-
of the spheroidal shape into which the spherical inclusiorelectron or free-hole conductors. They also include more
was transformed by Eq¢2.4). Those depolarization factors general types of conductors, where the Ohmic resistivities
are elementary transcendental functionsagf3,\.1® Thus,  and Hall mobility depend upofB|.

the elements of,,. are also nonalgebraic functions of those  Application of Eq.(2.5) leads to three coupled equations
parameters. Consequently, the equations obtained for tho$er the unknown parameters 3,\, which arise from thez,
parameters, by applying the self-consistency requirementsy, andxx components of that tensorial equatidine xx and
implied by Eq.(2.5), will usually be complicated, coupled, yy components lead to the same equation, as dxyhand
nonalgebraic equations that lack closed-form solutions iryx components, while thez, zx, yz, andzy components of
terms of elementary functions. This makes the qualitativeEq. (2.5 vanish identically;p; and p,=1—p; denote the

: (2.8

study of their physical solutions highly nontrivial. volume fractions of the two constituelfits
lll. APPLICATION OF SEMA TO MAGNETORESISTANCE 0= 17N, p1 AN, + nz(& P &)
OF AN M;/M, MIXTURE A p2 V1V2 Vi V2 P2

As an illustration, we now work out the effective resistiv- P2p1 P2
, . . . —(1-ny)| ——+—]|, (3.3
ity tensor for a binary composite of two normal metals, using vy Py V1
the SEMA. Two other special cases—a composite of normal
metal and insulator, and one of normal metal and perfect D, B D, p; Hy H,
conductor—will be discussed in the next section as special 0= pzD—+p1 ﬁ—pzD— — >~ P1 3
cases of three-constituent mixtures. 2 a’+p 2 P2 1+H; 1+H]

In the present case, the bulk effective resistivity tensors of (3.9
the two constituents are assumed to have the similar forms

_ D a Ny P2 Dips
_ _ 0=\P2p TP\ 5 2 & 2D, p,
1 Hi O 1 H O 2 a“+ B @ 1+H5 P2 p2
D= H, 1 0], p,= H, 1 0],
P1=P1 pP2=p2 2BH, p; a2+,32 P
0 0 V1 0 0 Vp X nx 2+ - —1|+ 2
a p2 «@ 1+H1
(3.1
2, p2
while the bulk effective resistivity tensor is assumed to have 2pH, @ +B8 _
X|n,| 2+ 1. (3.5
the form a @
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Not surprisingly, these equations do not admit any closedfound previously for a free-electron-metal host with open
form solutions. Since we are interested in the behavior obrbit inclusionst® A similar asymptotic dependence was also
a,B,\ at strong fields, we will apply asymptotic analysis for previously found by Dreizin and Dykhne, who presented a
the limiting case wherél;=H andH,=wH are both much qualitative microscopic discussion of magnetotransport in
greater than 1, i.e@ remains bounded byi|>1. All other ~ composite medid® In our language, those results would
physical parameters of the two constituents are also assumésnslate intows|H|?3, as we have also found. While the
to remain bounded. From E@3.3) it follows that A must asymptotic behavior found in those previous studies is simi-
also remain bounded. We have tried various ansatzes for tHar to what we find here, the present discussion showg&hat
asymptotic behavior ofx, B, and proceeded to examine one does not need to have open orbits in any constituent in
whether they lead to a mathematically consistent and physierder to observe this kind of behavior afg) the behavior
cally admissible solution. The only ansatz that could satisfywe find is a straightforward consequence of SEMA. Since

those requirements was SEMA becomes exact in the dilute limit, when eithgr or
- p, is very small, we believe that the asymptotic resmlt
B=BoH, a=agH|*% A=), (3.6)  «|H|?3 is exact. It appears that the only requirement for

whereaq, B, Ao are positive dimensionless coefficients. It OPtaining this type of asymptotic response is that the two
follows from this ansatz that the transformation of E2,4) consutuents_ hayfa comparable Ohmic _reS|st|V|t|§s and differ-
changes the spherical inclusions into flat, pancake shaped 8Pt Hz_aII resistivities. In fact, our numerlcgl solut|on.s of these
oblate spheroids, with the short major axis alangnd with eq‘%at_"?r!s a_lso suggest thag/??nly the d|ff_erencg in the Hall
eccentricitye that diverges asH|—. The eccentricitye  'eSistivities is crucial: ThéH|“° power law is obtained even

and depolarization factors are given'by if the two constituer_lts havihe same Ohmic resistivities _
In order to confirm that our ansatz for the asymptotic
a?+ 32 2 g, behavior is indeed correct, we have solved the SEMA equa-
e=|——- ) =——|H|?®>1, (3.7 tions numerically for a simple example. We assume that
aoho =p,, v1=v,=1, andH=H,=0.5H,, and we considep;
5 =p,=0.5. In Fig. 1a) we plot the relative bulk effective
_1+e ., transverse magnetoresistiviy—1 vs |H|?2. It is evident
n,= (e—arctare)=1— — (3.8 . X . i
o3 2e that this quantity rapidly approaches a linear dependence on
|H|?® as|H| increases, and that the asymptotic dependence
7 \aghy found analytically above is accurately achieved [fdi>2
=1- 5 ——|H| %=1, (3.9 for this choice of parameters. In Fig(d, we plot the quo-
0 tient B/H=p{®,/pl), vs|H|?2. The second form of this quo-
1 o m tient shows that it is equal to the ratio of bulk effective Hall
nxznyz_(l_nz)=_$|H|72/3< 1. (3.10 Tresistivity to the Hall resistivity of the No. 1 constituent,
2 4 Bo suggesting the name “relative Hall resistivity.” Clearlg,

also rapidly approaches its asymptotic dependence tjon
which is linear rather tharc|H|?? i.e., the ratioB/H be-
comes field independent.

This leads taD;=1 andD,=1, and when these results are
used in Egs.(3.4) and (3.5), one arrives at the following
explicit asymptotic expressions fary,Bg,\o:

1

Bo= H ) (3.11 IV. THREE-CONSTITUENT M/I/S MIXTURES
pi+t pzﬁzz A. General considerations
Next, we turn to a discussion of a three-constituent com-
P2 posite containing a volume fractigm,, of normal metalpg
No= P1V1+EP2V21 312 o perfect conductor, ang, of insulator. As part of this
discussion, we will consider the special cases of two-
o 213 Hipy |42 ) 3 constituentN/S andN/I mixtures. We use the subscripts
(Zplpz) 1- Hopy (D1V1+ EDsz) I, andSto denote normal metal, insulator, and perfect con-

ap= > ) ductor.
( Hlpl) We assume the following forms and inequalities for the

Pit P2 . o -
2P2 (313 bulk effective resistivity tensorp., and for the three-

constituent resistivity tensogsy , p;, ps:
Note thatag=0 when the Hall resistivities of the two con-
stituents are equaHp;=H,p,. Moreover, whenp,/p, @ —B 0 1 —H o0
>1, thenB, tends to the finite value f{, while Ao and «q R R
both diverge. As we shall see in Sec. IV C2 below, this pe=pu| 8 a O], pu=pu|lH 1 0],

behavior presages the behavior exhibited by those param- 0 0 0O 0 v
eters when the No. 2 constituent is a perfect insulator, i.e., 4.2
whenp,= o,

A similar asymptotic dependence of the transverse rela- . o .
tive bulk effective magnetoresistance on magnetic field was ps=psl, pi=pil, ps<pu<|H|pm<p,, (4.2
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FIG. 1. Results of numerical solution of the SEMA E@3.3)—(3.5 for an M, /M, mixture. (a) Plot of the relative bulk effective
transverse magnetoresistivity— 1 vs |H|?® for a three-dimensional composite of two free-electron-metal constituents, present in equal
amountsp, = p,=1/2, which have the same Ohmic resistivity, but Hall resistivities that differ by a factor[pé2p,=p, andH,=H,
H,=2H, in the notation of Eq(3.1)]. (b) Same aga), except that we plot the relative bulk effective Hall resistivit¢H)/H vs |H|?? [cf.

Eqg. (3.2].

wherel is the unit tensor. We use the results of E(s7)
and(2.9) in Eq. (2.5) for this system, and then take the limits
ps—0 andp,— o to get the following equations fax, 8,\
from thezz xy, andxx components of that equati¢again,
the other components of E(.5) lead either to redundancies
or to identities; py ,p;,Ps denote the constituent volume
fractions, which satisfypy, + p; + ps=1]

AN 1-n, n,—ps
—= , 4.3
v N, Pstpu—n; “3
B H Dwm
a2+,82=pM1+H2/(D_|p'+pM’ 49
(DM N ) a Ny Ps «
D, PitPu a’+p2 o« Mnx a’+ g2
2 2
e 1+n, —2—7 ' (4.9
where
a2+,82 2
Dy=| 1—ny+n———
M X (14 H?)
252 2., 2 2
n + H
AL e (4.6
a? B 1+H?
2 02
n
D,=(1—nx)2+x—§. 4.7
o

Combining Eqgs.(4.4) and (4.5 we can simplify Eq.(4.5
slightly to get

1+n,

2 2 2
e, ) 2

aH ps 1+H? «

B Mm Ny a2+B2.

4.9

Despite the seemingly simple form of E¢4.3) and(4.4),
the right-hand sides of those equations do not constitute ex-
plicit expressions fom or for B/(a?+ B?), because those
right-hand sides depend upan 8,\ throughn, and n,.
Nevertheless, Eq4.3) does show thah, must satisfy the
following inequalities in order foih to be positive:

Ps<n,<pst+pm=1-p;, (4.9

where the lower bound must satisfis<p.=1/3 and the
upper bound must satisfys+ py>p.=1/3 (p. denotes the
percolation threshold, equal to 1/3 in SEMi& order for the
entire composite to have a finite, nonzero bulk effective con-
ductivity.

Equationg4.3)—(4.8) do not admit closed-form solutions.
In order to obtain asymptotic solutions whéH|>1, we
tried a range of possible ansatzes for the asymptotic forms of
a,B,\, and proceeded to examine them for mathematical
consistency and physical admissibility. Only three of those
ansatzes stand up to both requirements; each is valid for a
different range of the constituent volume fractions
Pwm P ,Ps, Where, of coursepy,+p,+ps=1. The three an-
satzes and the resulting solutions are described in the follow-
ing subsections.

B. The saturating regime
1. General case

The first ansatz that leads to admissible results is

a=agy, N=\g, EB—. (4.10
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This leads to the following results:

D
Dy=(1-ny)? D,=(1-n,)2= —DM =1. (4.1))
|

Consequently, Eq(4.4) yields the following relation be-
tween By and «g

2 Pwm
ao—.
P+ Pwm

Bo= (4.12

Using this to eliminates, from Eg. (4.8), we get

0 1-—ny, ( ) 1
= —Ny)=nN,=ps<<z
o Ny Py pS X X pS 3

1
—n,=1-2n,=1-2ps=pu+ P~ Ps>3-

(4.13

A consequence of the last inequality fioy is that the trans-
formed shape of the spherical inclusions iscdtate spher-
oid. Since we must also hayeee Eq.(4.9)]

1-2ps=n,<pstpu=1-p, (4.14

we find that we need to requirep2>p, in order for this
asymptotic solution to be valid. Equatiéf.3) now becomes

_, 2ps(1—3ps)
(1-2ps)(2ps—p1)

o (4.15

In order to determinexy we first need to solve the following

transcendental equation for the eccentrigtpf the oblate
spheroid:

1+¢€?
e3

1
n,= (e—arctare)=1-2ps>7, (416

and then use the relation betweeand a, 8,\

2 2 12
a“+
B _1)
a\

12
(¢ 4)) 2
E()\__l) =ep=ap=MNo(1+€p).
0
(4.17

These asymptotic results are valid for the range of con-

stituent compositions defined by

P 1

(4.18

When pgs—p,/2 from aboveag, \g, and B, all diverge,
but at different rates:

! Ng=—0 (4.19
o = o9 .
O 2ps—p O 14 2ps—pi’
B ! (4.20
OM—. .
(2ps—p1)?

It is worth noting thate and\ are both proportional te.
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stituent is directed mostly alorg. Similar proportionality is
also found in the two-constitueM/S case, discussed below.
It is also worth noting that whepg— 1/3 from below, then
alson,— 1/3, and consequently— 0. Both oy and\ tend

to 0 as -3pg, butag/Ng—1. This indicates that when the
S constituent approaches its percolation threshmler 1/3,
the same current flow pathis the M constituent are respon-
sible for the leading contribution to the macroscopic re-
sponsewhatever the direction of the average current density

(9)-
2. Two-constituent MS mixture

An important special case of a three-constituent compos-
ite with saturating behavior ig,=0, corresponding to a two-
constituentM/S mixture. One can also get the results for this
case by setting, =0 in Egs.(4.3 and(4.4) [or alternatively
by taking the limitp,/p,—0 in Egs. (3.3) and (3.4)] to
obtain the following equations:

xzv(l—p—s>, Lz—,
nz)"  a?+B% 1+H?

and noting that Eq(4.5 [or Eg. (3.5] is satisfied as an
identity to leading order in H.

The asymptotic largéH| behavior can then be obtained
by using the ansatz of E@¢4.10. The second of Eq4.20)
immediately leads to a simple relation betwe@pnand «y,
namely,

(4.2)

Bo=a3. (4.22

The value of the ratiayg/\ is obtained by first solving the
transcendental equation for the asymptotic eccentriejty
namely,

1+€3
nZEpM_pS:—eg (eg—arctaney), (4.23
0
and then using
@ 1/2
e=|—-1 (4.29
Ao
Finally, the first of Eq.(4.2]) leads to
Ps 1-3ps
Ao=vp| 1— = . 4.2
° V( Pu—Ps/  Pu—Ps (429

The fact thataq,Bq,\ all depend uporv, i.e., agxv, \g

«v, Boxv?, indicates that the leading contribution to the
macroscopic response is due to local currents that flow par-
allel to B in the M constituent.

When pg approaches the SEMA percolation threshold
value 1/3 from below, them,—1/3; henceey,—0 and
ag/hy—1 from above. Bothay and Ay tend to 0 as 1
—3ps, while Bo—0 as (1-3pg)?. The fact that\o/ay
—1 again indicates that treame current flow pathia theM
constituent are responsible for the leading contribution to the
macroscopic responsehatever the direction of the average
current densityJ).

The SEMA equations for aiv/S mixture were treated
numerically in the past' Those calculations are in agree-

Along with the fact that they are asymptotically independentment with the asymptotip,, dependence ak,, Ao, andg,

of H, this indicates that the local electric field in thMecon-

obtained for such mixtures in this section.
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C. The nonsaturating regime
1. General case

Another ansatz that leads to an admissible solution is

B=poH. (426

Because\ is now very large, Eq4.3) leads to the following
results

N=N\o[H],

aEa0|H|,

1 1
n,=pst pM_O(m) =1- pl_o<m) , (427

1 p 1
nxzz(l—nz)z +O(—). (4.28

2 " UH]

Sincep, <2/3, we must have,>1/3 if |H| is large enough,
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2:(2—3p|)(2— P (P —2ps)
pi(2pstpy)

, (4.36

which is positive ifp,>2ps. These results lead to the fol-

lowing expressions forg, and B,

=(2ps+ Pm)(1+pp+Pps)(Pi/2—ps)

(437
* pl-p)2+pd2-(2-p)?]
[ (p1—2ps)(2ps+pp) (1+py+ps) | 2
#o~ 2-3p,
pi(PstpPw/2) 439

pi(1—p)?+pd2—(2—-p)?]

Obviously, the cubic polynomial that appears in the denomi-

and the transformed spherical inclusion is then again an olyytors of a, and B, is positive over the entire range O

late spheroid.
Instead of using the unknowns,, and By, it is conve-
nient to introduce the variablesandy, defined by

2, 2
apt By Bo
X= , =—. 4.29
Bo ag 429
Using x andy, we can write
2 n2,2
PPy e
DM=<1 5| T (1=x)? (4.30
_ P2 piy?
D|=(1—§ t— (4.30)

Equation(4.4) now becomes

(xpm—Pu—PDL(2—p)) 2+ ply?]=ply2(x3—2x),

(4.32
while Eq. (4.8) becomes
PIX(Xy?+1+y?)=2p,xy>+ 2x
p
- pM; [(2—p)?+pRyA(1—x)7].
(4.33

These equations are both linearyih Wheny? is elimi-
nated, the result is a factorizable cubic equationxfor

0=x[x*(2—3p,) —X(4+2ps—5p;) +2(1+ps—p;)]

1+ps—p

=Xx(x—1) 7-3p,

(4.39

.

Sincep,=1-ps—pu<2/3, the physical solution is

_1+ps—p 2(2pst pw)
X=2 5-3p, _ 2-3p, >0.

(4.395

This leads to an expression fgf, which is a quotient of
somewhat complicated polynomials im,, p,;, and ps.
Those can be factorized, after some effort, leading to

<2ps<p, where Eqs(4.37 and (4.38 are applicable. Fi-
nally, Aq can again be found by first solving the following
transcendental equation for the eccentri@tpf the oblate
spheroid

1+¢€?
e3

n,= (e—arctare)=pg+py (4.39

and then using the relation betweeand«, 8, and\ to get
Y2 [ag+ B

agho

(az—l-,Bz
e=

12
oy - 1) . (440

These asymptotic results are valid for the range of con-
stituent compositions defined by

1
pe< <.

5 <3 (4.41

When pg approache,/2 from below, thenxq, By, and
\o all tend to O, but at different rates:

o
ap*\PI—2Pps,  Ao= _l_c;zoc\/p|_2ps, (4.42
Bo*Pi—2ps. (4.43

It is worth noting thatw, 8, and\ are all independent of
v. This indicates that the local electric field in thé con-
stituent has considerable components that are perpendicular
to B. It is also worth noting that, whep,— 2/3, bothay and
\o diverge butag/Ng—1, i.e.,

1_9p§ )1/2
)

“ngogz(m

(4.44
This indicates that, when the total volume fraction of con-
ducting constituentspy,+ps approaches its percolation
thresholdp.= 1/3, thesame current flow pathis the M con-
stituent are responsible for the leading contribution to the
macroscopic responsehatever the direction of the average
current density(J).
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2. Two-constituent Ml mixture pu less than about 0.5, we had some difficulty, using our
An important special case within the nonsaturating regime®MPle algorithm, in solving the SEMA equations numeri-
is ps=0, corresponding to a two-constitueNt/ mixture. cally; by contrast, of course, the asymptotic analysis gives

One can also get the results for such a mixture by settind?® Slope, for any value giy greater tharp.= 1/3, without
ps=0 in Egs. (4.3, (4.4), and (4.9 to get the following 2Ny difficulty.

equations:
D. Scaling behavior near the transition point
A=vp 1-n, , (4.45 If we compare the critical behaviors exhibited by g,
Pm—N; and\ when|H|>1 andp,—2ps from above[Egs. (4.42),
and(4.43] and from below Egs.(4.19 and(4.20], we are
B Pi D _H led to anticipate a scaling behavior. That is, we should be
— | — = +1|=—, (4.4 ; L P ;
a?+ B2\ Pm Dy 1+H?2 able to describe the critical behavior in both regimes by us-

ing a scaling variable which is some power bf*(p,
a —2pg)®/v?, and writinge, B, and\ in terms of thregscal-
—2pB| B+ al ing) functions of that variable. We have found that the most
(4.47) convenient scaling variable for this purpose is

B

1+ 5

TP

Ny

il

14

The asymptotic behavior is obtained by making the ansatz
of Egs.(4.26. After a sequence of algebraic steps similar to

those described above, the following results are obtained for - _ .
the asymptotic linear slopes: In the “critical region,” i.e., whenvH?>1 and|p,—2p4|

<v, the bulk effective resistivity parameters can now be

2/3
z= ) (Pi—2ps). (4.5

_1+py P [ 1+py |2 (4.48 expressed as
o 2py Olo—sz 3pw—1) '
14
= F.(2), 4.5
0 (2pw/p))? (4.49 “ Pi—2ps «(2) 4.52
om0 1+ed ' '
14
wheree, is given implicitly in terms ofp,, by the transcen- A= o—2p F\(2), (4.53
dental equation ! s
2
1+e3 _ v
- — p=———"—-Fu2). (4.59
Pwm 2 (eg—arctarey), (4.50 H(p,—2ps)?

0

which must be solved numerically. As in tih&/1/S nonsat- As usual, there are three important extreme regimes within
urating regimegyg, Bo, and\, are all independent of. This  the critical region, namelyZ<0, |Z[>1 (regime I, where
indicates that the leading contribution to the macroscopic o2Ps>Pi); Z>0, |Z|>1 (regime II, where ps<p)); and
bulk effective response is due to local currents that flow pertZ|<1 (regime Il where we can have eithepg>p;, or
pendicular toB in the M constituent. 2ps<p;, Or 2ps=p,). The behavior of the scaling functions
When p,, approaches the SEMA percolation thresholdFa(Z), F\(Z), andF 4(Z) in regimes I and Il is dictated by
value of 1/3 from above, the,— 2 ande,—0. Therefore the critical behaviors found earlier. Their behavior in regime
No/ay—1 from above, and bothy, and \, diverge as Il is dictated by the requirement that this behavior must
1/ /—3DM—1- The fact thah o/ ay— 1 again indicates that the exactly cancel the divergencies that would otherwise occur
same current flow pathis the M constituent are responsible due to the vanishing, —2ps factor in the denominators of
for the leading contribution to the macroscopic responséhe above expressions. These considerations lead to the fol-
whatever the direction of the average current denéiy. lowing forms for the scaling functions in the three regimes:
Once again, in order to confirm the asymptotic behavior

predicted analytically, we have solved the SEMA equations —A  regimel
numerically. We assume;=vr=1 [see Eq.(3.1)], p,=, F(2)={ A’Z% regimell (4.55
and consider a variety of values pf=py above the perco- A"Z  regime lll,
lation thresholdp. (equal to 1/3 in the SEMA in three di-
mensions The resulting behavior of« and \ is shown in L reqi
. - o gime |
Figs. 2a) and 2b); we also show the relative Hall resistivity . )
BIH in Fig. 2(c). Evidently, for any choice opy,, « andx Fn(2)=3 L'Z7° regime i (4.56
rapidly approach their asymptotic linear dependencéHin L"Z regime Il
as predicted by the asymptotic analysis. Furthermore, the
slope increases gs, approaches the percolation threshold, B regime |
again as predicted by the asymptotic results. The asymptotic >3 )
linear dependence appears to be reached approximately when Fp(2)={ B'Z" regimell (4.57)

|H|>5, for all the values ofp,, that were considered. For B"Z2 regime lll,
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FIG. 2. Results of numerical solution of the SEMA E{4.45—(4.47) for an M/l mixture. (a) Plot of the relative bulk effective
transverse magnetoresistivily— 1 vs|H| for a three-dimensional two-constituent composite of free-electron metal and perfect insulator for
various values of the metal volume fractipes py, . (b) Same aga), except that we plot the relative bulk effective longitudinal magnetore-
sistivity A — 1. (c) Same a<a), except that we plot the relative bulk effective Hall resistivitgH)/H vs |[H| only at high fields (H|>5).

where the primed, double primed, and unprimed versions afvhere we have used the fact thgt=2ps. From Eq.(4.3
A, B, andL are positive dimensionless constants of order 1we can also calculate the small correctiomte=1—2pgin
Their values can be found, if necessary, by comparing théerms of\

resulting expressions far, 8, and\ with the detailed solu-

tions of the SEMA equations. Qualitative plots of these scal- v 2ps(1—3pg)
ing functions are shown in Fig. 3. 1-2ps—n,= H78 T 1-2p (4.60
As indicated above, these equations make a nontrivial NolH| S
prediction about the behavior af, 8, and\ in regime Ill, | addition, we can write expressions fdr, , D,, and for
which was not worked out in the previous sections, namelyineir ratio Dy/D,, that gobeyondleading order in
. namely,
a=aglH[2% A=NGlH?, B=BolH|PsignH). g
| o0 I
We now use these scaling forms as an ansatz for another Dy=(1-ny“+ ZH] 1- 8o (4.61)
asymptotic solution of the SEMA equations, assummg 0
=2ps, in order to check for consistency of the scaling " s
scheme developed here. D =(1—n)%+ nyBo 46
Since\ is very large, Eq(4.3) entails 1=(1=ny) a§|H|2/3' (4.62
—pst Pu=1-Pi=1-2pg>a —pe<a : 2
n=pstpy=1—p= Ps=3. M=Ps<3: %El-ﬁ- ao—2/,80< ny ) .63
(4.59 D, [H|?3 11-—ny
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FIG. 3. Qualitative plots of the scaling functions obtained using

SEMA. The left plot shows-,(Z) (solid line) andF,(Z) (dashed
line), which are similar but not identical, witfF,(Z)|>|F,(2)|,
while the right plot shows-;(Z), which is never negative.

From Eq.(4.4) we get a relation betweef, and «g

1-3pg
_ 2
Bo=ag 1-ps’

(4.69
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strong-field limit. Suchlinear magnetoresistanchas long
been a mysterious observed feature of transport in polycrys-
talline samples of even so-called “simple metaf§. This
behavior has sometimes been ascribed to macroscopic inho-
mogeneities. But until now, only in the low-concentration
limit has proof been given that such inhomogeneities could
actually produce a linear magnetoresistaHce:*?Here, we
have shown that both{® andp{® remain linear inH| even

at higher concentrationsf inclusions, provided those inclu-
sions havestrictly zero conductivityThis result may be rel-
evant to a range of experimental systems.

It is quite easy to understand, qualitatively, the behavior
of anM/S disordered mixture: Whatever the direction of the
average current densit§d), thelocal current densityl(r) in
the M constituent will flow mostly along||z whenH is very
large, and this tendency will become more and more pro-
nounced with increasingH|. Components ofl(r) that are
perpendicular tdB will have finite values only inside th&
constituent, while in thé/ constituent they will tend to 0 as
1/H?. This results in a current flow pattern that saturates

Using this result, we find that E¢4.5 becomes an identity \hen|H|>1: therefore, all the Ohmic resistivities will also

to leading order in H. We therefore need to consider that

equation in the next-to-leading order. The result is
L 2pe a5 4pE(1-3py)
S UTHP 1-pe?

Comparison of this equation with E¢4.60 yields the fol-
lowing relation betweeryy and\g:

(4.65

agho _ (1-pg)°
v 2ps(1-2pg)

(4.66

saturate. The Hall resistivity will be very small—of order
1/H—because the local Hall fiel&, will also be of that
order.

The behavior oM /M, mixtures is more difficult to un-
derstand qualitatively. Our interpretation of tfgiccessful
ansatz of Eq(3.6) is that when(J)||B|z, the current distri-
bution saturates for large values |¢1|. But when{J)1 B,
then that distribution continues to evolve with increasing
|H|, with the current distortions increasing asymptotically as
|H|ll3.

The macroscopic response bf/I mixtures is qualita-

Another relation between those two unknowns is obtained byively similar to the behavior of an isolated insulating inclu-
first solving the transcendental equation for the eccentreeity sion embedded in aMl host, as shown many years ago by an

of the oblate spheroid

1+¢€?
n,=-—

(4.67)

(e—arctare)=ps+pum,
e

and then using the expression ®imn terms ofa, B8, and\
to get

a2+,82 ag
akN Ao

1+e?=

(4.68

Equations(4.64), (4.66), and(4.68 then provide a complete

and consistent solution fowrg, B, and Ny, obtained by
jointly considering the scaling and SEMA equations.
Again, it is worth noting that botlw and N are propor-
tional to »12
the fact thata and \ are also proportional tpH|%3, while

. while B %3, This seems to be consistent with

exact solution for such an inclusion of spherical or cylindri-
cal shapé&! The fact that this kind of behavior persists down
to the percolation threshold indicates that, despite the inter-
actions between current distortions produced by different in-
clusions, the local current distribution never saturate-as
increases. The results we got would require that the current
distortions increase g#i|*? for large H. However, the fact
that the coefficientsy and\y diverge apy— p., probably
signals that those distortions increase even more rapidly than
|H|Y2 precisely at the percolation threshold.

The present results can also be compared with some simu-
lations performed previously on a discrete network model,
where finite sizeL XL XL samples were considered pre-
cisely at the percolation threshdltl. Those simulations
showed that, wheh is much less than a “magnetic correla-
tion length” &4<|H|%% the Ohmic resistivities saturate at a

B=|H|*3H. These behaviors indicate that the local currentvalue proportional td-*”. However, in the opposite limit
flows both parallel and perpendicularBo and that the three >¢p, the Ohmic resistivities continue to increase as

principal Ohmic conductivities of th# constituent all con-
tribute to the macroscopic response whgs 2ps.

V. SUMMARY AND DISCUSSION

A striking result of the present paper is that, in sl
composite, bottp{® andp{® are proportional t4H| in the

|H|?L.22 This result is consistent, within the error bars,
with H2LY”, wheret=2.0 andr=0.89 are the usual perco-
lation critical exponents for scalar Ohmic conductivity(
«Ap!, Ap=py—p.) and for the percolation correlation
length ¢, Ap~")—see Ref. 23. Using finite-size scaling to
replace the system siteby &, in these results, we are led to
expect that
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Ap~ 4% for Ap>|H| %% or Ep<é&y, conductor, just by applying a magnetic field such that
AT _052 >1 or v<1. In that case, if we identify volume fractions

H for Ap<[H| or &p>&p. (5.1) with the bond occupation probabilities, then we can say that,

' for |[H|>1 or v<1, the regions that are highly conducting

Obviously, this behavior differs in a number of ways from along B occupy a fractiorpy, + ps of the total volume. By
what was found in Sec. IV C 2 using SEMA. It is not sur- contrast, the regions that are highly conducting perpendicular
prising that the critical exponents predicted by SEMA areto B occupy the smaller volume fractiops. Our SEMA
quantitatively incorrect. However, the fact that, according toresult, for the transition points between saturating and non-
the simulations, the magnetoresistivity saturatefis-=,  saturating regimes of magnetoresistance, can then be inter-
is qualitatively at odds with the predictions of SEMA. preted as follows
Clearly, this qualitative discrepancy needs to be examined
further. We conjecture that it has to do with the existence of 0=1—p,—py—p,=1—ps—pPs—(Pm+Ps)=pP;—2pPs,
three diverging lengths in this problem, namély, &, and (5.2

L. wherep,=py + ps represents the bond occupation probabil-

The qualitative situations described above continue to bﬁy along B while p,=p,=ps represent the bond occupation

mixtures. The presence or absence of system-sparinéng The identification of the critical points in the/I/S mag-
infinite) current flow paths, which are parallelBinside the  petoresistive response with an anisotropic percolation thresh-
M constituent, now depends on the relative amountsasid | needs to be verified by a more accurate treatment of the
S inclusions. The critical points or transition points  py|k effective magnetoresistance. In particular, it needs to be
=2ps can be expected to occur when such paths first appegfetermined whether the ever-present Hall conductivity is an
with increasingps. o . _ irrelevant perturbation, or whether it in fact destabilizes the

Obviously, this transition is a kind of percolation process.ysyal percolation fixed point, or alters the critical behavior
In fact, we believe it is a physical realization of “anisotropic associated with it. In any case, we expect that such a treat-
percolation.” This kind of percolation was first considered ment will yield different values for the critical exponents and
many years ago in the context of a two-dimensional, rangjitferent forms for the scaling functions and scaling variable
domly diluted, square bond netwotk.The geometrical than those obtained here using SEMA.
properties of anisotropic percolation in hypercubic random  gxperimental studies of the line of magnetoresistive criti-
bond r_letW%f'Z(g of arbitrary dimension were also studiedcy| points can be conducted on samples made by using a
extensively:> semiconductor host with a large Hall mobility as theM

As originally defined, the anisotropic percolation problem constituent, in which two types of inclusions are randomly
is characterized by different occupation probabilities forgmpedded: highly insulating inclusiofe.g., voids as thel
bonds aligned along different principal axes of the network constituent, and either highly conducting normal metallic in-

This situation is not easily implemented in a continuum per—|ysjons or superconducting inclusions as Seonstituent.
colating system, because that would require an anisotropic

a,\
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