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High-field magnetotransport in composite conductors: Effective-medium approximation
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The self-consistent effective-medium approximation~SEMA! is used to study three-dimensional random
conducting composites under the influence of a strong magnetic fieldB, in the case where all constituents
exhibit isotropic response. Asymptotic analysis is used to obtain almost closed-form results for the strong-field
magnetoresistance and Hall resistance in various types of two- and three-constituent isotropic mixtures for the
entire range of compositions. Numerical solutions of the SEMA equations are also obtained, in some cases, and
compared with those results. In two-constituent free-electron-metal/perfect-insulator mixtures, the magnetore-
sistance is asymptotically proportional touBu at all concentrations above the percolation threshold. In three-
constituent metal/insulator/superconductor mixtures a line of critical points is found, where the strong-field
magnetoresistance switches abruptly from saturating to nonsaturating dependence onuBu, at a certain value of
the insulator-to-superconductor concentration ratio. This transition appears to be related to the phenomenon of
anisotropic percolation.
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I. INTRODUCTION

Over the years, the Bruggeman self-consistent effect
medium approximation~SEMA! for the bulk effective elec-
trical conductivity of a composite medium1,2 has spawned a
number of extensions and generalizations. Those includ
SEMA for elastic stiffness of a composite medium,3,4 a
SEMA for a weakly nonlinear conducting composite,5 and a
SEMA for a strongly nonlinear~power-law! conducting
composite.6,7 They also include a SEMA for a linear con
ducting composite medium where the constituents are c
acterized bynonscalar conductivity tensors.8,9 Such approxi-
mations are needed to study the nonscalar conductivity
to an externally applied magnetic fieldB.8–12

In composite conductors, the microstructure can induc
dependence of the Ohmic resistivity on magnetic field~i.e.,
magnetoresistance! even when none of the constituents e
hibits any such dependence by itself. This arises becaus
local current densityJ(r ) acquires spatial fluctuations in bot
magnitude and direction, as a result of the heterogeneit
microstructure. Those are reflected in similar fluctuations
the local Hall ~electric! field EH(r ), which usually has a
nonzero component along the direction of the volume av
aged current densitŷJ&. The volume average of that com
ponent ofEH vanishes to leading order inB, but in higher
orders that average is usually nonzero. As a result, the
effective Ohmic resistivity of the composite usually depen
uponB. The SEMA developed in Refs. 8 and 9 was used
numerical studies of magnetotransport in various types
composites, where this induced magnetoresistance playe
important role.9,11,13,14 It was also used in an unpublishe
discussion of asymptotic strong-field behavior of magneto
sistance in a free-electron-conductor host with open o
inclusions.15

More recently, it was shown that this type of SEMA
when applied to composites with acolumnar microstructure,
often violates some exact relations that exist between
different components of the bulk effective resistivity tens
PRB 620163-1829/2000/62~10!/6603~11!/$15.00
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A modified SEMA has been developed that incorpora
those exact relations@the ‘‘columnar unambiguous self
consistent effective-medium approximation~CUSEMA!’’ #;
it has been used for a detailed asymptotic analysis of me
insulator (M /I ) and metal/superconductor (M /S) random
columnar mixtures in the strong field limit.16 Very recently,
the CUSEMA was applied to a three-constituent me
insulator/superconductor (M /I /S) random columnar com-
posite mixture; a line of critical points was found to appe
whenever theI and theS constituents are present in equ
amounts, i.e., when their volume fractionspI and pS are
equal. At this point, the asymptotic strong-field behavior
the magnetoresistance switches abruptly from saturated
pS.pI to nonsaturating}uBu2 behavior forpS,pI .17 This
critical point exhibits scaling behavior, along with critica
exponents and scaling functions, all of which were det
mined, approximately, using CUSEMA.

In this article we present a theoretical study of magneto
sistance in three-dimensional disordered composite me
Some of the systems we study are isotropic, two-constitu
mixtures of isotropic constituents. In this category, we co
sider mixtures of normal conductors (M1 /M2), M /I mix-
tures, andM /S mixtures. No ‘‘intrinsic anisotropy’’ is al-
lowed for any constituent; thus, open orbit constituents
not considered. The normal conducting constituents can
simple free-electron conductors, in which case only the H
resistivity depends uponB, or they can be more complicate
conductors or semiconductors where the Ohmic resisti
also depends uponB. But the longitudinal Ohmic resistivity
r i ~alongB! and the transverse Ohmic resistivityr' ~perpen-
dicular to B!, as well as the Hall resistivityrHall , are as-
sumed to beindependent of the directionof B. We also con-
sider anM /I /S mixture, again with isotropic constituents, a
isotropic microstructure, andr i

(M ) , r'
(M ) , rHall

(M ) of theM con-
stituent that are independent of the direction ofB.

The SEMA equations for these composites do not ad
exact closed-form solutions. However, in the strong-fie
limit, asymptotic analysis can be applied to those equatio
6603 ©2000 The American Physical Society
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The strong-field limit means thatuHu@1, whereH is the
Hall-to-transverse-Ohmic resistivity ratio in a metallic
normal conducting constituent

H[
rHall

(M )

r'
(M )

5muBu, ~1.1!

and wherem is the Hall mobility; note thatm andrHall
(M ) , and

therefore alsoH, can be either positive or negative, depen
ing on the sign of the majority charge carriers. Th
asymptotic analysis often leads to results in simple clo
form, or at least ‘‘almost closed form.’’ In several cases
have also solved the SEMA equations numerically in or
to compare with the asymptotic analysis.

The rest of this paper is organized as follows. In Sec
we briefly review the SEMA, using a formulation that repr
duces the usual SEMA equations for nonscalar conduc
constituents in terms of depolarization coefficients of the d
ferent types of inclusions. In Secs. III and IV asympto
analysis is used to find almost closed-form solutions to th
equations for a number of special cases. Those asymp
solutions are compared, in some cases, with numerical s
tions of the same equations. In Sec. III, we treat the spe
case of anM1 /M2 binary mixture. All concentrations ar
considered, starting from the limit of extreme dilution and
the way to the percolation threshold. In Sec. IV,M /I /S
three-constituent mixtures are treated using asympt
analysis. A line of critical points is found where the stron
field response changes abruptly in the manner of a sec
order-phase-transition, as the relative amounts ofI andSare
varied. Critical exponents, a scaling variable, and sca
functions are found that characterize the critical behav
We also discussM /S and M /I mixtures as special cases
these three-constituent composites. A linear dependenc
the magnetoresistance uponuBu is found in free-electron-
metal/perfect-insulator mixtures forall concentrationswhere
the mixture conducts macroscopically.

Section V provides a discussion of the results. We form
late a physical picture of the microscopic processes~i.e., lo-
cal current flow patterns! which lead to some of the result
found in previous sections for the macroscopic response.
also discuss a possible relation between the line of crit
points found in the macroscopic magnetotransport of thr
constituentM /I /S mixtures and the phenomenon of anis
tropic percolation.

II. REVIEW OF SEMA FOR THE CURRENT PROBLEMS

The self-consistent effective-medium approximati
~SEMA! for constituents with arbitrary conductivity tensor
which appear in the system as ellipsoidal grains, was de
oped many years ago by one of the present authors.9 This
development followed more specialized versions, su
as all scalar conductivities,1,2 and later, strong-field
magnetotransport8 and weak-field Hall conductivity.10 Here
we describe a slightly different formulation of the gene
theory of Ref. 9. We use this formulation to find asympto
physical solutions of the SEMA equations when the m
netic field is very strong. This formulation was described
detail in Ref. 16. A similar formulation also appeared in R
12.
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In practice, the SEMA requires that one calculate the el
tric field E1 induced inside a single inclusion, with condu
tivity tensor ŝ inc , embedded in an otherwise uniform ho
with conductivity tensorŝhost, when an external uniform
electric fieldE0 is applied at large distances. Whenever t
inclusion is an ellipsoid,E1 is uniform, whatever the values
of ŝ inc , ŝhost. Obviously,E1 will be a homogeneous linea
function of E0, which can be written with the help of a ma
trix ĝ inc(ŝ inc ,ŝhost)

E15ĝ incE0 . ~2.1!

If the coordinate axes are taken to lie along the principal a
of the symmetric part of the tensorŝhost, then we can write

S 1

ĝ inc
D

ag

5dag2(
b

nabdsbg

~saa
(host)sbb

(host)!1/2
, ~2.2!

dŝ[ŝhost2ŝ inc . ~2.3!

The factorsnab are elements of the depolarization tensorn̂,
not of the actual physical inclusion, but of its image after the
coordinate axes have been rescaled by the following tra
formation

x8[
x

Asxx
(host)

, y8[
y

Asyy
(host)

, z8[
z

Aszz
(host)

. ~2.4!

Under this transformation, the ellipsoidal inclusion is usua
transformed into another ellipsoidal shape, with major a
that have different lengths and different orientations co
pared to those of the physical inclusion. The SEMA is th
obtained by settingŝhost5ŝe , and demanding that the sma
but exactly calculable change in^J&, caused by one isolate
ellipsoidal inclusion, vanish when averaged over the diff
ent kinds of inclusions. This leads to the following se
consistency equations for the elements ofŝe

05^~ ŝe2ŝ inc!ĝ inc~ ŝ inc ,ŝe!&. ~2.5!

In general, these are nonlinear equations, in which there
pearnonelementary transcendental functionsof the elements
of ŝe . Thus, closed-form solutions are usually out of t
question. However, we will show below that asymptotic s
lutions, for a very strong magnetic fieldB, can sometimes be
obtained in almost closed form. For smaller values ofB, the
SEMA equations can be solved numerically, where need
these solutions are discussed below.

We assume the following forms for the resistivity mat
ces of the host and inclusion:

r̂host5r0S a 2b 0

b a 0

0 0 l
D , r̂ inc5r1S 1 2H 0

H 1 0

0 0 n
D .

~2.6!

These forms mean that both the host and the inclusion h
isotropic electrical response, and that the only physically
lected direction is that of the magnetic fieldB, which is
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always taken to lie alongz. This implies that the microstruc
ture, as well as the electrical response of all the constitue
are isotropic. Thea coefficient inr̂host is actually redundant
We will sometimes exploit that redundancy by choosingr0
of the bulk effective resistivity tensor of the composite m
dium to be the same as one of the constituent values ofr1.
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The conductivity tensorsŝhost, ŝ inc are easily found by in-
verting r̂host, r̂ inc .

Because we are considering isotropic microstructures,
will assume that all the constituents appear as spherica
clusions in the fictitious uniform effective medium host.
that case we find
ĝ inc~ ŝ inc ,ŝhost!5S 1

D inc
S 12nx1nx

r0

r1

a21b2

a~11H2!
D nx

D inc
S b

a
2

r0

r1

a21b2

a

H

11H2D 0

2
nx

D inc
S b

a
2

r0

r1

a21b2

a

H

11H2D 1

D inc
S 12nx1nx

r0

r1

a21b2

a~11H2!
D 0

0 0
1

12nz1nzl/n

D , ~2.7!
he

om-

-
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s

where

D inc[S 12nx1nx

r0

r1

a21b2

a~11H2!
D 2

1nx
2S b

a
2

r0

r1

a21b2

a

H

11H2D 2

, ~2.8!

and wherenx , ny5nx , andnz are the depolarization factor
of the spheroidal shape into which the spherical inclus
was transformed by Eqs.~2.4!. Those depolarization factor
are elementary transcendental functions ofa,b,l.18 Thus,
the elements ofĝ inc are also nonalgebraic functions of tho
parameters. Consequently, the equations obtained for t
parameters, by applying the self-consistency requirem
implied by Eq.~2.5!, will usually be complicated, coupled
nonalgebraic equations that lack closed-form solutions
terms of elementary functions. This makes the qualitat
study of their physical solutions highly nontrivial.

III. APPLICATION OF SEMA TO MAGNETORESISTANCE
OF AN M 1 ÕM 2 MIXTURE

As an illustration, we now work out the effective resisti
ity tensor for a binary composite of two normal metals, us
the SEMA. Two other special cases—a composite of nor
metal and insulator, and one of normal metal and per
conductor—will be discussed in the next section as spe
cases of three-constituent mixtures.

In the present case, the bulk effective resistivity tensor
the two constituents are assumed to have the similar for

r̂15r1S 1 2H1 0

H1 1 0

0 0 n1

D , r̂25r2S 1 2H2 0

H2 1 0

0 0 n2

D ,

~3.1!

while the bulk effective resistivity tensor is assumed to ha
the form
n

se
ts

n
e

g
al
ct
al

f
s

e

r̂e5r1S a 2b 0

b a 0

0 0 l
D . ~3.2!

Note that r̂e and r̂1 have been expressed in terms of t
same resistivity factorr1. The forms~3.1! and ~3.2! imply
that both constituents are isotropic conductors, as is the c
posite, and that the magnetic fieldB is applied alongz. They
include the case where bothr̂1 andr̂2 represent simple free
electron or free-hole conductors. They also include m
general types of conductors, where the Ohmic resistivi
and Hall mobility depend uponuBu.

Application of Eq.~2.5! leads to three coupled equation
for the unknown parametersa,b,l, which arise from thezz,
xy, andxx components of that tensorial equation@thexx and
yy components lead to the same equation, as do thexy and
yx components, while thexz, zx, yz, andzy components of
Eq. ~2.5! vanish identically;p1 and p2512p1 denote the
volume fractions of the two constituents#:

05
12nz

l
2

r1

r2

lnz

n1n2
1nzS p2

n1
1

p1

n2

r1

r2
D

2~12nz!S p2

n2

r1

r2
1

p1

n1
D , ~3.3!

05S p2

D1

D2
1p1D b

a21b2
2p2

D1

D2

r1

r2

H2

11H2
2

2p1

H1

11H1
2

,

~3.4!

05S p2

D1

D2
1p1D S a

a21b2
2

nx

a D 1
p2

11H2
2

D1

D2

r1

r2

3FnxS 21
2bH2

a
2

r1

r2

a21b2

a D21G1
p1

11H1
2

3FnxS 21
2bH1

a
2

a21b2

a D21G . ~3.5!
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Not surprisingly, these equations do not admit any clos
form solutions. Since we are interested in the behavior
a,b,l at strong fields, we will apply asymptotic analysis f
the limiting case whereH1[H andH2[vH are both much
greater than 1, i.e.,v remains bounded butuHu@1. All other
physical parameters of the two constituents are also assu
to remain bounded. From Eq.~3.3! it follows that l must
also remain bounded. We have tried various ansatzes fo
asymptotic behavior ofa, b, and proceeded to examin
whether they lead to a mathematically consistent and ph
cally admissible solution. The only ansatz that could sati
those requirements was

b>b0H, a>a0uHu2/3, l>l0 , ~3.6!

wherea0 , b0 , l0 are positive dimensionless coefficients.
follows from this ansatz that the transformation of Eq.~2.4!
changes the spherical inclusions into flat, pancake shape
oblate spheroids, with the short major axis alongz, and with
eccentricitye that diverges asuHu→`. The eccentricitye
and depolarization factors are given by18

e5S a21b2

al
21D 1/2

>
b0

Aa0l0

uHu2/3@1, ~3.7!

nz5
11e2

e3
~e2arctane!>12

p

2e
~3.8!

>12
p

2

Aa0l0

b0
uHu22/3>1, ~3.9!

nx5ny5
1

2
~12nz!5

p

4

Aa0l0

b0
uHu22/3!1. ~3.10!

This leads toD1>1 andD2>1, and when these results a
used in Eqs.~3.4! and ~3.5!, one arrives at the following
explicit asymptotic expressions fora0 ,b0 ,l0:

b05
1

p11p2

H1r1

H2r2

, ~3.11!

l05p1n11
r2

r1
p2n2 , ~3.12!

a05

S p

4
p1p2D 2/3U12

H1r1

H2r2
U4/3S p1n11

r2

r1
p2n2D 1/3

S p11p2

H1r1

H2r2
D 2 .

~3.13!

Note thata050 when the Hall resistivities of the two con
stituents are equalH1r15H2r2. Moreover, whenr2 /r1
@1, thenb0 tends to the finite value 1/p1, while l0 anda0
both diverge. As we shall see in Sec. IV C 2 below, th
behavior presages the behavior exhibited by those par
eters when the No. 2 constituent is a perfect insulator,
whenr25`.

A similar asymptotic dependence of the transverse r
tive bulk effective magnetoresistance on magnetic field w
-
f

ed

he

i-
y

or

m-
.,

-
s

found previously for a free-electron-metal host with op
orbit inclusions.15 A similar asymptotic dependence was al
previously found by Dreizin and Dykhne, who presented
qualitative microscopic discussion of magnetotransport
composite media.19 In our language, those results wou
translate intoa}uHu2/3, as we have also found. While th
asymptotic behavior found in those previous studies is si
lar to what we find here, the present discussion shows tha~a!
one does not need to have open orbits in any constituen
order to observe this kind of behavior and~b! the behavior
we find is a straightforward consequence of SEMA. Sin
SEMA becomes exact in the dilute limit, when eitherp1 or
p2 is very small, we believe that the asymptotic resulta
}uHu2/3 is exact. It appears that the only requirement
obtaining this type of asymptotic response is that the t
constituents have comparable Ohmic resistivities and dif
ent Hall resistivities. In fact, our numerical solutions of the
equations also suggest that only the difference in the H
resistivities is crucial: TheuHu2/3 power law is obtained even
if the two constituents havethe same Ohmic resistivities.

In order to confirm that our ansatz for the asympto
behavior is indeed correct, we have solved the SEMA eq
tions numerically for a simple example. We assume thatr1
5r2 , n15n251, andH[H150.5H2, and we considerp1
5p250.5. In Fig. 1~a! we plot the relative bulk effective
transverse magnetoresistivitya21 vs uHu2/3. It is evident
that this quantity rapidly approaches a linear dependence
uHu2/3 as uHu increases, and that the asymptotic depende
found analytically above is accurately achieved foruHu.2
for this choice of parameters. In Fig. 1~b!, we plot the quo-
tient b/H5rHall

(e) /rHall
(1) vs uHu2/3. The second form of this quo

tient shows that it is equal to the ratio of bulk effective Ha
resistivity to the Hall resistivity of the No. 1 constituen
suggesting the name ‘‘relative Hall resistivity.’’ Clearly,b
also rapidly approaches its asymptotic dependence upoH,
which is linear rather than}uHu2/3, i.e., the ratiob/H be-
comes field independent.

IV. THREE-CONSTITUENT M ÕI ÕS MIXTURES

A. General considerations

Next, we turn to a discussion of a three-constituent co
posite containing a volume fractionpM of normal metal,pS
of perfect conductor, andpI of insulator. As part of this
discussion, we will consider the special cases of tw
constituentN/S andN/I mixtures. We use the subscriptsM,
I, andS to denote normal metal, insulator, and perfect co
ductor.

We assume the following forms and inequalities for t
bulk effective resistivity tensorr̂e , and for the three-
constituent resistivity tensorsr̂M , r̂ I , r̂S :

r̂e5rMS a 2b 0

b a 0

0 0 l
D , r̂M5rMS 1 2H 0

H 1 0

0 0 n
D ,

~4.1!

r̂S5rSÎ , r̂ I5r I Î , rS!rM!uHurM!r I , ~4.2!
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FIG. 1. Results of numerical solution of the SEMA Eqs.~3.3!–~3.5! for an M1 /M2 mixture. ~a! Plot of the relative bulk effective
transverse magnetoresistivitya21 vs uHu2/3 for a three-dimensional composite of two free-electron-metal constituents, present in
amountsp15p251/2, which have the same Ohmic resistivity, but Hall resistivities that differ by a factor of 2@i.e., r15r2 and H15H,
H252H, in the notation of Eq.~3.1!#. ~b! Same as~a!, except that we plot the relative bulk effective Hall resistivityb(H)/H vs uHu2/3 @cf.
Eq. ~3.2!#.
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where Î is the unit tensor. We use the results of Eqs.~2.7!
and~2.8! in Eq. ~2.5! for this system, and then take the limi
rS→0 andr I→` to get the following equations fora,b,l
from thezz, xy, andxx components of that equation@again,
the other components of Eq.~2.5! lead either to redundancie
or to identities; pM ,pI ,pS denote the constituent volum
fractions, which satisfypM1pI1pS51#

l

n
5

12nz

nz

nz2pS

pS1pM2nz
, ~4.3!

b

a21b2
5pM

H

11H2Y S DM

DI
pI1pM D , ~4.4!

S DM

DI
pI1pM D S a

a21b2
2

nx

a D 2DM

pS

nx

a

a21b2

5
pM

11H2 F11nxS a21b2

a
222

2bH

a D G , ~4.5!

where

DM5S 12nx1nx

a21b2

a~11H2!
D 2

1
nx

2b2

a2 S 12
a21b2

b

H

11H2D 2

, ~4.6!

DI5~12nx!
21

nx
2b2

a2
. ~4.7!

Combining Eqs.~4.4! and ~4.5! we can simplify Eq.~4.5!
slightly to get
11nxFa21b2

a S 11
H

b D222
2bH

a G
5

aH

b
2DM

pS

pM

11H2

nx

a

a21b2
. ~4.8!

Despite the seemingly simple form of Eqs.~4.3! and~4.4!,
the right-hand sides of those equations do not constitute
plicit expressions forl or for b/(a21b2), because those
right-hand sides depend upona,b,l through nz and nx .
Nevertheless, Eq.~4.3! does show thatnz must satisfy the
following inequalities in order forl to be positive:

pS,nz,pS1pM512pI , ~4.9!

where the lower bound must satisfypS,pc51/3 and the
upper bound must satisfypS1pM.pc51/3 ~pc denotes the
percolation threshold, equal to 1/3 in SEMA! in order for the
entire composite to have a finite, nonzero bulk effective c
ductivity.

Equations~4.3!–~4.8! do not admit closed-form solutions
In order to obtain asymptotic solutions whenuHu@1, we
tried a range of possible ansatzes for the asymptotic form
a,b,l, and proceeded to examine them for mathemat
consistency and physical admissibility. Only three of tho
ansatzes stand up to both requirements; each is valid f
different range of the constituent volume fractio
pM ,pI ,pS , where, of course,pM1pI1pS51. The three an-
satzes and the resulting solutions are described in the foll
ing subsections.

B. The saturating regime

1. General case

The first ansatz that leads to admissible results is

a>a0 , l>l0 , b>
b0

H
. ~4.10!
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This leads to the following results:

DM>~12nx!
2, DI>~12nx!

2⇒ DM

DI
>1. ~4.11!

Consequently, Eq.~4.4! yields the following relation be-
tweenb0 anda0

b05a0
2 pM

pI1pM
. ~4.12!

Using this to eliminateb0 from Eq. ~4.8!, we get

0>
12nx

a0 nx pM
~pS2nx!⇒nx>pS,

1

3

⇒nz5122nx>122pS5pM1pI2pS.
1

3
.

~4.13!

A consequence of the last inequality fornz is that the trans-
formed shape of the spherical inclusions is anoblate spher-
oid. Since we must also have@see Eq.~4.9!#

122pS>nz,pS1pM512pI , ~4.14!

we find that we need to require 2pS.pI in order for this
asymptotic solution to be valid. Equation~4.3! now becomes

l05n
2pS~123pS!

~122pS!~2pS2pI !
. ~4.15!

In order to determinea0 we first need to solve the following
transcendental equation for the eccentricitye of the oblate
spheroid:

nz5
11e2

e3
~e2arctane!>122pS.

1

3
, ~4.16!

and then use the relation betweene anda,b,l

e5S a21b2

al
21D 1/2

>S a0

l0
21D 1/2

[e0⇒a05l0~11e0
2!.

~4.17!

These asymptotic results are valid for the range of c
stituent compositions defined by

pI

2
,pS,

1

3
. ~4.18!

WhenpS→pI /2 from above,a0 , l0, andb0 all diverge,
but at different rates:

a0}
1

2pS2pI
, l05

a0

11e0
2
}

1

2pS2pI
, ~4.19!

b0}
1

~2pS2pI !
2

. ~4.20!

It is worth noting thata andl are both proportional ton.
Along with the fact that they are asymptotically independ
of H, this indicates that the local electric field in theM con-
-

t

stituent is directed mostly alongB. Similar proportionality is
also found in the two-constituentM /S case, discussed below
It is also worth noting that whenpS→1/3 from below, then
alsonz→1/3, and consequentlye0→0. Botha0 andl0 tend
to 0 as 123pS , but a0 /l0→1. This indicates that when th
S constituent approaches its percolation thresholdpc51/3,
the same current flow pathsin the M constituent are respon
sible for the leading contribution to the macroscopic
sponsewhatever the direction of the average current dens
^J&.

2. Two-constituent MÕS mixture

An important special case of a three-constituent comp
ite with saturating behavior ispI50, corresponding to a two
constituentM /S mixture. One can also get the results for th
case by settingpI50 in Eqs.~4.3! and~4.4! @or alternatively
by taking the limit r1 /r2→` in Eqs. ~3.3! and ~3.4!# to
obtain the following equations:

l5nS 12
pS

nz
D ,

b

a21b2
5

H

11H2
, ~4.21!

and noting that Eq.~4.5! @or Eq. ~3.5!# is satisfied as an
identity to leading order in 1/H.

The asymptotic largeuHu behavior can then be obtaine
by using the ansatz of Eq.~4.10!. The second of Eq.~4.21!
immediately leads to a simple relation betweenb0 and a0,
namely,

b05a0
2 . ~4.22!

The value of the ratioa0 /l0 is obtained by first solving the
transcendental equation for the asymptotic eccentricitye0,
namely,

nz>pM2pS5
11e0

2

e0
3 ~e02arctane0!, ~4.23!

and then using

e0>S a0

l0
21D 1/2

. ~4.24!

Finally, the first of Eq.~4.21! leads to

l0>nS 12
pS

pM2pS
D5n

123pS

pM2pS
. ~4.25!

The fact thata0 ,b0 ,l0 all depend uponn, i.e., a0}n, l0
}n, b0}n2, indicates that the leading contribution to th
macroscopic response is due to local currents that flow
allel to B in the M constituent.

When pS approaches the SEMA percolation thresho
value 1/3 from below, thennz→1/3; hencee0→0 and
a0 /l0→1 from above. Botha0 and l0 tend to 0 as 1
23pS , while b0→0 as (123pS)2. The fact thatl0 /a0
→1 again indicates that thesame current flow pathsin theM
constituent are responsible for the leading contribution to
macroscopic responsewhatever the direction of the averag
current densitŷ J&.

The SEMA equations for anM /S mixture were treated
numerically in the past.14 Those calculations are in agree
ment with the asymptoticpM dependence ofa0 , l0, andb0
obtained for such mixtures in this section.
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C. The nonsaturating regime

1. General case

Another ansatz that leads to an admissible solution is

a>a0uHu, l>l0uHu, b>b0H. ~4.26!

Becausel is now very large, Eq.~4.3! leads to the following
results

nz>pS1pM2OS 1

uHu D512pI2OS 1

uHu D , ~4.27!

nx5
1

2
~12nz!>

pI

2
1OS 1

uHu D . ~4.28!

SincepI,2/3, we must havenz.1/3 if uHu is large enough,
and the transformed spherical inclusion is then again an
late spheroid.

Instead of using the unknownsa0, and b0, it is conve-
nient to introduce the variablesx andy, defined by

x[
a0

21b0
2

b0
, y[

b0

a0
. ~4.29!

Using x andy, we can write

DM>S 12
pI

2 D 2

1
pI

2y2

4
~12x!2, ~4.30!

DI>S 12
pI

2 D 2

1
pI

2y2

4
. ~4.31!

Equation~4.4! now becomes

~xpM2pM2pI !@~22pI !
21pI

2y2#>pI
3y2~x222x!,

~4.32!

while Eq. ~4.8! becomes

pIx~xy2111y2!>2pIxy212x

2
pS

pMpI
@~22pI !

21pI
2y2~12x!2#.

~4.33!

These equations are both linear iny2. Wheny2 is elimi-
nated, the result is a factorizable cubic equation forx

05x@x2~223pI !2x~412pS25pI !12~11pS2pI !#

5x~x21!Fx22S 11pS2pI

223pI
D G~223pI !. ~4.34!

SincepI512pS2pM,2/3, the physical solution is

x52
11pS2pI

223pI
5

2~2pS1pM !

223pI
.0. ~4.35!

This leads to an expression fory2, which is a quotient of
somewhat complicated polynomials inpM , pI , and pS .
Those can be factorized, after some effort, leading to
b-

y25
~223pI !~22pI !~pI22pS!

pI
2~2pS1pI !

, ~4.36!

which is positive ifpI.2pS . These results lead to the fo
lowing expressions fora0, andb0

b05
~2pS1pM !~11pM1pS!~pI /22pS!

pI~12pI !
21pS@22~22pI !

2#
, ~4.37!

a05S ~pI22pS!~2pS1pI !~11pM1pS!

223pI
D 1/2

3
pI~pS1pM/2!

pI~12pI !
21pS@22~22pI !

2#
. ~4.38!

Obviously, the cubic polynomial that appears in the deno
nators of a0 and b0 is positive over the entire range
,2pS,pI where Eqs.~4.37! and ~4.38! are applicable. Fi-
nally, l0 can again be found by first solving the followin
transcendental equation for the eccentricitye of the oblate
spheroid

nz5
11e2

e3
~e2arctane!>pS1pM , ~4.39!

and then using the relation betweene anda, b, andl to get

e5S a21b2

al
21D 1/2

>S a0
21b0

2

a0l0
21D 1/2

. ~4.40!

These asymptotic results are valid for the range of c
stituent compositions defined by

pS,
pI

2
,

1

3
. ~4.41!

When pS approachespI /2 from below, thena0 , b0, and
l0 all tend to 0, but at different rates:

a0}ApI22pS, l0>
a0

11e2
}ApI22pS, ~4.42!

b0}pI22pS . ~4.43!

It is worth noting thata, b, andl are all independent o
n. This indicates that the local electric field in theM con-
stituent has considerable components that are perpendi
to B. It is also worth noting that, whenpI→2/3, botha0 and
l0 diverge buta0 /l0→1, i.e.,

a0>l0>2S 129pS
2

3~223pI !
D 1/2

. ~4.44!

This indicates that, when the total volume fraction of co
ducting constituentspM1pS approaches its percolatio
thresholdpc51/3, thesame current flow pathsin theM con-
stituent are responsible for the leading contribution to
macroscopic responsewhatever the direction of the averag
current densitŷ J&.
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2. Two-constituent MÕI mixture

An important special case within the nonsaturating regi
is pS50, corresponding to a two-constituentM /I mixture.
One can also get the results for such a mixture by set
pS50 in Eqs. ~4.3!, ~4.4!, and ~4.8! to get the following
equations:

l5n
12nz

pM2nz
, ~4.45!

b

a21b2 S pI

pM

DM

DI
11D5

H

11H2
, ~4.46!

a

nx
S a2

b

H D5~a21b2!S 11
b

H D22bS b1
a

H D .

~4.47!

The asymptotic behavior is obtained by making the ans
of Eqs.~4.26!. After a sequence of algebraic steps similar
those described above, the following results are obtained
the asymptotic linear slopes:

b05
11pM

2pM
, a05

pI

2pM
S 11pM

3pM21D 1/2

, ~4.48!

l05a0

~2pM /pI !
2

11e0
2

, ~4.49!

wheree0 is given implicitly in terms ofpM by the transcen-
dental equation

pM5
11e0

2

e0
3 ~e02arctane0!, ~4.50!

which must be solved numerically. As in theM /I /S nonsat-
urating regime,a0 , b0, andl0 are all independent ofn. This
indicates that the leading contribution to the macroscopic
bulk effective response is due to local currents that flow p
pendicular toB in the M constituent.

When pM approaches the SEMA percolation thresho
value of 1/3 from above, thenb0→2 ande0→0. Therefore
l0 /a0→1 from above, and botha0 and l0 diverge as
1/A3pM21. The fact thatl0 /a0→1 again indicates that th
same current flow pathsin the M constituent are responsibl
for the leading contribution to the macroscopic respo
whatever the direction of the average current density^J&.

Once again, in order to confirm the asymptotic behav
predicted analytically, we have solved the SEMA equatio
numerically. We assumen1[n51 @see Eq.~3.1!#, r̂25`,
and consider a variety of values ofp1[pM above the perco-
lation thresholdpc ~equal to 1/3 in the SEMA in three di
mensions!. The resulting behavior ofa and l is shown in
Figs. 2~a! and 2~b!; we also show the relative Hall resistivit
b/H in Fig. 2~c!. Evidently, for any choice ofpM , a andl
rapidly approach their asymptotic linear dependence onuHu,
as predicted by the asymptotic analysis. Furthermore,
slope increases aspM approaches the percolation thresho
again as predicted by the asymptotic results. The asymp
linear dependence appears to be reached approximately
uHu.5, for all the values ofpM that were considered. Fo
e

g

tz

or

r
r-

e

r
s

e
,
tic
en

pM less than about 0.5, we had some difficulty, using o
simple algorithm, in solving the SEMA equations nume
cally; by contrast, of course, the asymptotic analysis gi
the slope, for any value ofpM greater thanpc51/3, without
any difficulty.

D. Scaling behavior near the transition point

If we compare the critical behaviors exhibited bya, b,
and l when uHu@1 andpI→2pS from above@Eqs. ~4.42!,
and ~4.43!# and from below@Eqs.~4.19! and ~4.20!#, we are
led to anticipate a scaling behavior. That is, we should
able to describe the critical behavior in both regimes by
ing a scaling variable which is some power ofH2(pI
22pS)3/n2, and writinga, b, andl in terms of three~scal-
ing! functions of that variable. We have found that the mo
convenient scaling variable for this purpose is

Z[S uHu
n D 2/3

~pI22pS!. ~4.51!

In the ‘‘critical region,’’ i.e., whennH2@1 and upI22pSu
!n, the bulk effective resistivity parameters can now
expressed as

a>
n

pI22pS
Fa~Z!, ~4.52!

l>
n

pI22pS
Fl~Z!, ~4.53!

b>
n2

H~pI22pS!2
Fb~Z!. ~4.54!

As usual, there are three important extreme regimes wi
the critical region, namely:Z,0, uZu@1 ~regime I, where
2pS.pI); Z.0, uZu@1 ~regime II, where 2pS,pI); and
uZu!1 ~regime III, where we can have either 2pS.pI , or
2pS,pI , or 2pS5pI). The behavior of the scaling function
Fa(Z), Fl(Z), andFb(Z) in regimes I and II is dictated by
the critical behaviors found earlier. Their behavior in regim
III is dictated by the requirement that this behavior mu
exactly cancel the divergencies that would otherwise oc
due to the vanishingpI22pS factor in the denominators o
the above expressions. These considerations lead to the
lowing forms for the scaling functions in the three regime

Fa~Z!>H 2A regime I

A8Z3/2 regime II

A9Z regime III,

~4.55!

Fl~Z!>H 2L regime I

L8Z3/2 regime II

L9Z regime III,

~4.56!

Fb~Z!>H B regime I

B8Z3 regime II

B9Z2 regime III,

~4.57!
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FIG. 2. Results of numerical solution of the SEMA Eqs.~4.45!–~4.47! for an M /I mixture. ~a! Plot of the relative bulk effective
transverse magnetoresistivitya21 vs uHu for a three-dimensional two-constituent composite of free-electron metal and perfect insula
various values of the metal volume fractionp[pM . ~b! Same as~a!, except that we plot the relative bulk effective longitudinal magneto
sistivity l21. ~c! Same as~a!, except that we plot the relative bulk effective Hall resistivityb(H)/H vs uHu only at high fields (uHu.5).
s
1

th

a

vi

ely

th

g

where the primed, double primed, and unprimed version
A, B, andL are positive dimensionless constants of order
Their values can be found, if necessary, by comparing
resulting expressions fora, b, andl with the detailed solu-
tions of the SEMA equations. Qualitative plots of these sc
ing functions are shown in Fig. 3.

As indicated above, these equations make a nontri
prediction about the behavior ofa, b, andl in regime III,
which was not worked out in the previous sections, nam

a>a0uHu2/3, l>l0uHu2/3, b>b0uHu1/3sign~H !.
~4.58!

We now use these scaling forms as an ansatz for ano
asymptotic solution of the SEMA equations, assumingpI
52pS , in order to check for consistency of the scalin
scheme developed here.

Sincel is very large, Eq.~4.3! entails

nz>pS1pM512pI5122pS.
1

3
, nx>pS,

1

3
,

~4.59!
of
.
e

l-

al

,

er

where we have used the fact thatpI52pS . From Eq.~4.3!
we can also calculate the small correction tonz>122pS in
terms ofl0

122pS2nz>
n

l0uHu2/3

2pS~123pS!

122pS
. ~4.60!

In addition, we can write expressions forDM , DI , and for
their ratio DM /DI , that go beyond leading order in 1/H,
namely,

DM>~12nx!
21

nx
2b0

2

a0
2uHu2/3S 12

a0
2

b0
D 2

, ~4.61!

DI>~12nx!
21

nx
2b0

2

a0
2uHu2/3

, ~4.62!

DM

DI
>11

a0
222b0

uHu2/3 S nx

12nx
D 2

. ~4.63!
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From Eq.~4.4! we get a relation betweenb0 anda0

b05a0
2 123pS

12pS
. ~4.64!

Using this result, we find that Eq.~4.5! becomes an identity
to leading order in 1/H. We therefore need to consider th
equation in the next-to-leading order. The result is

122pS2nz>
a0

2

uHu2/3

4pS
2~123pS!

~12pS!3
. ~4.65!

Comparison of this equation with Eq.~4.60! yields the fol-
lowing relation betweena0 andl0:

a0
2l0

n
5

~12pS!3

2pS~122pS!
. ~4.66!

Another relation between those two unknowns is obtained
first solving the transcendental equation for the eccentricie
of the oblate spheroid

nz5
11e2

e3
~e2arctane!>pS1pM , ~4.67!

and then using the expression fore in terms ofa, b, andl
to get

11e25
a21b2

al
>

a0

l0
. ~4.68!

Equations~4.64!, ~4.66!, and~4.68! then provide a complete
and consistent solution fora0 , b0, and l0, obtained by
jointly considering the scaling and SEMA equations.

Again, it is worth noting that botha and l are propor-
tional ton1/3, while b}n2/3. This seems to be consistent wi
the fact thata and l are also proportional touHu2/3, while
b}uHu4/3/H. These behaviors indicate that the local curre
flows both parallel and perpendicular toB, and that the three
principal Ohmic conductivities of theM constituent all con-
tribute to the macroscopic response whenpI52pS .

V. SUMMARY AND DISCUSSION

A striking result of the present paper is that, in anM /I
composite, bothr'

(e) andr i
(e) are proportional touHu in the

FIG. 3. Qualitative plots of the scaling functions obtained us
SEMA. The left plot showsFa(Z) ~solid line! andFl(Z) ~dashed
line!, which are similar but not identical, withuFa(Z)u.uFl(Z)u,
while the right plot showsFb(Z), which is never negative.
y

t

strong-field limit. Suchlinear magnetoresistancehas long
been a mysterious observed feature of transport in polyc
talline samples of even so-called ‘‘simple metals.’’20 This
behavior has sometimes been ascribed to macroscopic i
mogeneities. But until now, only in the low-concentratio
limit has proof been given that such inhomogeneities co
actually produce a linear magnetoresistance.11,21,12Here, we
have shown that bothr'

(e) andr i
(e) remain linear inuHu even

at higher concentrationsof inclusions, provided those inclu
sions havestrictly zero conductivity. This result may be rel-
evant to a range of experimental systems.

It is quite easy to understand, qualitatively, the behav
of anM /S disordered mixture: Whatever the direction of th
average current densitŷJ&, the local current densityJ(r ) in
theM constituent will flow mostly alongBiz whenH is very
large, and this tendency will become more and more p
nounced with increasinguHu. Components ofJ(r ) that are
perpendicular toB will have finite values only inside theS
constituent, while in theM constituent they will tend to 0 as
1/H2. This results in a current flow pattern that satura
when uHu@1; therefore, all the Ohmic resistivities will als
saturate. The Hall resistivity will be very small—of orde
1/H—because the local Hall fieldEH will also be of that
order.

The behavior ofM1 /M2 mixtures is more difficult to un-
derstand qualitatively. Our interpretation of the~successful!
ansatz of Eq.~3.6! is that when̂ J&iBiz, the current distri-
bution saturates for large values ofuHu. But when^J&'B,
then that distribution continues to evolve with increasi
uHu, with the current distortions increasing asymptotically
uHu1/3.

The macroscopic response ofM /I mixtures is qualita-
tively similar to the behavior of an isolated insulating incl
sion embedded in anM host, as shown many years ago by
exact solution for such an inclusion of spherical or cylind
cal shape.21 The fact that this kind of behavior persists dow
to the percolation threshold indicates that, despite the in
actions between current distortions produced by different
clusions, the local current distribution never saturates asuHu
increases. The results we got would require that the cur
distortions increase asuHu1/2 for largeH. However, the fact
that the coefficientsa0 andl0 diverge aspM→pc , probably
signals that those distortions increase even more rapidly
uHu1/2 precisely at the percolation threshold.

The present results can also be compared with some s
lations performed previously on a discrete network mod
where finite sizeL3L3L samples were considered pr
cisely at the percolation threshold.22 Those simulations
showed that, whenL is much less than a ‘‘magnetic correla
tion length’’ jH}uHu0.46, the Ohmic resistivities saturate at
value proportional toL6.7. However, in the opposite limitL
@jH , the Ohmic resistivities continue to increase
uHu2.1L2.2. This result is consistent, within the error bar
with H2Lt/n, wheret>2.0 andn>0.89 are the usual perco
lation critical exponents for scalar Ohmic conductivity (se
}Dpt, Dp[pM2pc) and for the percolation correlatio
length (jp}Dp2n)—see Ref. 23. Using finite-size scaling
replace the system sizeL by jp in these results, we are led t
expect that
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a,l}H Dp24.0 for Dp@uHu20.52 or jp!jH ,

H2 for Dp!uHu20.52 or jp@jH .
~5.1!

Obviously, this behavior differs in a number of ways fro
what was found in Sec. IV C 2 using SEMA. It is not su
prising that the critical exponents predicted by SEMA a
quantitatively incorrect. However, the fact that, according
the simulations, the magnetoresistivity saturates asuHu→`,
is qualitatively at odds with the predictions of SEMA
Clearly, this qualitative discrepancy needs to be exami
further. We conjecture that it has to do with the existence
three diverging lengths in this problem, namelyjp , jH , and
L.

The qualitative situations described above continue to
applicable also in the case of the three-constituentM /I /S
mixtures. The presence or absence of system-spanning~i.e.,
infinite! current flow paths, which are parallel toB inside the
M constituent, now depends on the relative amounts ofI and
S inclusions. The critical points or transition pointspI
52pS can be expected to occur when such paths first ap
with increasingpS .

Obviously, this transition is a kind of percolation proce
In fact, we believe it is a physical realization of ‘‘anisotrop
percolation.’’ This kind of percolation was first considere
many years ago in the context of a two-dimensional, r
domly diluted, square bond network.24 The geometrical
properties of anisotropic percolation in hypercubic rand
bond networks of arbitrary dimension were also stud
extensively.25,26

As originally defined, the anisotropic percolation proble
is characterized by different occupation probabilities
bonds aligned along different principal axes of the netwo
This situation is not easily implemented in a continuum p
colating system, because that would require an anisotr
constituent where the principal conductivities have ratios t
are extremely different from 1. Also, the principal axes
different grains of that constituent would have to beidenti-
cally oriented. While this may be difficult to achieve in con
ducting materials whenB50, such extreme ratios and iden
tical orientations can easily be attained, even in an isotro
y
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conductor, just by applying a magnetic field such thatuHu
@1 or n!1. In that case, if we identify volume fraction
with the bond occupation probabilities, then we can say th
for uHu@1 or n!1, the regions that are highly conductin
along B occupy a fractionpM1pS of the total volume. By
contrast, the regions that are highly conducting perpendic
to B occupy the smaller volume fractionpS . Our SEMA
result, for the transition points between saturating and n
saturating regimes of magnetoresistance, can then be i
preted as follows

0512px2py2pz512pS2pS2~pM1pS!5pI22pS ,
~5.2!

wherepz5pM1pS represents the bond occupation probab
ity alongB while px5py5pS represent the bond occupatio
probabilities in the directions perpendicular toB.

The identification of the critical points in theM /I /S mag-
netoresistive response with an anisotropic percolation thre
old needs to be verified by a more accurate treatment of
bulk effective magnetoresistance. In particular, it needs to
determined whether the ever-present Hall conductivity is
irrelevant perturbation, or whether it in fact destabilizes t
usual percolation fixed point, or alters the critical behav
associated with it. In any case, we expect that such a tr
ment will yield different values for the critical exponents an
different forms for the scaling functions and scaling variab
than those obtained here using SEMA.

Experimental studies of the line of magnetoresistive cr
cal points can be conducted on samples made by usin
semiconductor host with a large Hall mobilitym as theM
constituent, in which two types of inclusions are random
embedded: highly insulating inclusions~e.g., voids! as theI
constituent, and either highly conducting normal metallic
clusions or superconducting inclusions as theS constituent.

ACKNOWLEDGMENTS

We are grateful to Eivind Almaas for help with Figs.
and 2. This research was supported in part by grants from
US-Israel Binational Science Foundation, the Israel Scie
Foundation, and NSF Grant No. DMR 97-31511.
1D.A.G. Bruggeman, Ann. Phys.~Leipzig! 24, 636 ~1935!.
2R. Landauer, J. Appl. Phys.23, 779 ~1952!.
3B. Budiansky, J. Mech. Phys. Solids13, 223 ~1965!.
4R. Hill, J. Mech. Phys. Solids13, 213 ~1965!.
5D.J. Bergman, Phys. Rev. B39, 4598~1989!.
6D.J. Bergman, inComposite Media and Homogenization Theor,

edited by G. Dal Maso and G.F. Dell’Antonio~Birkhäuser, Ber-
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